
Transcriptomic Temperature Stress Responses Show 
Differentiation Between Biomes for Diverse Plants
Samuel C. Andrew  1,*, Rosalie J. Harris  2, Chris Coppin  1, Adrienne B. Nicotra  2, 
Andrea Leigh  3, Karel Mokany  1

1Agriculture and Food, CSIRO, Canberra, Australian Capital Territory, Australia
2Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2600, 

Australia
3School of Life Sciences, University of Technology Sydney, Broadway, New South Wales, Australia

*Corresponding author: E-mail: sam.andrew@csiro.au.

Accepted: March 20, 2025

Abstract

Plants are foundational to terrestrial ecosystems, and because they are sessile, they are particularly reliant on physiological 
plasticity to respond to weather extremes. However, variation in conserved transcriptomic responses to temperature ex-
tremes is not well described across plants from contrasting environments. Beyond molecular responses, photosystem II ther-
mal tolerance traits are widely used to assay plant thermal tolerance. To explore options for improving the prediction of 
thermal tolerance capacity, we investigated variation in the transcriptomic stress responses of 20 native Australian plant spe-
cies from varied environments, using de novo transcriptome assemblies and 188 RNA-sequencing libraries. We documented 
gene expression responses for biological processes, to both hot and cold temperature treatments, that were consistent with 
conserved transcriptomic stress responses seen in model species. The pathways with the most significant responses were gen-
erally related to signaling and stress responses. The magnitude of some responses showed differentiation between the spe-
cies from contrasting arid, alpine, and temperate biomes. This variation among biomes indicated that postheat exposure, 
alpine and temperate species had greater shifts in expression than arid species and alpine species had weaker responses 
to the cold treatment. Changes in the median expression of biological processes were also compared to plasticity in photo-
system II heat and cold tolerance traits. Gene expression responses showed some expected relationships with photosystem II 
thermal tolerance plasticity, but these two response types appeared to be mostly independent. Our findings demonstrate the 
potential for using variation in conserved transcriptomic traits to characterize the sensitivity of plants from diverse taxa to 
temperature extremes.

© The Author(s) 2025. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, 
distribution, and reproduction in any medium, provided the original work is properly cited.
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Introduction
Plants are foundational to terrestrial ecosystems and are in-
creasingly more vulnerable to intensifying temperature ex-
tremes (Díaz et al. 2016; Bruelheide et al. 2018; Geange 
et al. 2021). However, plants are not defenseless when it 

comes to temperature extremes; underneath an immobile 
exterior, a whole range of hidden biological responses 
take place (Wahid et al. 2007; Lancaster and Humphreys 
2020; Zhang et al. 2022). Responses to temperature ex-
tremes are shared across plants, and it can be expected 

Significance
Here, we demonstrate the potential of comparative transcriptomic methods to quantify variation in conserved gene ex-
pression responses to temperature stressors, which are understood to be important to thermal tolerance and acclima-
tion. Previously, landscape genomics has focused on genome-wide genetic markers to study signatures of adaptation to 
climate conditions across species distributions. The assessment of species vulnerability to climate change has also used 
functional traits, and we believe we have shown here that gene expression traits of the transcriptome have the potential 
to identify signatures of adaptation to climate. Transcriptomic traits could expand the use of genomic data in conser-
vation biology for plants and potentially other taxonomic groups.
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that these responses would be adapted to local environ-
ments (Yeaman et al. 2016; Maher et al. 2018). For plants 
adapted to different biomes, the optimal strategies for plas-
tic responses to temperature fluctuations could look quite 
different (Donelson et al. 2023). Variation or diversity in 
how plants perceive and respond to thermal extremes 
(Zhu 2016) is likely a critical component for understanding 
the resilience of plants to tolerate changing climate condi-
tions (Li et al. 2018).

Functional trait diversity (Gallagher et al. 2021) and gen-
etic diversity (Hoban et al. 2023) have been used extensively 
to inform the assessment of species vulnerability to climate 
change (Nicotra et al. 2015). However, there is a lack of re-
search to quantify diversity in molecular responses to stress 
across nonmodel species (DeBiasse and Kelly 2016; Rivera 
et al. 2021). Molecular stress response traits can be quanti-
fied at several genomic levels including the epigenome, 
transcriptome, proteome, and metabolome (Zhang et al. 
2022). With respect to stress responses, the transcriptome 
is of particular interest because it can rapidly and dynamic-
ally respond to environmental stimuli due to evolutionarily 
conserved signaling cascades (Ghanashyam and Jain 
2009; Wilkins et al. 2016; Zhu 2016) and epigenetic 
regulation (Perrone and Martinelli 2020). The transcrip-
tome should also represent a major force driving changes 
in the proteome, metabolome, and ultimately cell function-
ing (Voelckel et al. 2017; Zhang et al. 2022). Genetic 
variation is critical to regulating heritable variation in the 
gene expression levels and the responsiveness of gene 
regulatory networks that allow the plant to respond to 
stressors. However, linking genetic markers to quantitative 
traits like molecular stress responses can be difficult 
(Chaudhary et al. 2020).

Across plants, there are shared transcriptomic responses 
to temperature stress (Wahid et al. 2007; Nurhasanah 
Ritonga and Chen 2020). One response to heat stress 
that is conserved beyond just plants is the upregulation of 
heat shock proteins (HSPs) and other chaperone proteins 
that facilitate the folding, aggregation, translocation, and 
degradation of proteins (Chaudhary et al. 2020). The roles 
of these proteins become increasingly important as tem-
peratures go beyond the optimal levels for protein folding 
and subsequently unfolded or misfolded proteins accumu-
late. This accumulation directly stimulates the increased ex-
pression of these chaperone proteins (Feder and Hofmann 
1999). The accumulation of reactive oxygen species (ROS) 
also becomes more problematic as temperatures deviate 
from optimal levels for metabolism. The accumulation of 
ROS can cause oxidative stress damage and stimulate other 
stress responses or even programmed cell death (Mansoor 
et al. 2022; Mittler et al. 2022). The upregulation of ROS 
scavenging genes in response to ROS accumulation is also 
a conserved stress response (Mansoor et al. 2022). A recent 
meta-analysis of responses to cold stress in six species with 

paired tolerant and sensitive populations identified a num-
ber of conserved responses in controlled environments, in-
cluding photosynthetic and signaling pathways (Vergata 
et al. 2022). The ICE-CBF-COR signaling cascade (Hwarari 
et al. 2022) and stress hormones such as ethylene, gibber-
ellic acid, and jasmonic acid (Wang et al. 2018; Chen et al. 
2021; Raza et al. 2021) are also critical for regulating the 
suppression of growth and the upregulation of cold accli-
mation genes in response to low temperatures. However, 
linking variation in these conserved transcriptome re-
sponses to variation in individual thermal tolerance has still 
not been explored in depth, particularly across the diversity 
of nonmodel plant species (Rivera et al. 2021), but has re-
cently been looked at in a set of 17 Acacia congenerics 
for heat stress responses (Andrew, Simonsen, et al. 2024).

