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Abstract—In real-world scenarios, class imbalanced datasets
are prevalent, posing challenges for algorithms like the Support
Vector Machine (SVM) in effectively handling imbalance, noise,
and outliers. Fuzzy Support Vector Machines (FSVMs) have
emerged as a solution, leveraging varying fuzzy memberships
across samples to tackle class imbalances. However, the efficacy
of FSVMs is often hindered by the fuzzy membership function’s
sensitivity to imbalanced datasets, resulting in inaccurate assess-
ments of sample importance and subsequently impacting FSVM
performance. Addressing this challenge, a novel approach termed
Slack-Factor-Based Fuzzy Support Vector Machine (SFFSVM)
has been introduced. SFFSVM enhances traditional FSVMs
by incorporating slack factors, which govern the relationship
between optimal and estimated hyperplanes. By adjusting fuzzy
membership based on the slack factor, SFFSVM effectively
assigns higher membership values to misclassified majority class
samples with excessively high slack factor values, thereby recti-
fying misclassifications induced by the hyperplane obtained via
Different Error Cost (DEC). To further refine this methodology,
we propose an Enhanced Slack-Factor-Based Fuzzy Support Vec-
tor Machine (ISFFSVM), integrating a novel parameter known as
the location parameter. The distinguishing feature of ISFFSVM
lies in constraining the DEC hyperplane from extending beyond
a specified position where the slack factor scores of majority
class observations approach the location parameter value. Con-
sequently, the ISFFSVM model achieves superior classification
accuracy for minority class samples compared to the SFFSVM
model. Extensive experimentation on real-world KEEL datasets
validates the superiority of the proposed ISFFSVM model over
the baseline classifier, showcasing its efficacy in handling class
imbalance and improving classification performance.

Index Terms—Fuzzy membership (FM), support vector ma-
chine (SVM), different error cost (DEC), slack-factor-based fuzzy
support vector machine (SFFSVM).

I. INTRODUCTION

HE support vector machine (SVM) [1] is the algorithm

that maximizes the margin between two hyperplanes
leading to solving a convex quadratic programming problem.
It uses a structural risk minimization (SRM) [2] technique
that deals with overfitting [3] by summing up the square of
the norm of all the weights. SVM performs inappropriately
with imbalanced datasets (where a class’s sample size is
significantly higher than that of other classes) because it gets
biased towards the majority class and treats the minority class
as noise. Therefore, SVM is not an efficient algorithm for
class imbalance learning [4] commonly exists in real world
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such as credit scoring [5]], breast cancer malignancy [6]], fraud
detection [[7], and so forth. Two types of methods are available
in the literature to deal with imbalanced datasets: data-level
and algorithm-level [8].

Data-level approaches are preprocessing techniques that
make the number of samples per class identical. Many data-
level methods [9] are available for class imbalanced problems,
such as oversampling [10], undersampling [11], resampling
[12] with different ratios, and so forth. In oversampling, we
add more samples to the minority class; in undersampling, we
remove some data samples from the majority class. Another
preprocessing technique, i.e., algorithm-level methods, aims
to keep the dataset constant and alter the training algorithm.
Many algorithm-level techniques, such as boundary-shifting
methods [13], cost-sensitive learning [14], threshold adjust-
ment strategy [15]], scaling kernel-based [16], and so forth, are
available to lessen the influence of imbalance. Cost-sensitive
learning is one of the most powerful techniques, providing
different weights to the different data samples. For example,
Veropoulos et al. [[17] came up with the Different Error Cost
(DEC) Model in which the imbalance ratio (the proportion of
the sizes of the samples from the positive and negative classes,
denoted as IR) is the amount by which the data points from the
minority class are weighted more than those from the majority
class. It has been seen that the DEC model performs better than
SVM but both models are sensitive to noise and outliers.

