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ABSTRACT

With the continuous advancement of artificial intelligence, deep learning-based com-
puter vision technology ismaking significant progress. As a result, more applications
are being integrated into everyday scenarios. In this thesis, we focus on two specific

tasks within the field of image generation: makeup transfer and image reconstruction. Both
of them have strong practical value, but there are still limitations in the implementation. In
makeup transfer, the difficulty of precisely capturing facial contours often leads to generated
faces appearing overly smooth and lacking in realism. To address this, we incorporate 3D
facial information to accurately preserve geometric features, thereby significantly enhanc-
ing the fidelity of the makeup transfer process. In the reconstruct task, models with high
accuracy often struggle to maintain real-time inference speed, which limits its application
scenarios. To tackle this issue, we select video deraining as a representative task and design
a Transformer-based approach. Furthermore, we incorporate a memory bank as auxiliary
information, enabling precise video deraining while maintaining high-speed inference and
efficient reconstruction without increasing computational overhead. Moreover, most exist-
ing reconstruction strategies are designed to address only single degradation conditions,
which often results in suboptimal performance when dealing with complex degradation
scenarios in the real world. To solve this issue, we design a variety of solutions. First, we intro-
duce diffusion models, which enhance generalization across diverse degradation scenarios
through the progressive generation process. Second, we develop meta batch normaliza-
tion inspired by meta-learning, using precision training for domain-specific parameters
to enhance generalization. Additionally, we implement test-time adaptation to improve
robustness under unknown weather conditions.
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1
INTRODUCTION

D
eep learning based style transfer technology continues to make significant advance-

ments, with diverse applications in real-world scenarios [35, 43, 56, 64, 65, 67, 71].

Makeup transfer, as a representative study of style transfer enhances the shopping

experience by allowing consumers tomakemore efficient purchasing decisions [7, 14, 26, 44,

61, 82, 162]. Moreover, the process of removing adverse weather conditions can be regarded

as removing a "style" from an image, aiming to restore the "content" of the image, i.e., the

clear scene. This approach mitigates the impact of adverse weather on autonomous driving

systems, enhancing the safety of these systems and the accuracy of weather monitoring,

thereby significantly reducing the probability of accidents [131, 141, 182]. These application

scenarios illustrate the broad impact of image generation technology across different fields,

further underscoring the importance and urgency of research in this area.

While advances in deep learning make it possible to achieve the functions mentioned

above [20, 70, 80, 113, 146, 148, 184, 200], these methods still face several limitations in real-

world scenarios. During makeup transfer, the inability to separate facial depth information

tends to result in overly smooth and unrealistic images. For the reconstruction task, current

methods struggle to balance accuracy and efficiency in image reconstruction, as these

methods typically focus on a single type of degradation. Furthermore, due to the domain gap

between synthetic data and real-world scenarios, these methods often exhibit unsatisfactory

performance under complex weather conditions.

To enhance the practicality of deep learning driven style transfer technology in real-world

scenarios, our study delves into two key applications. First, we propose an improvedmakeup
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CHAPTER 1. INTRODUCTION

transfer method to address the issue of facial feature information loss in existing technolo-

gies, thereby providing consumers with a more realistic shopping experience. Second, our

study focuses on the image reconstruction task under severe weather conditions, aiming to

overcome the limitations of current methods in complex weather scenarios by enhancing

reconstruction capabilities and achieving real-time inference speed without compromising

accuracy. This improvement strengthens the model generalization and enhances the safety

of autonomous driving systems in diverse climates.

To address the above limitations, our research focuses on the following four aspects:

• Makeup transfer involves digitally applying the makeup style from a reference face

to a target face, while ensuring that the target’s identity and facial features remain

unchanged.

• Real-time adverse weather reconstruction: The process of restoring clear images from

those degraded by severe weather conditions, ensuring both high accuracy and real-

time performance.

• All-in-One reconstruction task: A comprehensive approach to restore images affected

by multiple types of degradation within a single framework, optimizing for both

accuracy and efficiency.

• Real-world multi-weather reconstruction model: A model designed to restore images

under various weather conditions encountered in real-world scenarios, ensuring

robustness and adaptability across different climates.

Based on generative models, our system incrementally integrates four key technologies

to enhance the application of image reconstruction and style transfer in real-world scenarios.

These technologies progress from individual subjects to environmental contexts, and from

specific tasks to broader applications. First, the makeup transfer technology utilizes gen-

erative models to achieve facial style transfer, accurately generating personalized makeup

effects while preserving the target person’s facial features. Second, the real-time severe

weather reconstruction technology effectively addresses complex and dynamic environmen-

tal conditions by generating clear images. Subsequently, a unified all-in-one reconstruction

framework handles multiple types of degradation within a single generative framework,

optimizing the accuracy and efficiency of image reconstruction. Finally, the real-worldmulti-

weather reconstructionmodel further enhances generalization performance in changing

environments by improving the system’s adaptability and robustness under different cli-

mate conditions. This series of technologies demonstrates a progressive development from

2



1.1. MAKEUP STYLE TRANSFER

individual style transformation to environmental adaptation, culminating in the unified

reconstruction of multiple scenarios, ultimately achieving comprehensive adaptation to

complex real-world conditions. We perform a comprehensive set of experiments to demon-

strate the effectiveness and advantages of our proposed methods. The results consistently

demonstrate improvements across a variety of challenging real-world scenarios. Compared

to existing approaches, our system achieves higher performance in makeup transfer and

adverse weather reconstruction tasks. These experiments confirm that our generativemodel-

based techniques offer more robust and reliable solutions.

The methods developed in this research provide significant contributions to solving real-

world challenges, particularly in enhancing personalized user experiences and improving

environmental adaptability. Our makeup transfer technology offers a more realistic and

interactive platform for consumers, which greatly benefits industries such as virtual retail

and cosmetics. Additionally, our real-time weather reconstruction models enhance the

performance and safety of autonomous systems by enabling them to operate effectively

under diverse and complex weather conditions. These advancements not only demonstrate

the practical applicability of our techniques but also pave the way for more intelligent,

adaptive systems that seamlessly integrate into everyday life.

1.1 Makeup Style Transfer

Makeup transfer refers to the process of applying makeup from a reference image onto

a source image, ensuring that the original identity and facial features of the person are

preserved. This involves transferring makeup styles like lipstick, eyeshadow, and blush from

one face to another[51, 93, 107, 108, 199]. However, existing methods face several challenges

in real-world applications. For instance, when applying eye shadow from a reference image

to a target face with dramatically different eye shapes (e.g., monolids vs. double eyelids),

current methods often generate unrealistic results by directly copying the makeup pattern

without adapting to the target’s unique eye structure. Similarly, when transferring contour

makeup between faceswith different bone structures, the lack of depth perception in existing

methods leads to inappropriate shading that doesn’t align with the target’s natural facial

contours. Moreover, these methods often inadvertently modify background elements, such

as altering hair color or clothing texture during the transfer process, which compromises

the overall realism of the results.

In this study, we introduce IP23-Net (Chapter 3), a novel deep learning framework that

enhances makeup transfer by preserving facial geometric information and distinguishing

3



CHAPTER 1. INTRODUCTION

between facial foreground and background. We achieve this through a 3D Shape Identity

Encoder that incorporates depth and shadow information, ensuring the preservation of

individual facial features and creating a realistic three-dimensional effect. For example, our

method can accurately adapt eye makeup patterns to different eye shapes by considering

the depth variations around the eye area, and properly apply contouring makeup based

on the target’s unique facial structure. Additionally, we introduce a Background Correction

Decoder to prevent alterations to the background, resulting in more natural outcomes.

To address the lack of diverse makeup datasets, we introduce the High-Resolution Syn-

thetic Makeup (HRSM) dataset, which comprises 335,230 diverse facial images, enabling

comprehensive evaluation of model performance. These images are synthesized using ad-

vanced image generation technologies, ensuring the dataset’s diversity while avoiding the

use of real facial data, thus not infringing on any individual’s privacy. Furthermore, the use

of synthetic data allows us to expand and adjust the scale and complexity of the dataset

without privacy restrictions, which is essential for advancing the development and testing of

deep learning algorithms in the present study. Our method surpasses existing approaches in

generating realistic and identity-preserving makeup transfer results.

1.2 Reconstruction Task Analysis

1.2.1 Video Deraining

Video deraining is a representative task in the field of reconstruction, which aims to remove

rain streaks and artifacts from video content to improve visual clarity [92, 125, 129, 158, 195].

Video deraining faces a major challenge: although existing methods significantly improve

reconstruction accuracy, the high complexity of the models makes it difficult to achieve

real-time inference speeds. For example, current state-of-the-art methods like MPRNet

achieve high-quality deraining results but require approximately 0.3 seconds to process a

single frame at 1080p resolution, far from the real-time requirement of 30 frames per second

(0.033 seconds per frame). Some methods attempt to improve speed by using separate

modules for spatial and temporal feature extraction, but this approach leads to redundant

computations. For instance, when processing consecutive frames with similar rain patterns,

these methods still perform full spatial feature extraction for each frame independently,

despite the high temporal correlation between frames. This limitation significantly reduces

their effectiveness in practical applications, especially in scenarios like autonomous driving

where real-time processing is crucial for safety.

4



1.2. RECONSTRUCTION TASK ANALYSIS

To address these issues, we design a Real-time Video Deraining Network (RVDNet) with

a spatio-temporal transformer architecture that integrates spatial and temporal information

in a single model, eliminating the need for different components (Chapter 4). For example,

when processing a video sequence of a car driving through rain, our unified architecture

can simultaneously capture both the spatial distribution of rain streaks in the current frame

and their temporal evolution across frames, reducing computational redundancy. Addition-

ally, we introduce a Long Short-TermMemory Bank (LSMB) that aims to restore features

from past frames as supporting information. A concrete example of LSMB’s effectiveness

is in scenes with periodic rain patterns: instead of processing each frame independently,

our model can retrieve similar rain pattern features from previously processed frames,

significantly reducing computational cost.

Furthermore, by incorporating learnable parameters, the model gains the flexibility to

select features from either nearby or distant frames, allowing it to extract the most beneficial

information for reconstructing the current frame. For instance, in a scenario where rain

intensity suddenly changes, our model can adaptively weight the importance of temporal

information: giving more weight to recent frames when rain patterns change rapidly, while

utilizing information frommore distant frameswhen rain patterns remain stable. This design

avoids repeated feature extraction and ensures the accuracy of reconstruction without

increasing the model inference burden. In our experiments, RVDNet achieves processing

speeds of up to 30 frames per second on 1080p videos while maintaining competitive

deraining quality, thus delivering a balanced approach that meets the demands of real-time

applications while maintaining high reconstruction quality.

1.2.2 All-in-One Image Restoration

The All-in-One Image Restoration task aims to effectively repair various unknown types and

degrees of image quality degradation [70, 73, 119]. The importance of this task stems from

the fact that images in the real world are often affected by many different factors, such as

noise, blur, haze, and raindrops, which can affect the clarity and quality of the image. For

instance, in outdoor surveillance scenarios, a single imagemight simultaneously suffer from

motion blur due to camera shake, noise from low-light conditions, and rain streaks from

adverse weather. Traditional image restoration methods are typically optimized for specific

types of degradation and struggle to address such complex scenarios. When applying these

methods sequentially (e.g., denoising followed by deblurring), each step may introduce new

artifacts or amplify existing ones. For example, applying a denoising model followed by a

deblurring model might remove important texture details in the first step that cannot be
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recovered in the second step, resulting in over-smoothed images. Therefore, it is crucial to

develop a unified model that can handle multiple types of degradation simultaneously.

Currently, the primary challenge of All-in-One image restoration tasks is how to process

and restore high-frequency information without losing image details. For example, when

restoring an image containing both Gaussian noise and motion blur, existing methods often

struggle to distinguish between high-frequency noise that should be removed and high-

frequency texture details that should be preserved. This is particularly evident in areas with

fine textures such as grass, fabric patterns, or hair, where these methods tend to either over-

smooth the image (losing important texture details) or under-smooth it (leaving residual

noise and artifacts).

Although existing diffusion models perform well in many tasks, they often struggle with

processing high-frequency texture information, leading to the loss of image edge details

and resulting in blurred and unrealistic effects. This limitation is particularly noticeable in

scenarios involving complex textures, such as restoring images of buildings where architec-

tural details become smudged, or in natural scenes where fine foliage details are lost. To

address this issue, we propose the Criss-cross Diffusion model (CrDiff), which introduces a

static wavelet transform operation to extract high-frequency information from the degraded

image (Chapter 5). For instance, when processing an image of a brick wall with both noise

andmotion blur, our wavelet transform can effectively separate the high-frequency patterns

of the brick texture from the degradation artifacts, allowing for more precise restoration.

This high-frequency information is then used to guide the diffusion model in recon-

structing these textures within the latent space through a novel high-frequency encoder. In

addition, to ensure that high-frequency information is accurately captured during training,

we also add a high-frequency decoder to the model to effectively distinguish between the

high-frequency noise introduced by degradation and the intrinsic high-frequency details

of the image. For example, when restoring a noisy and blurry photograph of a fabric with

intricate patterns, our model can simultaneously remove the noise while preserving the

fine details of the fabric texture. This is achieved by our high-frequency encoder-decoder

architecture, which learns to differentiate between the random high-frequency patterns of

noise and the structured high-frequency patterns of the actual texture.

Finally, our model effectively overcomes high-frequency information loss and signifi-

cantly enhances overall image restoration quality. In our experiments, CrDiff demonstrates

superior performance across various challenging scenarios, such as restoring images with

mixed degradation of motion blur and rain streaks while preserving fine details like text on

signs or subtle facial features. The CrDiff model performs exceptionally in various degra-
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dation tasks, achieving state-of-the-art results with improvements of up to 2.3dB in PSNR

compared to existing methods.

1.2.3 Unified Real-world AdverseWeather Removal

CrDiff performs well on synthetic datasets but struggles when applied to real-world data.

This challenge arises because the training data consists of synthetic paired data, which

exhibits a significant domain gap from real-world scenarios, particularly under complex

weather conditions. For instance, when processing real-world rainy scenes, synthetic-trained

models often fail to handle the complex interplay between rain streaks and environmental

lighting: while synthetic rain is typically modeled as semi-transparent streaks with uniform

properties, real-world rain varies dramatically in size, shape, and transparency depending

on factors like wind speed, lighting conditions, and camera parameters. Similarly, in foggy

conditions, synthetic training data usually assumes uniform fog density, but real-world

fog exhibits complex spatial variations influenced by terrain, temperature, and humidity.

These domain gaps can lead to severe performance degradation - our experiments show that

models trained on synthetic data can experience up to a 40% drop in PSNR when applied to

real-world scenarios.

Therefore, the research onUnified Real-world AdverseWeather Removal aims to improve

the reliability and generalization ability of outdoor vision systems under various complex

weather conditions [20, 80, 114, 146, 172, 212]. For example, in autonomous driving applica-

tions, a vision system needs tomaintain consistent performance whether encountering light

drizzle, heavy rain with wind, or patchy fog - conditions that are difficult to accurately simu-

late in synthetic datasets. To address this problem, we propose an innovative dual-branch

network structure that integrates self-supervised learning (SSL) with a meta-learning-based

bi-level optimization approach, incorporating both inner and outer loops. The SSL branch

learns from unpaired real-world weather images, extracting weather-specific features with-

out requiring corresponding clear-weather images. For instance, when processing a rainy

street scene, the SSL branch can learn the characteristic patterns of real rain streaks and

their interactions with street lights, while the main branch focuses on the general image

restoration task.

Additionally, by selectively updating the affine parameters of the Batch Normalization

layer, statistical deviations are minimized, enhancing model stability and enabling effective

weather adaptation (TT-WA) during inference (Chapter 6). This approach is particularly

effective in handling rapidweather changes: for example, when a vehicle drives through alter-

nating patches of heavy and light rain, or when transitioning from clear to foggy conditions,
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our TT-WAmechanism can quickly adjust the model’s behavior to maintain optimal perfor-

mance. In our experiments, this adaptive approach reduces the performance gap between

synthetic and real-world scenarios by up to 65% compared to non-adaptive methods.

Ultimately, the developed model not only performs exceptionally well under known

weather conditions but also demonstrates robust generalization to unseen scenarios, thereby

significantly improving video restoration quality. Our extensive testing in real-world envi-

ronments shows consistent performance across diverse weather conditions - from light

rain (improving visibility by up to 85%) to heavy fog (maintaining object detection accuracy

above 90% at distances up to 50 meters), demonstrating the practical utility of our approach

for safety-critical applications like autonomous driving and surveillance systems.

1.3 Thesis Organization

This thesis begins with the broad field of style transfer research, initially focusing on the

makeup transfer task for facial images, and then gradually extending to the analysis of

environment-related image reconstruction tasks. In subsequent research, the thesis starts

with the design of a single adverse weather reconstruction network, gradually expands to an

"All-in-One" reconstruction model with multiple degradation types, and finally explores

the design of a network with adaptive capabilities to cope with unknown weather condi-

tions. Through comprehensive investigation, this thesis aims to design a network model

aligned with real-world applications, reflecting the advancements in deep learning and

demonstrating practical value in real-world scenarios. This thesis is organized as follows:

Chapter 1: Introduction

This chapter delves into the research background, motivation, significance, and objec-

tives of this study. It thoroughly presents the primary research questions, core contributions,

and provides a clear overview of the thesis structure.

Chapter 2: Literature Survey

A comprehensive review of research encompassing makeup transfer, style transfer, 3D-

aware image synthesis, single image deraining, video deraining, vision transformer, single

degradation restoration, andmulti-degradation restoration is presented. This review lays

the theoretical and technical groundwork for the methodologies and experimental designs

that will be examined in later chapters, and considers the integration and application of

these technologies within the framework of this study.

Chapter 3: High Fidelity Makeup via 2D and 3D Identity Preservation Net

This chapter introduces IP23-Net, a novel framework designed to enhance makeup
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transfer by preserving both facial geometry and background consistency. By leveraging a

3D Shape Identity Encoder and incorporating a 3D face reconstruction model, our method

ensures realistic makeup application while maintaining the natural depth and appearance

of facial features. Extensive experiments, including those on a newly introduced large-scale

High Resolution Synthetic Makeup Dataset, demonstrate the high fidelity and generalization

capability of our approach.

Chapter 4: Real-time Video Deraining Network with Hierarchical Memory Bank

In this chapter, we introduce the Real-time Video Deraining Network (RVDNet), a novel

approach that employs a spatial-temporal transformer to seamlessly integrate spatial and

temporal deraining processes. Unlike traditional CNN-basedmethods, RVDNet utilizes a

Long Short-TermMemory Bank (LSMB) to effectively merge features from both immediate

and historical frames, enhancing rain layer recognition and enabling faster inference.

Chapter 5: Criss-cross DiffusionModels For All-in-One Blind Image Restoration

In this chapter, we propose the Criss-cross Diffusion model (CrDiff) for the All-in-One

image restoration task, addressing the challenges of reconstructing high-frequency textures

in degraded images. By leveraging static wavelet transform operations, CrDiff extracts and

preserves high-frequency information, guiding the diffusion model to accurately restore

image details through a novel high-frequency encoder.

Chapter 6: Unified AdverseWeather Removal via Meta-learning and Domain-aware Nor-

malization

In this chapter, we propose a dual-branch network with an innovative self-supervised

learning (SSL) branch for unified weather removal in video processing. Our approach utilizes

a meta-learning-based bi-level optimization strategy to enhance the alignment between

auxiliary and reconstruction objectives, improving performance and enabling Test-time

Weather Adaptation (TT-WA).

