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Abstract—How to achieve synchronization control for
Piecewise Homogeneous Markov Delayed Neural Networks
(PHMDNNs) under hybrid cyber-attacks is the primary
focus of this research. Firstly, a Piecewise Homogeneous
Markov Process (PHMP) is employed to model the mode
transitions of system parameters and controllers, accu-
rately capturing the dynamic characteristics of practical
systems and providing a solid foundation for subsequent
controller design. In response to the challenges arising
from hybrid cyber-attacks, a novel controller is developed
based on an input retention strategy. This ensures system
stability under hybrid cyber-attacks, effectively avoiding the
instability issues caused by traditional zero-input strategies
and enhancing control robustness. To further optimize
system performance, an improved Resilient Adaptive Event-
triggered Mechanism (RAETM) is proposed. By optimizing
triggering conditions and thresholds, the mechanism re-
duces communication overhead while strengthening system
security, making it well-suited for networked control
systems. In addition, a generalized common Lyapunov
functional is constructed by incorporating sampling instants,
time delays, and Markov jump parameters. Sufficient
conditions for system synchronization and stability are
derived, providing a simplified analytical framework. Finally,
the effectiveness and superiority of the proposed approach
are confirmed through simulation results, showcasing its
robust performance against hybrid cyber-attacks and its
ability to achieve secure synchronization.

Index Terms—Delayed Neural Networks, Piecewise Ho-
mogeneous Markov Process, hybrid cyber-attacks, Resilient
Adaptive Event-triggered Mechanism, input retention strat-
egy, secure synchronization control.

I. INTRODUCTION

IN the last few decades, Neural Networks (NNs)
have seen remarkable advancements, extending their

applications to biomedicine, chemical production, and
aerospace. However, in practice, NNs often exhibit
undesirable behaviors, including parameter mutations and
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state delays. These issues typically arise from external
disturbances, component failures, or unpredictable fac-
tors, leading to instability, oscillations, or even chaotic
dynamics [1, 2]. To model the dynamics of NNs with
parameter mutations and state delays more accurately,
Markov Delayed Neural Networks (MDNNs) were first
introduced in [3], where parameter mutations are modeled
as a Homogeneous Markov Process (HMP) with a
fixed Mode Transmission Rate (MTR). As a result,
MDNNs have drawn increasing research attention in
areas such as stability analysis [2], state estimation
[4], and synchronization control [5–8]. Among these,
synchronization control plays a crucial role in applications
such as image processing, signal transmission, and secure
communications. However, parameter mutations and state
delays can significantly degrade synchronization perfor-
mance and even cause its failure. Thus, investigating
synchronization control for MDNNs is of great theoretical
and practical significance.

It is worth mentioning that most studies on the
synchronization control problem of MDNNs [9] share
a common assumption: the mode transitions of system
parameters and the controller are driven by the same HMP
with a constant MTR [10]. Nevertheless, this assumption
may not be valid in real-world applications. In many
cases, the mode transitions of system parameters and
the controller may be semi-dependent, as the physical
plant and the controller are often deployed in distinct
working environments. Semi-dependence implies that the
mode transitions of system parameters are influenced not
only by their own dynamics but also by those of the
controller. This renders the traditional HMP framework
inadequate for such scenarios. Fortunately, PHMP, a
special type of non-homogeneous Markov process with
time-varying MTRs, provides a powerful modeling tool
for capturing semi-dependent dynamics. Consequently,
PHMP has received significant attention in recent years
for analyzing and synthesizing various systems. For
instance, the asynchronous filtering design problem for
PHMJSs with quantization is addressed in [11], the output
feedback control issue of PHMJSs is studied in [12], and
the mean stabilization of positive PHMJSs is investigated
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Table I: Notations and their meanings

Symbol Meaning Symbol Meaning
N Set of non-negative integers. E {·} Mathematical expectation.
S+
n Set of symmetric matrices. col {· · · } Column vector.

Rn n-dimensional Euclidean space. diag {· · · } Diagonal matrix.
Rn×n n× n-dimensional real matrix space. λmax(P ) Largest eigenvalue of matrix P .
Pr {α} Probability of occurrence of event α. λmin(P ) Smallest eigenvalue of matrix P .
Pr {α|β} Probability of occurrence of α conditional on β. P > 0 (P < 0) Positive (negative) definite matrix.
∥ · ∥ Euclidean norm. PT Transposition of matrix P .
sym {Y } Symmetric part of Y : Y + Y T . P−1 Inverse of matrix P .
Ω Event-triggering weight matrix. ∗ Symmetric term in a symmetric matrix.
Ξ Attack-modified state term.

in [13]. Although significant advancements have been
made, the synchronization control of PHMDNNs remains
largely unexplored. Bridging this gap serves as the
primary motivation for this study.

With the integration of wireless communication tech-
nologies, MDNNs often rely on networked environments
for synchronization control. While this enhances flexi-
bility and scalability, it also introduces vulnerabilities
to hybrid cyber-attacks [14, 15], including Denial of
Service (DoS) and deception attacks. These attacks
disrupt communication channels and inject false informa-
tion, posing significant challenges to system stability
and security. Existing studies have made efforts to
address hybrid cyber-attacks on networked systems, such
as exponential synchronization under stochastic hybrid
cyber-attacks [16], security filtering design under DoS
and deception attacks [17], and event-triggered control
for Markov systems with hybrid cyber-attacks [18].
However, most of these works focus on modeling attacks
from the attacker’s perspective, overlooking practical
defensive strategies. This paper adopts a defense-oriented
approach, proposing a novel periodic fluctuation model
for non-periodic DoS attacks, which provides a more
realistic and practical representation from the defender’s
perspective. Furthermore, most existing works assume
that the control input vanishes when communication
is disrupted, adopting a zero-input strategy. However,
this assumption often leads to system performance
degradation, as the absence of control input can cause
instability and desynchronization in practical applications.
To mitigate this issue, this paper considers an input
retention strategy, which preserves the latest available
control input during communication outages. By main-
taining system actuation even under attack conditions,
this strategy enhances robustness against hybrid cyber-
attacks and improves synchronization resilience. Despite
significant progress, the security synchronization control
of MDNNs under hybrid cyber-attacks, particularly in the
PHMP framework, has received limited attention. This
forms the second motivation of this study.