Fuzzy Support Vector Machine (FSVM) [18], a variant of
SVM, reduces the issue of noise and outliers by assigning
slighter weights to noise and outliers compared to other
samples. FSVM initially uses a previously defined fuzzy mem-
bership (FM) function to determine the FM values of samples.
The impact of noise and outliers is then eliminated when the
decision plane is generated using these FM values in SVM.
In the classical FSVM-CIL [19]], three types of tactics are
applied to describe FM functions, i.e., the separation between
data points and the obtained decision boundary, the separation
between data points and the pre-estimated decision boundary,
and the separation between data points and their own class
center. The FM functions based on these three strategies
have an issue of misclassification by the approximated and
computed decision hyperplane. For instance, in Fig[l] (a),
points A and B are equally far from the ideal hyperplane
but A is more crucial in constructing the hyperplane than B
[20]. Furthermore, the class imbalance is another factor for
the incorrect display of the importance of the samples by FM
values.

To overcome this issue, a new model named slack-factor-
based fuzzy support vector machine (SFFSVM) [20] has been
proposed recently. The slack factor of the samples is taken



into account in the SFFSVM model to define a new FM
function. The main purpose of slack factor values is to move
the hyperplane M .. obtained by DEC model to the right side
to reach the optimal hyperplane M * (as depicted in Fig[] (b)).
The more the slack factor value of the sample, the higher
chances of the sample being considered an outlier or noise and
misclassified. Based on this observation, a new FM function is
defined in the SFFSVM model so that the samples with higher
slack factor values get lower FM values.

The SFFSVM model also has a drawback while defining
FM values of the majority class samples given in Eq.(3). FM
function defined for the majority class samples allocates high
FM values to the samples, misclassified by the DEC model
hyperplane, with a slack factor value less than 2. However, 2
is not always the correct choice because while shifting M ..
to the right side, we have to ensure that correctly classified
minority class samples do not get misclassified. To overcome
this issue with the SFFSVM model, we propose an improved
slack-factor-based fuzzy support vector machine (ISFFSVM)
model which introduces a new parameter, known as the loca-
tion parameter, denoted by a. The advantage of introducing
the location parameter a is that the number of minority class
samples that will be misclassified after shifting My.. hyper-
plane depends on the parameter a. Consequently, the proposed
ISFFSVM model is more efficient for class imbalance learning
as it attempts to correctly classify a larger number of minority
samples. Moreover, Fig[3] also demonstrates that the decision
boundary of the proposed ISFFSVM model is superior to the
SFFSVM model in classifying minority class samples.

With the following nine models, we have compared our
results: (1) Ensemble-based category: Hashing-based Under-
sampling Ensemble (HUE) [21]]; (2) Fuzzy-based category:
FSVM based on centered kernel alignment (CKA-FSVM) [22]]
and Fuzzy SVM for class imbalance learning [19] (FSVM-
CIL: FSVM-CIL-exp and FSVM-CIL-lin); (3) Other category:
Different Error Cost (DEC) [17] and Complement Naive Bayes
(CNB) [23]; (4) Oversampling-based category: Polynom fit
SMOTE (PF-SMOTE) [24], SMOTE-Tomeklinks [25] and
MWMOTE [26]. The thorough experimental findings show
that the proposed ISFFSVM model outperforms the above
models.

The remaining sections of the paper are organized as
follows: The approaches for class imbalance learning available
in the literature are discussed in Section 2. The proposed
method is explained in Section 3. In Section 4, experimental
comparisons are thoroughly presented and Section 5 includes
conclusion with future work.

II. RELATED WORK

This section briefly explains the related work on the
imbalanced datasets. Over the past few decades, numerous
algorithm-level techniques have been proposed. Some of them
are given below:

A. Different Error Cost (DEC)

In DEC [17] model, a variant of SVM, an imbalance
ratio (IR) has been introduced to deal with class imbalance

problems. The minority class samples’ misclassification cost
is IR in the DEC. It is better than SVM on the imbalanced
dataset due to the involvement of the IR. The optimization
problem of DEC is as follows:

1, X X
i + 4 ,
min o fuwl®+¢7 0 G+ D& ()
reX+ reX—
st yi(wha; +0) >1—¢&,i=1,2...,N,
£&>0,i=1,2,...,N,

where (" =( and (T = (* IR.