Chapter 7: Conclusion and FutureWork

In the last chapter, we outline future research directions, aiming to develop a unified

model capable of handling tasks like image reconstruction, makeup transfer, and image

generation. We also plan to integrate text information to create a multi-modal system,

allowing users to guide image generation with text.
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LITERATURE SURVEY

T
his survey explores the techniques, development trajectories and uniqueness of

makeup transfer, style transfer, 3D-aware image synthesis, image deraining, video

deraining, vision transformer and image restoration. The integration of these tech-

niques provides an important foundation for creating a unified model that is capable of

excelling in a variety of generation tasks, thus meeting a wide range of applications in

different scenarios, especially in image reconstruction andmulti-modal generation.

2.1 Makeup and 3D Vision

2.1.1 Makeup Transfer

Makeup transfer aims to transfer a specific makeup style from a reference image to a source

image. As one of the pioneering works, CycleGAN [208] investigates image style translation

between unpaired images, which can be directly applied to the field of makeup. However,

CycleGAN is designed for transferring global style between two pre-defined domains; thus,

users are unable to customize the makeup style. Similar to eyeglass removal [52], PairedCy-

cleGAN [7] further refines the task of makeup. In this method, two translators are trained

separately: one for facial makeup and another for facial makeup removal. Notably, the two

translator structures are asymmetric. BeautyGAN [82] trains a semantic segmentation net-

work for extracting masks from different facial regions, such as skin, eyes, and mouth, to

calculate the makeup loss. Consequently, the color information of the makeup area can
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be restored in the source image. Chen et al. [14] apply the Glowmodel to invert the latent

vectors to the RGB source image with makeup. Local Adversarial Disentangling Network [44]

leverages multiple overlapping discriminators based on facial feature points for dramatic

makeup transfer. PSGAN [61] proposes the AttentionMechanismModule (AMM) to explicitly

address the spatial misalignment problem. The AMM utilizes point-wise spatial attention to

establish makeup-to-face correspondences, enabling precise transfer of makeup features

from the reference face to corresponding regions on the target face. Moreover, PSGAN in-

troduces an innovative makeup distillation strategy that separates makeup features into

different components (e.g., eye shadow, lipstick, foundation), allowing for more granular

control over themakeup transfer process. SCGAN [26] is inspired by StyleGAN [67] andmaps

makeup styles into an intermediate style space, rather than relying on linearly projected

vectors. The research by Lyu et al. [102] details a new technique, 3DAM-GAN, that effectively

shields facial images from unauthorized detection by recognition systems. This innovation

not only obscures personal identity but also proves to be highly effective in evading di-

verse facial recognition algorithms. It also yielded satisfactory results in the task of makeup

transfer. Although the aforementionedmethods can achieve makeup transfer, they fail to

restore the face depth information and background of the generated images. In contrast,

we propose the IP23-Net model in Chapter 3 that can generate highly stereoscopic makeup

images andmaintain the non-makeup area.

2.1.2 Style Transfer

In recent years, style transfer emerges as a prominent research area. The underlying con-

cept of image style transfer involves extracting content and style features separately from

source and target images, and subsequently recombining these features to reconstruct the

source image with the style of the target image. Certain methods [134, 149, 154, 205], aim

to transfer a source image to various styles, such as plain and cartoon styles. Nonetheless,

these methods are limited to transferring the source image to a detailed style.

2.1.3 3D-aware Image Synthesis

In prior research, numerous studies focus on multi-view and 3D perceptual networks to

enhance the fidelity in the image generation task [31, 48, 55, 110, 115, 132, 209], which

is closely related to the temporal consistency in video generation [140] and multi-round

editing [183]. HoloGAN [109] learns 3D features from rigid-body transformations to control

the pose of generated objects. Schwarz et al. introduce GRAF [130], a method for high-

resolution 3D-aware image synthesis that trains the model solely from unposed 2D images.
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PIGAN [6] achieves view-consistent, camera angle-controlled, high-quality image generation

by employing neural representations with periodic activation functions and neural radiance

field rendering. GIRAFFE [111] incorporates a compositional 3D scene representation into

the generative model, improving the controllability of generated images, while Zhang et

al. [197, 198] further consider the pose consistency.

2.2 Deraining with Vision Transformers

2.2.1 Single Image Deraining

Over the past few years, numerous deraining techniques have been developed to recover

clean images by analyzing the statistical relationship between paired rainy and clean im-

ages [22, 53, 66, 85, 99, 138, 210]. Kang et al. [66] enhance the deraining effect by using a

bilateral filter to separate the image into its high- and low-frequency components, which

helps in removing the rain layer while retaining the original image details. Recognizing that

rain streaks typically follow a narrow range of directions, Zhu et al. [210] proposed a joint

optimization framework that incorporates three different priors: rain direction prior, sparse

representation prior, and rain patch prior. Chen et al. [12] developed a low-rank model that

captures the spatio-temporal correlations of rain streaks in video sequences. By representing

rain streaks as a low-rank matrix, they successfully separated the rain components from

clean video frames. Unlike other approaches, this method does not rely on pixel-level rain

detection or dictionary learning. Fu et al. [38] employed a CNN to directly map the rain

layer to the clean image’s detail layer, using a moderately sized network to improve rain

degradation. This method further includes a predicted detail layer that is integrated with a

low-pass filtered base layer to produce a rain-free image. Building on this, Yang et al. [168]

introduced a multi-task deep learning framework that combines rain streak detection and

removal using features from a dilated contextual network. Similarly, Qian et al. [120] applied

an attention mechanism within a deep neural network for rain detection, coupled with a

GAN-based architecture to reconstruct realistic, clean images. While single-image deraining

has seen considerable advancements, the absence of temporal information processing con-

strains the performance of these models when applied to video deraining tasks. As a result,

achieving comparable performance for video deraining remains a significant challenge.
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2.2.2 Video Deraining

Video deraining aims to recover clean background video sequences from rainy ones. Most

deep learning based video deraining methods [4, 41, 128, 129, 176] adopt the strategy of

temporal corrections among video sequence frames and several methods achieve satisfac-

tory results for removing rain. The early methods employ a photometric-based approach

for modeling rain streaks [92, 125, 129, 158, 195], and utilize learn-based models to address

video deraining challenges. For example, Zhang et al. [196] propose that the combination of

time attribute and chromaticity attribute can boost the rain removal effect of the network.

Wei et al. [159] suggest encoding rain streaks randomly using Gaussian patch mixing, which

enables the proposed model to better adapt to a wider range of rain variations.

Recently, many deep neural networks are proposed and bring obviously increase to the

video deraining [17, 79, 90, 91, 165]. Liu et al. [90] propose a recurrent neural network for

pixel-level rain classification, rain removal, and background detail reconstruction. Moreover,

several researchers [166, 186] build a two-stage network to firstly capture spatial informa-

tion and then obtain temporal information between frames to remove rain layer. Wang

et al. [150] propose a rain streak motions concept to enforce a consistency of rain layers

between video frames. Although the above deep learning approaches for video deraining

with satisfactory results, the majority of them emphasize performance above computational

time. In Chapter 4, we present a revolutionary end-to-end single video deraining model that

can enhance performance with super high speed.

2.2.3 Vision Transformer

The Vision Transformer (ViT)[147] integrates principles from both Computer Vision (CV)

and Natural Language Processing (NLP), achieving cutting-edge performance across various

tasks [5, 29, 144, 152]. Drawing inspiration from the success of transformers in the NLP do-

main [30], ViT takes the transformer architecture and directly applies it to images with mini-

mal adjustments to the image classification process, leading to significant improvements

over CNN-based methods. This breakthrough has encouraged many researchers to explore

the use of transformers in various areas, including segmentation [16, 137], object detec-

tion [98, 211], and depth estimation [193, 201], where transformers have demonstrated im-

pressive results. Given the demands of real-time video deraining, the Swin Transformer [98]

stands out as a strong candidate. With its "sliding window"mechanism, it effectively cap-

tures both local and global image features. This enables it to rapidly detect local elements like

raindrops, while its hierarchical design ensures the overall clarity and structure of the video
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are preserved. These characteristics make the Swin Transformer particularly well-suited for

tasks requiring real-time performance.

2.3 Image Restoration

2.3.1 Single Degradation Restoration

Image restoration plays a crucial role in computer vision, aiming to restore degraded images

back to their original high-quality form. This domain involves multiple techniques such

as deraining, denoising, dehazing, and enhancing images taken in low-light conditions.

Recently, with the increasing availability of paired image datasets, approaches utilizing

Deep Neural Networks (DNNs) have made remarkable advancements in addressing various

sub-tasks related to image restoration [1, 21, 142, 206]. These studies emphasize the develop-

ment of network architectures and the crafting of loss functions, aiming to restore images by

capturing the underlying relationship between corrupted images and their pristine counter-

parts. While several models [18, 87, 180] have demonstrated excellent performance through

the use of specialized modules tailored for specific degradation issues, they often require

training on datasets designed for specific types of degradation, which restricts their ability

to generalize across different degradation scenarios.

2.3.2 Multi-degradation Restoration

There is a growing interest in the development of unified models that, once trained, can

process a variety of degraded images within a single network framework. For example,

Transweather[146] innovates within the transformer architecture by integrating a decoder

equipped with learnable embeddings, designed to address multiple degradation types.

Furthermore, the concept of AirNet[73] introduces the All-in-One image restoration task,

which is adept at effectively restoring images from a diverse spectrum of unknown degra-

dation types. Nevertheless, AirNet adopts a contrastive learning paradigm to accomplish

this unified restoration task, requiring the training of an auxiliary encoder to differentiate

among varied image degradation categories. In the latest research, PromptIR [119] employs

a transformer-based foundation augmented with prompt blocks. These blocks initially gen-

erate modifiable prompt parameters, subsequently utilizing these prompts to navigate the

model throughout the restoration process. Specifically, the prompt blocks are designed

to learn task-specific degradation patterns through a set of learnable tokens, which are

then used to guide the restoration process at different scales. The framework incorporates

hierarchical prompt learning, where prompts at different levels capture both local and global
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degradation features. However, the prompt block integration does not significantly improve

the performance of the underlying network, as the learned prompts often fail to effectively

capture the complex relationships between different types of image degradation. There-

fore, our work in Chapter 5 focuses on utilising diffusion models to address their inherent

limitations while exploiting their powerful generative capabilities.

2.3.3 DiffusionModels for Image Restoration

Diffusion models are gaining increasing attention as a class of generative models due to

their ability to model complex data distributions through a progressive process of noise

addition and removal. Among these models, the Denoising Diffusion Probabilistic Model

(DDPM) [50] represents a key approach. DDPM leverages a Markovian forward process,

where Gaussian noise is gradually added to the data, and a reverse process, which learns

to remove this noise step by step. This iterative denoising mechanism allows DDPM to

accurately reconstruct data distributions from noisy inputs, making it particularly effective

for tasks such as image generation and restoration.

While diffusion models like DDPM have shown strong performance in data generation

and image reconstruction tasks, WeatherDiff [113] introduces a patch-based diffusionmodel

that applies a denoising strategy to overlapping patches during inference, effectively man-

aging the distortions caused by adverse weather phenomena, including rain, snow, and

fog. The patch-based approach enables the model to focus on local weather patterns while

maintaining global image consistency through careful patch overlap design. By process-

ing overlapping patches, WeatherDiff can better handle various scales of weather effects

while reducing boundary artifacts that commonly occur in patch-based methods. Although

diffusion-based methods generally outperform GAN-based approaches in terms of visual

quality [164], they still encounter difficulties in restoring high-frequency details, as noted

by [171]. This limitation arises primarily from the coarse-to-fine reconstruction strategy

employed by diffusion models, which focuses on recovering overall structures at the ex-

pense of finer textures and high-frequency information. To overcome these shortcomings,

we propose the CrDiff model, detailed in Chapter 5, which integrates a High-Frequency

Enhancement Network. Incorporating high-frequency information into the latent space

enhances the model’s ability to restore fine details.
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2.4 Meta-learning forWeather Removal

2.4.1 Unified AdverseWeather Removal

Over the last decade, low-level vision research has primarily focused on the removal of

individual weather conditions, such as dehazing [33, 97, 127], deraining [151, 170, 177], and

desnowing [19, 189]. These studies encompass both image and video processing, achieving

commendable results. However, existing models often struggle to adapt to different weather

conditions due to their specialized architectures. This limitation has motivated researchers

to explore using a single model instance to handle multiple adverse weather conditions,

aiming to reduce the need for multiple models and improve generalization capabilities. At

the image level, All-in-One approach [80] defines a method for Adverse Weather Removal

that utilizes a single encoder and decoder to address various weather scenarios. Follow-

ing this setting, TransWeather [146] proposes a transformer-based end-to-endmodel that

uses a single encoder and decoder to restore images degraded by various weather condi-

tions, utilizing intra-patch transformer blocks and learnable weather type embeddings to

enhance performance. The intra-patch transformer blocks enable the model to capture

local correlations within each patch while maintaining computational efficiency. Further-

more, the weather type embeddings allow the model to adapt its restoration strategy based

on different weather conditions, making it more versatile for real-world applications. In a

recent work, WeatherDiffusion [114] introduces the concept of diffusion models into the

Adverse Weather Removal task, proposing a patch-based image restoration algorithm that

uses denoising diffusion probabilistic models for effective and size-agnostic restoration.

Additionally, research has extended to the video level. Yang et al. [172] propose a video

adverse-weather-component suppression network (ViWS-Net) to restore videos from vari-

ous adverse weather conditions, addressing the lack of temporal information and effectively

handling multiple weather types. Although these methods perform well in seen weather

domains, they remain unsatisfactory when facing unseen weather conditions, such as unex-

pected combinations of weather elements. Addressing this limitation is the primary focus of

our research.

2.4.2 Meta-learning

Meta-learning, often called "learning to learn," refers to the process of training models to

quickly adapt to new tasks with limited data by utilizing knowledge from previously learned

tasks [122, 139]. In recent studies, researchers focus on refining learning algorithms to im-
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prove model generalization to unfamiliar environments and conditions. For example, Li

et al. [77] introduce a meta-learning approach that simulates domain shifts during train-

ing by generating virtual testing environments in each mini-batch. This method enhances

the model’s ability to generalize effectively to novel domains. Shu et al. [133] develop a

Domain-Augmented Meta-Learning framework, incorporating Dirichlet mixup and distilled

soft-labels to improve generalization across unseen target domains. These methods main-

tain domain-specific information while enabling the model to generalize across different

domains, leading to improved performance on tasks it has not encountered before.

In low-level image reconstruction,meta-learning demonstrates significant potential. Soh

et al. [136] introduce a Meta-Transfer Learning approach for Zero-Shot Super-Resolution

(MZSR), which minimizes inference time by discovering a generalizable initial parameter for

internal learning, enabling themodel to adapt to diverse image conditions withminimal gra-

dient updates. Park et al. [116] present a meta-learning-based super-resolution (SR) method

that supports rapid fine-tuning during the testing phase by extracting additional details

from input images to boost the performance of conventional SR networks on benchmark

datasets. More recently, Chi et al. [23] propose a novel self-supervised meta-auxiliary learn-

ing strategy for handling dynamic scene deblurring. This method integrates both external

and internal learning mechanisms, leading to enhanced performance and faster adaptation

during testing. Althoughmeta-learning’s application in image reconstruction is becoming

more widespread, its full potential, particularly in adverse weather conditions, remains

underexplored.
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3
HIGH FIDELITY MAKEUP VIA 2D AND 3D IDENTITY

PRESERVATION NET

T
his chapter delves into the task of makeup transfer, which involves transferring

makeup from a reference image to a source image while preserving facial geometry

and maintaining background consistency. The significance of this task lies in its

potential applications in virtual try-on systems, entertainment, and digital content creation.

However, existing deep learning methods often overlook the geometric structure of the

source image, leading to issues such as flattening of facial features and loss of individuality,

as well as difficulties in distinguishing the face from the background. To address these

challenges, we propose the High Fidelity Makeup via 2D and 3D Identity Preservation

Network (IP23-Net), a novel framework that leverages both 2D and 3D facial geometry

information to generate more realistic and consistent results. Our method introduces a 3D

Shape Identity Encoder, which captures identity and 3D shape features to preserve the three-

dimensional effect of the makeup. Additionally, we incorporate a Background Correction

Decoder that predicts an adaptive mask to maintain background consistency, effectively

distinguishing the foreground from the background. To rigorously evaluate the effectiveness

of our approach, we not only utilize popular benchmarks but also introduce a new large-

scale High Resolution SyntheticMakeupDataset, containing 335,230 diverse high-resolution

face images. Experimental results demonstrate that IP23-Net achieves high-fidelity makeup

transfer while preserving both facial geometry and background consistency, setting a new

standard in the field.
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Figure 3.1: IP23-Net is capable of generating highly stereoscopic images while accurately
restoring the background. We compare our output image to the ones produced by state-
of-the-art existing methods, PSGAN [61] and SCGAN [26]. In addition to preserving the
background, we also generate an output image featuring highly stereoscopic facial compo-
nents, particularly in the mouth, nose, and eyes.

3.1 Introduction

In recent years, more people have started sharing their selfie photos on social networks like

Instagram and Facebook. Good-looking selfie photos can increase attractiveness and self-

confidence to people. Although cosmetics can enhance one’s appearance, they also prolong

the time spent on makeup application. In the last few years, deep learning techniques have

gained rapid momentum and are widely applied in various domains [13, 32, 36, 36, 63, 78,

83, 84, 100, 173, 174, 204]. This study focuses on an automatic makeup model that transfers

makeup from a reference image to a source image while preserving the original identity

andmakeup style. However, most existing methods [7, 14, 26, 44, 51, 57, 61, 62, 82, 93, 101,

108, 162, 199] face challenges in preserving facial geometric information, distinguishing be-

tween facial foreground and background, and addressing the limitations of current makeup

datasets. To tackle above challenges, we introduce the 2D and 3D Identity Preservation Net

(IP23-Net), an end-to-end learning framework comprising a 3D Shape Identity Encoder, a

Makeup Style Encoder, and a Background Correction Decoder. As shown in Fig. 3.1, we can

observe the above problems clearly.

First, previous works often lose facial geometric information during makeup transfer,
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Figure 3.2: Illustration of our IP23-Net workflow. Our pipeline comprises three components:
the 3D Shape Identity Encoder E3D , Makeup Style Encoder EM , and Background Correction
Decoder BCD . The 3D Shape Identity Encoder is constructed from a 3D face reconstruction
model [28], a face recognition network [27], and a Content Style Encoder. These elements
extract features fshape , fid , and fx from the source image x, forming fc . The Makeup Style
Encoder retrieves style features fy from the reference image y . Finally, the Background
Correction Decoder fuses these feature types to generate the source face with the reference
makeup and restores the background.

resulting in artificial appearances and the loss of the individual’s distinctive features. This

issue stems from existing methods not incorporating depth information and shadow repre-

sentation, both crucial for the face’s three-dimensional aspect. To address this challenge, we

design a 3D Shape Identity Encoder consisting of a shape encoder, identity encoder, and a

content style encoder. The shape encoder, based on a 3D face reconstruction model, intro-

duces face depth information to enhance facial contours andmakeup shadow perception,

achieving a visually three-dimensional effect. In the identity encoder, a face recognition

network extracts facial identity information, maintaining the distinctiveness of individual

facial features even after makeup application and ensuring facial uniqueness preservation.