Moreover, due to the challenges posed by cyber-attacks,
parameter mutations, and state delays, it is essential to de-

sign a safer, more efficient, and cost-effective control strat-
egy for NNs, particularly under limited network resources,
such as sensor energy, communication bandwidth, and
processor capacity. To address these challenges, Resilient
Adaptive Event-triggered Mechanisms (RAETMs) have
gained significant attention in recent years for their ability
to reduce redundant signal transmission and optimize
resource utilization [19, 20]. RAETMs adjust the trigger
threshold dynamically based on the system’s error state,
ensuring timely responses to disturbances while avoiding
excessive communication. Compared with traditional
event-triggered mechanisms [21], RAETMs introduce
resilience by incorporating adaptive strategies that can
adjust the triggering condition in real time, enhancing the
system’s robustness under uncertain environments such as
hybrid cyber-attacks [22–24]. For instance, [22] explores
an adaptive event-triggered law for improving networked
control systems under cyber-attacks, and [24] designs a
resilient mechanism that optimizes communication by dy-
namically tuning the trigger threshold based on real-time
state feedback. These studies demonstrate the potential
of RAETMs in addressing both safety and efficiency
challenges in networked environments. However, most
existing RAETMs focus on static or overly simplified
adaptive laws, which may limit their performance under
complex system dynamics. In this paper, we propose
an improved RAETM that optimizes the triggering
condition by refining both the trigger threshold and
error state dynamics. This enhanced mechanism reduces
communication burden while maintaining system stability
and synchronization under hybrid cyber-attacks.

Building on the above analysis, this study focuses on
the security synchronization control of PHMDNNs under
hybrid cyber-attacks. The primary contributions of this
work can be outlined as follows:

• A novel controller design is developed by leveraging
the PHMP framework, which accurately captures
mode-dependent transitions of system parameters.
To enhance robustness against hybrid cyber-attacks,
an input retention strategy is introduced, effectively
mitigating instability caused by conventional zero-
input strategies under DoS attacks.
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• A refined RAETM is proposed, improving both
triggering conditions and threshold adaptation. This
mechanism significantly reduces communication
overhead while strengthening system security, ef-
fectively addressing the challenges posed by hybrid
cyber-attacks.

• A generalized common Lyapunov functional is
constructed, incorporating sampling instants, time
delays, and Markov jump parameters. This frame-
work simplifies the theoretical analysis and provides
rigorous sufficient conditions for synchronization
and stability under hybrid cyber-attacks.

To ensure clarity and consistency, the notations used
in this paper are systematically summarized in Table I.

II. PRELIMINARIES

Consider the following PHMDNNs:

ṁ (t) =−Bα(t)m (t) +B1α(t)f (m (t))

+B2α(t)f (m (t− d (t))) (1)

Here, m(t) ∈ Rn represents the system state vec-
tor, while d (t) ∈ [0, d] corresponds to the time-
varying delay, satisfying 0 < ḋ (t) ≤ µ. The matrices
Bα(t), B1α(t), B2α(t) ∈ Rn×n are known, and the
neuron activation function f(m(t)) ∈ Rn is defined
as f(m(t)) = col{f1(m1(t)), . . . , fn(mn(t))}, where
fl(0) = 0. Moreover, for known constants ϖ−

l , ϖ
+
l (l =

1, 2, . . . , n), the following inequality holds:

ϖ−
l ≤ fl (m1)− fl (m2)

m1 −m2
≤ ϖ+

l ,∀m1 ̸= m2. (2)

The process {α (t) , t ≥ 0} is a continuous-time PHMP
that takes values from the finite set Π1 = {1, 2, ..., N}.
Its mode transition probability is governed by the time-
varying MTR matrix P β(t+∆) =

[
p
β(t+∆)
mn

]
N×N

, which
can be expressed as:

Pr {α (t+∆) = n|α (t) = m}

=

{
p
β(t+∆)
mn ∆+ o (∆) , ifm ̸= n,

1 + p
β(t+∆)
mm ∆+ o (∆) , ifm = n.

(3)

Here, ∆ > 0, and the term o(∆) satisfies lim
∆→0

o(∆)
∆ =

0. The non-diagonal elements pβ(t+∆)
mn ≥ 0 (∀m ̸= n)

represent the MTR from mode m at time t to mode n
at time t+∆. For the diagonal elements, the following

condition must hold: pβ(t+∆)
mm = −

N∑
n=1,m̸=n

p
β(t+∆)
mn .

Similar to the process {α (t) , t ≥ 0}, the process
{β (t) , t ≥ 0} represents a continuous-time HMP, which
assumes values from the finite set Π2 = {1, 2, ...,M}.

The mode transition probability, governed by the constant
MTR matrix P̄ = [ρkl]M×M , is expressed as:

Pr {β (t+∆) = l|β (t) = k}

=

{
ρkl∆+ o (∆) , k ̸= l,
1 + ρkk∆+ o (∆) , k = l.

(4)

Here, ∆ > 0, and the term o(∆) satisfies lim
∆→0

o(∆)
∆ = 0.

The coefficient ρkl ≥ 0 (∀k ̸= l) denotes the MTR from
mode k at time t to mode l at time t+∆, while the diag-

onal elements satisfy the condition: ρkk = −
M∑

l=1,k ̸=l

ρkl.

The high-level signal {β (t) , t ≥ 0} dictates the switching
MTR matrix of the low-level signal {α (t) , t ≥ 0}, which,
in turn, determines the switching dynamics or topology
structure modes.