Studies on the thermal tolerance of plants have often fo-
cused on the membrane protein complex photosystem II 
(PSII), because it is highly heat sensitive and the first stage 
of light-dependent reactions for photosynthesis (Mathur 
et al. 2014). A number of photosynthetic thermal tolerance 
(PTT) metrics measure changes in chlorophyll fluorescence 
with increasing temperature exposure (O’Sullivan et al. 
2017; Perez and Feeley 2020; Harris et al. 2024). One 
such metric is Tcrit, which identifies threshold temperatures 
at which PSII is significantly inhibited, indicated by a sudden 
rise in basal fluorescence F0 (Arnold et al. 2021). Measuring 
PTT provides one method for estimating the capacity of 
plants to tolerate temperature stress. The quantification 
of thermal tolerance is made more difficult by PTT plasticity 
that leads the trait to vary in response to fine-scale environ-
mental conditions (Curtis et al. 2019; Harris et al. 2024), 
with little known about the molecular basis for this 
variation.

At the molecular level, mRNA sequencing (RNA-seq) is 
designed to capture the expression of transcripts for 
protein-coding genes, and these expression profiles of the 
transcriptome can change dynamically with environmental 
stimuli (Imadi et al. 2015). Transcriptome sequencing data 
are most easily used when aligned to a reference genome, 
but when such is unavailable, the RNA-seq data can be used 
for de novo transcriptome assembly to quantify relative 
transcript abundance (Smith-Unna et al. 2016). This means 
that with one reasonably affordable sequencing data set, 
detailed genomic studies of nonmodel organisms can be 
pursued with both gene sequence and expression data. In 
contrast to species-specific single nucleotide polymorphism 
(SNP) markers that are often unique to single-species stud-
ies (Ahrens et al. 2018), the conserved sequence of protein- 
coding genes can be matched across species to more easily 
compare expression (Rane et al. 2017). Genes that are ex-
pected to share a conserved function can be linked across 
species through several methods. Ortholog genes that are 
expected to share a common ancestor due to sequence 
similarity can be used (Rane et al. 2017; Emms and Kelly 

Transcriptomic Temperature Stress Responses                                                                                                                  GBE

Genome Biol. Evol. 17(4) https://doi.org/10.1093/gbe/evaf056 Advance Access publication 25 March 2025                                      3 



2019). Alternatively, gene annotations to related protein 
families/homologs (Mi et al. 2021) or gene ontology (GO) 
terms for groups of genes associated with a shared molecu-
lar function, cellular component, or biological process (The 
Gene Ontology Consortium 2019) can be used for com-
parative analyses.

Transcriptomic responses to standardized temperature 
treatments could provide an efficient method for capturing 
variation in how species perceive and respond to tempera-
ture stress. Here, we define temperature stress in the broad 
sense, as being temperature changes that elicit significant 
biological responses that can be positive (adaptive re-
sponses such as acclimation) or negative (costly responses 
such as reduced reproductive investment or programmed 
cell death; Rosenfeld et al. 2022). Conserved responses to 
a stressor should be observable through consistent changes 
in the expression of genes linked to relevant biological pro-
cesses (DeBiasse and Kelly 2016). A recent study on 17 
Acacia species found clinal variation in transcriptomic stress 
responses when mapping to a single reference genome for 
all species (Andrew, Simonsen, et al. 2024). Using de novo 
transcriptome data, we asked whether variation in relatively 
conserved responses seen across plant families can be asso-
ciated with biome of origin and/or thermal tolerance accli-
mation. By exploring this variation, we also sought to 
demonstrate the power of comparative transcriptomic 
methods for assaying variation in the molecular stress re-
sponses of diverse nonmodel species. We applied our ap-
proach to a suite of 20 native Australian plants (Table 1) 
that were representative of three contrasting biomes 
from New South Wales, Australia: arid, alpine, and temper-
ate. We measured changes in gene expression the morning 
after 3 days of heat stress or cold stress relative to a control 
group that experienced no change in temperature from be-
nign growing conditions. We expect distantly related spe-
cies from the same biome to show convergence in the 
response profile of conserved gene regulatory networks. 
With arid species expected to show weaker responses to 
the heat treatment for HSP, ROS, and heat response path-
ways due to higher tolerance and/or faster recovery. We 
also expected the responses of alpine species to the cold 
treatment to be differentiated from arid and temperate 
species for stress hormone and growth regulation path-
ways due to their adaptation to cold extremes. Finally, we 
test for covariation between transcriptomic stress response 
traits and the PTT acclimation traits we measure.

Results

Transcriptomic Temperature Stress Responses and 
Interspecies Variation

The boot-strapped median expression of genes for 
temperature-related biological process GO terms showed 

significant and consistent responses across species to both 
the heat and cold treatments (Fig. 1a; supplementary table 
S1, Supplementary Material online). From linear mixed mod-
els (LMMs) with expression as the response variable, the 
GO terms most strongly upregulated across the 20 species, 
post the 3 days of heat treatment (40 °C days), relative 
to the controls (25 °C days), were protein folding (GO: 
0006457, t166 = 7.48), response to ROS (GO: 0000302, 
t166 = 7.05), and response to heat (GO: 0009408, t166 =  
6.25; see full results in supplementary table S1, 
Supplementary Material online, which includes the top 20 
most significant GO terms out of 135 tested). In response 
to the cold treatment (−2 °C nights relative to 15 °C controls), 
the cellular response to hypoxia (GO: 0071456, t166 = 3.70) 
and response to cold (GO: 0009409, t166 = 2.43) stress 
response GO terms were upregulated. However, the GO 
terms most strongly upregulated after the three nights 
of cold treatment were response to chitin (GO: 0010200, 
t166 = 4.93) and ethylene-activated signaling pathway (GO: 
0009873, t166 = 4.20). Simultaneously, major biological pro-
cesses such as DNA replication (GO: 0006260, t166 = −6.55), 
photosynthesis (GO: 0015979, t166 = −5.41), and photo-
respiration (GO: 0009853, t166 = −4.41) were strongly 
downregulated after the cold treatment, when species ef-
fects are also accounted for.