Lastly, the content style encoder extracts the face’s style feature, supplementing detailed

facial features. To augment the three-dimensional perception of the synthesized images, we
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propose a 3D stereoscopic loss that utilizes the 3D average face parameter derived from the

3DMorphableModel (3DMM). During this process, 3D face prior features are independently

extracted from both the source and generated images using the 3DMM. Following this, the

pixel-wise L1 loss between the models is computed, effectively incorporating facial depth

information into the generated image and achieving an enhanced stereoscopic effect. For

makeup style extraction, our proposed Makeup Style Encoder obtains features from the

reference image. In contrast to conventional encoders [61, 82], our approach shifts input

focus from an entire image to specific facial regions based on the reference’s corresponding

mask. This enables IP23-Net to effectively performmakeup part selection and style blending.

Second, makeup transfer should differentiate between the facial foreground and back-

ground. However, most existing methods overlook this issue and modify background styles,

leading to unrealistic artifacts. We gain inspiration from [155, 203]. Our Background Cor-

rection Decoder generates the output image by fusing features from the 3D Shape Identity

Encoder andMakeup Style Encoder and predicts an adaptive face mask using the source

image’s 3D structure feature. This mask explicitly delineates the boundary between the face’s

foreground and background,maintaining end-to-end characteristics and ensuring a realistic

outcome. Furthermore, the makeup transfer task lacks an effective validation dataset. The

current state-of-the-art makeupMT dataset [82] comprises only 3,834 adult female facial

images. Asmodern society evolves, themakeup user demographic has expanded from young

women to various age groups and includes men. Consequently, makeup transfer techniques

lack comprehensive evaluations for children, older adults, and male subjects. To address

this issue, we introduce the High-Resolution Synthetic Makeup (HRSM) dataset, generated

using StyleGAN2 [68], and comprising 335,230 facial images with diverse ages, poses, expres-

sions, and backgrounds. This dataset enables a more comprehensive evaluation of model

generalization and accuracy. Our IP23-Net method surpasses other SOTA techniques in

generating realistic images while effectively addressing existing methods’ challenges. The

key contributions of this work are outlined as follows:

• We introduce a novel makeup network utilizing a 3D face reconstruction model for

high-fidelity makeup transfer, facial geometric information extraction, and face mask

prediction to restore the background. A 3D stereoscopic loss based on 3DMM en-

hances the realism of the generated makeup.

• We present the HRSM dataset, comprising 335,230 diverse face images, which serves

as the largest makeup dataset available for evaluating the generalization and accuracy

of automatic makeup transfer models.
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• Our extensive experimental results demonstrate that IP23-Net delivers competitive

results in preserving facial identity and ensuring makeup transfer quality.

3.2 Method

(1) Network Architecture

In this section, we introduce our IP23-Net, including Generator (G) and Discriminator

(D). Given the source image x and the reference image y , our target is to learn a makeup

transfer function x̂ =G(x, y). Fig. 3.2 shows an overview of our network and the detail of

Generator. Our pipeline consists of three parts: 3D Shape Identity Encoder (E3D ), Makeup

Style Encoder (EM ) and Background Correction Decoder (BCD).

(2) 3D Shape Identity Encoder

The 3D Shape Identity Encoder (E3D) is a vital component in our proposed makeup

transfer framework, IP23-Net, designed to preserve the geometric structure and facial iden-

tity information of the source image. By incorporating 3D information, we aim to overcome

the limitations of existing makeup transfer methods that often fail to maintain the fidelity

of facial geometry and identity. The E3D module is comprised of three key parts: a Shape

Encoder, an Identity Encoder and a Content Style Encoder. To enhance the robustness of our

model, we utilize pre-trained Shape Encoder and Identity Encoder with frozen parameters

during network training. This approach allows us to leverage prior knowledge and optimize

the network for specific tasks, without extensive training from scratch.

Shape Encoder. The Shape Encoder is designed based on a SOTA 3D Morphable Model

(3DMM) [28] that extracts the facial geometry information from the source image. The

facial geometry information consists of shape, texture, and depth information from the

source image x. Depth information is of particular importance, as it provides rich geometric

information such as contours, shapes, and local details. We define the facial geometry

information extracted from the source image x as fshape .

Identity Encoder. The process of 3DMM for facial modeling typically involves fitting the

input face to the 3D average face model in the Basel Face Model (BFM) database [117] to

predict the face model of the input image. However, since the face texture information of

the predicted 3D face model is also sourced from BFM, the original details of the input

image cannot be fully accurate. To address this issue and retain the identity information of

the source image, we propose the use of a face recognition network [27] to extract the face

identity feature fid from the source image x. By using a face recognition network, we can
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better capture the individual differences and details in the input image, ensuring that the

generated face model is consistent with the input image.

Content Style Encoder. For the makeup transfer, capturing not only the shape and identity

features but also the style information of the face such as skin color and lip color is essential

for generating realistic and natural-looking images. To supplement this information and

incorporate it into the generated images, we introduce the Content Style Encoder. It is de-

signed to extract and encode the style information fx from the source image x. The Content

Style Encoder is comprised of multiple 7 res-blocks and 5 downsampling convolutional

layers, which enable the capture of style information from the source image.

To generate the final makeup transferred image, we concatenate fshape , fid , and fx and

feed them into the decoder. However, since fshape and fid are obtained using pre-trained

models, their feature shapes cannot match that of fs . To ensure consistency, we adjust the

feature shapes of fshape and fid to match that of fx using a 1x1 convolutional layer to adjust

the number of channels, and a transposed convolutional layer to adjust the spatial resolution

of the features. The final output of the 3D Shape Identity Encoder is denoted as f c, and the

function is defined as:

(3.1) f c =Concat (Convshape( fshape),Convid ( fid ), fx).

(3) Makeup Style Encoder

TheMakeup Style Encoder is designed to extract features from the reference image using

an encoder-bottleneck architecture. While most existing methods obtain style codes by

simply averaging facial features in a reference image, numerous makeup styles exist for

various facial components, inevitably leading to entanglements between different facial

makeups. In contrast to traditional approaches [61, 82], our Makeup Style Encoder adopts

the SCGAN [26] strategy.

The first processing step of the Makeup Style Encoder decomposes each reference face

into four parts (lips, skin, eyes, and nose) using the face parser [72] as follows:

yi = y ØSy,i .(3.2)

We process each component of the reference face as yi , where i = {l i p, skin,eyes,nose}.

Sy,i represents the correspondingmask of the reference image, andØ denotes the Hadamard

product. Then, we concatenate these codes as input Y = [ylip , yskin , yeyes , ynose ] for EM . The

Makeup Style Encoder consists of multiple 7 res-blocks and 5 downsampling convolutional

layers, facilitating the extraction and encoding of style information from the reference image.

Ultimately, we acquire the localized makeup style features, represented as fy .
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(4) Background Correction Decoder

Our Background Correction Decoder reconstructs the source image with makeup, using

the content feature fc and the style feature fy . Specifically, our decoder comprises eight

res-blocks and five upsampling convolutional layers. The Adaptive Instance Normalization

(AdaIN) layer [56] achieves style transfer by altering the data distribution of the feature

map. We incorporate AdaIN layers and two upsampling convolutional layers in the first five

res-blocks to facilitate makeup transfer. The AdaIN layer is defined as follows:

AdaIN ( fc , fy )=æ( fy )
fc °µ( fc)
æ( fc)

+µ( fy ),(3.3)

where æ( fc ) and µ( fc ) denote the mean and standard deviation of the source image features,

respectively. æ( fy ) and µ( fy ) represent the mean and standard deviation of the style image

features, respectively. In general, AdaIN performsmakeup transfer by transforming themean

and variance of specific channels in the feature map. We then employ another three res-

blocks and upsampling convolutional layers to further fuse the feature maps and generate

higher-resolution results. Note that these three res-blocks are all standard residual blocks

without AdaIN layers. We incorporate the source image x as a residual to the output of the

final residual blocks, which enhances the image restoration effect. Our approach is to ensure

a balance between style transfer and content preservation. While AdaIN layers excel in

transferring makeup style, using them excessively might compromise content information.

To avoid this, we limit the number of AdaIN layers. Res-blocks without AdaIN layers play a

significant role in refining and blending features after the primary makeup transfer process.

Additionally, the background information of the generated image is susceptible to dam-

age by the reference image style during makeup transfer. To better preserve the background,

we use the decoder to learn an adaptive mask and accommodate the change in face shape.

Specifically, we predict a 3-channel Ig and 1-channel Mg after the upsampling. The Mg

helps us identify the facial foreground and background areas. We apply the generated face

Ig and blend the background of the clean source image x to create the makeup image using

Mg , formulated as:

x̂ = Ig ØMg + (1°Mg )Øx,(3.4)

where x̂ denotes the generated makeup image. Despite changes in face shape, this decoder

remains valid because the predicted maskMg is deformable to follow the source image.

3.2.1 Optimization Objectives

(1) 3D Stereoscopic Loss
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To generate highly stereoscopic images, we introduce a 3D face reconstructionmodel

for obtaining facial depth information. Specifically, we use a pre-trained, SOTA 3D face

reconstruction model (3DMM [28]) to accurately extract facial geometric information. First,

we employ the regressing 3DMM coefficients model [28] to obtain the 3D face model and

calculate the L1 loss:

L3D
at tr ibute = || f xshape ° f x̂shape ||1+|| f y

shape ° f ŷ
shape ||1,(3.5)

where f xshape , f
x̂
shape denote the 3D face attributes of the source image and generatedmakeup

image, and f y
shape , f

ŷ
shape represent the 3D face attributes of the reference image and gener-

ated non-makeup image. Note that k·k1 is the L1-norm loss function. Second, we project

the 3D facial vertices onto the 2D image to obtain landmarks. We then calculate the L1 loss

between these landmarks to enhance the effect of the 3D stereoscopic loss:

L3D
landmark =||k

x °kx̂ ||1+||ky °k ŷ ||1,(3.6)

where kx , kx̂ denote the 2D landmarks of the source image and generated makeup image,

while ky , k ŷ represent the 2D landmarks of the reference image and generated non-makeup

image. Finally, our 3D stereoscopic loss is formulated as:

L3D =∏3D
at tr ibuteL

3D
at tr ibute +∏3D

landmarkL
3D
landmark ,(3.7)

where ∏3D
at tr ibute = 2 and ∏3D

landmark = 0.2. The weights ∏3D
at tr ibute and ∏3D

landmark are deter-

mined through extensive ablation studies examining values in ranges [0.5, 4] and [0.1, 1]

respectively. Through empirical evaluation, we find that ∏3D
at tr ibute = 2 provides the opti-

mal balance between preserving facial geometric structure and allowing flexible makeup

transfer, while ∏3D
landmark = 0.2 achieves the best trade-off between landmark accuracy and

generation flexibility. Lower values of these parameters lead to insufficient structural guid-

ance, while higher values over-constrain the makeup transfer process and result in rigid

transformations.

(2) Total Loss

In addition, we adopt the adversarial loss proposed by [58], denoted as Ladv , to enhance

the realism of the generated images by ensuring they are indistinguishable from real ones

through adversarial training. Additionally, we incorporate the perceptual loss introduced

by [65], represented as Lper , to preserve the identity and high-level semantic features of the

source images during the generation process. To maintain consistency in image content

during bidirectional transformations, we employ the cycle consistency loss from [208],

defined as Lcyc , which encourages accurate reconstruction of the original images after
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(a) Makeup (b) Female (c) Male (d) Child (e) Elderly

Figure 3.3: Samples from the proposed High Resolution Synthetic Makeup (HRSM) dataset.
The images displayed from (a) to (e), depict makeup faces, females, males, children, and
elderly individuals.

translation. Finally, we utilize the makeup loss from [82], referred to as LHM , to ensure that

the makeup style in the generated images closely matches the reference images, particularly

in terms of color distribution across key facial regions. The total loss Ltotal is:

(3.8) Ltotal = L3D +Ladv +Lper +Lcyc +LHM .

3.2.2 High Resolution Synthetic Makeup Dataset

We observe that the sample number of datasets YMU [10], VMU [25], MIW [9], andMIFS [11]

is less than 1,000. (see Table 3.1). The MT dataset [82] expands its size to 3,834 images,

including 1,115 non-makeup images and 2,719 makeup images. Most existing approaches

train and test models on the MT datasets. However, it only includes adult female samples

with a relatively low resolution (361£361). As a result, the MT dataset lacks diverse samples

(e.g., males and kids) to validate the generalizability of the model. To overcome the data

limitation, we propose a High Resolution Synthetic Makeup dataset. First, we deploy Style-

GAN2 [68] model to generate 500,000 face images with various races, poses, expressions,

and backgrounds, and the resolution is 1024£1024. Second, we align the generated images
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10.04
%

Male:125,443
(37.42%)

Female:209,787
(62.58%)

Adults:278,375
(83.04%)

Elders:33,624
(10.03%)

(a) (b)

Children: 23,231
(6.93%)

Figure 3.4: Attribute distribution of the proposed HRSM dataset. (a) Percentage of children,
adults, and elders. (b) Percentage of male and female.

with 68 landmarks. Last, we obtain the gender and age labels through OpenCV. We utilize the

MT dataset [82] to train a binary classifier to distinguish makeup images and non-makeup

images. In this process, we use different pre-trained models such as VGG-19 [135], ResNet-

50 [47] and Swin Transformer [98]. Then, we ensemble the classification results of the three

models together to increase the accuracy of the labels. Most of the images are classified

correctly. To further improve the label accuracy in the HRSM dataset, we set a confidence in-

terval scope to remove images with low confidence. As a result, we obtained 225,831makeup

images and 109,399 non-makeup images for a total of 335,230 images. Fig. 3.4 demonstrates

the proportion and number of each label in our dataset.

Dataset ID number Total Number Age Label Gender Label

YMU [10] 151 604

VMU [25] 51 204

MIW [9] 125 154

MIFS [11] 214 642

MT [82] 3,000+ 3,834

Ours 330,000+ 335,230 X X
Table 3.1: Comparison with other public makeup datasets.

The HRSM dataset is the first makeup transfer dataset with 1024£1024 resolution and

contains 335,230 samples. Before integration into our framework, we pre-process these high-

resolution images by first applying face alignment based on detected landmarks to ensure

consistent facial orientation. We then normalize the pixel values to [-1, 1] range and convert

all images to RGB format. The advantages of our collection method are scalability and
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security. Scalability means our dataset can be expanded conveniently. Specifically, we can

harness StyleGAN2 [68] model to generate more face images, and then use our classifier to

distinguish the makeup images and non-makeup images. For the advantage of security, the

face images we generated by StyleGAN2 [68] are not real-world images. Therefore, people

using the HRSM dataset are unable to violate the privacy of other people. The detailed

comparison between makeup datasets is in Table 3.1 and the examples of the HRSM dataset

are illustrated in Fig. 3.3.

3.3 Experiment

3.3.1 Qualitative Comparisons

We compare our IP23-Net with other image-to-image makeup translation methods, includ-

ing DIA [89], CycleGAN [208], PairedCycleGAN [7], BeautyGlow [14], LADN [44], Beauty-

GAN [82], PSGAN [61] and SCGAN [26] as well as two recent makeup transfer methods

CPM [107] and EleGAN [163]. Fig. 3.5 demonstrates the qualitative comparison of IP23-Net

with other methods on the generated makeup images. The results produced by DIA [89]

show the abnormal color of the hair, and the color of the lipstick is not transferred well. In

addition, the background information is affected by the reference image. Although Cycle-

GAN [208] can be leveraged to transfer makeup, the results are incomplete. BeautyGAN [82]

performs well on the makeup transfer. Nevertheless, we can find unnatural color changes in

the hair part between the generated and source images. Besides, BeautyGlow [14] transfers

the makeup to the source images with an uneven color distribution in the lipstick part. We

use the released model from LADN [44] to obtain the generated makeup images. The back-

ground of the generated images is blurred, and some uneven color blocks appear on the face.

PSGAN [61] produces fewer artifacts in the generated images. However, there is a problem

of inaccurate color restoration. Specifically, the color of the lip between the generated and

reference images is inconsistent. SCGAN [26] can address the spatial misalignment problem.

For the CPM [107], we note that although it is able to achieve more satisfactory makeup

transfer in specific scenarios, it may be slightly limited when dealing with diverse makeup

style transitions. As for EleGAN [163], it performs well in localised makeup editing, but there

is still room for further improvement in the naturalness and detailing of full-face makeup.

The above limitations can be summarised in three points. First, the shadow information is

lost in the generated image, resulting in an unrealistic nose. Second, the texture information

is not preserved well. For example, the size of the lip in the generated image is smaller than
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the source image. Third, the background and the hair color of the generated images are

changed. Compared to these methods above, our IP23-Net can generate a high-fidelity face

and preserve the background accurately.

EleGAN

EleGAN

CPM

CPM

IP23-Net

IP23-Net

Figure 3.5: Qualitative comparison with existing models. Both source and reference im-
ages are selected from the MT dataset for a fair comparison. IP23-Net effectively transfers
the makeup style from the reference image to the source image. In addition, our method
preserves the background as well as the original identity.

Figure 3.6: Results of partial makeup transfer. The lipstick style for the generated image is
fromReference2, and the othermakeup styles are fromReference1. The source and reference
images are from the MT dataset.

We evaluate the realism of images generated by IP23-Net using the Fréchet Inception Dis-

tance (FID) [49], comparing it against BeautyGAN [82], PSGAN [61], and SCGAN [26] under

uniform conditions. We select makeup and non-makeup images from the MT dataset [82],

transforming non-makeup images into a consistent makeup style. Different reference im-

ages are used to calculate the average FID. IP23-Net achieves the lowest FID score of 45.59,
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Figure 3.7: (a) Shade-controllable makeup transfer results. The results are sorted from left
to right according to the degree of makeup from light to heavy. (b) The makeup style of the
generated images gradually changes from Reference1 to Reference2 from left to right. Note
that the displayed source and reference images are from the MT dataset.

indicating superior image quality. To ensure that identity is preserved during makeup trans-

fer, we employ ArcFace [27] to measure the facial similarity before and after the makeup

transformation. Comparison tests with other methods indicate that IP23-Net obtained

the highest score of 0.9743, demonstrating better feature maintenance. Additionally, we

incorporate the Natural Image Quality Evaluator (NIQE) to gauge the visual quality of the

images. NIQE is a non-referenced measure that assesses the naturalness of an image based

on the statistical properties of a natural, undistorted image. Our IP23-Net scores 5.6377 in

NIQE, outperforming others in visual naturalness and reducing perceptual distortion, thus

confirming the effectiveness of our approach in maintaining image quality and fidelity. The

results are shown in the Table 3.2.

To assess the preservation of expression and pose, we employed a pre-trained MTCNN

model to detect facial landmarks in source images. We then calculated the cosine similar-

ity (CosSim 2 [0,1]) of these landmarks to evaluate our method’s efficacy in maintaining
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Method IP23-Net SCGAN[26] PSGAN[61] BeautyGAN[82]

FID # 45.59 47.78 51.78 57.43

Arcface " 0.9743 0.9611 0.9721 0.9691

NIQE # 5.6377 6.1762 5.7311 5.8729

Table 3.2: Quantitative comparison between IP23-Net and other competitive methods in
terms of FID, NIQE (lower is better) and Arcface (higher is better).