In this study, the system described by (1) is referred
to as the master system, while its corresponding slave
system is defined as:

ṡ (t) =−Bα(t)s (t) +B1α(t)f (s (t))

+B2α(t)f (s (t− d (t))) + u(t) (5)

Here, the matrices Bα(t), B1α(t), and B2α(t) are those
specified in the master system (1), and u(t) ∈ Rn

represents the control input. Let the synchronization error
between the master and slave systems be defined as
z(t) = s(t)−m(t). Accordingly, the error dynamics can
be expressed as:

ż (t) =−Bα(t)z (t) +B1α(t)w (z (t))

+B2α(t)w (z (t− d (t))) + u(t) (6)

The term w(z(t)) is defined as w(z(t)) = f(s(t)) −
f(m(t)), and the control input u(t) is formulated as:

u(t) = −Kα(t),β(t)z(t) (7)

Here, Kα(t),β(t) denotes the controller gains, which
depend on the modes α (t) and β (t), and will be
determined in subsequent sections.

III. PROBLEMS AND METHODS

Consider aperiodic DoS attacks based on the concept
of cyclic fluctuation of time series, where T > 0 and
Tn
off (n = 1, 2, 3, · · · ) is a variable parameter within

each cycle. The attack sequence ADos(t) is defined as:

ADos(t) =

{
0, t ∈ Hn

1

1, t ∈ Hn
2

(8)

where Hn
1

∆
=
[
nT, nT + Tn

off

)
denotes the time interval

during which the attack signals are inactive, allowing
communications, and Hn

2

∆
=
[
nT + Tn

off , (n+ 1)T
)

de-
notes the time interval during which the attack signals
are active, disrupting communications.
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Figure 1: Framework of system under hybrid cyber-attacks.

Since aperiodic DoS attacks disrupt communication
by intermittently denying transmission, traditional ETMs
struggle to maintain system stability. To address this
challenge, this paper introduces a RAETM, which dy-
namically adjusts the triggering threshold to enhance
robustness and reduce unnecessary transmissions under
DoS attacks. During the operation of the RAETM, the
next triggering instant tnk+1h is determined as follows:

tnk+1h =

{
tnkh+min

j∈N
Φ(jh), tnkh+ jh ∈ Hn

1

tnlasth, tnkh+ jh ∈ Hn
2

(9)

where Φ(jh) = {jh|eT (tnk + jh)Ωe(tnk + jh) ≥
δ(tnk + jh)zT (tnk )Ωz(t

n
k )}, 0 < h < T , n, j ∈ N ,

and k is the trigger number occurring in the nth
attack operation cycle, and tnklast

h denotes the last
triggered instant of the last DoS attacks dormant period
Hn

1 . The triggering threshold is adaptively designed
based on the state variations: δ (tnkh+ jh) = a1[1 −
2
π arctan(a2(

∥z(tnkh+jh)∥−∥z(tnkh)∥
∥z(tnkh)∥

− σ))], and for the

last triggering instant in each period: δ ((n+ 1)T ) =

a1[1− 2
π arctan(a2(

∥z(tnklast
h+jh)∥−∥z(tnklast

h)∥∥∥∥z(tnklast
h
)∥∥∥ −σ))],

where σ ∈ [0, 1] is a sensitivity parameter that adjusts the
system’s responsiveness to state variations, a1 ∈ (0, 1]
is a scaling factor controlling the maximum threshold
value, and a2 ∈ (0, 10] is a sensitivity adjustment
parameter that amplifies the effect of state variations
on the threshold. This adaptive mechanism allows the
threshold to dynamically decrease when the state variation
is large, ensuring a prompt reaction and enhanced control
performance. Conversely, smaller variations lead to a
higher threshold, effectively reducing redundant triggers
and conserving communication resources.

Remark 1. The proposed event-triggered threshold
δ (tnkh+ jh) is designed to achieve an effective balance
between system responsiveness and communication effi-
ciency, especially under hybrid cyber-attacks like DoS.

Here, σ defines the system’s sensitivity to state variations,
allowing the threshold to decrease during large changes
for quicker response and increase during smaller changes
to reduce unnecessary triggering. Parameters a1 and
a2 are included to adjust the scaling and sensitivity
of the threshold, providing flexibility to suit different
system requirements. This design enables the system to
respond effectively to critical disturbances while reducing
communication overhead during stable periods. The
absence of dependency on historical data simplifies
implementation and enhances real-time adaptability. In
summary, the proposed event-triggered threshold provides
a robust, efficient, and practical solution for ensuring
stability and efficiency under hybrid cyber-attacks.

To counteract the impact of DoS attacks, the control
input (7) is adjusted through an input retention strategy:

u (t) =

{
−K1

α(t),β(t)z (t
n
kh) , t ∈ Ĥn

1

−K2
α(t),β(t)z

(
tnklast

h
)
, t ∈ Hn

2

(10)

where, Ĥn
1 =

[
tnkh, t

n
k+1h

)
∩Hn

1 .

Remark 2. This paper proposes an RAETM to address
the challenges of single-channel DoS attacks in networked
control systems. When DoS attacks occur, the communi-
cation channel is blocked, preventing the transmission of
control signals. However, the sampler and the event-
triggering device remain operational, allowing local
sampling signals to be generated. To mitigate the impact
of DoS attacks, a trigger signal retention strategy is
employed. During DoS attacks, the triggering instant
tnk+1h is set to the last triggered signal tnklast

h stored in the
buffer during the attack’s dormant period. This ensures
that when the communication channel recovers, the
retained trigger signal can be directly utilized to restore
control actions, thereby maintaining system stability and
avoiding disruptions caused by signal unavailability.

Remark 3. As illustrated in Fig. 1, the control strategy
during DoS attacks incorporates the keep-input strategy
to ensure system robustness. Specifically, when the
communication channel is blocked due to DoS attacks, the
ZOH mechanism is employed to maintain the last control
input tnklast

h from the dormant period of the attack. This
approach ensures that the system operates continuously
and reliably during the communication interruption, while
providing flexibility and adaptability to handle transitions
between active and dormant communication states.

Signals transmitted over communication networks are
prone to spoofing attacks. To increase the success rate
and concealment of such attacks, attackers often inject
malicious signals in a randomized fashion. To characterize
this behavior, a random variable ℘(k), following a
Bernoulli distribution with E {℘(k)} = ℘, is utilized.
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Specifically, ℘(k) = 1 signifies the occurrence of an
attack, while ℘(k) = 0 indicates that the sampled data
is transmitted without interference.