In the same LMMs comparing median expression levels 
of individuals across treatments, many GO terms showed 
strong differentiation in expression between species, 
according to interclass correlation coefficients (ICCs) 
that represent the proportion of variance partitioned 
between species random factor levels (ICC mean = 0.45, 
min = 0.08, max = 0.81). The variance explained by 
the fixed effect of treatment was generally less strong 
(treatment fixed effect marginal R2 [mR2] mean = 0.04, 
min = 0.00, max = 0.31). The response to ROS (mR2 =  
0.29, ICC = 0.09) and response to heat (mR2 = 0.29, 
ICC = 0.10) GO terms being two notable exceptions 
when treatment had a higher explanatory power 
than species (supplementary table S1, Supplementary 
Material online).

We identified 78 orthogroups that were expressed in 12 
or more of the 20 study species. These orthogroups also 
displayed trends that were comparable to the median 
expression of the GO terms with which they were 
most strongly associated (Fig. 1b; supplementary table S2, 
Supplementary Material online). In particular, the 
OG0000018 orthogroup, which included genes with HSP 
homolog annotations, was significantly upregulated in re-
sponse to the heat treatment (t120 = 4.81). Another 
orthogroup, linked to aquaporin genes that transport water 
across membranes (OG0000039), was also upregulated in 
response to the heat treatment (t129 = 3.76).

We also found some differentiation in the magnitude 
of responses between the species from different 
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biomes (supplementary table S3, Supplementary Material
online; Fig. 2). In general, responses to heat stress were 
more pronounced in temperate and alpine species 
when compared to arid species (Fig. 2a). The most 
relevant GO terms with the strongest differentiation 
in heat responses were response to jasmonic acid 
(GO: 0009753, R2 = 0.40, P = 0.014), response to ROS (GO: 

0000302, R2 = 0.33, P = 0.034), signal transduction (GO: 
0007165, R2 = 0.30, P = 0.47), protein phosphorylation 
(GO: 0006468, R2 = 0.29, P = 0.056), response to heat 
(GO: 0009408, R2 = 0.29, P = 0.057), and protein 
folding (GO: 0006457, R2 = 0.24, P = 0.099). In contrast, 
for the cold treatment, the GO terms with the 
strongest differentiation between biomes were GO terms 

(a)

(b)

Fig. 1. Strongest transcriptomic response to temperature treatments. Tissue samples were taken on the morning after three days of 40 °C heat or three nights 
of −2 °C cold treatments. a) The boot-strapped median expression values of GO terms. The mean across individuals from 20 species is plotted for each treat-
ment with SE bars (total n = 188 individual RNA-seq libraries). See full model results in supplementary table S1, Supplementary Material online. b) Variation in 
expression for stress response orthogroups. See full model results in supplementary table S2, Supplementary Material online. Expression values were scaled 
(with mean 0 and SD of 1) prior to calculating means to make trends comparable across GO terms.
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with weaker responses in alpine species (Fig. 2b). The 
GO terms with the most differentiated for cold 
responses are transcription, DNA templated (GO: 0006351, 
R2 = 0.31, P = 0.042), cytoplasmic translation (GO: 0002181, 
R2 = 0.26, P = 0.074), response to light stimulus (GO: 
0009416, R2 = 0.26, P = 0.074), gibberellic acid-mediated 
signaling pathway (GO: 0009740, R2 = 0.24, P = 0.101), 

and ethylene-activated signaling pathway (GO: 0009873, 
R2 = 0.19, P = 0.171).

PTT Acclimation Associations with Transcriptome 
Responses

PTT traits also showed signs of acclimation in response to the 
temperature treatments and variation across species 

(a)

(b)

Fig. 2. Variation in responses across biomes. a) Responses to the heat treatment that vary between biome. b) Responses to the cold treatment that vary be-
tween biome. For each combination of species by treatment, the average boot-strapped expression was used to calculate the FC between treatments. These 
FC values were log2 transformed so decreases in the expression of a biological process in response to stress are shown as negative values and upregulation as 
positive values. These species by treatment averages were used to calculate the mean and SE values for each combination of treatment and biome. See full 
model results in supplementary table S3, Supplementary Material online.
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(supplementary fig. S1, Supplementary Material online). The 
heat tolerance traits of Tcrit-hot and Tmax-hot were significantly 
higher in response to the heat treatment and, to a lesser ex-
tent, in response to the cold treatment (supplementary table 
S4, Supplementary Material online). When we related Tcrit-hot 

acclimation (difference between heat and control treatments) 
to changes in the expression of biological processes, we found 
that stress signaling pathways had a positive association with 
acclimation (supplementary fig. S2, Supplementary Material
online; Table 2). For example, ethylene-activated signaling 
pathway (GO: 0009873), plant-type hypersensitive response 
(GO: 0009626), defense response (GO: 0006952), and cellular 
response to hypoxia (GO: 0071456) all had significant positive 
associations with Tcrit-hot acclimation (supplementary fig. S2, 
Supplementary Material online; Table 2). Similarly, the 
stress hormone families brassinosteroid-mediated signaling 
pathway (GO: 0009742) and response to salicylic acid 
(GO: 0009751) had positive associations with Tmax-hot acclima-
tion (supplementary fig. S2g and h, Supplementary Material
online; Table 2).

The Tcrit-cold and Tmax-cold acclimation of species ranged 
between species losing cold tolerance or gaining cold toler-
ance relative to control plants (supplementary fig. S1, 
Supplementary Material online). Species that had a worsen-
ing cold tolerance performance (i.e. less negative critical 
temperatures closer to 0 °C) generally had also more 
strongly downregulated major biological processes in 
response to the cold treatment (Table 3). For example, 
chlorophyll biosynthetic process (GO: 0015995) and regu-
lation of gene expression (GO: 0010468) were generally 
downregulated in species with worsening Tcrit-cold perform-
ance; these species also generally had lower upregulation 
of response to cold (GO: 0009409) (supplementary fig. 
S3, Supplementary Material online). Consistently, the 
biological processes of translation (GO: 0006412), photo-
synthesis (GO: 0015979), and circadian rhythm (GO: 
0007623) were generally more strongly downregulated 
by species that lost Tmax-cold capacity. However, relation-
ships between Tmax-cold acclimation and gene expression re-
sponses were weaker and not significant (Table 3).

Discussion
The responses of plants to extreme or stressful changes in 
temperature can be considered as adaptive plasticity if 
these responses are beneficial to performance and fitness 
(Nicotra et al. 2010; Donelson et al. 2023). We define tem-
perature stress responses as significant biological responses 
to deviations from normal temperatures (Rosenfeld et al. 
2022). Conserved molecular stress responses to extreme 
temperatures have been well studied in model plant species 
(Zhu 2016; Zhang et al. 2022), but variation in these re-
sponses has not been linked to thermal tolerance capacity 
for nonmodel species (Ding et al. 2019; Chaudhary et al. 