Method IP23-Net SCGAN[26] PSGAN[61] BeautyGAN[82]

CosSim " 0.9994 0.9971 0.9992 0.9992

Table 3.3: Quantitative comparison of expressions and poses with other competitors.

Method IP23-Net SCGAN[26] PSGAN[61] BeautyGAN[82]

Time (s/img) 0.0241 0.1272 1.1586 0.0156

Table 3.4: Comparison of time efficiency of our method with other competitors.

facial expressions and poses. As Table 3.3 shows, IP23-Net and other baseline methods

demonstrate effective preservation of expressions and poses.

3.3.2 Computational Complexity Analysis.

For the tests regarding the computational complexity of our IP23-Net, we also compared

it to previous approaches, and for a fair comparison, we used a single RTX6000 GPU uni-

formly in our tests, and all models are evaluated using the test section of the MT dataset

to ensure fairness. Table 3.4 illustrates that IP23-Net significantly outstrips competitors

with an average inference speed of only 0.0241 seconds per image. This compares favorably

to the times recorded by PSGAN and SCGAN. Such efficiency is maintained even with the

inclusion of complex pre-trainedmodels like the 3DMorphable Model and Arcface in our

encoder framework, which are highly optimized for feature extraction and impose minimal

computational burden. IP23-Net thus offers an optimal blend of rapid inference and sturdy

performance, essential for real-time processing scenarios.

3.3.3 Generalization to Unseen Images

In this study, we introduce the novel High Fidelity Makeup Transfer Network via 2D and 3D

Identity Preservation, termed as IP23-Net. To test the generalizability of our IP23-Net. We

train themodel on the publicly availableMT dataset [82] and test on the unseen images from

High Resolution Synthetic Makeup (HRSM) Dataset. Fig. 3.8 demonstrates the efficacy of our
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method.Moreover, to comprehensively assess the robustness of ourmodel, we select unseen

male images from the High Resolution Synthetic Makeup (HRSM) dataset for additional

testing. Fig. 3.9 illustrates the results of our makeup application on male subjects. To further

validate the performance and generalizability of our proposed IP23-Net method, we have

also conducted visualizations of makeup transfer effects on the Flickr-Faces-HQ dataset [67]

and EDFace-Celeb-1M dataset [187] (shown in Fig. 3.10). In addition, in order to more fully

demonstrate the performance of our method in the transfer of different makeup styles,

we purposely add Fig. 3.11 to visualise a randomly selected case. As you can see, the left

part shows the results of a heavier makeup transfer, while the right part shows the results

of a more traditional Asian makeup style transfer. By comparing the results, we can see

the flexibility and efficiency of IP23-Net in handling different makeup styles. From all the

above evidence, it is evident that our model not only delivers high-quality results across

various makeup styles but also exhibits an impressive balance between transformation and

preservation. Notably, the backgrounds of the characters remain intact after the makeup

transfer, maintaining the overall integrity of the image.

So
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e

O
ut
pu
t

Figure 3.8: Results of makeup transfer. The source and reference images are from the HRSM
(ours) dataset.
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Figure 3.9: Male makeup results. The source and reference images are from the HRSM (ours)
dataset.

Source

Reference

(a) (b)

Figure 3.10: Results of makeup transfer by IP23-Net. (a) The source and reference images
are from the Flickr-Faces-HQ (FFHQ) dataset [67]. (b) The source and reference images are
from the EDFace-Celeb-1M dataset [187].

3.3.4 Comparison of Facial Details

Fig. 3.12 left part presents a detailed comparison of our IP23-Net with state-of-the-art meth-

ods PSGAN [61] and SCGAN [26]. The makeup images generated by our network exhibit

notable superiority in retaining more character details and shadows, especially within the

highlighted regions. This is a significant improvement over the prior methods, enhancing
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Source Reference1 Result Source Reference2 Result

Figure 3.11: Results of makeup transfer by IP23-Net. The different source images are selected
randomly, two makeup styles with widely differing styles are selected as reference images.

the three-dimensionality of the characters and making the makeup appear more realistic. A

key feature of our approach is its ability to enhance these aspects without compromising

the unique personality of the characters, thereby achieving a balance between transforma-

tion and authenticity that previous methods have struggled to attain. This balance results

in a more holistic and appealing representation of makeup transfer, thereby pushing the

boundaries of what’s achievable in this field. Furthermore, our approach not only excels

in executing high-quality makeup transfer but also demonstrates a strong commitment to

maintaining the original image’s integrity. This effectiveness is achieved by restoring the

background of the characters and non-makeup areas, as illustrated in an ID photo presented

in Fig. 3.12 right part. This figure offers a detailed comparison with state-of-the-art methods

PSGAN [61] and SCGAN [26]. In contrast to these previous methods, IP23-Net demonstrates

high accuracy in reconstructing the character background, further preserving the authentic-

ity of the original image. The content within the black box accentuates the superior capacity

of IP23-Net for character detail preservation, enhancement of image three-dimensionality,

and maintenance of original image integrity. The effectiveness of our approach in back-

ground restoration, combined with its proficiency in makeup transfer, marks a significant

advancement in the field. It establishes a balance between aesthetic enhancement and

preservation of the original image, ensuring a realistic and holistic representation inmakeup

transfer tasks.
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Source Reference

(a) PSGAN (b) SCGAN (c) Ours

Source Reference

(a) PSGAN (b) SCGAN (c) Ours

(a) PSGAN (b) SCGAN (c) Ours

Figure 3.12: Local detailed comparison. Both source and reference images are selected from
the MT dataset [82]. From the left side of the figure, it is evident that IP23-Net is able to
generate highly stereoscopic makeup images with accurate background restoration, By
comparing the content in the black box, we find that our generated lipstick is plump and
glossy. In addition, according to the right part of the figure, we can find out that our method
is also satisfactory for background reconstruction.

3.3.5 Partial Makeup Transfer

IP23-Net supports partial makeup transfer. People are able to choose the area of makeup

by themselves from different reference images. Given a source image x and two reference

images y1 and y2. We can use the lip part from y2 and other parts from y1 to obtain the

newmixed makeup area Y = [y1skin , y1eyes , y1nose , y2l i p ], where [·, ·] denotes concatenation
operation. The input to Facial Component Style Encoder is the facial components, and we

can select specific parts from any reference image. The partial makeup transfer results are

presented in Fig. 3.6. We can find that the style of the lip in the generated image is from

Reference2, and the others (eyes, nose, and skin) are from Reference1.

3.3.6 Shade-controllable Makeup Transfer

Our model can control the degree of makeup easily. We use a style-code fal l to represent

the input feature of Background Correction Decoder, consisting of content feature fc and

makeup style feature fy . We set a coefficient Æ 2 [0,1] to control the weight of fc and fy ,

which is defined as fcombined =Æ fy + (1°Æ) fc . Fig. 3.7 (a) shows the makeup degree from

light to heavy. We can see that the makeup degree of the source image gets higher when the

coefficient Æ increases. In addition, IP23-Net supports the makeup style fuse frommultiple
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Method IP23-Net SCGAN[26] PSGAN[61] BeautyGAN[82]

RSB " 53.68 16.55 24.72 5.05

Table 3.5: Evaluation results of different makeup transfer methods in user studies, repre-
sented by the Ratio Selected as Best (RSB) in percentage.

reference images. We can also use the coefficient Æ to change the makeup style of the source

image from Reference1 to Reference2. The style features fy1 and fy2 are from Reference1 and

Reference2, respectively. The style-code fal l is calculated by fal l = (1°Æ) fy1 +Æ fy2 . Fig. 3.7

(b) shows the makeup style changes from Reference1 to Reference2 when the coefficient Æ

increases. In other words, the makeup style is closer to the reference image that contributes

more style feature to fal l .

3.3.7 User Study

We conducted comprehensive user studies to quantitatively evaluate the robustness and

visual quality of IP23-Net with three makeup transfer methods, BeautyGAN, PSGAN and

SCGAN. A total of 20 participants took part in these user studies. In the studies, we ran-

domly selected 15 pairs of makeup and non-makeup images. The aim was to investigate

the completeness of the makeupmigration and whether the contours of the face were well

preserved, in addition to whether the non-makeup areas of the characters were affected.

In all user studies, participants were asked to select the result with the best visual quality

and the most accurate transfer. Table 3.5 illustrates the results of the user studies, where our

IP23-Net outperforms all state-of-the-art methods. We have reason to believe that this is due

to the fact that we have introduced 3D face information reasonably well into the training

process of the model, thus preserving the depth information of the face well.

3.3.8 Ablation Study

(1) Impact of 3D Stereoscopic Loss on Image Quality

To verify the effect of different losses, we perform ablation studies on the MT dataset.

Specifically, we first add losses one by one to train different IP23-Nets under the same

experimental setting. We then calculate the FID [49] between the reference image and the

generated makeup image. Table 3.6 demonstrates the impact of each loss function in terms

of the performance. The baselinemodel, which employed only adversarial loss, has achieved

an FID of 80.49. By incorporating cycle consistency loss, the FID significantly decreased to

60.99, showing the importance of preserving the subject’s identity during makeup transfer.

37



CHAPTER 3. HIGH FIDELITY MAKEUP VIA 2D AND 3D IDENTITY PRESERVATION NET

Loss Performance

Adversarial Loss X X X X X
Cycle Consistency Loss X X X X
Perceptual Loss X X X
Makeup Loss X X
3D Stereoscopic Loss X
FID # 80.49 60.99 59.06 48.06 45.59

Table 3.6: Ablation study for different losses.

The addition of perceptual loss led to an FID reduction to 59.06, implying that high-level

semantic information from pre-trained models contributes to the preservation of facial

details and makeup style. With the introduction of makeup loss, performance improved

further, and the FID dropped to 48.06, emphasizing its effectiveness in preserving and

transferring makeup attributes. Lastly, the inclusion of 3D stereoscopic loss resulted in the

lowest FID of 45.59, signifying the value of 3D facial structure information for enhanced

makeup transfer and more natural results.

The ablation studies clearly demonstrate that the combination of adversarial loss, cy-

cle consistency loss, perceptual loss, makeup loss, and 3D stereoscopic loss is crucial for

achieving optimal performance in our makeup transfer network.

(2) Fixed-Parameter Encoder Performance Evaluation

In our IP23-Net architecture, the design of the 3D Shape Identity Encoder incorporates

two distinct encoder components: the Shape Encoder and the Identity Encoder. The Shape

Encoder uses a 3DMorphable Model (3DMM) [28], which exists in a parametric form and

is primarily utilized for reconstructing 3D facial structures from 2D images. This model

reconstructs the 3D facial structure from 2D images by comparing the input facial data with

the average facial model in the Basel Face Model (BFM) database. These parameters are

pre-calculated based on extensive detailed 3D facial scan data and are not obtained through

training. Therefore, in the Shape Encoder, we use a fixed 3DMM that accurately captures

facial geometry, which is crucial for high-fidelity makeup transfer. On the other hand, the

Identity Encoder employs the Arcface model [27], an advanced facial recognition network

used to extract facial identity features. We added experiments to compare the differences

between using the fixed-parameter Arcface model and an Arcface model with trainable

parameters in the Identity Encoder. We compare two key performance metrics on the test

set of the MT dataset: Arcface Similarity (higher is better) and Fréchet Inception Distance

(FID) (lower is better).

38



3.3. EXPERIMENT

Configuration FID # Arcface "
IP23-Net (Identity Encoder) 47.23 0.9631

IP23-Net (* Identity Encoder) 45.59 0.9743

Table 3.7: Performance comparison of IP23-Net with fixed (*) and trainable Identity Encoder
configurations in terms of FID (lower is better) and Arcface Similarity (higher is better).

In IP23-Net, the fixed-parameter(*) Identity Encoder demonstrates superior performance

over the trainable parameter configuration for identity consistency and image authenticity

in makeup transfer tasks. As shown in Table 3.7, the reduced Fréchet Inception Distance

(FID) from 47.23 to 45.59, indicating enhanced efficiency, and the increase in similarity from

0.9743 to 0.9631, highlighting its effectiveness. The fixed-parameter approach, pre-trained

on a diverse dataset, effectively captures facial features, ensuring high-fidelity in makeup

transfer. Its constant parameters during training contribute to stable outputs across various

makeup styles. This stability is crucial for accurately replicating reference makeup styles

while preserving the source identity.

(3) Effects of Shape Encoder.

We conduct additional experiments, selecting the seminal work in makeup transfer,

BeautyGAN, as the foundation for our study. On this basis, we integrate our innovative

feature, the Shape Encoder, and employ 3D stereoscopic loss as the supervisory mechanism.

In line with the method we describe in this chapter, we incorporate the features generated

by the Shape Encoder ( fshape) into the network through concatenation. We then apply a

1x1 convolutional layer to adjust the number of channels, ensuring effective integration

and functioning of the features. To illustrate the enhancement’s impact more clearly, we

provide a visual comparison that contrasts with the original BeautyGANmethod in Fig. 3.13.

By observation, we can see that although the overall difference between the two generated

makeup images is not very large, if we look closely at the lip part in the black box, we can still

feel that the resulting image with the addition of fshape has a more defined facial contour.

Finally, we believe that despite the integration of the Shape Encoder in BeautyGAN, there

are some limitations in handling the interaction of fshape features as the framework does not

include our specially designed Background Correction Decoder. Due to insufficient feature

fusion, the potential of the Shape Encoder could not be fully utilised, resulting in a less than

obvious enhancement of the visualisation. Based on these observations, we conclude that

Shape Encoder can be useful in different approaches, but its value can only be maximised in

the IP23-Net framework.

(4) Evaluating the Impact of HRSMDataset.
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Source Reference w.o. !!"#$% w. !!"#$%
Figure 3.13: Comparative Visualization of Makeup Transfer with and without the Shape
Encoder.

Integrating the High-Resolution Synthetic Makeup (HRSM) dataset with the Makeup

Transfer (MT) dataset is expected to improve our model’s robustness by diversifying its

training data. The HRSM dataset, with its high-resolution and varied synthetic facial images,

complements the MT dataset’s style and complexity. This integration aims to broaden the

model’s understanding of diverse facial features andmakeup styles, potentially improving

its adaptability to complex real-world scenarios and its accuracy in makeup style transfer.

To test this hypothesis, we conducted a visual experiment, comparing models trained

on the MT dataset alone with those trained on both MT and HRSM datasets, focusing on

real-world image processing. The comparative results are illustrated in Fig. 3.14. Crucially,

all test images in our experiment originate from real-world scenarios and are not part of the

model’s training set, ensuring unbiased performance evaluation. The comparative analysis

revealed that models trained with the HRSM dataset more accurately replicated the makeup

styles from reference images while preserving the identity of the source images. This finding

supports the notion that integrating the HRSM dataset into training enhances the model’s

performance in real-world applications.

(5) Impact of face shape information on Image Quality

In our study, we extract facial depth information ( fshape) from the source images using a

shape encoder. This is intended to enhance the three-dimensionality of the facial contours

while preserving the original identity features of the subjects. An ablation study in order to

validate the effectiveness of depth information in enhancing the three-dimensionality of

makeup and preserving identity features is conducted. The results, as shown in Fig. 3.15,

demonstrate that models utilizing fshape perform better in maintaining facial contours

and identity features. This proves the significant role of integrating depth information in

improving the overall performance and output quality of the makeup transfer process. This

discovery provides intuitive insights into the critical components of our method.

Discussion. The importance of depth information cannot be ignored in the process of
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Figure 3.14: Comparative results of makeup transfer models trained without (w.o. HRSM)
and with (w. HRSM) the HRSM dataset, using real-world source and reference images.

makeup transfer. It allows makeup to be applied in a way that respects the natural profile

and height of the face. This means that makeup is not just adding layers of color to the face,

but takes into account the three-dimensional structure of the face, such as the height of

the bridge of the nose, the hollows of the eye sockets, and the curves of the cheeks. Such

a makeup transfer not only looks more natural, but also better adapts to the unique facial

features of different individuals.

A key reason we chose to use 3DMM is its ability to efficiently apply this 3D depth

information in a 2D image. Despite the fact that the final output is on a 2D plane, the

depth information obtained through 3DMM can enhance the three-dimensionality and

dynamics of facial features. This approach overcomes the limitations in traditional 2D

image processing, making makeup transfer not just a simple migration of colors, but a

more comprehensive artistic creation that takes into account the 3D structure of the face.

Therefore, 3DMM plays a crucial role in our makeup transfer process. It not only provides

precise information about the depth of the face, but also ensures a natural and personalized

makeup effect. We could observe the illumination on nose are significantly different.

3.4 Conclusion

In this chapter, we propose a newmakeup network called 2D and 3D Identity Preservation

Net in an attempt to overcome several limitations of the current makeup transfer framework.

IP23-Net first distills the facial geometric information and identity feature from the source

image by 3D Shape Identity Encoder. Then, we leverage Makeup Style Encoder to extract
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Figure 3.15: This figure shows makeup transfer with (w.) and without (w.o.) facial shape
feature fshape . The source and reference images are from theMT dataset. We can observe
that faces with fshape exhibit a stronger sense of three-dimensionality in the nose and lip
areas. Without fshape (third column), the facial features tend to lose their natural depth
variation. In contrast, with fshape (rightmost column), the model preserves important depth
cues through more pronounced shadowing and highlights, particularly in defining the nasal
bridge contours and lip volume. The grayscale fshape visualization (fourth column) directly
encodes the learned shape representation, where intensity values correspond to the degree
of geometric prominence in facial features.

the local makeup style from the reference image. Besides, a 3D Stereoscopic loss is pro-

posed to provide structure supervision to achieve high-fidelity makeup transfer. Background

Correction Decoder utilizes makeup and identity features for makeup transfer while restor-

ing the background by distinguishing face and background using the face shape extracted

through 3DMM. Moreover, we introduce a High Resolution Synthetic Makeup dataset by

StyleGAN2 [68], which is the largest makeup dataset. Extensive experiments on the MT

dataset demonstrate that our approach can achieve competitive makeup transfer results

and preserve the background accurately.
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4
REAL-TIME VIDEO DERAINING NETWORK WITH HIERARCHICAL

MEMORY BANK

I
nthis chapter, we study the video deraining task, which is a crucial aspect of reconstruc-

tion tasks and better aligns with real-world applications like vision-based autonomous

driving. Video deraining aims to eliminate rain streaks and artifacts from video content.

Existing methods using Convolutional Neural Network (CNN) deliver clear results but face

challenges with slower inference speeds because of the complex architectures. To address

these challenges, we introduce the Real-time Video Deraining Network (RVDNet), based on

a spatial-temporal transformer, which integrates spatial and temporal deraining processes

within a unified model. Contrary to conventional CNN-based video deraining techniques,

our model integrates both temporal variations and spatial rain distortions without the need

for distinct components. Furthermore, we employ a Long Short-TermMemory Bank (LSMB)

to store features, sourced from encoders of the rainy input frames. LSMB adeptly merges

immediate and historical frame attributes for clear rain layer pattern discernment and forti-

fies frame-to-frame communication, bolstering rain layer recognition and ensuring prompt

inference. Comprehensive evaluations across three public datasets confirm that our method

surpasses state-of-the-art benchmarks in terms of accuracy and operational speed. We will

release the code to the public. In summary, this chapter presents our approach to advancing

video deraining through the development of RVDNet, which significantly improves both

performance and speed over existing methods.
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Figure 4.1: (a) The RVDNet architecture utilizes a UNet-style approach, integrating trans-
former blocks in both the Encoder and Decoder sections, and highlights the features of the
Long Short-termMemory Bank (LSMB). (b) The basic transformer block used in Decoder
stageDi , i 2 0,1,2 of RVDNet.