Let the deception attack signal be represented by a
nonlinear function z̃(t), which is randomly introduced
into the control input signal. Considering the energy
limitation of the attack, the attack signal is bounded.
Accordingly, the following assumption is established:

Assumption 1. [25] For the attack signal z̃(t), there
exists a constant matrix L such that:

∥z̃(t)∥2 ≤ ∥Lz(t)∥2. (11)

As a result, the control input (10) is modified under
the influence of hybrid cyber-attacks to:

u (t) =

{
−K1

α(t),β(t)Ξ(t
n
kh, k), t ∈ Ĥn

1

−K2
α(t),β(t)z

(
tnklast

h
)
, t ∈ Hn

2

(12)

where, Ξ(tnkh, k) = ℘ (k) z̃ (tnkh) + (1− ℘ (k)) z (tnkh).

Remark 4. When the DoS attacks take place, a large
number of signals flood into the network communication
channel, resulting in the triggering signals not being able
to be transmitted normally, so it is pointless to consider
deception attacks within Hn

2 . Meanwhile, as shown in
Fig. 2, for the hybrid cyber-attacks, this paper adopts
the input hold strategy, i.e., when the DoS attacks take
place, the control signals from the last trigger moment
tnklast

h of the last DoS attack dormant period are used
to control the system.

Based on the preceding analysis, the system (6) can
be expressed as:

ż(t) =

{
Θ(t)− Γ1(t), t ∈ Ĥn

1

Θ(t)− Γ2(t), t ∈ Hn
2

(13)

where, Θ(t) = −Bα(t)z (t) + B1α(t)w (z (t)) +
B2α(t)w (z (t− d (t))), Γ1(t) = K1

α(t),β(t)Ξ(t
n
kh, k),

Γ2(t) = K2
α(t),β(t)z

(
tnklast

h
)

and the initial value
z (θ) = ζ (θ), θ ∈ [−d, 0]. This state-space formulation
characterizes the system’s response under adversarial
conditions, capturing both DoS-induced input losses
and deception-induced perturbations. However, while
this formulation provides a comprehensive dynamical
description, it does not inherently guarantee synchro-
nization stability. Therefore, a rigorous stability analysis
is required to formally establish sufficient conditions
for ensuring robust synchronization under hybrid cyber-
attacks. The next section presents a Lyapunov-based
framework that systematically addresses these challenges.

IV. MAIN RESULTS

The presence of hybrid cyber-attacks introduces sig-
nificant challenges in ensuring synchronization stability,

due to the stochasticity and adversarial nature of these
disturbances. To systematically address these challenges,
this section develops a comprehensive stability analysis
framework using Lyapunov theory, providing a rigorous
foundation for guaranteeing the resilience of the proposed
control strategy. In preparation for subsequent analysis,
the following vectors and functions are specified:

ιT1 (t) =
[
zT (t) żT (t) zT (t− d) zT (t− d (t))

wT (z (t)) wT (z (t− d (t)))
(

1
d(t)

∫ t

t−d(t)
z (s) ds

)T

(
1

d−d(t)

∫ t−d(t)

t−d
z (s) ds

)T

zT (tnkh+ jh)

]
,

IT
1
(t) =

[
ιT
1
(t) zT (tnkh) z̃T (tnkh)

]
,

IT
2
(t) =

[
ιT
1
(t) zT

(
tnklast

h
) ]

,

ei = col

0, · · · , 0, I︸︷︷︸
o1

, 0, · · · , 0

 , (o1 = 1, 2, · · · , 11) ,

ẽi = col

0, · · · , 0, I︸︷︷︸
o2

, 0, · · · , 0

 , (o2 = 1, 2, · · · , 10) .

Theorem 1. For given constants γ1, γ2, ηi, h, a1, a2,
σ, µ ∈ (0, 1), and the deception attack parameter ℘, as
well as the DoS attack parameters k1 > 0, χ > 0, and
T , the following condition must be satisfied:

γ̄k = k1Π̄1k − k2Π̄2k > 0, (14)

where Π̄k = Π̄1k + Π̄2k, Π̄1k =
(
kT + T k

off

)
− kT ,

Π̄2k = (k + 1)T −
(
kT + T k

off

)
, and k = 1, 2, 3, . . . .

Suppose there exist scalars d > 0, ψ > 0, symmetric
matrices Pm,k > 0, Sc > 0 (c = 1, 2, 3), Ω > 0, H > 0,

W > 0, and a block matrix V =

[
V1 V2
∗ V3

]
> 0, along

with given matrices L1, L2, L, Q, M1, M2, X1
m,k, Y 1

m,k,
X2

m,k, and Y 2
m,k. If the following inequalities hold:

Ξm,k + Ξ1 + hΞ2 < 0,Ξm,k + Ξ1 + hΞ3 < 0, (15)
Θm,k +Θ1 + hΘ2 < 0,Θm,k +Θ1 + hΘ3 < 0, (16)

where,

Ξm,k =k1e
T
1 Pm,ke1 + sym

{
eT1 Pm,ke2

}
+ eT1

[∑
l∈Π2

ρklPm,k +
∑
n∈Π1

pkmnPn,k

]
e1

+ eT1 S1e1 − e−k1deT3 S1e3 + eT1 S2e1

− (1− µ) e−k1deT4 S2e4 + eT5 S3e5

− (1− µ) e−k1deT6 S3e6 − e−k1dϖT
1 ψϖ1

+δmine
T
10Ωe10 − (e9 − e10)

T
Ω (e9 − e10)

+eT11L
TLe11 − eT10Ie10 + d2eT2H1e2

− sym
{
(e5 − L1e1)

T
M1 (e5 − L2e1)

}
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− sym
{
(e6 − L1e4)

T
M2 (e6 − L2e4)

}
sym

{[
eT1 + γ1e

T
2 + γ2[℘e11 + (1− ℘) e10]

T
]