2020). Using de novo transcriptome assemblies to calculate 
the boot-strapped median expression of GO terms and 
mean expression of orthogroups, we document consistent 
changes in gene expression across the challenging hot and 
cold treatments for our 20 species (Fig. 1). After accounting 
for differentiation in expression between species, we found 
the GO terms most strongly impacted by temperature treat-
ments to be also linked with known transcriptomic tem-
perature stress responses (Fig. 1; supplementary tables S1
and S2, Supplementary Material online). In some cases 
when the direction of the response to temperature was con-
sistent, the magnitude of the response also varied consist-
ently between species from different biomes (Fig. 2). The 
differences between the two extreme biomes, observed 
the morning after 3 days of exposure, can be summarized 
as weaker responses to heat in arid species (Fig. 2a) and 
weaker responses to cold in alpine species (Fig. 2b). We ex-
pect similar stress responses from distantly related species 
from the same biomes due to convergent selection on 
genetic markers that influence variation in gene regulatory 
networks. Below, we highlight the value of comparing tran-
scriptomic responses across diverse species at the more gen-
eral level of biological processes and orthogroups.

Linking Comparative Transcriptomics to Functional Trait 
Ecology

The possibility of using variation in transcriptomic stress re-
sponses to assess thermal tolerance and climate change 
vulnerability extends from the use of functional traits to 
predict the fundamental environmental niche of species 
(McGill et al. 2006; Andrew et al. 2022). Plant functional 
traits can characterize plant life history strategies (Díaz 
et al. 2016) and be used to explain the distribution of eco-
logical variation (Westoby 1998; Westoby et al. 2002). 
Robust relationships between climate metrics and the distri-
bution of functional trait variation establish the importance 
of these traits to climate adaptation (Wright et al. 2017, 
2004; Laughlin et al. 2021). Additionally, combinations of 
functional traits can have even stronger relationships with 
species-realized climate limits compared to individual traits 
(Andrew et al. 2022). Functional trait diversity can still be 
high within plant communities, but this diversity also shows 
signs of environmental filtering (Bruelheide et al. 2018; 
Andrew et al. 2021). Molecular responses to stress provide 
an opportunity to add important detail to our description of 
plant adaptive strategies (Razgour et al. 2018; Hoffmann 
et al. 2021).

For comparative transcriptomic analyses such as ours, 
which include species from diverse families and genera, it 
is not possible to map transcript sequences to a single ref-
erence genome or to identify one-to-one ortholog genes 
across species. Using coarser resolution comparisons with 
suites of biological processes, we were able to confirm 
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Table 3 Relationships between cold tolerance acclimation and gene expression responses

GO ID GO term Trait Min n Adj. R2 t-value P-value FC median FC min FC max

GO: 0015995 Chlorophyll biosynthetic process Tcrit_cold 13 0.39 −3.63 0.0019 −0.18 −1.02 0.21
GO: 0009416 Response to light stimulus Tcrit_cold 37 0.25 −2.69 0.0150 −0.17 −0.53 0.34
GO: 0009740 Gibberellic acid-mediated signaling pathway Tcrit_cold 11 0.14 −2.02 0.0580 −0.19 −0.46 0.79
GO: 0009736 Cytokinin-activated signaling pathway Tcrit_cold 10 0.12 −1.88 0.0769 −0.15 −0.75 0.47
GO: 0010468 Regulation of gene expression Tcrit_cold 22 0.12 −1.86 0.0786 −0.11 −0.43 0.57
GO: 0018298 Protein-chromophore linkage Tcrit_cold 14 0.12 −1.89 0.0752 −0.57 −1.92 0.12
GO: 0009845 Seed germination Tcrit_cold 16 0.10 −1.75 0.0975 0.00 −0.53 0.87
GO: 0006412 Translation Tcrit_cold 70 0.09 −1.67 0.1126 −0.14 −0.59 0.72
GO: 0009626 Plant-type hypersensitive response Tcrit_cold 16 0.09 −1.67 0.1117 0.15 −0.53 1.58
GO: 0009742 Brassinosteroid-mediated signaling pathway Tcrit_cold 11 0.09 −1.72 0.1018 0.01 −0.42 0.75
GO: 0015979 Photosynthesis Tmax_cold 40 0.07 −1.53 0.1432 −0.30 −0.84 0.08
GO: 0007623 Circadian rhythm Tmax_cold 29 0.06 −1.50 0.1504 0.07 −0.32 0.51
GO: 0048316 Seed development Tmax_cold 11 0.06 1.47 0.1577 −0.14 −0.34 0.59
GO: 0000413 Protein peptidyl-prolyl isomerization Tmax_cold 10 0.01 −1.05 0.3076 −0.13 −0.47 0.37
GO: 0009965 Leaf morphogenesis Tmax_cold 15 0.01 1.06 0.3025 −0.01 −0.47 0.17
GO: 0006730 One-carbon metabolic process Tmax_cold 10 0.00 −1.03 0.3185 −0.12 −0.67 1.25
GO: 0009624 Response to nematode Tmax_cold 10 0.00 0.98 0.3409 −0.05 −0.59 0.62
GO: 0009846 Pollen germination Tmax_cold 12 0.00 −0.96 0.3514 −0.04 −0.81 0.24
GO: 0015995 Chlorophyll biosynthetic process Tmax_cold 13 0.00 −0.98 0.3379 −0.18 −1.02 0.21
GO: 0018298 Protein-chromophore linkage Tmax_cold 14 0.00 −0.96 0.3479 −0.57 −1.92 0.12

Results for linear models are presented for Tcrit-cold and Tmax-cold acclimation. The top ten biological process GO terms that have the strongest relationships with 
acclimation (highest adjusted R2 values) are reported for each trait. The “Min n” column reports the minimum number of genes used to calculate boot-strapped median 
expression for species based on the number of genes annotated across species for each GO term. The “FC median,” “FC min,” and “FC max” report the median, 
minimum and maximum FC values across species for the difference between cold and control treatments. Results are ordered by trait then by adjusted R2 values (“Adj. 
R2”) in descending order.