DEC model is increasing the membership of the minority class
by multiplying the corresponding slack factors with IR. In
this way, it assigns different FM values to the majority and
minority class samples. However, like SVM, DEC model is
sensitive to noise and outliers as it cannot distinguish them

properly.

B. Slack Factor Based Fuzzy Support Vector Machine
(SFFSVM)

We discuss the formulation of SFFSVM [20] in this sec-
tion. SFFSVM defines slack-factor-based FM which helps to
define different FM values for the misclassified and correctly
classified samples based on their importance. In this way, it
reduces the impact of imbalance and noise or outliers on the
FM values.

N
1 2
min vl +<;§i @
st yi(wle; +0)>1—&,i=1,2,...,N,

& >0,1=1,2,...,N.

The decision boundary M,,,, = {z|t"z +b N z € R}
can be constructed by optimizing Eq.(Z) on the data set
X = {(xi,y:)}X,, where @ and b represent the best possible
outcome. After obtaining M,,,, on X, we determine the
slack factor value of a sample x; using the hinge loss function

& =max(0,1 — yi(wai +b)).

A slack-factor-based FM is defined below based on the obser-
vation that the likelihood of misclassifying the related sample
increases with the size of the slack factor values.

17 x; € T’7
wwi = {

el=r&) g, e F.
T:{{E2|{L'l GXD(O §§Z < 1)},
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Here,

i is the smoothness parameter which determines how
smoothly the DEC hyperplane moves.

SFFSVM defines a new FM function based on the above
slack-factor-based FM function. It uses DEC to find the slack
factor values and then define FM values for majority and
minority data samples. Conveniently, suppose that M* and
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Fig. 1: Decision boundaries of SVM and DEC on an imbalanced dataset. M* indicates optimal decision boundary; M.,
indicates the decision boundary obtained by DEC; Mj,,,, indicates the decision boundary obtained by SVM.

Mge. denote the most ideal decision hyperplane on X =
{X*TUX~} and a decision hyperplane derived by instructing
DEC on X, respectively. Depending on the values of £* (or £7)
of Mge. can divide X*(X7) into TH(T~) and F+(F~).
Note that, we apply superscripts “-” and “+” to represent the
majority and minority class samples, respectively. For instance,
T denotes the collection of minority class samples correctly
classified with a slack factor greater than or equal to zero and
less than one.

The following FM values are set for the minority class
samples:

2/(ets +1),

+ =
x; 0,

Eq.@ depicts that the FM value for correctly classified
minority class samples decreases exponentially as the slack
factor value increases. At the same time, FM value for wrongly
classified minority class samples is zero.

x; € T+,
x; € FT. @)

The following FM values are set for the majority class
samples:

=

Here, the FM value of the majority class samples having a
slack factor less than 2 is one, and for the samples with a
slack factor greater than or equal to 2, FM value decreases
exponentially.

e HEi z; € {z|z € F~ n&(x) > 2},
L me (e i uT new <2}
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Implementation of the above memberships in the DEC

model can be expressed as follows:
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&>0,i=1,2,...,N,

where (T =( and ¢t = (* IR.

SFFSVM considers the concept of slack factor, which helps
to resolve the issue of assigning equal membership to points A
and B in Fig[T] (a). Moreover, slack-factor-based FM functions
are less affected by class imbalance problems because it
employs DEC to find the FM values.