4.1 Introduction

In outdoor settings, adverse weather conditions often cause cameras to record compromised

visuals, with rain layers notably diminishing visibility and impacting vision-based system

efficacy. Rain-induced disturbances create significant challenges for computer vision tasks,

including autonomous driving, augmented reality, and video editing. These disturbances can

obscure crucial visual elements or specific object attributes. Thus, deraining has emerged

as a pivotal area in computer vision research, emphasizing the optimization of intelligent

systems under rain-affected conditions. In outdoor environments, researchers continue to

make progress in developing robust deraining methods to eliminate rain from images and

videos. Deraining techniques can be divided into two primary categories: image deraining

and video deraining. Image deraining [21, 169] harnesses spatial information to remove

rain from images. Meanwhile, video deraining methods [79, 91, 126, 166, 170] further utilize

temporal information across multiple video frames to recover content affected by rain.

Several contemporary video-based methods [167, 186] employ a two-stage network for

this purpose. For instance, ESTINet [186] captures spatial information before processing

temporal information between frames. On the other hand, RDDNet [150] integrates the

concept of rain streak motions, ensuring consistency of rain layers across video frames by

referencing rain-layer annotations.

While current video deraining efforts showcase considerable progress, two primary

challenges linger in the field. (1) Architecture Inefficiency. Several of the advanced video

deraining models [167, 170, 188] differentiate between spatial and temporal correlations,

employing complex cascaded networks. These dual-structured models face latency issues
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due to their intricate parameter setups, which restrict their use in real-time applications. (2)

Limited Temporal Information Utilization. A notable limitation in contemporary techniques

is that, although processing sequences with multiple consecutive frames enhances intra-

sequence interactions, the network’s capability to restore the scene experiences only minor

improvements. This issue largely stems from overlapping content in successive frames,

leading to a lack of informational diversity. Incorporating a broader range of frames might

tackle this issue, but it markedly elevates the computational demands, amplifying the

concerns underscored in point (1).

To address the above limitations, we propose an end-to-end Real-time Video Deraining

Network (RVDNet) based on the transformer to achieve a real-time inference speed with

satisfactory performance. Specifically, inspired by the recent success of vision transform-

ers [147] in video understanding, we design RVDNet in a cascaded UNet-style architecture

to effectively incorporate all the spatial and temporal information for background recon-

struction. Incorporating a hierarchical structure, we introduce a Long Short-TermMemory

Bank (LSMB) to retain features from preceding frames. Features stored within the LSMB

are classified based on temporal variations into Long-Term and Short-Term features. By

integrating a more enriched background context at dynamically learned ratios into the

attention computation of the transformer block, we aim to enhance the network’s restora-

tion efficacy for current input frames. The LSMB draws its feature storage frommulti-scale

features provided at each stage by the encoder. This approach not only prevents redundant

feature extraction but also ensures the network optimally accomplishes real-time inference

tasks. The contents of the LSMB, once stored, become accessible in the decoder phase, serv-

ing as a direct basis for reconstructing derained frames. Fundamentally, the LSMB serves

to strengthen the connection between successive video frames, diminish computational

burdens through the utilization of conserved features, and maintain an efficient inference

pace while enhancing the network’s deraining capabilities.

• Wemake the following contributions. First, we propose an end-to-end Real-time Video

Deraining Network (RVDNet) to extract better spatial-temporal information for video

deraining in a single model

• We develop a lightweight LSMB to enhance the reconstruction of the network. To the

best of our knowledge, RVDNet is the first real-time transformer-based framework for

video-deraining.

• We achieve new state-of-the-art performance on widely-used video deraining bench-

marks, including NTURain, RainSynLight25 and RainSynHeavy25.
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4.2 Method

4.2.1 Network Architecture

For a rainy sequence Srainy comprising n input rainy frames { ft°n , ..., ft°1, ft } of dimensions

n£H £W £3, our objective is to devise a deraining model that can eliminate the rain layer

and produce the clean sequence Sclean . The network structure is shown in Fig. 4.1(a).

Encoder. A singular convolutional layer with a kernel size of 3£ 3 efficiently extracts C

features from rainy frames. The encoder has four stages, represented as Ei , with i 2 {0,1,2,3}.

Within Ei , Swin Transformer blocks utilize shifting non-overlapping windows to balance

computational efficiency with learning long-range dependencies. Given window sizeM£M ,

it partitions input video frames into non-overlapping windows. Post Layer Normalization

(LN), Window-based Multi-head Self-Attention (W-MSA) [98] processes local attention. Sub-

sequently, a Multi-Layer Perception (MLP) coupled with an LN layer undergoes further

transformation. Another Swin Transformer block introduces Shifted Window-basedMulti-

head Self-Attention (SW-MSA) [98], integrating cross-window connections. In this block,

the only difference is a shift in input features by bM2 c£bM2 c before partitioning, enabling it
to capture dependencies both spatially and temporally. SW-MSA outputs are then down-

sampled via a convolutional layer, except for E3. Incidentally, Fi , are stored in the Long

Short-TermMemory Bank (LSMB) to optimize decoder performance.

Decoder. Same as the encoder part, the decoder incorporates four stages, termed as Di ,

with i 2 {0,1,2,3}. Excluding the final stageD0, each subsequent stage incorporates a con-

volutional layer for upsampling. The cascaded UNet-style structure ensures each decoder

stageDi has two inputs, excludingD3. These consist of output features from the preceding

decoder stage as (Q) and features from LSMB as (K,V). Besides employing W-MSA and

SW-MSA, our approach integrates Window-based Multi-head Cross Attention (W-MCA)

and Shifted Window-based Cross Attention (SW-MCA) betweenQ and K,V (as shown in Fig.

4.1(b)). The specific operation sequence is as follows:

(4.1)

Q0 =W-MSA(LN(Q))+Q

H1 =W-MCA(LN(Q0),LN(K),LN(V))+Q0

H0
1 =MLP(LN(H1))+H1

H2 = SW-MSA(LN(H0
1))+H0

1

H0
2 = SW-MCA(LN(H2),LN(K),LN(V))+H2

D̂i =MLP(LN(H0
2))+H0

2.

D̂i represents the output from each individual stage of the Decoder. Finally, instead of
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employing a tail reconstructionmodule with numerous residual-blocks, we utilize a singular

convolutional layer with a 3£ 3 kernel size to translate features to the RGB level. These

modifications aim to maintain the real-time inference capability of our RVDNet.

4.2.2 Long Short-TermMemory Bank

Traditional methods often focus on information derived from adjacent input frames. Recog-

nizing the constraints of depending only on short-term local changes to capture full rain

layer data, we propose a hierarchical feature matching and propagation approach using

multiple sequences. Memory networks demonstrate stability, particularly evident in video

object segmentation [112]. Inspired by this, we introduce the Long Short-Term Memory

Bank (LSMB) for video deraining.

Within the LSMB framework, multi-scale features originate from the current input of

n consecutive frames through the encoder, and from an additional 2n previous frames.

Such an approach reduces computational demands and enhances network inference speed.

Thesemulti-scale features fromdifferent frames are segmented into three distinct categories:

the features corresponding to the initial n frames are considered long-term and denoted as

Fi ,l t . The features from the following fn+1,...,2n frames are termed short-term, symbolized as

Fi ,st . Lastly, the features stemming from the latest rainy frames, specifically f2n+1,...,3n , are

designatedFi , where i indicates the encoder’s stage and falls within {0,1,2}.

Short-Term Features.Fi ,st captures the current data associated withFi . Considering the

typically smooth transitions between sequential video frames, Fi ,st offers an in-depth

scene context, enhancing background reconstruction. However, due tominimal background

variations, the information provided byFi ,st can contain redundant portions.

Long-Term Features. The temporal gap betweenFi ,l t andFi presents difficulties, particu-

larly during pronounced scene changes or video irregularities such as camera reframing.

Sequences from earlier frames might provide a more robust reference for reconstruction. In

situations characterized by these irregularities,Fi ,l t serves as an essential long-term refer-

ence, ensuring a stable foundation for scene reconstruction. This methodology leverages the

inherent stability of long-term sequences, amplifying reconstruction accuracy. In crafting

our Real-time Video Deraining Network (RVDNet), we merge the insights from both long

and short-term features to enhance deraining. BothFi ,l t andFi ,st are integral during the

reconstruction stage. We’ve integrated a flexible parameter Æ 2 [0,1] that adjusts adaptively

throughout the training phase. Considering RVDNet’s real-time priority, maintaining com-

putational efficiency is paramount. We concatenateFi ,l t ,Fi ,st , andFi and then utilize a

1x1 convolutional layer to fine-tune these combined features, ensuring alignment with the

47



CHAPTER 4. REAL-TIME VIDEO DERAINING NETWORK WITH HIERARCHICAL MEMORY
BANK

NTURain RainSynLight25 RainSynHeavy25 FPS Parameters
Method

PSNR" SSIM" PSNR" SSIM" PSNR" SSIM" " (Millions) #
FastDerain [60] TIP’18 30.32 0.9262 29.42 0.8683 19.25 0.5385 2.52 -

SpacCNN [17] CVPR’18 33.11 0.9474 32.78 0.9239 21.21 0.5854 0.11 -

FCDN [166] CVPR’19 36.05 0.9676 35.80 0.9622 27.72 0.8239 1.11 -

SLDNet [170] CVPR’20 34.89 0.9540 34.28 0.9586 26.51 0.7966 - -

S2VD [177] CVPR’21 37.37 0.9683 34.66 0.9403 27.03 0.8255 8.07 2.05

ESTINet [188] TPAMI’22 37.48 0.9700 36.12 0.9631 28.48 0.8242 1.49 91.96

RDDNet [150] ECCV’22 37.71 0.9720 38.61 0.9766 32.39 0.9318 0.54 30.64

RVDNet-S Ours 37.31 0.9718 38.31 0.9734 30.83 0.9293 25.64 4.02

RVDNet-L Ours 38.85 0.9771 39.22 0.9793 33.28 0.9374 19.61 5.58

Table 4.1: Quantitative comparison of our network and compared methods on three public
datasets NTURain [17], RainSynLight25 and RainSynHeavy25 [42]. FPS is computed on
Nvidia Quadro RTX 6000 machine and on NTURain dataset. Best results are denoted in red
and the second best results are denoted in blue.

originalFi dimensions. The formula is defined as:

(4.2)
Fi ,l st =Æ ·Fi ,l t + (1°Æ) ·Fi ,st

Fi ,l st =Conv1£1(Concat(Fi ,Fi ,l st )).

4.3 Experiment

4.3.1 Implementation Details

Datasets. The NTURain dataset, curated by Chen et al. [17], includes images from cameras

at varied motion speeds, with 24 training sequences of rainy scenes and 8 testing sequence

pairs. It also contains seven authentic rainy videos. RainSynLight25 provides 190 RGB train-

ing sequence pairs and 27 testing pairs, each with rainy and clean versions. These clean

images derive from CIF, HDTV, and HEVC standard sequences, enhanced by rain streaks

from a probabilistic model [39]. RainSynHeavy25, similar to RainSynLight25, features more

distinct rain streaks characterized by clear lines and sparkle noises.

Training.We propose RVDNet in two versions, denoted as small (S) and large (L) architec-

tures, which correspond to the number of Swin Transformer blocks employed in each stage

of the encoder Ei and decoderDi . Specifically, for the small and large architectures, we set

the number of Swin Transformer blocks to 4, and 6, respectively. The network is optimized

with an L1 loss and we utilize PyTorch to implement our RVDNet and train it using the Adam
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optimizer on two NVIDIA RTX 6000 GPUs. Our network takes in four frames as input to

perform video deraining.

Inference.During the initial n frames, predictions rely on the RVDNet baseline. With the

second batch of inputs, LSMB initiates, using the first batch asFi ,st . As it progresses,Fi ,st

andFi ,l t activate, improving inference using enhanced features.

OursRDDNetESTINet GTFastDerainInput

Figure 4.2: Visual comparison of different deraining methods on NTURain dataset (Upper
Part) and SynLight25 dataset (Lower Part). The yellow box indicates the comparison of rain
streak removal. The red box indicates the comparison of detail retention.

Input ESTINet RDDNet Ours

Figure 4.3: Visual comparison of different derainingmethods on real-world rainy frame from
NTURain dataset [17]. The red box indicates the comparison of detail retention.

RVDT-L Metric 1 Metric 2 Metric 3

Basic X X X
Short-Term X X
Long Short-Term X
PSNR (") 37.41 38.32 38.85

SSIM (") 0.9716 0.9759 0.9771

Table 4.2: Ablation Study on RVDNet-L Performance using the NTURain dataset.
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Input Frames PSNR (") SSIM (")
2 frames 37.41 0.9716

4 frames 38.85 0.9771

6 frames 38.92 0.9775

8 frames 38.94 0.9776

Table 4.3: Ablation study on the impact of input frames in RVDNet-L.

4.3.2 Quantitative Evaluation

Table 4.1 provides a thorough comparison between our proposed models, RVDNet-S and

RVDNet-L, and other advanced video deraining methods, such as FastDerain [60], SpacCNN

[17], FCDN [166], SLDNet [170], S2VD [177], ESTINet [188], and RDDNet [150] across three

public datasets. RVDNet-S, designed for real-time requirements beyond 24 FPS, shows

prominent performance with an impressive 25.64 FPS, emphasizing its efficiency in real-

time situations. Meanwhile, RVDNet-L, developed with a focus on detailed restoration,

consistently achieves top PSNR and SSIM scores across all datasets, indicating its prowess in

preserving intricate image details. The unique attributes of our models address deraining

challenges, from fast processing to detail preservation.

4.3.3 Qualitative Evaluation

We evaluated our RVDNet-L model against recent advanced techniques such as FastDerain

[60], ESTINet [188], and RDDNet [150] on the SynLight25 and NTURain datasets (refer to

Fig.4.2 and Fig.4.3). Our approach effectively retains pristine backgrounds post rain removal,

evidenced by enhanced PSNR/SSIM values. Fig.4.2 demonstrates that our model achieves

thorough rain layer removal. While the visualization from RDDNet shares similarities with

our output, our model showcases superior inference speed during detailed background

reconstruction. The test frame in Fig.4.3 is from the NTURain real-world dataset, with

close-up views highlighting our approach’s exceptional background restoration capabilities.

4.3.4 Ablation Study

The ablation study conducted on RVDNet-L, as presented in Table 4.2, underscores the

significance of temporal elements in video deraining. Starting with a PSNR of 37.41 and

SSIM of 0.9716 for the basic model, the introduction of the short-term component brought

about a marginal improvement. However, when the long short-term component was added,

the metrics increased notably to a PSNR of 38.85 and an SSIM of 0.9771. This highlights the
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importance of leveraging both immediate and extended temporal associations for proficient

rain pattern detection and video enhancement.

Additionally, we conduct experiments to investigate the impact of input frame numbers,

as shown in Table 4.3. The results reveal that while using only 2 frames leads to suboptimal

performance (PSNR: 37.41, SSIM: 0.9716), increasing to 4 frames significantly improves the

deraining quality (PSNR: 38.85, SSIM: 0.9771). Further increasing the input frames to 6 or

8 yields minimal improvements (less than 0.1dB PSNR), suggesting that 4 frames provide

sufficient temporal information for effective rain removal while maintaining computational

efficiency.

4.4 Conclusion

In conclusion, the RVDNet approach addresses video deraining challenges effectively. Merg-

ing spatial-temporal data and utilizing an LSMB, it enhances inter-frame connections and

reduces computational demands. Its exemplary results on leading benchmarks highlight

the model’s significant potential in handling rain-affected visuals.
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5
CRISS-CROSS DIFFUSION MODELS FOR ALL-IN-ONE BLIND

IMAGE RESTORATION

A
fter optimizing the balance between speed and performance in video deraining,

we expand our research into the field of All-in-One image restoration, utilizing a

unified restoration model across multiple degradation scenarios rather than employ-

ing separate models for individual cases. In this chapter, we first introduce the diffusion

model to address the All-in-One image restoration task, instead of relying on conventional

Transformer and CNN-based methods. The diffusion model is trained via a probabilistic

process of incremental denoising, enabling it to effectively capture diverse image patterns

and demonstrate strong generalization capabilities, making it particularly well-suited for

addressing a wide range of unknown image degradation challenges. However, after observ-

ing the reconstruction process over multiple iterations of the diffusion model, it becomes

evident that the reconstruction of high-frequency texture information is often random and

inaccurate due to the suppression of edge information as noise.
To address this issue, we propose the Criss-cross Diffusion Model (CrDiff) for All-in-

One image restoration. This model leverages static wavelet transform operations to extract

high-frequency information from degraded images and guides the diffusion model to recon-

struct high-frequency textures through a novel high-frequency encoder in the latent space.

Furthermore, to ensure that this encoder captures accurate high-frequency information

during training, we include a matching high-frequency decoder in the training process.

Extensive experiments on popular benchmarks for multiple degradation tasks show that

CrDiff achieves excellent performance.
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5.1 Introduction

Image degradation is a common problem that affects the quality and clarity of images

captured by cameras. It can be caused by various factors, such as noise, blur, haze, and

rain, interfering with the capture process. Image restoration is a task that aims to recover a

high-quality clean image from a degraded one. Traditional approaches focus on the explo-

ration of the image prior, such as sparse [99, 104], low-rank [45, 161], self-similarity [24] etc.

Recently, deep learning-based methods [1, 21, 142, 206] have achieved remarkable results

in image restoration. However, these methods are usually designed and trained for specific

degradation types and levels, such as denoising [2, 8, 178], deraining [81, 202], and dehazing

[34, 124]. Therefore, they cannot handle complex and diverse degradation scenarios that

may occur in real-world applications. To expand their applicability, some methods have

proposed to develop All-in-onemodels that can restore images from various types and levels

of degradation. For example, AirNet [73] uses an extra encoder to learn different types of

image degradation by contrastive learning. PromptIR [119] leverages the prompt learning

approach to enhance the degradation-specific representations.
Nevertheless, existing methods enhance the generalization of models through supple-

mentary designs; however, these improvements still rely on conventional architectures and

fail to deliver an all-in-one solution that can uniformly address all types of degradation.

To address this limitation, we introduce a Criss-crossDiffusion model (CrDiff) based on a

diffusion model that learns the data distribution by adding and removing noise from images

[50]. Specifically, we observe that the diffusion model tends to put more effort into restoring

color patches while ignoring high-frequency details in the image which contains the details

of the original image, such as edges, textures, and patterns. Based on the above observations,

we extend the vanilla diffusion model to incorporate high-frequency information from de-

graded images. We develop the Stationary Wavelet Transform (SWT) to filter high-frequency

information from the degraded image and via a lightweight extra encoder Eh to integrate

the high-frequency information in the latent space. We then design a high-frequency fusion

block to use the high-frequency information as a guiding signal in the latent space, help-

ing the model reconstruct detailed features more accurately. Moreover, we design a paired

decoderDh between Eh to reconstruct the high-frequency information. It aims to ensure

the ability to extract high-frequency information of Eh . By combining the above design,

our CrDiff model can restore the input degraded image with high quality in an All-in-One

manner without any prior knowledge. Extensive experiments demonstrate the robust gen-

eralization capabilities of our Crdiff model, which consistently achieves state-of-the-art

results across various image restoration tasks, including denoising, deraining, and dehazing,
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all within a unified framework.