Table 2 Relationships between heat tolerance acclimation and gene expression responses

GO ID GO term Trait Min 
n

Adj. 
R2

t-value P-value FC 
median

FC 
min

FC 
max

GO: 0009873 ethylene-activated signaling pathway Tcrit_hot 26 0.24 2.64 0.0166 0.10 −0.66 0.82
GO: 0009626 plant-type hypersensitive response Tcrit_hot 16 0.19 2.33 0.0317 0.03 −0.90 0.81
GO: 0030433 ubiquitin-dependent ERAD pathway Tcrit_hot 11 0.18 2.29 0.0345 0.07 −0.49 0.68
GO: 0006952 defense response Tcrit_hot 101 0.17 2.19 0.0423 0.01 −0.54 0.48
GO: 0071456 Cellular response to hypoxia Tcrit_hot 25 0.16 2.15 0.0458 0.02 −0.57 0.54
GO: 0009617 Response to bacterium Tcrit_hot 16 0.15 2.07 0.0531 −0.11 −0.77 0.50
GO: 0031146 SCF-dependent proteasomal ubiquitin-dependent 

protein catabolic process
Tcrit_hot 10 0.15 2.11 0.0492 −0.01 −0.53 0.34

GO: 0045087 Innate immune response Tcrit_hot 20 0.15 2.06 0.0540 0.04 −0.56 0.40
GO: 0006468 Protein phosphorylation Tcrit_hot 50 0.14 2.03 0.0578 0.05 −0.58 0.67
GO: 0009723 Response to ethylene Tcrit_hot 18 0.14 2.02 0.0581 −0.01 −0.65 0.68
GO: 0009742 Brassinosteroid-mediated signaling pathway Tmax_hot 11 0.21 2.43 0.0256 0.00 −0.58 0.68
GO: 0000413 Protein peptidyl-prolyl isomerization Tmax_hot 10 0.20 −2.37 0.0293 0.11 −0.23 0.68
GO: 0009617 Response to bacterium Tmax_hot 16 0.15 2.09 0.0512 −0.11 −0.77 0.50
GO: 0009751 Response to salicylic acid Tmax_hot 16 0.13 1.95 0.0675 −0.13 −1.08 0.70
GO: 0009753 Response to jasmonic acid Tmax_hot 14 0.11 1.81 0.0874 −0.19 −0.65 0.56
GO: 0009873 Ethylene-activated signaling pathway Tmax_hot 26 0.11 1.86 0.0791 0.10 −0.66 0.82
GO: 0009651 Response to salt stress Tmax_hot 71 0.09 1.67 0.1129 0.12 −0.24 0.48
GO: 0015979 Photosynthesis Tmax_hot 40 0.08 −1.60 0.1271 −0.03 −0.48 0.64
GO: 0032259 Methylation Tmax_hot 36 0.08 1.64 0.1177 −0.05 −0.24 0.73
GO: 0051085 Chaperone cofactor-dependent protein refolding Tmax_hot 10 0.08 −1.66 0.1142 0.11 −0.55 1.02

Results for linear models are presented for Tcrit-hot and Tmax-hot acclimation. The top ten biological process GO terms that have the strongest relationships with 
acclimation (highest adjusted R2 values) are reported for each trait. The “Min n” column reports the minimum number of genes used to calculate boot-strapped median 
expression for species based on the number of genes annotated across species for the difference between hot and control treatments. The “FC median,” “FC min,” and 
“FC max” report the median, minimum, and maximum FC values across species for each GO term. Results are ordered by trait then by adjusted R2 values (“Adj. R2”) in 
descending order.
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responses to temperature treatments that are consistent to 
those seen in studies of model species. The clearest re-
sponses to the heat treatment include the GO terms re-
sponse to heat, protein folding, and response to ROS that 
were upregulated after the 3-day heat treatment, and all 
groups saw an average increase in median expression of 
about 1 SD (Fig. 1a). There were also other conserved re-
sponses to the heat treatment that were characteristic of 
a high-temperature stress response (supplementary table 
S1, Supplementary Material online). These include DNA re-
pair (GO: 0006281, t166 = 3.47), chloroplast organization 
(GO: 0009658, t166 = 4.20), and mRNA processing (GO: 
0006397, t166 = 4.67). These results demonstrate how 
the boot-strapped median expression of GO terms can cap-
ture responses to temperature that have been seen in stud-
ies of individual species.

The response to cold GO term was generally upregulated 
in the cold treatment, but not to the same extent as the 
main heat treatment responses. However, the response to 
cold change is potentially still notable when considering 
that most biological processes had lower median expres-
sion levels after the cold treatment (77% of GO terms 
with lower median expression across species). Two of the 
most strongly upregulated GO terms in response to the 
cold treatment were the response to chitin and 
ethylene-activated signaling pathway (supplementary 
table S1, Supplementary Material online). The ethylene 
pathway and other stress hormone pathways could be 
regulating the suppression of other biological processes 
(Chen et al. 2022). The response to chitin pathway is also 
linked to regulating stress responses to pathogens and a 
range of environmental stressors (Vaghela et al. 2022). 
These pathways and other stress hormone pathways that 
suppress growth are stimulated by a number of stressors 
to limit energy expenditure and ROS accumulation during 
stress (Zhang et al. 2022). The regulation of cold acclima-
tion is thought to be led by the efficiency of the ICE 
transcription factors in the ICE-CBF-COR signaling 
cascade, and these transcription factors have improved 
efficiency when phosphorylated by calcium-sensitive kinase 
genes (Hwarari et al. 2022). Interestingly, two orthogroups 
linked to signal transduction were upregulated in response 
to the cold treatment (OG0000242 and OG0000020; 
supplementary table S2, Supplementary Material online). 
Both these orthogroups mainly include homologs of 
CBL-interacting protein kinase genes that are expected to 
activated by calcium inflows to the cell in response to 
cold and other stressors (Zhang et al. 2022) to propagate 
signaling cascades that regulate gene expression (Mo 
et al. 2018). Variation in conserved cold-sensitive signaling 
cascades could be critical for describing cold sensitivity and 
acclimation capacity.

Differentiation between the study species from the 
three contrasting biomes in our study is most clearly seen 

in stress-related GO terms (supplementary table S3, 
Supplementary Material online). The species with the stron-
gest change in expression after 3 days of the heat treatment 
were from the temperate and alpine biomes (Fig. 2a). This 
result highlights the importance of understanding when a 
large change in gene expression indicates positive 
fitness-increasing plasticity versus a signal of a more chronic 
or negative stress or just a slower recovery rate. For this 
study, samples were taken at the same time of morning 
for both the cold and heat treatments after the third day 
of exposure; for the heat treatment, this meant a longer re-
covery over the third night relative to the cold treatment 
that had just returned to normal temperatures. The weaker 
upregulation for protein folding, response to heat, and re-
sponse to ROS genes in arid species could indicate that they 
were faster to recover than species native to alpine or tem-
perate regions. Interestingly, the response to jasmonic acid 
GO term had slightly upregulated levels for arid species and 
lower levels for alpine and temperate species (Fig. 1a). This 
result could reflect that variation in jasmonic acid levels can 
regulate the response to elevated ROS levels (Wang et al. 
2020). This result suggests more rapid ROS scavenging in 
arid zone species resulting in faster recovery and the subse-
quent suppression of the ROS response through the jasmo-
nic acid pathway at sampling. Responses to unfolded 
proteins could also show similar recovery patterns. A study 
of four Eucalyptus species found that two species with 
smaller distributions had higher leaf damage and HSP upre-
gulation due to a heatwave treatment when compared to 
two species with broad distributions (Aspinwall et al. 
2019). Similarly, we found a weaker upregulation of 
protein-folding genes in arid species (Fig. 2a).