ϕ1m,k

}
,

ϖ1 =col{e1 − e4, e1 + e4 − 2e7, e4 − e3,

e4 + e3 − 2e8},
ϕ1m,k =− Y 1

m,ke2 − Y 1
m,kBme1 + Y 1

m,kB1me5

+ Y 1
m,kB2me6 −X1

m,k [℘e11 + (1− ℘) e10] ,

H̄ =

[
H 0
0 3H

]
, ψ =

[
H̄ Q
QT H̄

]
,Ξ2 = eT9 V4e9,

Ξ1 =− 1

h
(e1 − e9)

T
V1 (e1 − e9)− 2(e1 − e9)

T
V2e9

−
[
e1
e9

]T
W

[
e1
e9

]
,

Ξ3 =

[
e2
e9

]T
V

[
e2
e9

]
+ 2

[
e1
e9

]T
W

[
e2
0

]
,

Θm,k =− k1ẽ
T
1 Pm,kẽ1 + 2ẽT1 Pm,kẽ2 + ẽT5 S3ẽ5

+ ẽT1

[∑
l∈Π2

ρklPm,k +
∑
n∈Π1

pkmnPn,k

]
ẽ1

+ ẽT1 S1ẽ1 − e−k1dẽT3 S1ẽ3 + ẽT1 S2ẽ1

− (1− µ) e−k1dẽT4 S2ẽ4 + d2ẽT2H1ẽ2

− (1− µ) e−k1dẽT6 S3ẽ6 − e−k1dϖT
2 ψ1ϖ2

− sym
{
(ẽ5 − L1ẽ1)

T
M1 (ẽ5 − L2ẽ1)

}
− sym

{
(ẽ6 − L1ẽ4)

T
M2 (ẽ6 − L2ẽ4)

}
+ δminẽ

T
10Ωẽ10 − (ẽ9 − ẽ10)

T
Ω (ẽ9 − ẽ10)

+ sym
{(
ẽT1 + γ1ẽ

T
2 + γ2ẽ

T
10

)
ϕ2m,k

}
,

ϖ2 =col{ẽ1 − ẽ4, ẽ1 + ẽ4 − 2ẽ7, ẽ4 − ẽ3,

ẽ4 + ẽ3 − 2ẽ8},
ϕ2m,k =− Y 2

m,kẽ2 − Y 2
m,kBmẽ1 + Y 2

m,kB1mẽ5

+ Y 2
m,kB2mẽ6 −X2

m,kẽ10,

Θ1 =− 1

h
(ẽ1 − ẽ9)

T
V1 (ẽ1 − ẽ9)− 2(ẽ1 − ẽ9)

T
V2ẽ9

−
[
ẽ1
ẽ9

]T
W

[
ẽ1
ẽ9

]
,Θ2 = ẽT9 V4ẽ9,

Θ3 =

[
ẽ2
ẽ9

]T
V

[
ẽ2
ẽ9

]
+ 2

[
ẽ1
ẽ9

]T
W

[
ẽ2
0

]
.

As a result, the error system (13) is exponentially
mean square stable under hybrid cyber-attacks, with the

controller gains given by K1
m,k =

(
Y 1
m,k

)−1

X1
m,k and

K2
m,k =

(
Y 2
m,k

)−1

X2
m,k.

Proof. To begin with, let α(t) = m, β (t) = k (m ∈
Π1, k ∈ Π2), and the following Lyapunov-Krasovskii

functional is taken into account:

V̄ (z (t) ,m, k) = V (z (t) ,m, k) + ν (z (t) ,m, k) ,
(17)

where ν (z (t) ,m, k) = e−k1tv (z (t) ,m, k) and

V (z (t) ,m, k) =

3∑
k=1

Vk (z (t) ,m, k), (18)

V1 (z (t) ,m, k) = zT (t)Pm,kz (t) ,

V2 (z (t) ,m, k) =

∫ t

t−d

e−k1(t−s)zT (s)S1z (s) ds

+

∫ t

t−d(t)

e−k1(t−s)zT (s)S2z (s) ds

+

∫ t

t−d(t)

e−k1(t−s)wT (z (s))S3w (z (s)) ds,

V3 (z (t) ,m, k) = d×∫ t

t−d

∫ t

u

e−k1(t−s)żT (s)Hż (s) dsdu,

v (z (t) ,m, k) =

2∑
c=1

vc (z (t) ,m, k), (19)

v1 (z (t) ,m, k) = [(tnkh+ (j + 1)h)− t]×∫ t

tnkh+jh

[
ż (s)

z (tnkh+ jh)

]T
V

[
ż (s)

z (tnkh+ jh)

]
ds,

v2 (z (t) ,m, k) = [(tnkh+ (j + 1)h)− t]×[
z (t)

z (tnkh+ jh)

]T
W

[
z (t)

z (tnkh+ jh)

]
.

When t ∈ Ĥn
1 , by utilizing the weak infinitesimal

generator L of the Markov process along the Lyapunov-
Krasovskii functional, the following results can be de-
rived:

LV1 (z (t) ,m, k) = 2zT (t)Pm,kż (t)

+ zT (t)

[∑
l∈Π2

ρklPm,k +
∑
n∈Π1

pkmnPn,k

]
z (t) , (20)

LV2 (z (t) ,m, k) ≤ −k1V2 (z (t) ,m, k)
+ zT (t)S1z (t)− e−k1dzT (t− d)S1z (t− d)

+ zT (t)S2z (t) + wT (z (t))S3w (z (t))

− (1− µ) e−k1dwT (z (t− d (t)))S3w
T (z (t− d (t)))

− (1− µ) e−k1dzT (t− d (t))S2z (t− d (t)) , (21)
LV3 (z (t) ,m, k) ≤ −k1V3 (z (t) ,m, k)

+ d2żT (t)H1ż (t)− de−k1d

∫ t

t−d

żT (s)H1ż (s) ds.