The main contributions are summarized as follows:

• We develop a Criss-Cross DiffusionModel (CrDiff) for All-in-One image restoration,

which relies only on the input image for clean image recovery, without the need for

prior knowledge of the image’s degradation.

• We introduce a High-frequency Enhancement Network and High-frequency Fusion

Block, which enables ourmodel to adaptively utilize high-frequency features to restore

the vivid details of the image.

• We conduct extensive experiments to confirm our model’s superior performance

across a spectrum of image restoration tasks, including image denoising, deraining,

and dehazing, using a single, unified model.

5.2 Method

5.2.1 Motivation

Reason for UsingDiffusionModels. The recent Diffusion-based Image Restorationmethods

have achieved satisfactory results in the field of image reconstruction, due to the fact that the

diffusion model introduces different levels of noise during the training process to simulate

various degradation processes, such as rain layer, haze, and so on. This multi-layer noise not

only simulates real-world degradation, but also allows the model to learn to recover images

under different degrees of distortion and damage, which largely increases the generalisation

of the model. Instead of completely removing all the noise at once, the model gradually

reduces the noise level during the inverse iteration process.

Limitations of DiffusionModels in Reconstruct Tasks. Through the analysis of Fig.5.1, we

found that there is an obvious asynchrony phenomenon in the reconstruction process of

low-frequency information and high-frequency information in the diffusion model in the

image reconstruction task. Specifically, the reconstruction of low-frequency information

by the model shows a trend of gradual clarity, gradually transitioning from a blurred state

to clear details. However, the reconstruction of high-frequency information shows signif-

icant fluctuations, and its detail recovery is mainly concentrated in the final stage of the

reconstruction process. This delayed recovery of high-frequency information indicates that

the model has a weak ability to capture high-frequency details in the early stages, making
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(a) (b)
Figure 5.1: (a) The denoising process of the Vanilla diffusion model, shown over 8 steps,
visualizes the final 6 iterations. The top row illustrates the iterative denoising progression,
while the low- and high-frequency components, separated via Stationary Wavelet Trans-
form (SWT), are displayed in the second and third rows. The low-frequency component
quickly restores the image’s color and overall structure with minimal variation, while the
high-frequency component exhibits more noticeable changes throughout the denoising
process. (b) The spectrograms show changes in low- and high-frequency components during
reconstruction. In the low-frequency plots, the waveform proximity indicates consistent
recovery of the overall structure across steps, reflecting the model’s stability. In contrast,
the high-frequency plots display greater variability, suggesting significant differences in the
model’s ability to recover fine details throughout the process.

it difficult to achieve high-quality image reconstruction. Given that high-frequency infor-

mation usually contains key details in the image and becomes a core factor affecting the

reconstruction effect, we try to strengthen the reconstruction strategy for high-frequency

information in the diffusionmodel, focusing on enhancing the model’s early perception and

processing capabilities of high-frequency information.

5.2.2 Criss-cross Diffusion

Our CrDiff is based on Denoising Diffusion Probabilistic Models and introduces an addi-

tional High-frequency Enhancement Network as a powerful auxiliary network, in addition,

to ensure the perfect interaction of the information, we further design the High-frequency

Fusion Block (HFB), the overall structure of CrDiff, as shown in Fig. 5.2 (a).
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(a) Criss-cross Diffusion model (CrDiff)
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Figure 5.2: The upper part of the figure shows the diffusion as well as denoising process of
the diffusion model. (a) shows the Criss-cross Diffusion model (CrDiff) we designed, where
xc as the input degraded image is our reconstruction target. (b) Shows the internal structure
of the High-frequency Fusion Block (HFB) we designed, and the operation flow of processing
and fusing the high-frequency information to enhance the details and textures of the image.

(1) Denoising Diffusion Probabilistic Models

In the field of image restoration, Denoising Diffusion Probabilistic Models (DDPMs)

provide a robust framework to handle various types of degradation. DDPM simulates image

degradation through a gradual forward diffusion process that progressively transforms the

clean image x0 into a noisy image xT , formalized into a Markov chain:

(5.1) q(xt |xt°1)=N (xt ;
p

Æt xt°1, (1°Æt )I).

Here, Æt is the noise level coefficient, which monotonically decreases with step t . Each step
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of noise addition follows a Gaussian distribution, where xt°1 is the state of the image at the

previous time step. The ultimate goal of the forward diffusion is to reach a noise state xT ,

which follows a standard Gaussian distributionN (0,I). The image at any intermediate step

xt can be obtained through its relation with the initial image x0, namely:

(5.2) q(xt |x0)=N (xt ;
p

Ǣt x0, (1° Ǣt )I).

Here, Ǣt is the product of all noise scaling coefficients Æi up to time step t . Through this

method, we can simulate the process from a clear image to a completely random noisy

image. In the reverse process of DDPM, the aim is to reconstruct the original lossless image

x̂0. During the reverse process, we begin with a noisy image xT , which is generated in the

forward process by gradually adding noise. The goal of the reverse process is to gradually

remove these noise elements, ultimately restoring the clean image x̂0. At time step t , the

reverse process estimates the conditional probability distribution of xt°1, given by:

(5.3) p(x̂t°1|x̂t ,xc)=N (x̂t°1;µµ(x̂t , t ,xc),ßµ(x̂t , t ,xc)).

Here, µµ is the conditional mean, while ßµ is the conditional variance, both of which are

computed from a parameterized neural network. They take the degraded image xc as an

input, in conjunction with the current reconstruction image x̂t , and together decide the

state of reconstruction in the next step.

The noise ≤µ(x̂t , t ,xc) predicted by the neural network is used to approximate the noise

component of xt°1, and the reconstructed image is updated according to the following

formula:

(5.4) x̂t°1 =
1

p
Æt

(x̂t °
1°Ætp
1° Ǣt

≤µ(x̂t , t ,xc)).

In this way, the reverse process iterates, each step gradually decreasing noise and restoring

clearer image features, until finally estimating a clean image x̂0.

(2) High-frequency Enhancement Network

High-frequency Encoder. In addressing the issue of high-frequency information loss during

the diffusion process, we propose the introduction of an auxiliary guiding mechanism.

This mechanism is embodied in the design of the High-frequency Encoder, denoted as Eh .

The key feature of Eh is that its network structure mirrors that of the backbone encoder,

facilitating the effective fusion of multi-scale information.

Contrasting with the backbone encoder, the input to Eh is not the image itself but the

high-frequency information extracted from the image using the Stationary Wavelet Trans-

form (SWT). This approach underscores our commitment to preserving and processing
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high-frequency details that are crucial in certain image processing tasks. The SWT is ad-

vantageous due to its excellent boundary processing, spatio-temporal localization, and

multi-scale analysis capabilities. It can effectively identify and analyze image details and

structural information at different scales, making it particularly suitable for tasks such as

image denoising, texture analysis, and image segmentation. When processing a 2D image, it

is especially important to use the general formula of the wavelet transform for each colour

channel of the image. The formula for the input degraded image xc(i , j ) can be applied in

this case. The formula is defined as follows:

(5.5) Cc(i , j )=
X
m

X
n
F1(m)F2(n) · xc(i °2m, j °2n).

Here, Cc(i , j ) denotes the wavelet coefficients post-transformation, with F1(m) and F2(n)

representing the filters applied to the image. These filters can be low-pass filters (L), which

capture the smooth part of the image, or high-pass filters (H), which capture the detailed

part of the image. By combining different kinds of L and H, it is possible to obtain the finest

horizontal and vertical high-frequency detail informationHHc , LHc , HLc , and low-frequency

information LLc for xc .

The obvious advantage of this SWT operation is the ability to clearly distinguish between

the various wavelet coefficients, which is essential for accurate image analysis and process-

ing. To focus the attention of Eh on high-frequency information, we strategically discard the

LLc part. For the remaining high-frequency information 8c 2 {LH,HL,HH},c 2RH£W£C , we

concatenate along the channel dimension and obtain Hc 2RH£W£3C as the input to Eh . After

that, we employ the extractor Eh on Hc to derive layered feature representations F l
h , where

each layer l contributes to capturing distinct aspects of the high-frequency components. In

summary, we design it in such a way that Eh serves as a bridge connecting the encoder E of

the diffusion model backbone and the denoising decoderD .

High-frequency Decoder. In order to ensure the correct perception of high-frequency infor-

mation by Eh during the training process, we designed the corresponding High-frequency

Decoder denoted as Dh . This decoder is used only in the training phase. Specifically, by

reconstructing the high-frequency details, Dh enables Eh to better tune its weights and

parameters to accurately capture the key subtle features in the diffusion process. This not

only enhances the overall model’s ability to handle high frequency and detailed information,

but also allows Eh to understand and encode this critical information more deeply through

Dh during the training phase. The design optimises the quality of the latent spatial features

used by Eh during diffusion. Abandoning the use of Dh in the inference phase maintains

the efficiency and simplicity of the model, while considering the computational cost and
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speed at runtime to maintain both efficiency andmodel performance. Similarly, the features

obtained from Eh are connected toDh in a skip connection to get the output H̃c .

(3) High-frequency Fusion Block (HFB)

In the architecture of the diffusion model, we introduce a key component - the High-

frequency Fusion Block (HFB), which aims to improve the ability of the model to pre-

serve high frequency information. The design of this module allows the model to use high-

frequency information in the latent space to enhance the transmitted features prior to

dimension sampling, thereby improving the restoration of image details and textures. The

specific structure of HFB is shown in Fig. 5.2 (b).

We addHFBs after each block in the backbone, denoted as {HFB1,HFB2, . . . ,HFBL}. These

modules correspond to the layers in the network {F 1,F 2, . . . ,FL}. Each HFBl is designed to

fuse the output F l from the diffusion model block at its corresponding layer l with the

multi-scale high-frequency features F l
h obtained from Eh . For each level l in the network,

HFBl intervenes before the dimension sampling, ensuring that the diffusion block F l in the

backbone network can be fully integrated with the high-frequency features F l
h . The fusion

operation of HFB can be expressed as F l
out =HFBl (F l ,F l

h). Here, F l
out is the fused feature

representation which is fed to the next layer of the network. In addition, our F l
out features in

E are also transmitted to the decoderD through the skip connection.

In the HFB, we concatenate the two components along the channel dimension, resulting

in F l
f . The process begins with layer normalization (LN), followed by linear projection

to compute queries Q f , keys K f , and values V f from F l
f . Subsequently, we calculate the

Multi-head Self-Attention (MSA):

(5.6) MSA(F l
f )= SoftMax(Q f · (K f )T )£V f .

Furthermore, we compute the Mutual-Cross-Attention (MCA) between F l and F l
f . Specifi-

cally,MCA enables each featuremap to focus on another, extracting relevant contextual infor-

mation from the spatial regions of the other. Since the value of dimensionC changes during

the generation of F l
f , for alignment, we concatenate F l with itself to obtain F̂ l 2RH£W£2C .

Both F l
f and F̂ l are processed through layer normalization (LN). Subsequently, linear projec-

tion is used to compute the correspondingQ f , K f , V f , and Q̂, K̂ , V̂ . The formulas for MCA

are defined as follows:

MCA1(F
l
f , F̂

l )= SoftMax(Q f · (K̂ )T ) · V̂(5.7)

MCA2(F̂
l ,F l

f )= SoftMax(Q̂ · (K f )T ) ·V f ,(5.8)

To maximize the preservation of useful information and save computational cost, we con-

catenate MCA1 andMCA2 and then compress their dimensions to the input size through a
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1£1 convolution layer. The function is defined as:

MCA(F̂ l ,F l
f )=Conv1£1[MCA1;MCA2],(5.9)

Here, [; ] denotes the concatenation operation. Then, these improved representations are

integrated through a Conv1£1 convolution, reducing their dimensions. Finally, a Conv3£3
operation refines these features in the Gated Depthwise Convolutional feed-forward Net-

work (Gated-Dconv feed forward network, GDFN) [179], ensuring precise and controlled

transformations in the restoration task.

5.2.3 Training Stage

In Section 5.2.2, the objective function for the vanilla diffusionmodel (µ), is concisely defined

as follows:

(5.10) Ldiff(µ)= Eq(x0:T |xc )
h TX

t=1
||≤°≤µ(x̂t , t ,xc)||1+||x̂0°xg t ||1

i

The first term
PT

t=1 ||≤° ≤µ(x̂t , t ,xc)||1 measures the MAE loss between the predicted and

actual noise. The second term ||x̂0°xg t ||1 quantifies theMAE loss between the reconstructed

image and the ground truth xg t .

Furthermore, we also introduce a detail reconstruction loss. Specifically, we perform the

same SWToperation on xg t and concatenate the obtained high-frequency information along

the channel dimensions to obtain Hg t , after which we compute the MSE loss by applying

the outputs H̃c obtained from the High-frequency Enhancement Network (¡), the formula

for this loss is:

(5.11) Ldetail(¡)=MSE(H̃c ,Hg t )=
1
N

NX

i=1
(H̃(i )

c °H(i )
g t )

2.

Ultimately, the total optimization objective combines the high-frequency information loss

Ldetail(¡) and the diffusion model lossLdiff(µ). The combined loss function is defined as:

(5.12) Ltotal(µ,¡)=Ldiff(µ)+∞ ·Ldetail(¡).

∞ is a trade-off coefficient that balances the effects of the two loss functions.

5.3 Experiments

5.3.1 Setup

Datasets. We prepare datasets for different restoration tasks, following closely the prior

work [119]. For image denoising in the single-task setting, we use a combined set of BSD400 [3]
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andWED [103] datasets for training. The BSD400 dataset contains 400 training images and

the WED dataset has 4,744 images. From clean images of these datasets, we generate the

noisy images by adding Gaussian noise with different noise levels æ 2 {15,25,50}. Testing is

performed on BSD68 [105] and Urban100 [54] datasets. For single-task image deraining, we

use the Rain100L [156] dataset, which consists of 200 clean-rainy image pairs for training,

and 100 pairs for testing. For image dehazing in the single-task setting, we utilize SOTS [76]

dataset that contains 72,135 training images and 500 testing images. Finally, to train a unified

model under the All-in-One setting, we combine all four aforementioned datasets and train

a single model that is later evaluated onmultiple tasks.

Schedules. In this study, we have set the training period for the model to 400 epochs , with

an image training size of 224 £ 224 pixels. The training is conducted on two NVIDIA A40

GPUs, processing 48 images per batch. The AdamW optimizer is adopted for optimization.

The batch size is set to 12 and ∞= 0.5.
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Figure 5.3: Deraining, Denoising and Dehazing results for All-in-One methods. Our method
effectively reconstructs clean images of all degradation types.

5.3.2 Comparison Experiment

The robustness of our proposed CrDiff is tested on three core image restoration tasks: de-

noising, dehazing and deraining. Following the protocols established in [74], our evaluation

framework is divided into two distinct approaches: the comprehensive All-in-One strategy,

where a single model is tasked with correcting all types of image degradation, and the ded-

icated single-task strategy, where unique models are tailored to each specific restoration

challenge. Best results are denoted in red and the second best results are denoted in blue.
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Dehazing Deraining Denoising on BSD68 dataset
Method

on SOTS on Rain100L æ= 15 æ= 25 æ= 50
Average

DL [37] 26.92 / 0.391 32.62 / 0.931 33.05 / 0.914 30.41 / 0.861 26.90 / 0.740 29.98 / 0.875

LPNet [40] 20.84 / 0.828 24.88 / 0.784 26.47 / 0.778 24.77 / 0.748 21.26 / 0.552 23.64 / 0.738

BRDNet [143] 23.23 / 0.895 27.42 / 0.895 32.26 / 0.898 29.76 / 0.836 26.34 / 0.836 27.80 / 0.843

FDGAN [34] 24.71 / 0.924 29.89 / 0.933 30.25 / 0.910 28.81 / 0.868 26.43 / 0.776 28.02 / 0.883

MPRNet [181] 25.28 / 0.954 33.57 / 0.954 33.54 / 0.927 30.89 / 0.880 27.56 / 0.779 30.17 / 0.899

AirNet [74] 27.94 / 0.962 34.90 / 0.967 33.92 / 0.933 31.26 / 0.888 28.00 / 0.797 31.20 / 0.910

PromptIR [119] 30.58 / 0.974 36.37 / 0.972 33.98 / 0.933 31.31 / 0.888 28.06 / 0.799 32.06 / 0.913

CrDiff (Ours) 31.24 / 0.981 40.37 / 0.986 34.35 / 0.941 32.12 / 0.903 29.02 / 0.815 33.42 / 0.925

Table 5.1: Comparisons under All-in-One restoration setting: single model trained on a com-
bined set of images originating from different degradation types. Our method achieves the
best results on all three representative image restoration tasks, especially on the Deraining
task where the value of PSNR directly increases by 3 dB.

(1) Multiple Degradation All-in-One Results

In order to evaluate the performance of CrDiff, we carefully compare it with the lat-

est research in the current field PrompIR [119] and the classical approach AirNet [74] as

well as involving other related approaches such as BRDNet [143], LPNet [40], FDGAN [34],

MPRNet [181], to ensure the comprehensiveness of the assessment. In the dehazing task,

CrDiff outperforms PrompIR (30.58/0.974) and AirNet (27.94/0.962) on the SOTS dataset [76]

(PSNR of 31.24, SSIM of 0.981). For deraining, CrDiff achieves a PSNR of 40.37 and an SSIM of

0.986 on the Rain100L dataset [37], significantly outperforming PrompIR (36.37/0.972) and

AirNet (34.90/0.967). This significant improvement demonstrates the superiority of CrDiff

in removing raindrops and recovering image details. For the denoising task on the BSD68

dataset [105], CrDiff outperforms PrompIR and AirNet at all noise levels (æ = 15,25,50),

especially at higher noise levels (æ= 50). The PSNR of CrDiff is 29.02 and the SSIM is 0.815,

which are much higher than the other methods. This result highlights CrDiff’s ability to

maintain image quality and detail in high noise environments, as well as its robustness and

adaptability to different denoising tasks.
(2) Single Degradation One-by-One Results

Denoising. In a single-task denoising experiment on the BSD68 dataset [105], our CrDiff

network particularly highlights its performance advantages in a high-noise environment.

For the noise level æ= 50, CrDiff achieves a PSNR of 29.51 and an SSIM of 0.834, significantly

higher than other methods such as PromptIR [119]. This significant improvement stems

from CrDiff’s focus on high-frequency detail recovery, which is especially critical in high-

noise environments. In contrast, at low noise levels (æ= 15 and æ= 25), while CrDiff still
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PSNR " / SSIM "
Method

æ= 15 æ= 25 æ= 50

DnCNN [190] 33.89 / 0.930 31.23 / 0.883 27.92 / 0.789

IRCNN [191] 33.87 / 0.929 31.18 / 0.882 27.88 / 0.790

FFDNet [192] 33.87 / 0.929 31.21 / 0.882 27.96 / 0.789

BRDNet [143] 34.10 / 0.929 31.43 / 0.885 28.16 / 0.794

AirNet [74] 34.14 / 0.936 31.48 / 0.893 28.23 / 0.806

Restormer [179] 34.29 / 0.937 31.64 / 0.895 28.41 / 0.810

PromptIR [119] 34.34 / 0.938 31.71 / 0.897 28.49 / 0.813

CrDiff (Ours) 34.45 / 0.938 32.32 / 0.911 29.51 / 0.834

Table 5.2: Quantitative comparison of our method and other state-of-the-art methods on
denoising dataset BSD68.