Gene expression data from a single species can appear 
noisy at the best of times, and we might expect that com-
paring responses across distantly related species would 
not be conducive to any overall insights. However, the rela-
tionships we find here between transcriptomic responses 
with both biome of origin and thermal tolerance acclima-
tion suggest important potential for comparative transcrip-
tomics to grow our understanding of species plasticity in 
response to environmental extremes. A multienvironment 
trial on a suite of plants with contrasting transcriptomic re-
sponses to temperature stressors/stimuli, grown across a 
strong climate gradient, could be a valuable next step. 
Performance across sites could help determine the meaning 
of variation in these responses so traits of the transcriptome 
can be applied more broadly with other data types to the 
study of species resilience to climate change.

In contrast to landscape genomic methods that use 
genome-wide SNP markers to look for outlier loci that 
show signatures of selection through changes in allele fre-
quency across the distribution of a single species (Ahrens 
et al. 2018), the current method compares the transcrip-
tome responses of different species that originate from 
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different environments. We expect species from similar en-
vironments to converge on similar response strategies 
through the adaptation of gene regulator networks that 
control a multifaceted response and are evolutionarily con-
served across species (Chen et al. 2022). Species with out-
lier response patterns could be expected to be vulnerable 
while for the application of landscape genomic methods, 
study species that lack outlier loci, genetic diversity, or a 
capacity to change allele frequencies with climate change 
could be expected to be vulnerable.

Linking Transcriptomic Stress Responses to Thermal 
Tolerance Acclimation

In addition to variation across biomes, we found a range of 
gene expression responses to be associated with thermal 
tolerance differences (degree change in PTT between treat-
ments; Tables 2 and 3). Our approach aimed to compare 
the magnitude of responses to temperature treatments so 
that covariation between transcriptomic stress responses 
and PTT acclimation can help develop methods for studying 
adaptive plasticity (Donelson et al. 2023).

In response to the cold treatment, most GO terms were 
downregulated. It would be expected that many biological 
processes in plants would slow down in response to long 
periods of very low temperatures, and we would see the 
lag of this effect the morning after exposure. This slow-
down could be regulated by the stimulation of stress signal-
ing pathways (Chen et al. 2022). In our study, the species 
with the greatest reduction in cold tolerance performance 
(i.e. higher PSII cold tolerance threshold temperatures un-
der stress) also had the strongest downregulation of bio-
logical processes under stress (Table 3). Some of the 
species with the largest loss in Tcrit-cold tolerance were actu-
ally alpine species from climates with the most frequent and 
intense cold exposure, but again the pattern was not uni-
form (supplementary fig. S3a, Supplementary Material
online).

In response to the heat treatment, the species with the 
highest upregulation of protein folding genes had smaller 
changes in Tmax-hot (supplementary fig. S2e, 
Supplementary Material online). This result is consistent 
with previous findings in Acacia where PSII acclimation 
had a negative relationship with chaperone protein upregu-
lation (Andrew, Simonsen, et al. 2024). Additionally, the 
species with high Tmax-hot acclimation also had higher upre-
gulation of brassinosteroid and salicylic acid phytohormone 
pathways (Table 2). These plant hormones are linked to the 
signaling pathways that regulate stress responses and 
growth (Chen et al. 2022). Responses for several other 
stress-related biological processes also had positive associa-
tions with Tcrit-hot acclimation (see results in Table 2). These 
gene expression responses could be helping to stimulate 
PSII acclimation, but they could also indicate damage 

accumulation or the downregulation of growth that is asso-
ciated with changes in PTT (Zhang et al. 2022). The ethylene 
response pathway was also associated with PTT in an alpine 
herb Wahlenbergia ceracea (Notarnicola et al. 2021). Taken 
together, high heat tolerance acclimation could be a signal 
that plants are being more easily pushed beyond their limits 
and not an indication that high physiological plasticity 
equals high climate change resilience.

In general, thermal tolerance acclimation to either heat 
or cold did not seem to be related to phylogeny 
(supplementary fig. S4, Supplementary Material online), al-
though we have not formally tested this observation here. 
An example of low phylogenetic signal is Acacia species 
that had a range of rankings for heat acclimation, even 
when we might expect them all to be highly ranked due 
to a previous study showing high PSII heat tolerance accli-
mation in these taxa (Andrew et al. 2023). Variation be-
tween studies could be due to diurnal variation in PTT, 
similar to wheat crops that show lower critical tempera-
tures at sunrise (Posch et al. 2022). Nonetheless, the ques-
tion of phylogenetic differentiation would be worth 
exploring in a larger study with a more representative sam-
pling of taxa.

Conclusion
It stands to reason that if heatwaves become too intense in 
species’ current home range, there is still no guarantee that 
plants can successfully disperse to cooler neighboring cli-
mates due to the potential of cold and/or frost exposure 
being too high. Based on crop growth models using future 
climate projections, the frequency of heatwaves is expected 
to increase without a reduction in frost pressure across 
large areas of the southern half of inland Australia (Zheng 
et al. 2015; Hammer et al. 2020). This highlights the benefit 
of our study in characterizing variation in response to both 
heat and cold exposure. In general, we demonstrate this 
point by using transcriptomics to show that species from 
arid climates have unique responses to heat while species 
from alpine climates have different responses to cold 
(Fig. 2; supplementary table S3, Supplementary Material
online).

Here, we apply our comparative transcriptomic ap-
proach to assess variation in the response of plants to ther-
mal stress. However, the same approach using de novo 
transcriptome assemblies and the median boot-strapped 
expression of GO term annotations or orthogroups could 
be applied to study responses to any stressor in other taxo-
nomic groups. If responses to a stressor are conserved 
across related species, then the magnitude of the response 
could show variation that is related to adaptation. Here, we 
have demonstrated variation in the responses of plants 
from contrasting biomes that was consistent with our ex-
pectations for adaptation to these environments. The 
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adaptive explanation of this variation is yet unclear, for ex-
ample, when a larger response is a positive indication of tol-
erance or a negative indicator of damage accumulation. 
We have only discussed a small proportion of the biological 
processes with significant trends, but we believe these 
highlighted groups and others could be used in the future 
to create transcriptomic metrics of thermal sensitivity in 
plants. However, data from a broader panel of species 
being trialed across varied environments are required to 
elucidate the meaning of these trends. Currently, function-
al trait data can be sourced for thousands of species to help 
evaluate adaptive strategies and climate change vulnerabil-
ity (Butt and Gallagher 2018; Gallagher et al. 2020). 
Transcriptomic data sets are also being collected for many 
species (One Thousand Plant Transcriptomes Initiative 
2019) but these data do not capture response to standar-
dized environmental stimuli. Variation in transcriptomic re-
sponses to benchmark stress treatments could provide 
valuable functional traits of the transcriptome for predict-
ing the vulnerability of species to future climates 
(DeBiasse and Kelly 2016).