(22)

By applying Corollary 4 from [26] and Theorem 1
from [27], the integral terms in (22) can be bounded by
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the following inequalities:

−de−k1d

∫ t

t−d

żT (s)H1ż (s) ds

≤ −e−k1dIT1 (t)ϖT
1 ψϖ1I1 (t) . (23)

From (2), it follows that:

− (w (z (t))− L1z (t))
T
M1 (w (z (t))− L2z (t)) ≥ 0,

(24)

− (w (z (t− d (t)))− L1z (t− d (t)))
T
M2×

(w (z (t− d (t)))− L2z (t− d (t))) ≥ 0. (25)

For scalars γ1 and γ2 and matrix Y 1
m,k, the coming

equation is valid:

0 = IT1 (t) sym
{[
eT1 + γ1e

T
2

+γ2[℘e11 + (1− ℘) e10]
T
]
ϕ1m,k

}
I1 (t) , (26)

where, X1
m,k = Y 1

m,kK
1
m,k.

Based on (20)-(26), Assumption 1, and the RAETM
(9), the following conclusion can be drawn:

LV (w (t) ,m, k)− k1V (w (t) ,m, k)

≤ IT1 (t) Ξm,kI1 (t) . (27)

The expression for the derivative of v (z (t) ,m, k) is
as follows:

v̇1 (z (t) ,m, k) =

−
∫ t

tkh+jh

[
ż (s)

z (tkh+ jh)

]T
V

[
ż (s)

z (tkh+ jh)

]
ds

+ [(tkh+ (j + 1)h)− t]×[[
ż (t)

z (tkh+ jh)

]T
V

[
ż (t)

z (tkh+ jh)

]]
, (28)

v̇2 (z (t) ,m, k) =

−
[

z (t)
z (tkh+ jh)

]T
W

[
z (t)

z (tkh+ jh)

]
+ 2 [(tkh+ (j + 1)h)− t]×[

z (t)
z (tkh+ jh)

]T
W

[
ż (t)
0

]
. (29)

Through the application of Jensen’s inequality and by
summarizing the aforementioned inequalities, we finally
obtain:

v̇ (z (t) ,m, k) ≤ IT1 (t) {Ξ1 + (t− (tkh+ jh)) Ξ2

+((tkh+ (j + 1)h)− t) Ξ3} I1 (t) .
(30)

Based on (27) and (30), the following inequality can
be derived:

LV̄ (z (t) ,m, k) + k1V̄ (z (t) ,m, k) ≤

IT1 (t)

{
t− (tkh+ jh)

h
(Ξm,k + Ξ1 + hΞ2)

+
(tkh+ (j + 1)h)− t

h
(Ξm,k + Ξ1 + hΞ3)

}
I1 (t) .

(31)

From LMIs (15), we have LV̄ (z (t) ,m, k) +

k1V̄ (z (t) ,m, k) ≤ 0. Afterwards, when t ∈ Ĥn
1 , the

following inequality is gained:

LV̄ (z (t) , α (t) , β (t)) ≤ −k1V̄ (z (t) , α (t) , β (t)) .
(32)

Inequality (31) characterizes the dynamic property
of the system in the absence of DoS attacks. When
transitioning to conditions with DoS attacks, and for
t ∈ Hn

2 , the term V̄ (z (t) ,m, k) can be directly derived
as follows:

LV̄ (z (t) ,m, k)− k1V̄ (z (t) ,m, k) ≤

IT2 (t)

{
t− (tkh+ jh)

h
(Θm,k +Θ1 + hΘ2)

+
(tkh+ (j + 1)h)− t

h
(Θm,k +Θ1 + hΘ3)

}
I2 (t) .

(33)

To establish the relationship between
V̄ (z (t) , α (t) , β (t)) and V̄ (z (0) , α (0) , β (0)),
assume k1 + k2 = χ > 0. Accordingly, for t ∈ Hn

2 , the
following inequality can be derived from LMIs (16):

LV̄ (z (t) , α (t) , β (t)) ≤ k2V̄ (z (t) , α (t) , β (t)).
(34)

From (32) and (34), and using Dynkin’s formula,
we derive the following results. When the system state
satisfies t ∈ Hn

1 , the expected value of the Lyapunov
function is given by:

EV̄ (z(t), α(t), β(t))

≤ e−k1(t−nT )EV̄ (z(nT ), α(nT ), β(nT )) .
(35)

Similarly, when t ∈ Hn
2 , we obtain:

EV̄ (z(t), α(t), β(t)) ≤ ek2[t−(nT+Tn
off)]×

EV̄
(
z(nT + Tn

off ), α(nT + Tn
off ), β(nT + Tn

off )
)
.

(36)

Next, based on (35) and (36), the following inequalities
are derived. When t ∈ Hn

1 , we have:

EV̄
(
z(nT + Tn

off ), α(nT + Tn
off ), β(nT + Tn

off )
)

≤ e−k1[(nT+Tn
off )−nT ] × EV̄

(
r(nT ), α(nT ), β(nT )

)
.

(37)
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Similarly, when t ∈ Hn
2 , we obtain:

EV̄
(
z((n+ 1)T ), α((n+ 1)T ), β((n+ 1)T )

)
≤ ek2[(n+1)T−(nT+Tn

off )]×
EV̄

(
z(nT + Tn

off ), α(nT + Tn
off ), β(nT + Tn

off )
)
.

(38)
For t ∈ [nT, nT + Tn

off ), (35), (36), (37) and (38)
imply that:

EV̄ (z (t) , α (t) , β (t))

≤ e−k1(t−nT )EV̄ (z (nT ) , α (nT ) , β (nT ))

...