III. PROPOSED WORK

FSVM-CIL has an issue of misclassification by the approx-
imated and computed decision hyperplane. For instance, in
Fig[] (a), points A and B are equally far from the ideal
hyperplane M*, however, A is more crucial in constructing
the hyperplane than B. Furthermore, the class imbalance is
another factor for the incorrect display of the importance
of the samples by FM values. To overcome this issue, a
new slack-factor-based FM function has been proposed in
the SFFSVM model. In this model, all the majority class
samples wrongly classified by the DEC hyperplane, i.e., they
are on the right side of the DEC hyperplane and with slack
factor value less than 2, are allocated one membership value.
In other words, majority class samples between the decision
boundary obtained by DEC and the supporting hyperplane
wX 7+ bgee = 1 are given equal membership as the majority
class samples which are correctly classified by the DEC
hyperplane.



In the proposed ISFFSVM model, we introduce a new
parameter a given in Eq.(9), termed as the location parameter.
Unlike the SFFSVM, we assign one membership value to
only those majority class samples with slack factor value less
than @ and greater than zero. For instance, in Fig[2] suppose
that points A, B, and C have slack factor values less than
a (a < 2) and slack factor values of points E and G are
greater than or equal to a but less than 2. According to the
formula given in Eq.(9), points A, B, and C will be assigned
one membership value, and points £ and G will be assigned
a membership value less than one. In this way, it is highly
likely that correctly classified minority points D and F' will
not be misclassified after shifting DEC hyperplane M. to the
right because we are not giving high membership to £ and
G samples. Thus, more minority samples will be correctly
classified which is our priority in class imbalance learning.
However, as per the SFFSVM model, £ and G will also
be assigned one membership value. Consequently, there is
a very high chance that minority samples D and F' will be
misclassified which is contrary to our objective. Also, we can
verify through Fig[3] that, in comparison to SFFSVM model,
the proposed ISFFSVM model successfully classifies a larger
number of minority samples.

A

Fig. 2: Pictorial representation of the location parameter a.

The following DEC model is employed to obtain the FM
values:

1 ) |X*] X
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e zeXt zeEX~

st ys(wla; +0) >1—&,i=1,2...,N,
£ >0,i=1,2..N.

FM values set for the minority class samples are as follows:
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(a) Decision surface of SFFSVM

(b) Decision surface of ISFFSVM

Fig. 3: Decision hyperplanes of SFFSVM and ISFFSVM on
dataset moon_1000_200_2 that contain 1,000 majority class
data points and 200 minority class data points (i.e., IR = 5).

FM values set for the majority class samples are as follows:
ehEi z; € {zlx € F- N¢(x) > a},
1, z; €{zlr e F-UT Né&(x) < a}.

©)

Implementation of the above membership function in the
DEC model can be expressed as follows:

(X [ X7
1 _ _
min o ol®+ ¢t Y0 vEG ¢ Y0 wng (10)
1S $€X+ w€X7

st yi(wle; +0) >1—&,i=1,2...,N,
éi ZO,’L: 172a"'aNa

where (- =( and (T = (% IR.

We are tuning the parameter @ in the range
[1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2]. It has been noted
that 2 is not always the most suitable choice for the parameter
a; values other than 2 are appearing as the best value
for a. For instance, in Fig@ (b), the decision boundary is
drawn with a=1.3. It can be seen that the decision boundary
of the proposed ISFFSVM model is better as compared to
SFFSVM model. The proposed ISFFSVM model misclassifies
a lesser number of minority samples than SFFSVM model;
consequently, it deals with class imbalance more competently
than SFFSVM model.

Unlike DEC, the proposed ISFFSVM model assigns var-
ious FM values to samples according to their significance.



Moreover, unlike SFFSVM model, it does not always take
2 as the value of the slack factor below which the majority
class samples have been assigned FM value one. Due to
the addition of location parameter a, the proposed ISFFSVM
model provides more accurate FM values. When a = 2, the
proposed ISFFSVM model becomes equivalent to SFFSVM
model.

Properties of the proposed ISFFSVM model are as
follows:

« DEC hyperplane cannot go beyond the position at which
the ¢ score of the majority class data points equal a.

o Majority class samples with & greater than or equal to a
are abnormal samples and their FM values are less than
Zero.

o The number of majority class samples on the right side
of the DEC hyperplane with FM value one depends on
the parameter a.

o The number of misclassified minority class samples after
shifting the M., hyperplane depends on the parameter
a.