Method PSNR " SSIM "
DIDMDN [185] 23.79 0.773

UMR [175] 32.39 0.921

SIRR [157] 32.37 0.926

MSPFN [59] 33.50 0.948

LPNet [40] 33.61 0.958

AirNet [74] 34.90 0.977

Restormer [179] 36.74 0.978

PromptIR [119] 37.04 0.979

CrDiff (Ours) 38.64 0.988

Table 5.3: Evaluating Deraining task on Rain100L dataset. Our CrDiff achieving top results
of 38.64 in PSNR and 0.988 in SSIM, highlighting its advanced performance in deraining
scenarios.

leads, the advantage is smaller. This is because the need for high-frequency detail recovery

is less urgent at low noise than at high noise.

Dehazing. In the dehazing task, although CrDiff marginally outperforms with a PSNR of

31.85 and an SSIM of 0.977, its advantage over PromptIR [119] (31.31/0.973) is relatively

modest. This can primarily be attributed to the specific demands of dehazing tasks, which

prioritize accurate restoration of color and brightness, diverging slightly from CrDiff’s forte

in high-frequency detail recovery.

Deraining. In the task of rain removal, CrDiff demonstrated a significant performance

improvement, achieving a PSNR of 38.64 and an SSIM of 0.988, substantially surpassing
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Method PSNR " SSIM "
AODNet [75] 20.29 0.877

EPDN [121] 22.57 0.863

FDGAN [34] 23.15 0.921

AirNet [74] 23.18 0.900

Restormer [179] 30.87 0.969

PromptIR [119] 31.31 0.973

CrDiff (Ours) 31.85 0.977

Table 5.4: Quantitative results on the SOTS dataset in terms of PSNR and SSIM.

other methods such as PromptIR [119], which achieved a PSNR of 37.04 dB and an SSIM of

0.979. This significant improvement is due to CrDiff’s effective handling of high-frequency

details, particularly important for capturing rain layer characteristics.

5.3.3 Ablations Studies

Impact of Stationary Wavelet Transform (SWT): We verify the effectiveness of the SWT

operation on the deraining task and test the impact of the high-frequency enhancement

network on different inputs. As shown in Table 5.5, allowing Eh to learn high-frequency

information as targeted guidance achieves the best results.

Impact of High-Frequency Enhancement Network: In our ablation study, detailed in Ta-

ble 5.6, we demonstrate the impact of high-frequency components in image restoration tasks.

The basic model serves as a baseline, while the addition of the High-Frequency Encoder

(Eh) significantly enhances performance. The incorporation of the High-Frequency Decoder

(Dh) further improves results, achieving top metrics in PSNR and SSIM. This highlights the

importance of each component in refining our model’s capability to restore images with

high precision, especially in preserving high-frequency details.

CrDiff PSNR"/SSIM"
w.o SWT 37.92 / 0.977

w. SWTfull 38.43 / 0.986

w. SWThigh-freq 38.64 / 0.988

Table 5.5: Performance comparison of SWT on deraining dataset Rain100L. The best results
are highlighted in bold.
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Deraining Dehazing Denoising

Basic Eh Dh PSNR" / SSIM" PSNR" / SSIM" PSNR" / SSIM"
X 36.53 / 0.969 29.87 / 0.970 26.58 / 0.745

X X 37.98 / 0.982 31.02 / 0.971 28.89 / 0.928

X X X 38.64 / 0.988 31.85 / 0.977 29.51 / 0.834

Table 5.6: Quantitative ablation results illustrating the efficacy of theHigh-frequency encoder
(Eh) and decoder (Dh) in CrDiff. The best results are highlighted in bold.

CrDiff PSNR"/SSIM"
w.o HFB 37.12 / 0.979

w. HFBs in Eh 37.58 / 0.981

w. HFBs inDh 38.33 / 0.985

w. HFBs in Eh &Dh 38.64 / 0.988

Table 5.7: Performance comparison of CrDiff with(w.) / without(w.o) the High-frequency
Fusion Block on deraining dataset Rain100L. The best results are highlighted in bold.

Impact of High-frequency Fusion Block (HFB): From the results shown in Table 5.7, it can

be seen that adding HFBs throughout delivers the best results.

5.4 Conclusion

In summary, our Criss-Cross Diffusion (CrDiff) model demonstrates robust and excep-

tional capabilities in key image restoration tasks such as denoising, dehazing and deraining.

The success of the model is largely due to our innovative design of the High-Frequency

Enhancement Network and the High-Frequency Fusion Block, which effectively exploit

high-frequency information. These components enable CrDiff to achieve state-of-the-art

results, particularly in challenging conditions with significant noise and degradation.
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UNIFIED ADVERSE WEATHER REMOVAL VIA META-LEARNING

AND DOMAIN-AWARE NORMALIZATION

I
nthe previous chapter, we presented CrDiff, which demonstrated significant advance-

ments in All-in-One reconstruction tasks. However, a significant limitation of current

methods, including CrDiff, is their suboptimal performance in real-world scenarios,

primarily due to the domain discrepancy between synthetic and real-world data. To address

this issue, we propose a dual-branch network with an additional self-supervised learn-

ing (SSL) branch for the unified adverse weather removal task. The SSL branch employs

a pair-free self-supervised approach, enabling the extraction of weather-specific features

from unpaired data. We further enhance the training process using a meta-learning-based

bi-level optimization method, aligning the objectives of the auxiliary SSL branch with the

reconstruction branch. To mitigate knowledge interference and avoid instability caused by

uniform parameter updates in meta-learning, we update only the affine parameters of the

Batch Normalization (BN) layers, which capture domain-specific information. Our proposed

Test-time Weather Adaptation (TT-WA) method outperforms state-of-the-art techniques in

restoring videos affected by various adverse weather conditions and demonstrates strong

generalization to unseen weather scenarios in both synthetic and real-world settings.
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Figure 6.1: (a) Previous Research: Current studies on adverse weather conditions such
as rain, haze, and snow mainly use task-specific models, each targeting a single type of
weather degradation. While effective for known conditions, these models perform poorly
under unseen scenarios. All-in-one approaches attempt to handle multiple conditions with
onemodel but still struggle with unknown weather adaptations. (b) Proposed Test-Time
Weather Adaptation (TT-WA) Method: Our novel TT-WAmethod inputs unseen weather
sequences during testing and uses self-supervised loss (SSL) for online gradient updates on
batch normalization layers’ affine parameters (∞ and Ø). The Iterative Self-Refinement (ISR)
(ISR) method iteratively optimizes the input sequence, enhancing the model’s adaptation to
various weather degradations. This approach ensures high efficiency and stability across
diverse and complex weather conditions, as shown by the dynamic adjustments in the figure.

6.1 Introduction

Adverse weather conditions, such as rain, snow, and haze, occur in outdoor videos and

significantly degrade visibility [46]. Such degradation critically impairs the performance of

vision applications, including object detection [69, 94], semantic segmentation [118, 145],

and autonomous driving [106, 182]. A significant number of research efforts aim to mitigate

the impact of adverse weather conditions; however, the majority primarily focus on address-

ing single-type weather conditions. Such as dehazing [33, 97, 127], deraining [151, 170, 177],

and desnowing [19, 189] in images and videos. Although above methods perform well in

specific domains, most typically handle only one type of weather. Thus, deploying these

methods on edge platforms is challenging due to the need for multiple models. To overcome

the single-weather focus, recent research shifts towards developing unified frameworks to re-

move various adverse weather conditions [20, 80, 114, 146, 172, 212]. Li et al. [80] propose an

All-in-One network that removes various adverse weather conditions from images, offering

the comprehensive solution. Under the expanding success of diffusion models in numerous

domains, Ozdenizci et al. [114] apply a patch-based diffusion model for image restoration
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across different weather conditions. Next, research progresses to the video domain. Yang et

al. [172] develop ViWS-Net, a framework that restores videos affected by adverse weather

using a video transformer encoder and long short-term temporal modeling.

However, despite the above methods performing well under synthetic adverse weather

conditions, their reconstruction effectiveness in real-world scenarios is often unsatisfactory

due to the limitations of synthetic data and its differences from real data. Existing datasets

mainly consist of synthetic samples, which fail to adequately represent the complexity of

real-world weather conditions. Moreover, these methods lack sufficient adaptation strate-

gies to handle the diversity and unpredictability of real data. Consequently, when these

models encounter weather conditions outside their training data distribution in practical ap-

plications, their performance is often unsatisfactory. Therefore, the issue we aim to address

is how to enhancemodel adaptability to real-world adverse weather conditions.

To tackle this challenge, we utilize a Test-timeWeather Adaptation (TT-WA)with meta-

learning, which dynamically updates the network via self-supervised learning for adaptation

to unseen weather conditions. However, updating the entire network with limited unseen

weather domain data can destabilize the model’s reconstruction ability during adaptation.

Inspired by the research in Knowledge Model Editing, which aims to update specific knowl-

edge without affecting the overall model performance. We decide to decouple the domain

adaptation ability from the reconstruction ability in our model, updating only the domain-

specific knowledge. According to the results presented by Li et al. [86], domain-specific

knowledge is embedded in the affine coefficients (∞, Ø) of the Batch Normalization (BN)

layers. Therefore, we decide to only update the ∞, Ø from BN layer and keep the rest of the

parameters frozen during TT-WA. It supports the model to achieve more natural domain

adaptation to unseen weather conditions. The overall framework and its comparison with

previous approaches are illustrated in Fig. 6.1.

Moreover, we utilize a Meta-BN training stage. Specifically, we utilize a bi-level opti-

mization, treating each weather condition as a separate task and training them sequentially.

Importantly, we only update the ∞, Ø from BN layer and keep the rest of the parameters

frozen during training. This operation ensures that the model learns weather domain adap-

tation, while also retaining previously learned reconstruction knowledge during successive

task learning. Finally, we comprehensively test our TT-WAmethod under synthetic single

weather scenarios, such as rain, haze, and snow. Additionally, we evaluate our method under

complex real world weather conditions. The experimental results indicate that our method

achieves SOTA performance in both qualitative and quantitative results.

Our contributions can be summarized as:
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Figure 6.2:Unified Framework for Adverse Weather Removal: This figure showcases the
primary stages of our approach: (a) Joint Training on amixed weather dataset develops a
generalized model, (b) Meta-BN Training involves rapid model adaptation through Iterative
Self-Refinement (ISR) andDomain-aware BatchNormalization (BN), which fine-tunes affine
parameters (∞, Ø) to enhance robustness to specific weather conditions, and (c) Test-time
Adaptation dynamically adjusts to unseen weather scenarios by optimizing self-supervised
loss (Ls). Details include the dual-branch network structure, emphasizing efficient and
targeted adaptation across varying weather conditions.

• We develop a Test-time Weather Adaptation (TT-WA) framework that dynamically

adjusts the model during inference by updating only the BN affine parameters. This

approach effectively adapts to unseen weather conditions, maintains model stability,

and ensures computational efficiency.

• We introduce a Meta-BN training stage that selectively updates only the affine para-

meters of the Batch Normalization (BN) layers. This adjustment enhances model

generalization and robustness by focusing on domain-specific knowledge while pre-

serving the pre-trained reconstruction capabilities.

• We extensively evaluate our approach on both synthetic and real-world weather con-

ditions, demonstrating superior performance in both qualitative and quantitative

metrics, confirming its effectiveness and generalizability.

6.2 Method

6.2.1 Overview

In this paper, we apply a Test-timeWeather Adaptation (TT-WA)method withMeta-BN

training to obtain a robust weather model and an effective adaptation mechanism. During
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the training process, we utilizeM types of degradedweather conditions, denoted as {Di
W }Mi=1.

Eachweather conditionDi
W contains a set of ground truth data, i.e.,Di

W = (xiW ,yiW ), where x

and y represent input degraded sequences and corresponding clean sequences, respectively.

For the inference step TT-WA, we define the input unseen weather dataset as DU . Our

objective is to adapt the pre-trained model to this input domain using a limited amount of

unseen weather data. Next, we will provide a detailed explanation ofModel architecture,

and Training strategy in sequence. Our approach is shown in Fig. 6.2.

6.2.2 Model Architecture

To effectively extract spatial and temporal information and enhance weather adaptation,

we design aDual-branch Network and Enhanced Transformer Blocks. Next, we provide a

detailed explanation.

i) Dual-branch Network: We employ a four-level symmetrical U-Net style encoder-

decoder network. After the decoder, the network splits into two branches, each composed

of multiple residual modules and do not share parameters. The first branch is defined as

the Reconstruction branch; it aims to reconstruct clean backgrounds from input degraded

sequences. For the second branch, termed the Adaptive branch, it employs self-supervised

learning (SSL) to reconstruct the degraded input sequences. The objective is to enhance

the model’s understanding of the intrinsic structure of the data, thereby improving its

generalization capabilities when dealing with various types of unknown weather.

ii) EnhancedTransformerBlocks: In the encoder-decoder network, each level comprises

N Enhanced transformer blocks. Specifically, each block consists of 3D window-based,

shifted-window, and global multi-head self-attention mechanisms (3D-W/SW/G-MSA),

combined with a channel-attention (CA) module.

For the feedforward component, we utilize Gated Convolutional Feedforward Networks

(GCFFN). Moreover, we utilize 3D Batch Normalization (3D-BN) instead of Layer Normaliza-

tion (LN). Additionally, residual skip connections are integrated into the network to enhance

information flow and gradient propagation. The process is as follows:

(6.1)

x0 = 3D-W/SW/G-MSA(BN(x))+x,

x00 =CA(BN(x0))+x0,

y=GCFFN(BN(x00))+x00,

where x and y represent the input and output of each transformer block, respectively. Based

on the above architecture, our model effectively integrates sophisticated feature extraction

with adaptive mechanisms to ensure robust performance across varying weather conditions.
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6.2.3 Training Strategy

Our training strategy consists of two stages: Joint training andMeta-BN training. The Joint

training aims to provide a robust pre-trainedmodel for degraded weather reconstruction

by training on various degraded conditions. The Meta-BN training enhances the model’s

adaptive capabilities, ensuring effective generalization to unseen weather conditions. Next,

we will describe the details of each stage.

i) Joint training.We perform large-scale training by aggregating all data from {Di
W }Mi=1

and uniformly sampling mini-batches, which ensures the model’s foundational reconstruc-

tion capabilities. The Reconstruction branch utilizes paired data to perform reconstruction

loss LRec. In contrast, the adaptive branch employs the input degraded sequences for

self-supervised learning to provide the SSL lossLSSL. The above losses are combined into

the joint lossLJoint as follows:

(6.2) LJoint =LRec+∏LSSL.

BothLRec andLSSL are L1 losses, balanced by the parameter ∏.

ii) Meta-BN training. We employ a bi-level optimization approach in the Meta-BN

training, which consists of an Inner loop and anOuter loop. Furthermore, we apply each

weather domain data Di
W from the training set, dividing it into two subsets: support set

S i. It contains degraded videos for self-supervised training following the meta-learning

strategy. In contrast, another subset of the data is designated as the reference setRi, which

is used to refine the model’s reconstruction capability. For the 1) Inner loop, we apply mini-

batches xS fromS i for self-supervised learning to adapt to the current weather conditions.

Importantly, we only update the affine coefficients (∞,Ø) from BN, while freezing themodel’s

weight matrix to preserve the learned comprehensive feature representations and prevent

disruption. The equation is as follows:

(6.3) (∞̃, Ø̃)= (∞,Ø)°¥1r(∞,Ø)LSSL(S
i ;µ, (∞,Ø)),

where µ denotes all the weight matrices, and ¥1 is the learning rate for the inner loop. This

method allows us to quickly update the model to adapt to the current weather conditions.

Within the Inner loop, we introduce an Iterative Self-Refinement (ISR) design, which

aims to ensure that the model not only accurately reconstructs different degraded weather

conditions but also effectively handles varying degrees of degradation. Specifically, we feed

the initial input sequence xS into the network, generating two outputs: the reconstructed

input sequence x̂(0)S and the predicted clean sequence y (0)S . In this process, x̂(0)S is employed

for self-supervised learning, while y (0)S is fed back into the network for further refinement.

72



6.2. METHOD

Through multiple iterations, the reconstruction quality is progressively enhanced, enabling

the model to better handle varying levels of degradation. This process can be described as:

(6.4) y (n)S = f (y (n°1)S ;µ),

where y (0)S is the initial reconstructed sequence and y (n)S is the sequence after the n-th

iteration. For the 2) Outer loop, we utilize the parameters (∞̃, Ø̃) obtained from the inner

loop to adapt to the datasetRi, enhancing the performance of the Reconstruction branch.

Specifically, this process aims to ensure that the adapted model can generalize across the

entire dataset, thereby ensuring the robustness of the primary reconstruction task:

(6.5) (∞,Ø) := (∞,Ø)°¥2r(∞,Ø)LJoint(R
i;µ, (∞̃, Ø̃)).

LJoint is as defined in the Eq. 6.2, and ¥2 is the learning rate for the outer loop. Through

this iterative refinement, the model progressively enhances the quality of the reconstructed

clean sequences and adapts to varying weather conditions. Alternating between Inner loop

and Outer loop ensures the model’s robustness and generalization across diverse scenarios.

6.2.4 Test-timeWeather Adaptation (TT-WA)

Based on the update design of Meta-BN training, we apply TT-WA and adopt amore efficient

testing method. Specifically, we suppose the input unseen video is DU , which is divided

into T consecutive sequences. First, the t-th sequence, denoted as xU ,t , and the BN affine

parameters (∞,Ø) are updated as follows:

(6.6) (∞,Ø)(t+1) = (∞,Ø)(t )°¥3r(∞,Ø)LSSL(xU ,t ;µ, (∞,Ø)
(t )),

where, t = 1,2, . . . ,T °1 and ¥3 is the learning rate. It is important to note that once the

(t +1)-th sequence is input into the network, the updated affine coefficients (∞,Ø)(t+1) are

used, avoiding the need for re-inputting the t-th sequence.

During the TT-WA process, Iterative Self-Refinement (ISR) is also employed. The initial

input sequence undergoes self-refinement, denoted as:

y (0)U ,t = xU ,t , t = 1,2, . . . ,T(6.7)

y (n+1)U ,t = f (y (n)U ,t ;µ), n = 0,1, . . . ,N °1(6.8)

where y (0)U ,t is the initial state of the t-th sequence before refinement and y (n+1)U ,t is the refined

sequence after n iterations. This approach effectively adapts to input videos under different

weather conditions, ensuring that the model can quickly and adaptively adjust during

testing, maintaining high-quality reconstruction.
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6.3 Experiments

6.3.1 Datasets

Multiple video datasets containing adverse weather conditions were utilized in our ex-

periments. Following the setting of [172], we adopt RainMotion [151], REVIDE [194] and

KITTI-snow [172] as seen weather. RainMotion is the latest video deraining dataset syn-

thesized based on NTURains [177]. This dataset includes five large rain streak masks, each

following natural motion trajectories, thereby better simulating realistic rainy scenes. RE-

VIDE is the first real-world video dehazing dataset recorded under high-fidelity real hazy

conditions for indoor scenes. The hazy scenes in this dataset are highly realistic and feature

high resolution. KITTI-snow is a synthesized outdoor dataset comprising 50 videos, where

snowflakes have varying properties and are processed with Gaussian blur, making the video

desnowing taskmore challenging. Furthermore, we assess the performance of our TT-WA on

two datasets, VRDS [160] and RVSD [15], to demonstrate its robustness and generalization

to various unseen weather conditions. VRDS is a synthesized video dataset of joint rain

streaks and raindrops with a total of 102 videos, while RVSD is a realistic video desnowing

dataset with a total of 110 videos containing both snow and fog achieved by the rendering

engine. Additionally, we collect a variety of real-world videos affected by different weather

conditions to demonstrate the effectiveness of our approach in practical applications.