≤ e
−

n−1∑
k=1

γ̄k

EV̄ (z (0) , α (0) , β (0)) . (39)

For t ∈ [nT+Tn
off , (n+1)T ), the following expression

can be derived:

EV̄ (z (t) , α (t) , β (t))

≤ e
−

n∑
k=1

γ̄k

EV̄ (z (0) , α (0) , β (0)). (40)

Using (39) and (40) with γ̄k > 0, and considering (2),
for t ∈ Hn

1 ∪Hn
2 , the following is obtained:

EV̄ (z (t) , α (t) , β (t))

≤ EV̄ (z (0) , α (0) , β (0))

= EV (z (0) , α (0) , β (0))

≤ λmax (Pm,k) ∥z (0)∥2

+ λmax (S1)
1− e−dk1

k1
sup

−d≤ξ≤0
∥z (ξ)∥2

+ λmax (S2)
1− e−dk1

k1
sup

−d≤ξ≤0
∥z (ξ)∥2

+ λmax (S3)ϖ
+
l

1− e−dk1

k1
sup

−d≤ξ≤0
∥z (ξ)∥2

+ λmax (H)
d2k1 − d+ de−dk1

k21
sup

−d≤ξ≤0
∥ż (ξ)∥2

≤ κ1 sup
−d≤ξ≤0

∥z (ξ)∥2 + κ2 sup
−d≤ξ≤0

∥ż (ξ)∥2, (41)

where, κ1 = λmax (Pm,k) + λmax (S1)
1−e−dk1

k1
+

λmax (S2)
1−e−dk1

k1
+ λmax (S3)ϖ

+
l

1−e−dk1

k1
and κ2 =

λmax (H) d2k1−d+de−dk1

k2
1

.
By combining the definition of V̄ (z (t) , α (t) , β (t)),

it is evident that:

E∥z (t)∥2 ≤ εe−k1t sup
−d≤ξ≤0

{
∥z (ξ)∥2, ∥ż (ξ)∥2

}
,

(42)

where, ε = κ1+κ2

λmin(Pm,k)
. According to Definition 1 in [28],

the error system (6) is exponentially mean square stable,
ensuring synchronization between the master and slave

systems.

Remark 5. In existing studies, most research adopts
the zero-input strategy for DoS attacks and constructs
switching Lyapunov functionals to handle the dormant
and active periods of DoS attacks [29]. However, this
approach often introduces more constraints and increases
conservativeness. To address these issues, this paper
proposes a single Lyapunov functional for different
periods of DoS attacks, aiming to reduce constraints
and conservativeness while maintaining system stability.
Furthermore, the loop functional is incorporated into
the single Lyapunov functional to account for additional
state information at the sampled instant. Specifically,
the constructed loop functional v(t) fully considers the
state information at the current instant z (t) and the
sampled instant z (tkh+ jh). Notably, the matrices in
v (z (t) ,m, k) are not required to be positive definite, as
the condition vc (tkh+ jh) = vc (tkh+ (j + 1)h) = 0,
c = 1, 2, satisfies the cyclic functional property proposed
in [30].

V. NUMERICAL EXAMPLES

Example 1. Consider the PHMDNNs (6) with the
following parameter setup:

Mode 1: B1=

[
1 0
0 1

]
, B11 =

[
2 −0.4
−5 3

]
,

B21 =

[
−1.5 −0.1
0.2 −2.5

]
Mode 2: B2=

[
0.8 0
0 0.8

]
, B12 =

[
2 −0.11
−2 3.2

]
,

B22 =

[
−1.6 −0.1
−0.18 −2.4

]
.

Let w (z (t)) = 0.5 (|z(t) + 1| − |z(t)− 1|), m(0) =
col{0.25, 0.35} and s(0) = col{−0.3,−0.4}, and L1 =
diag{0, 0}, L2 = diag{0.5, 0.5}. Set the DoS attacks
parameters to k1 = 0.2, γ = 0.4, T = 1, we
can calculate Tmin

off = 0.5 by Theorem1. Set the
deception attacks parameters to ℘ = 0.4, z̃ (t) =
col{tanh(−0.06z1(t)), tanh(−0.06z2(t))}. When q =
3, set the weight of the HTS as b1 = 0.5, b2 = 0.3,
b3 = 0.2. Set event trigger parameters as a1 = 1, a2 = 1,
σ = 0.1. Other parameters are defined that h = 0.1,
d = 0.1, η1 = 0.5, η2 = 0.3, η3 = 0.2, γ1 = γ2 = 0.2
and µ = 0.1.

The MTR matrices of {α (t) , t ≥ 0} for each modes
in Π1 = 1, 2, 3 are given as:

P1 =

[
−4.5 4.5
3.75 −3.75

]
, P2 =

[
−2.75 2.75

3 −3

]
,

P3 =

[
−4 4
1.5 −1.5

]
,
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and the MTR matrix of {β (t) , t ≥ 0} is as follows:

P̄ =

 −4.5 2 2.5
4.5 −7.5 3
1 2 −3

 .
Then, applying Theorem1, we can get:

K1
11 =

[
3.1059 0.3164
0.1408 3.2075

]
,

K1
21 =

[
0.3036 −0.1341
−0.0896 0.5039

]
,

K1
12 =

[
0.3126 0.0346
0.0164 0.3167

]
,

K1
22 =

[
0.3079 −0.1307
−0.0884 0.5080

]
,

K1
13 =

[
0.3199 0.0348
0.0138 0.3359

]
,

K1
23 =

[
0.2916 −0.1395
−0.0914 0.4935

]
,

K2
11 =

[
0.2924 −0.0851
−0.1112 0.6664

]
,

K2
21 =

[
0.3171 −0.0791
−0.1002 0.5795

]
,

K2
12 =

[
0.2938 −0.0818
−0.1100 0.6685

]
,

K2
22 =

[
0.3219 −0.0793
−0.0995 0.5833

]
,

K2
13 =

[
0.2976 −0.0845
−0.1115 0.6704

]
,

K2
23 =

[
0.3060 −0.0766
−0.0989 0.5680

]
,

Ω =

[
13.9920 0.0058
0.0058 13.9300

]
.