Materials and Methods

Study Design and Sampling

The 20 study species were selected to be representative of 
the major families and growth forms from three ecosystems 
that represent the three contrasting biomes of arid, alpine, 
and coastal temperate environments in Australia (Harris 
et al. 2024). The arid biome represents an extreme environ-
ment that is known for its high maximum temperatures 
and aridity but will also experience regular frost events. 
The alpine biome represents vegetation above the treeline 
in the Australian Alps that experiences the most extreme 
frost events and the only study community adapted to 
snow, but the exposed slopes of mountains can also 
experience high temperatures during summer. The coastal 
temperate environment represents a more stable climate, 
with lower temperature fluctuations within a day or 
across a year and a very low chance of frost. The 20 study 
species spanned 13 families and 16 genera (Table 1); 
see Harris et al. (2024) for further details about species 
selection.

Seeds for the study species were obtained from conser-
vation seed banks, including the Australian National 
Botanic Gardens Seed Bank and the Australian Botanic 
Gardens Plant Bank. A single accession of seed was used 
for germinating each species, and these accessions were 
collected within a 50-km radius of a target site for each 
biome, or seedlings with comparable provenance were pur-
chased (Harris et al. 2024). Seedlings were potted in 
Australian native potting mix and grown under common 
conditions in a glasshouse at 25 °C day/15 °C night cycles 

for 3 to 5 months, depending on germination time. Plants 
were watered daily and fertilized every 2 weeks with low- 
phosphorus liquid fertilizer.

Plants were then moved to the Australian Plant 
Phenomics Facility at CSIRO Black Mountain laboratories, 
where they were kept in Conviron growth chambers for an 
acclimatization period of 1 to 2 days prior to temperature 
treatments. Temperature treatments were run for 3 days 
with the heat treatment being 40 °C days to 15 °C nights 
and the cold treatment being 25 °C days to −2 °C nights, 
relative to a control group that experienced no change in 
temperature from benign growing conditions (25 °C day 
to 15 °C night). On the morning after the third day, leaf sam-
ples were taken between 9:00 AM and 10:30 AM for RNA 
extraction (see below) and PTT measurements. Assays of 
thermal tolerance were conducted between 10:00 AM and 
noon on Day 3 of the experiment when temperatures 
were between 15 °C and 21 °C in all chambers (see Harris 
et al. 2024). In brief, for five plants from each species by 
treatment combination, leaf discs (1 cm2) were punched 
from one leaf per plant and placed into pill boxes moistened 
with florist foam to maintain turgor. Two Maxi Pulse 
Amplitude Modulating (PAM) systems (Heinz Walz GmbH, 
Effeltrich, Germany) were set up, one for Tcrit-hot and one 
for Tcrit-cold measurements. Each PAM was placed above a 
Peltier plate (CP-121HT; TE-Technology, Inc., Michigan, 
USA) regulated by a temperature ramp controller (TC-36– 
25; TE-Technology, Inc.) and powered by a fixed-voltage 
power supply (PS-24–13; TE-Technology, Inc.). Cooling rates 
were set to 15 °C h−1 from 20 °C to −25 °C and heating 
rates to 30 °C h−1 from 20 °C to 65 °C (see Arnold et al. 
2021 for PAM setup and parametrizations). Leaf discs were 
randomized on a 48-cell paper array, and a type-T thermo-
couple (Omega Engineering, USA) was attached to the abax-
ial side of each leaf, monitored with a 48-channel data Taker 
DT85 (Lontek, Australia) logging every 5 s. The critical tem-
peratures during heating and cooling, Tcrit-hot and Tcrit-cold, 
were defined as the breakpoint between the slow and 
fast-rise phases of basal fluorescence, which is an indicator 
of stress within the thylakoid. Similarly, the maximum and 
minimum temperatures were extracted, Tmax-hot and 
Tmax-cold, respectively; all extractions followed protocols 
from Arnold et al. (2021). The critical temperature values 
were determined using the Segmented package in R. The 
code we used for this analysis is available at https://github. 
com/pieterarnold/Tcrit-extraction.

RNA Extraction and RNA-seq Library Prep

For total RNA extraction from leaf tissue, homogenization 
was done by grinding samples with liquid nitrogen in a mor-
tar and pestle. Then, the NucleoSpin RNA Plant and Fungi 
Kit (Macherey-Nagel, Germany) was used for RNA extrac-
tion. The standard kit protocol was used except for an 
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adjustment to the lysis buffer as suggested by Ishihara et al. 
(2016). The lysis buffer aliquot per sample included 400-μl 
PFL and 50-μl PFR buffers from the NucleoSpin Kit, 100-μl 
Fruit-mate for RNA Purification (Takara, Japan), and 5-μl 
ß-mercaptoethanol.

After mRNA isolation with Oligo d(T)25 Magnetic Beads 
(New England BioLabs, Australia), strand-specific 
RNA-seq libraries were prepared using an in-house 
template switching protocol. The detailed protocol for 
library preps is described in Paten et al. (2022). Briefly, 
two plates of 96 libraries were prepared using custom 
barcodes. Samples from the different treatments and spe-
cies were split across the two pools. Samples were se-
quenced on a single NovaSeq S2 flowcell (300 cycles, 
2 × 150 bp) using a lane splitter kit to split the two sample 
pools onto one lane each. Sequencing was done at 
Biomolecular Resource Facility at John Curtin School of 
Medical Research at The Australian National University. 
The original sequence data for the 192 RNA-seq libraries 
are published online (Andrew and Mokany 2024). For the 
192 libraries, the target was four libraries for each 
treatment by species combination (Table 1), but to fill 
gaps, some extra species were added at one library per 
treatment. We believe the addition of species is still 
valuable to a comparative analysis of this kind even if sam-
ple size is low.