Algorithm 1 Improved Slack-Factor-Based Fuzzy Support
Vector Machine

1: Let X € RVX™ be the given input dataset and Y contains
the target labels.

2: Obtain optimal w and b using Eq[7]

3: fort=1,2,--- ,N do

4: Calculate slack factor value for each x; using the
formula & = max (0,1 — y;(wT z; +b)).

5: if y; = 1 then

6: if & < 1 put z; into T, otherwise into F'".

7: Calculate FM value using Eq.(8).

8: else

9: if & < 1 put z; into T'~, otherwise into F'~.

10: Calculate FM value using Eq.(9).

11: end if

12: end for

13: Apply obtained FM values in Eq.(I0) and calculate the
optimal w and b.

IV. NUMERICAL EXPERIMENTS

For the assessment of performance of the proposed
ISFFSVM model and the baseline models, we choose real-
world datasets given by Knowledge Extraction Based on Evo-
lutionary Learning (KEEL) [27]. All datasets are divided into
two groups: one with IR < 10 and another with IR >= 10.
The experiments are performed on a machine with Python 3.7
on the system with 2 Intel Xeon processors, 128 GB of RAM,
and 4 TB of secondary storage. The dataset is divided into
80:20 ratio for training and testing the models. We used the
grid search method to tune the hyperparameters via a five-
fold cross-validation method. To lessen the unpredictability of
the studies, we run five-fold cross-validation tests ten times
independently on each dataset.

Evaluation Metrics We choose the area under the
Precision-Recall curves (AUC-PR), the Matthews correlation

TABLE I: F1 score analysis on the low IR imbalanced datasets with the baseline models and the proposed ISFFSVM model.

ISFFSVM
63.75+£4.43
80.37+4.55

95.03+£93.57
60.98+£12.5
56.24+9.09
95.86+4.73
94.44+5.65
98.88+0.8

SFFSVM [20]

CNB [23]

HUE [21]

FSVMCIL,;,, [19] CKAFSVM [22] MWMOTE [26] PFSMOTE [24] SMOTETL [25]

FSVMCIL,,, [19]

DEC [17]

61.93+12.29

53.66+4.4

64.79+3.78
41.69+8.6

58.09+5.77
32.89+8.77
94.66+2.52
51.29+10.11
48.02+5.48
96.41+4.24
96.25+5.15

62.43+4.25
42.89+8.73
94.35+2.45
46.83+£12.14
55.18+6.41
94.43+5.75
94.44+7.5
98.78+0.97
82.5+10.41

62.21+£5.41
36.74+10.62
94.11+£2.79
49.59+12.12
51.93£5.51
94.74+7.28
95.17+£5.39
98.92+0.87
81.31+11.75
68.28+9.48

62.39+4.84
30.26+10.88
93.73+2.94
52.45+11.33
60.38+5.75
91.99+8.32
91.56+7.51
98.46+1.09
78.76£13.07
78.03£3.74
83.89+2.26
49.79+£14.92
55.77+8.17
92.24+4.85
75.6£6.57

66.03+3.33

66.81+£3.75
44.64+7.67
93.07+3.38
56.54+12.19
57.8+4.14
94.76+6.1

65.14+3.86
38.51+13.39
94.58+3.08
50.59+10.88

Pima

80.91+3.49
94.69+2.46
57.24+13.26

46.78+8.53

45.85+£7.15
92.59+3.34
54.76+£11.24

Haberman
VehicleO
Spect

89.95+2.64 53.87+£3.97

51.54+9.81

55.02+3.57

93.13+£6.45
92.86+6.5

22.09+9.49
50.78+4.8

55.21+£9.57
94.8+5.71
93.07+£5.59
98.92+0.74
83.56+10.17

56.68+3.72
97.27+4.11

60.57+£4.96
94.73+£5.95

Yeastl

90.5+6.3
89.47+6.49
38.98+1.5

Newthyroidl

94.08+7.04
98.79+0.88
68.44+10.7
71.03+4.69
80.22+2.4

94.35+8.06
98.84+0.93
73.78+11.57
71.7+4.87
79.19+£2.21
42.23+£7.78
61.03+8.73
92.98+5.44
76.31£5.36