Figs. 2–7 illustrate the simulation results of the
proposed method under hybrid cyber-attacks, demon-
strating its effectiveness in maintaining system synchro-
nization and stability. Fig. 2 presents the master-slave
synchronization of the error system with control input
during hybrid cyber-attacks. The results confirm that
the proposed method ensures synchronization between
the master and slave systems even in the presence of
severe attack disturbances, highlighting its robustness
and adaptability. Fig. 3 shows the state responses of
the error system without control input under hybrid
cyber-attacks. It is evident that in the absence of control
input, the system experiences severe synchronization
degradation, with significant deviations occurring during
attack periods. This comparison underscores the critical
role of the proposed control strategy in maintaining
synchronization and stability. Fig. 4 and Fig. 6 analyze the
release intervals of the event-triggered mechanism, which
dynamically adjusts in response to system state variations.
This self-adaptive mechanism increases the triggering
frequency when the system encounters severe disturbances

and reduces it when stability is restored, effectively
minimizing unnecessary communication overhead. Fig. 5
further illustrates the control input u(t), which adapts
dynamically to mitigate attack-induced fluctuations, en-
suring system stability. Fig. 7 visualizes the hybrid
cyber-attacks, including deception attacks, revealing that
such attacks predominantly occur during the dormant
phases of DoS attacks. By leveraging the adaptive event-
triggering mechanism, the system strategically increases
triggering frequency during these phases, enabling faster
stabilization and synchronization.

Overall, the simulation results validate the proposed
method’s superiority in handling complex attack scenar-
ios. Compared to conventional event-triggered strategies,
the proposed approach achieves faster recovery, enhanced
robustness against cyber-attacks, and optimized commu-
nication efficiency.

0 5 10 15 20

0

1

2

0 5 10 15 20
-10

-5

0

Figure 2: Master-slave synchronization of the error system with control input.
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1
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3

Figure 3: Synchronization errors for the PHMDNNs with control input.

The combined results demonstrate the superiority of
the proposed method. The adaptive event-triggered mech-
anism increases triggering frequency during dormant
periods of hybrid cyber-attacks, enabling rapid stabi-
lization and synchronization while effectively reducing
unnecessary communication. These advantages validate
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the robustness and efficiency of the proposed method in
addressing complex attack scenarios.
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Figure 4: Synchronization errors for the PHMDNNs without control input.
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Figure 5: Control input u(t).
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Figure 6: Release time intervals.

Example 2. This example is designed to compare the
proposed input-retention strategy with the zero-input
strategy under hybrid cyber-attacks. The objective is
to highlight the advantages of the proposed method in

0 5 10 15 20

-0.3

-0.2

-0.1

0

0.1

0.2

Figure 7: The hybrid cyber-attacks.

maintaining synchronization and stability while improving
communication efficiency in complex attack scenarios.

Figs. 8–10 compare the system performance under the
zero-input strategy and the proposed input-retention strat-
egy (Figs. 2–7) when subjected to hybrid cyber-attacks.
The simulation results clearly illustrate the limitations
of the zero-input strategy and the improvements brought
by the proposed method, particularly in synchronization
accuracy, attack resilience, and communication efficiency.

Fig. 8 depicts the synchronization errors of the error
system under the zero-input strategy. During attack
periods, the system fails to maintain synchronization,
and large deviations are observed. These errors indicate
that, without control input, the system cannot counteract
disturbances introduced by hybrid cyber-attacks. In
contrast, the proposed input-retention strategy (Fig. 2)
demonstrates rapid synchronization recovery and stability,
even under severe attack conditions. This improvement
stems from the ability of input retention to maintain
control action during DoS-induced communication dis-
ruptions, effectively preventing abrupt synchronization
failures.

Fig. 9 illustrates the event-triggering intervals under
the zero-input strategy. The lack of an adaptive event-
triggering mechanism results in inefficient communication
scheduling, leading to redundant transmissions and
poor synchronization performance. Without a dynamic
adaptation mechanism, the triggering intervals remain
largely constant, failing to account for varying attack
intensities. In contrast, the proposed approach (Fig. 6)
dynamically regulates the triggering intervals based
on the system state, achieving an optimal balance
between communication efficiency and synchronization
performance. This self-adaptive triggering significantly
reduces unnecessary transmissions while ensuring stable
synchronization.

Fig. 10 visualizes the hybrid cyber-attacks and their
effects on the zero-input strategy. It is evident that, during
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the dormant phases of DoS attacks, the zero-input strategy
struggles to recover synchronization, causing severe
instability. In particular, the absence of control input leads
to prolonged desynchronization, as the system is unable
to respond effectively during these periods. Conversely,
the proposed input-retention strategy (Fig. 7) increases
triggering frequency during these phases, allowing the
system to counteract attacks effectively and regain stabil-
ity in a shorter time. This proactive adjustment ensures
that the system remains resilient against cyber-attacks
and minimizes long-term performance degradation.

In summary, the simulation results validate the ad-
vantages of the proposed input-retention strategy over
conventional zero-input approaches. By integrating an
adaptive event-triggering mechanism with robust con-
trol inputs, the proposed method significantly improves
synchronization accuracy, enhances resilience to hybrid
cyber-attacks, and optimizes communication efficiency.
These findings underscore the practical feasibility of
the proposed method for real-world networked control
systems.
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Figure 8: Master-slave synchronization of the error system with control input.
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Figure 9: Release time intervals.
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Figure 10: The hybrid cyber-attacks.

VI. CONCLUSIONS

In this paper, an input-retention strategy based on
an AETM is proposed to address the synchronization
control of PHMDNNs under hybrid cyber-attacks. The
proposed method integrates robust control with a dynamic
event-triggered mechanism, ensuring system synchroniza-
tion, stability, and communication efficiency. Theoretical
analysis and numerical simulations demonstrate that our
approach achieves faster convergence, reduced communi-
cation overhead, and improved robustness against cyber-
attacks compared to conventional zero-input strategies.
These contributions highlight the practical significance
of our framework in modern cyber-physical systems.

Future research may explore several promising di-
rections. First, adaptive event-triggered optimization
methods can be introduced to dynamically adjust trig-
gering thresholds based on real-time system states and
attack intensities. Second, integrating machine learning
techniques, such as DRL, can facilitate intelligent event-
triggered mechanisms and proactive cyber-attack detec-
tion. Finally, extending this framework to multi-agent
systems and decentralized control architectures could
further broaden its applicability in large-scale networked
environments. Additionally, investigating hybrid control
strategies that integrate event-triggered and time-triggered
mechanisms could enhance robustness against varying
network conditions. Furthermore, applying the proposed
method to real-world scenarios such as power grids and
industrial IoT systems would provide valuable insights
into its practical feasibility.
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