De Novo Transcriptome Assemblies and Transcript 
Expression Quantification

Quality assessment and filtering of reads were done with 
the fastp program using default settings (Chen et al. 
2018). The number of paired-end reads returned per library 
prefiltering varied from 7.15 to 44.39 million (mean =  
23.76 million) and on average 98% of reads were retained 
after filtering. For each species, an RNA-seq library from the 
heat treatment with a high number of reads was selected 
for de novo transcriptome assembly with Trinity (version 
2.11.0) and associated packages (Haas et al. 2013). A single 
individual was used per assembly to prevent genetic 
variation causing issues for transcript assembly when 
merging data from multiple individuals. Prior to the Trinity 
assembly, the paired-end reads were further trimmed 
using Trimmomatic (Bolger et al. 2014) using the following 
settings “HEADCROP:13 LEADING:3 TRAILING:3 
SLIDINGWINDOW:4:15 MINLEN:50”. This step helps re-
move base calls at the start and the end of the reads that 
have a higher probability of being errors and, therefore, 
highly detrimental to the assembly process.

Trinity assemblies were assessed with BUSCO (version 
5.1.2), using the “viridiplantae_odb10” reference and 
standard settings to check assemble completeness (see re-
sults in Table 1). The assembled transcripts were annotated 
using TransDecoder (version 5.5.0) with Trinotate (version 

3.2.1; Bryant et al. 2017). With Trinotate, the sequences 
were used to search for transcript functional annotations 
using blastp, blastx, domtbl, and signapl. The de novo as-
semblies and annotations are published online and made 
publicly available (Andrew, Coppin, et al. 2024).

To quantify gene expression, the RNA-seq libraries for 
each species were aligned to the de novo assembly for 
the species using RSEM (version 1.3.3). After quantifying 
gene expression, four libraries (“20_H1,” “15_H1,” 
“24_C3,” and “21_C2”) were dropped due to low map-
ping rates that were below 50%. For the remaining librar-
ies, mapping rates ranged from 58.2% to 84.5%.

For all 20 species, the amino acid sequences of the as-
sembled transcripts (.pep files output by TransDecoder) 
were used in an OrthoFinder (version 2.5.4) analysis to iden-
tify groups of ortholog genes (or “orthogroups”) across 
species (Emms and Kelly 2019). These groups of genes, 
which are expected to be related by descent based on se-
quence similarity across species, were used to compare re-
sponses to temperature stimulus across species.

Data Analysis

All postexpression quantification statistical analyses and 
figure generation were done in R version 4.2.1 (R Core 
Team 2016). All R codes for our main analyses are published 
with the Supplementary Material in an online repository 
(Andrew and Mokany 2024).

The RSEM gene expression outputs were standardized 
across libraries using the average number of reads mapping 
to a transcript per million reads sequenced (transcripts per 
million [TPM]). The transcripts (hereafter referred to as 
“genes”) with an average TPM expression level ≥ 10 were 
retained for each species. Across the 20 species, the num-
ber of retained genes ranged between 10,177 and 
13,293 with mean ± SD = 11,993 ± 886. This filtering fo-
cused the analysis on a consistent number of genes per spe-
cies and away from genes with low expression levels or low 
mapping rates due to poor sequence assembly. For retained 
genes, the mean TPM expression level was calculated for 
each species by treatment combination so that differences 
in expression between treatments could be assessed. The 
log2-transformed fold change (FC) in expression was calcu-
lated, with the expression levels of the heat treatment 
being divided by neutral temperature controls (HvsN) and 
the cold treatment divided by neutral temperature controls 
(CvsN), prior to log2 transformation.

The annotation report files from Trinotate were used to 
match genes to GO (GO term) annotations. The GO system 
is a hierarchically classification of genes based on sequence 
similarity with genes linked to a molecular function, cellular 
component, or biological process (The Gene Ontology 
Consortium 2019). The number of genes linked to each 
GO term was calculated for each species. Genes can have 
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multiple GO terms assigned to from multiple classification 
levels for each of the three categories. Biological process 
GO terms with a minimum of ten annotated genes across 
all species were retained for calculating GO term expression 
levels. This filtering focused our analysis on 134 biological 
processes with a range of general to specific functional de-
scriptions. To compare the expression levels of biological 
processes across species, the boot-strapped median TPM 
expression levels and FC values were calculated for GO 
terms. The boot-strapping method used 1,000 resampling 
subsets of genes linked to each GO term per species. The 
size of random subsets for each GO term was set to 75% 
of the minimum number of annotated genes across all 
species, rounded to the nearest whole integer. The 1,000 
resampled median values were then averaged. These boot- 
strapped median values can be used to assess whether the 
expression of genes linked to a GO term is going up or 
down and the magnitude of this change. This method 
also controls for the number of expressed and annotated 
genes per species. Boot-strapped median values were cal-
culated for TPM expression per individual library and for 
FC values at the species level.

In addition to GO terms, there were 220 orthogroups 
that were present across 15 or more species. The mean ex-
pression of genes from each orthogroup was calculated for 
all individuals from each species. The mean was used due to 
some orthogroups not having more than one gene per spe-
cies. After filtering out genes with <10 TPM, only 78 
orthogroups that were expressed in 12 or more species 
were retained for further analyses. We therefore focus 
the presentation of results on GO terms due to the higher 
statistical power.

We expect these functional groupings of genes to show 
conserved responses to temperature treatments that are 
expected to invoke stress responses. To explore variation 
in median GO term and mean orthogroup, expression 
across treatments the lme4 package (Bates et al. 2015) 
was used to fit LMMs with treatment as a categorical fixed 
effect and species ID as a random factor with independent 
intercepts per level. The mean and SE of expression levels 
within treatments for all species were also calculated to 
plot significant trends from LMMs. We also expected vari-
ation in the magnitude of these stress responses to vary be-
tween species adapted to the contrasting arid, alpine, and 
temperate biomes. To compare variation in species-level FC 
values across biomes, linear models were used with biome 
set as a categorical fixed effect. The species-level FC values 
for comparisons between the hot versus neutral treatments 
and cold versus neutral treatments were both assessed.

Finally, we related these gene expression responses to 
the PTT plasticity of plants. The Tcrit-hot and Tmax-hot acclima-
tion responses were calculated as the difference between 
the hot and neutral treatments, and Tcrit-cold and Tmax-cold 

acclimation was the difference between the cold and 

neutral treatments. We use the term acclimation to refer 
to the difference between the treatment and control group 
that could also be thought of as a metric of PTT plasticity 
and, for this study, does not always indicate an improve-
ment in PTT under stress. These acclimation responses 
were compared to the corresponding median gene expres-
sion FC values using linear models. The FC response of bio-
logical processes was used as a continuous predictor to 
explain variation in photosynthetic acclimation. Due to 
the relatively low statistical power with only 20 species, 
we focused on the functional annotations and adjusted 
R2 values of the strongest relationships rather than cor-
rected P-values.

Supplementary Material
Supplementary material is available at Genome Biology and 
Evolution online.
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