95+5.54
98.74+0.98

79.04+£12.2

Newthyroid2
Segment(Q
Glass6

96.87+1.65
78.41+9.31

98.7+1.17
81.93+10.03
69.22+10.15
82.75+2.07
41.34£13.36
59.12+7.65

86.67+13.25
76.11+6.1
84.5+2.05

47.33£9.93

72.46+8.87

72.01+£3.77 61.014+4.34

76.74+4.37
83.93+1.99
45.13£9.95
62.65+5.94
99.01+2.94
99.13+£1.51

71.23+9.94
86.51+£1.97

74.85+4.16
83.25+2.17
45.24£9.48

Yeast3

80.73+£2.05 61.77+4.03

42.97+5.78

84.83+2.66
40.424+12.64

Pageblocks0

431+9.61

39.27+13.36

43.26+8.34
62.124+6.72
92.4145.71
76.56+5.88

Yeast05679vs4

Liver
Iris

62.761+6.94
99.61+1.3

60.95+5.88 61.04+5.06
93.22+4.64 64.78+4.97

58.72+6.74
91.75+5.25

60.64+7.3

60.231+6.56
91.78+5.86
75.56+6.39

91.97+5.7
74.37+8.49

92.6+4.84
76.45+7.56

99.62+1.11

78.23£5.33  66.04£5.65

82.1+6.24

Ecolil
Mean

80.14

79.13

58.42

72.83

71.8

73.43

72.53

73.02

73.34

73.6

73.85
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TABLE VII: Average F1-Score and Average Rank Test.

DEC [17 FSVMCILc2p [19 FSVMCIL;;,, [19 CKAFSVM |22] MWMOTE [26 PFSMOTE |24 SMOTETL |25 HUE |21 CNB [23 SFFSVM [20 ISFFSVM
Average FI Score (IR< 10) 73.85 73.6 73.34 73.02 72.53 73.42 71.8 72.82 58.42 79.13 80.14
Average F1 Score (IR>= 10) 47.24 43 40.47 41.74 43.15 46.82 45.03 38.8 29.29 52.01 53.74
Average Rank (IR< 10) 5.73 5.6 5.53 6.73 6.37 6.53 7.2 6.93 9.53 3.43 2.4
Average Rank (IR>= 10) 4.45 6.65 7.71 6.52 6.17 5.12 5.53 7.52 8.7 4.23 3.41
TABLE VIII: Pairwise Win-Tie-Loss.
DEC [17] FSVMCIL.,, [19] FSVMCILy;, [19] CKAFSVM [22] MWMOTE [26] PFSMOTE [24] SMOTETL [25] HUE [21] CNB [23] SFFSVM [20]
ISFFSVM (IR< 10) [12,0.3] [13.0.2] [12,0.3] [12.0.3] [12.0.3] [14,0.1] 113,021 14,0,1] [15,0,0] 12,031
ISFFSVM (IR>= 10) [20,0,13] [27,0,6] [28,0,5] [24,0,9] [26,0,7] [20,0,13] [24,0,9] [27,0,6] [29,0.4] [26,0,7]

coefficient (MCC), and the Fl-measure (F1) as the perfor-
mance measures due to the fact that accuracy cannot accurately
assess the differences between the prior approaches in the class
imbalance [28, 29, 130]. To calculate these measures, we must
determine the confusion matrix, which indicates how many
samples a classifier properly or erroneously classifies for each
class. We can easily obtain the above metrics after computing
the confusion matrix by the following formulas:

Tp
Recall (R) = ——, 11
R) Tp + Fx (11)

. Tp
Precision (P) = ——, 12
P) Tp & Fp (12)

2x RxP
Fl=——— 13
R+P ~’ (13)

TPXTN—FPXFN

V(Tp + Fp)(Tp + Fn)(Tn + Fp)(Tn + Fn)’
(14)

MCC =

where Ty denotes the number of correctly predicted nega-
tive data points, Tp denotes the number of correctly predicted
positive data points by the model, Fiy denotes false negative
data points which are incorrectly classified by the model,
and Fp denotes false positive data points which the model
incorrectly classifies.

We follow different metrics based on analysis and statistical
tests [31] for an overall comparison of the models

Average F1 score: In comparison to the baseline models,
the proposed ISFFSVM model’s average F1 score is larger.
From Table[VII] the proposed ISFFSVM model has a higher
F1 score than SFFSVM model by 1.01 % on low IR datasets
and 1.73 % on high IR datasets.

Ranking Scheme: The average F1 score may be an in-
accurate measure as better performance in one dataset may
compensate for worse performance in others. To assess the
model’s performance while keeping this flaw in mind, we rank
it on each dataset. In this ranking scheme, every model is
scored on each dataset with the model that performed worse
receiving a higher rank and the model that performed better
receiving a lower rank. Let D number of datasets be used to
evaluate [ models, and let A represent the rank of the m!"
model on the d'" dataset. The m*" algorithm’s average rank
is then calculated as follows:

_ T A

R,
D

15)

The proposed ISFFSVM model has a much lower rank
than the competing models. It attains 2.4 rank on the low
IR datasets and 3.41 rank on the high IR datasets.

Friedman Test [31]: We statistically assess the models
using the Friedman test. Assuming they perform similarly, the
models’ average rank is equal under the null hypothesis. The
Friedman test follows the chi-squared distribution (x%) with
I — 1 degrees of freedom (d.o.f.), where [ is the number of
models being compared. Now,

, 12D (&, l(1+1)?
XF D) (Z_ Rm4> ; (16)
m=1
(D —x%

where the distribution of Fr has (I—1) and (I—1)(D—-1) d.o.f.
For low IR datasets (I = 11 and D = 15), we get X%=48.75
and Fr=6.74 and for high IR datasets (! = 11 and D = 33),
we get x%=79.39 and Fr=10.14 . According to the statistical
F-distribution table, F'=(10,140)=1.9 and F»(10,330)=1.86 for
low and high IR datasets, respectively at the 5% level of
significance. We reject the null hypothesis due to the fact that
6.74 > 1.9 and 10.14 > 1.86. As a result, the models differ
significantly on high IR datasets as well as on low IR datasets.
We examine whether there is a significant difference between
the models using the Nemenyi post hoc test.

Nemenyi post hoc test: The critical difference (C.D.) is

given by
l(l+1
C.D.:qa< (6+ )>,

where ¢, (o = 0.05) is the critical value for the two-tailed
Nemenyi test from the distribution table. After calculation,
we get C.D. as 3.90 and 7.20 for low and high IR datasets,
respectively. If the difference between average ranks of the two
models is more than C.D., then the models are considered
to be significantly different. The average rank differences
on the low IR datasets between the proposed ISFFSVM
model and PF-SMOTE [24], CKA-FSVM [22], MWMOTE
[26], SMOTE-TL [25], HUE [21]], and CNB [23] models
are 4.33,4.17,4.13,4.8,4.53, 7.13, respectively. All the differ-
ences are more than the C.D. value. Therefore, according to
Nemenyi post hoc test, the proposed ISFFSVM model differs
significantly from the existing baseline models. On high IR
datasets, its average rank does not significantly differ from
the baseline models, but it is clear from Table that it
outperforms the baseline models in terms of average ranks.

(18)



Win-tie-loss-sign test: Win-tie-loss is a common statistical
test in research and data analysis to determine if there is a
significant difference between the outcomes of two or more
models. Under the null hypothesis, two models are performing
equally in the win-tie-loss sign test which means each model
succeeds on D/2 out of D datasets. The minimum number of
wins required for two models to be considered significantly
different is D/2 + 1.96v/D /2. In the event of a tie, the score
is evenly split between the models under consideration. For
low IR (D = 15), D/2 4+ 1.96v/D/2 = 11.3 and for high
IR (D = 33), D/2 + 1.96v/D/2 = 22.13. The pairwise
examination of the models is provided in Table using
straightforward computations. In our case, if any of the two
models perform better on at least 12 datasets in the case of low
IR, they are significantly different; if they perform better on at
least 23 datasets in the case of high IR, they are considerably
different. From Table it is evident that the proposed
ISFFSVM model differs significantly from DEC, FSVM-CIL-
exp, PF-SMOTE, SMOTE-TL, FSVM-CIL-lin, CKA-FSVM,
MWMOTE, HUE, CNB, and SFFSVM in the case of low IR
datasets and from FSVM-CIL-exp, SMOTE-TL, HUE, FSVM-
CIL-lin, CKA-FSVM, MWMOTE, CNB, and SFFSVM in the
case of high IR datasets. It has been determined that the
proposed ISFFSVM model has emerged victorious, thereby,
substantiating its superiority over other baseline models.

Parameter Analysis: There are four parameters in the
proposed ISFFSVM model including the kernel width param-
eter -, regularization parameter ¢, the smoothing parameter
u, and the location parameter a. The hyperparameters cor-
responding to different models are selected from the range:
¢ = [2*1', li =—5,—4,..., 11] Y = [2% = —10, 79,...,3}.
Also, we set a range of p = [0.5,1,1.5,2,2.5] and a =
[1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9, 2]. Here, regularization
and kernel width parameters are the same as in the SVM
model based on the RBF Kernel function [32]], the smoothing
parameter is the same as in the SFFSVM, and their role is
the same as in the SVM and SFFSVM. For further research,
please refer [33]]. The range of location parameter a introduced
in the ISFFSVM is [1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9, 2].
It adjusts the distance the DEC hyperplane will move to the
right side to reach the optimal hyperplane A/*. From Figld]
it is clear that setting the value of a to 1.1 is most likely to
occur. The value 1.1 for a has been encountered 1803 times in
2400 instances, the value 2 has been encountered 105 times,
and the rest of the values fall in between these two values.

V. CONCLUSION

In this paper, we have come up with an improvement in
the existing slack-factor-based fuzzy membership function. In
the SFFSVM model, wrongly classified majority class samples
by the hyperplane obtained by DEC (Mg..) with slack factor
value less than 2 are assigned one membership value. However,
2 is not always the correct choice due to the fact that while
shifting M., we make sure that correctly classified minority
samples do not get misclassified. To solve this issue, we come
up with an improvement in the fuzzy membership function for
majority class samples in the SFFSVM model. We introduced

2000

1500

1000

500

Mumber of times a is appearing

Possible values of a

Fig. 4: Analysis of values attained by location parameter a.

a location parameter a in our improved slack-factor-based
fuzzy support vector machine (ISFFSVM) model. Now, only
those wrongly classified majority class samples with slack
factor value less than a are assigned one membership value.
The proposed ISFFSVM'’s key benefit is that it will result
in a reduction in minority samples being misclassified. On
the basis of the F'l1-measure (F1), Mathews correlation coef-
ficient (MCC), and area under precision-recall curves (AUC-
PR), the proposed ISFFSVM model performs more efficiently
compared to other models. Considering that the proposed
ISFFSVM model is a SVM variant, it can be challenging
to handle large-scale imbalanced datasets. Therefore, in the
future, the proposed startegy can be applied with an algorithm
that can address the issue of imbalance. Moreover, it can also
be employed in twin support vector machines (TWSVM).
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