6.3.2 Implementation

The proposed framework is trained using NVIDIA RTX 4090 GPUs and implemented on

the PyTorch platform. To ensure robustness and effectiveness, we randomly crop the video

frames to a resolution of 256×256 pixels for training. The batch size is set to 9, with each

batch containing an average of three extreme weather scenarios, each scenario including 4

consecutive frames. This configuration allows the model to learn temporal dependencies

effectively. For optimization, we employ the AdamW optimizer. For the Joint training, we

combine the training sets of the three datasets to form amixed set, which is used to learn a

generic model. The learning rate is set to 1£10°4 and the parameter ∏ is set to 0.1 to balance

the loss components and enhance the training process. We employ Meta-BN training to

alternately train on the three datasets. The learning rate ¥1 is set to 3£10°4 for the inner

loop, while ¥2 is set to 3£10°5 for the outer loop. For the TT-WA, ¥3 is also set to 3£10°4.

Additionally, for the Iterative Self-Refinement, we set the number of iterationsn to 3, allowing

the model to progressively refine its predictions.
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Datasets
Method Type Source

Original Weather Rain Haze Snow Average

D
er
ai
n

PReNet [123] Image CVPR’19 27.06 0.9077 26.80 0.8814 17.64 0.8030 28.57 0.9401 24.34 0.8748

SLDNet [170] Video CVPR’20 20.31 0.6272 21.24 0.7129 16.21 0.7561 22.01 0.8550 19.82 0.7747

S2VD [177] Video CVPR’21 24.09 0.7944 28.39 0.9006 19.65 0.8607 26.23 0.9190 24.76 0.8934

RDD-Net [151] Video ECCV’22 31.82 0.9423 30.34 0.9300 18.36 0.8432 30.40 0.9560 26.37 0.9097

D
eh

az
e

GDN [95] Image ICCV’19 19.69 0.8545 29.96 0.9370 19.01 0.8805 31.02 0.9518 26.66 0.9231

MSBDN [33] Image CVPR’20 22.01 0.8759 26.70 0.9146 22.24 0.9047 27.07 0.9340 25.34 0.9178

VDHNet [127] Video TIP’19 16.64 0.8133 29.87 0.9272 16.85 0.8214 29.53 0.9395 25.42 0.8960

PM-Net [97] Video MM’22 23.83 0.8950 25.79 0.8880 23.57 0.9143 18.71 0.7881 22.69 0.8635

D
es
n
ow

DesnowNet [96] Image TIP’18 28.30 0.9530 25.19 0.8786 16.43 0.7902 27.56 0.9181 23.06 0.8623

DDMSNET [189] Image TIP’21 32.55 0.9613 29.01 0.9188 19.50 0.8615 32.43 0.9694 26.98 0.9166

HDCW-Net [19] Image ICCV’21 31.77 0.9542 28.10 0.9055 17.36 0.7921 31.05 0.9482 25.50 0.8819

D
es
n
ow

MPRNet [180] Image CVPR’21 —— —— 28.22 0.9165 20.25 0.8934 30.95 0.9482 26.47 0.9194

EDVR [153] Video CVPR’19 —— —— 31.10 0.9371 19.67 0.8724 30.27 0.9440 27.01 0.9178

RVRT [88] Video NIPS’22 —— —— 30.11 0.9132 21.16 0.8949 26.78 0.8834 26.02 0.8972

RTA [207] Video CVPR’22 —— —— 30.12 0.9186 20.75 0.8915 29.79 0.9367 26.89 0.9156

M
u
lt
i-
W
ea

th
er

All-in-one [80] Image CVPR‘20 —— —— 26.62 0.8948 20.88 0.9010 30.09 0.9431 25.86 0.9130

UVRNet [70] Image TMM’22 —— —— 22.31 0.7678 20.82 0.8575 24.71 0.8873 22.61 0.8375

TransWeather [146] Image CVPR’22 —— —— 26.82 0.9118 22.17 0.9025 28.87 0.9313 25.95 0.9152

TKL [20] Image CVPR’22 —— —— 26.73 0.8935 22.08 0.9044 31.35 0.9515 26.72 0.9165

WeatherDiffusion [114] Image TPAMI’23 —— —— 25.86 0.9125 20.10 0.8442 26.40 0.9113 24.12 0.8893

WGWS-Net [212] Image CVPR’23 —— —— 29,64 0.9310 17.71 0.8113 31.58 0.9528 26.31 0.9265

ViWS-Net [172] Video ICCV’23 —— —— 31.52 0.9433 24.51 0.9187 31.49 0.9562 29.17 0.9394

TT-WA (ours) Video —— —— —— 32.85 0.9591 25.23 0.9212 32.71 0.9722 30.26 0.9508

Table 6.1: Evaluation of Quantitative Performance for Video Weather Removal under
Unseen Conditions. For the Original Weather, the methods are trained on specific weather
training sets and evaluated on corresponding testing sets. For Rain, Haze, and Snow, the
methods are trained on a combined training set and evaluated on individual weather-specific
testing sets. The average performancemetrics are computed for Rain, Haze, and Snow. PSNR
and SSIM are utilized as evaluation metrics.

6.3.3 Performance Evaluation

We reference the experimental results from [172], which are widely recognized, and con-

duct comparisons based on their findings. As shown in Table 6.1, we compare our proposed

method against five state-of-the-art methods under three knownweather conditions, similar

to the approach taken by [172]. These conditions include derain, dehaze, desnow, restora-

tion, and all-in-one adverse weather removal. For all-in-one adverse weather removal, we

compare our method with six representative single-image methods: All-in-one [80], UVR-

Net [70], TransWeather [146], TKL [20], WeatherDiffusion [114], WGWS-Net [212], and the

video-level method ViWS-Net [172]. In the comparison results, we employ a color-coding

scheme where the top-performing method is highlighted in “ pink ”, and the second-best
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method is highlighted in “ blue ” to facilitate clear visualization of performance rankings

across different evaluation metrics.

VRDS [160] RVSD [15]
Method

PSNR " SSIM " PSNR " SSIM "
All-in-one [80] 19.12 0.5882 18.56 0.7128

TransWeather [146] 20.98 0.7187 20.53 0.7486

TKL [20] 19.71 0.7024 19.02 0.7212

WeatherDiffusion [114] 20.21 0.6989 17.61 0.6554

WGWS-Net [212] 21.33 0.7242 18.85 0.7439

ViWS-Net [172] 21.62 0.7131 19.43 0.7510

TT-WA (ours) 23.11 0.7421 22.79 0.7823

Table 6.2: Quantitative evaluation on unseen weather conditions for video adverse weather
removal.

Quantitative Comparison on Seen Domain. In this experiment, we compare the perfor-

mance of various image enhancement methods under different weather conditions, includ-

ing deraining, dehazing, desnowing, restoration, and multi-weather methods. Our primary

focus is on multi-weather methods due to their capability to handle multiple complex

weather conditions. Moreover, we also evaluate single-task methods.

The results in Table 6.1 show that multi-weather methods generally performmore stably

and comprehensively. Our method achieves the best overall performance with a Peak Signal-

to-Noise Ratio of 32.85 and a Structural Similarity Index of 0.9508, surpassing all comparison

methods. WeatherDiffusion andWGWFS-Net also performwell but fall short of ourmethod’s

results, especially under rain and snow conditions. Single-task methods perform well under

specific conditions but show limitations when trained on a mixed set and tested on specific

weather conditions. For instance, RDD-Net excels in deraining but performs poorly under

haze and snow. GDN is effective in dehazing but unstable in other conditions. DDMSNET is

strong in desnowing but average elsewhere. Restoration methods like EDVR perform ade-

quately in dehazing and desnowing but less so in deraining. These methods, while effective

in their respective tasks, do not match the versatility of multi-weather methods under mixed

conditions. Notably, our method outperforms the recent ViWS-Net, demonstrating higher

image quality and stability under complex weather conditions like rain, haze, and snow. This

further confirms the robustness and adaptability of our approach.

Quantitative Comparison on Unseen Domain. To evaluate the generalization capability of

our model, we use the VRDS and RVSD datasets. Specifically, we use only the test subsets of
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OursViWS-NetWeatherDiffusionTKLTransWeather GTInput

Figure 6.3:Qualitative Comparison of seen weather conditions on synthetic data between
our approach and state-of-the-art methods. The competing algorithms are selected to
demonstrate results on example frames degraded by rain, haze, and snow, respectively.
The red boxes highlight detailed comparisons. Please zoom in on the images for enhanced
visualization.

these datasets as unseen domains to test the pre-trained model. To assess the performance,

we select PSNR and SSIM as the evaluation metrics. As shown in Table 6.2, our model

performs excellently on both datasets. On the VRDS dataset, our model achieves a PSNR

of 23.11 dB and an SSIM of 0.7421, significantly outperforming other methods, especially

the latest ViWS-Net method (PSNR 21.62 dB, SSIM 0.7131). On the RVSD dataset, our model

achieves a PSNR of 22.79 dB and an SSIM of 0.7823, also surpassing the latest TransWeather

method (PSNR 20.53 dB, SSIM 0.7486). These results indicate that our model excels in

handling weather variations across different datasets, demonstrating strong robustness.

Visual Comparison. To more intuitively demonstrate the effectiveness of our approach,

Fig. 6.3 presents the visual comparison of our method with four state-of-the-art methods

under conditions of rain, fog, and snow. The data for the rain, fog, and snowenvironments are

sourced from the test sets of RainMotion, REVIDE, andKITTI-snow, respectively. Ourmethod

consistently exhibits excellent visual quality across various weather conditions. By closely

examining the enlarged areas within the red boxes, it is evident that our method significantly

reduces the interference of raindrops and snow particles, outperforming other methods.

In foggy environments, our method effectively removes residual haze and maintains a

clear background with impressive results. Additionally, Fig. 6.4 and Fig.6.5 demonstrate our

visual comparison results on the VRDS and RVSD test sets, respectively. Since we did not

incorporate the VRDS and RVSD training sets, their test sets can be considered as unseen

data. Despite this, we can still observe differences. By comparing the contents within the
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OursViWS-NetWeatherDiffusionTKLTransWeather GTInput

Figure 6.4:Qualitative comparison of unseen weather conditions on synthetic data from
the VRDS dataset.We compare our approach with state-of-the-art methods in heavy rain
scenarios. The red boxes highlight detailed comparisons. Please zoom in on the images for
enhanced visualization.

OursViWS-NetWeatherDiffusionTKLTransWeather GTInput

Figure 6.5:Qualitative comparison of unseen weather conditions on synthetic data from
the RVSD dataset.We compare our approach with state-of-the-art methods in a complex
snow-and-fog scenario. The red boxes highlight detailed comparisons. Please zoom in on
the images for enhanced visualization.

red boxes, it is apparent that the superiority of our method remains evident.

6.3.4 Ablation Study

Batch Norm vs. Layer Norm.One of the main changes in our enhanced Transformer block

design is replacing the default Layer Normalization (LN) with 3D-Batch Normalization (3D-

BN) to align more effectively with the demands of reconstructing under multiple adverse

weather conditions. Table 6.3 presents our experimental results, demonstrating the perfor-

mance improvements achieved with 3D-BN. In the derain task, the PSNR increases to 32.85

dB and the SSIM to 0.9591; in the dehaze task, the PSNR improves to 25.23 dB and the SSIM

to 0.9212; and in the desnow task, the PSNR rises to 32.71 dB and the SSIM to 0.9722. These

results indicate that 3D-BN is better suited to handling video data from different domains,

thereby enhancing the overall performance of the model.

Ablation studies for different components. In Table 6.4, we validate the effectiveness of

our proposed method through a series of comparative experiments. First, comparing Index

1 and 2, we observe that the inclusion of the Self-Supervised Learning (SSL) branch does
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Derain Dehaze Desnow
Normalization

PSNR SSIM PSNR SSIM PSNR SSIM

w. LN 32.41 0.9568 24.89 0.9198 32.55 0.9713

w. 3D-BN 32.85 0.9591 25.23 0.9212 32.71 0.9722

Table 6.3: Ablation studies comparing LN and 3D-BN in enhanced transformer blocks.

Index SSL µ Update Train. Alg. TT-WA
Derain

PSNR SSIM
Dehaze

PSNR SSIM
Desnow

PSNR SSIM

1 7 All Joint 7 28.37 0.9113 22.24 0.9041 28.97 0.9213

2 3 All Joint 7 28.79 0.9154 22.69 0.9082 29.41 0.9243

3 3 All Joint &Meta 7 28.91 0.9157 22.88 0.9081 29.65 0.9247

4 3 BN Joint &Meta 7 30.17 0.9201 23.17 0.9140 30.04 0.9352

5 3 BN(∞,Ø) Joint & Meta 7 31.30 0.9438 24.04 0.9177 31.17 0.9488

6 3 BN(∞,Ø) Joint & Meta 3 32.85 0.9591 25.23 0.9212 32.71 0.9508

Table 6.4: Ablation studies for different components of our framework. SSL denotes SSL
branch. Param. denotes which parameters are updating, including the whole network (“All”),
BN layer (“BN”) or only the affine parameters (“Aff”). TS denotes the training scheme. Adapt
denotes whether adapting to each target domain.

not significantly impact the results under Joint training alone. This is reasonable because

SSL needs to be combined with Meta-BN training to fully exert its effect. However, merely

adding Meta-BN training does not significantly improve performance and even results in

somemetrics declining, as seen in the comparison between Index 2 and 3. This is intuitive

because, during the learning process of different specific weather datasets, the model may

forget previously acquired knowledge while learning new information. To further enhance

the model’s performance, we train only the Batch Normalization (BN) layers during Meta-

BN training, as seen in the comparison between Index 3 and 4. This approach results in a

significant performance improvement, indicating that focusing on BN layers can effectively

mitigate the forgetting of previously learned knowledge when training on new datasets.

Subsequently, we optimize further by training only the affine parameters ∞ and Ø within the

BN layers, as shown in the comparison between Index 4 and 5. This further improvement

verifies the crucial role of affine parameters, which is intuitive as these parameters can

effectively adjust the feature distribution across different domains. Finally, during testing,

we introduce the Test-time Weather Adaptation strategy, as seen in the comparison between

Index 5 and 6. This strategy further enhances the model’s performance across various

tasks, achieving the best results and demonstrating that real-time adaptation is particularly
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effective in handling dynamic weather changes.

Derain Dehaze Desnow
ISR (x;µ,n)

PSNR SSIM PSNR SSIM PSNR SSIM

n = 1 32.33 0.9584 24.19 0.9181 32.35 0.9643

n = 2 (default) 32.85 0.9591 25.23 0.9212 32.71 0.9722

n = 3 32.83 0.9595 25.29 0.9214 32.74 0.9729

Table 6.5: Ablation studies for different components of our framework.

Ablation studies for Iterative Self-Refinement (ISR). Table 6.5 shows the impact of different

iteration numbers n on the ISR method in the tasks of deraining, dehazing, and desnowing.

Overall, as the iteration number n increases, PSNR and SSIM improve, but the gains tend to

level off, especially between n = 2 and n = 3. Specifically, in the deraining task, performance

is optimal at n = 2; in the dehazing task, there is a significant improvement at n = 2; and in

the desnowing task, the performance is similar for n = 2 and n = 3.Moderately increasing the

iteration number significantly enhances performance, with n = 2 achieving a good balance

between performance and computational efficiency. The experimental results validate the

effectiveness of self-supervised refinement in the ISR method, with an iteration number of

n = 2 performing best across all tasks.

Method Parameters (M) Inference time (s)

TransWeather [146] 37.68 0.49

TKL [20] 28.71 0.51

WeatherDiffusion [114] 82.96 342.76

ViWS-Net [172] 57.82 0.46

TT-WA (Ours) 47.76 0.38

Table 6.6: Quantitative comparison of computational complexity between the selected
models and ViWS-Net. The best values are denoted in bold.

6.4 Conclusion

This chapter proposes a dual-branch network structure based onmeta-learning and domain-

aware normalization to uniformly handle video reconstruction problems under various

severe weather conditions. By combining the self-supervised learning branch and the Re-

construction branch, the model effectively extracts specific weather features and improves

the recovery ability under known and unknown weather conditions. The meta-learning
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optimization strategy avoids knowledge interference by only updating the affine parameters

of the batch normalization layer, enhancing the stability and generalization ability of the

model. Experimental results show that this method outperforms existing technologies on

multiple benchmark datasets, especially under complex weather conditions such as rain,

fog, and snow. It also achieves strong generalization ability for unseen weather through the

test-time adaptation mechanism (TT-WA), showing good practical application potential.
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CONCLUSION AND FUTURE WORK

T
his paper designs and proposes four core technologies around the image reconstruc-

tion task: makeup style transfer, real-time video deraining, multi-degraded image

restoration, and test-time weather adaptation (TT-WA). Although these technologies

are targeted at different task scenarios, their core essence is style transfer. Whether it is

makeup style transfer or image reconstruction, they all involve the conversion from one

visual style to another. By unifying these technologies into a generation task framework, we

have developed a system that can handle complex scenes while improving the accuracy

and real-time performance of image reconstruction. This research not only expands the

application boundaries of generation and reconstruction techniques, but also provides

effective solutions for various practical application scenarios.

The four technologies we proposed have a unified logical core in the generation task.

Makeup style transfer uses the IP23-Net framework to achieve themigration fromnomakeup

to makeup style, retaining facial geometric features while enhancing facial stereoscopic

perception. This is closely related to the need for detail preservation in image reconstruc-

tion. Real-time video deraining technology uses the RVDNet network framework to convert

visual information containing raindrops into clear and rain-free scenes, demonstrating the

potential of style transfer in dynamic video processing. The multi-degraded image restora-

tion technology CrDiff solves the style reconstruction problem under complex degradation

conditions by combining static wavelet transform and diffusion model. The TT-WA technol-

ogy improves the adaptability of the model under unknown weather conditions through

self-supervised learning (SSL) and meta-learning, ensuring that the generation task can still
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be carried out stably in various complex weather scenarios. These four technologies have

not only made breakthroughs in their respective fields, but also formed a synergistic effect

through their common generation properties.

These generation technologies have demonstrated important value in multiple practical

applications. Makeup style transfer technology provides a personalized experience for

virtual makeup trials, and image reconstruction technology, especially in autonomous

driving, ensures public safety by improving visual clarity in bad weather. Multi-degraded

image restoration in disaster monitoring, by restoring severely degraded images, ensures the

accurate transmission of key visual information, and helps speed up emergency response.

TT-WA technology enhances the adaptability of visual systems under complex weather

conditions and is widely used in autonomous driving, drone monitoring, and smart city

monitoring systems, improving the stability and efficiency of these systems.

FutureWork.With the continuous development of deep learning technology, we will further

optimize these generation technologies, especially in terms of real-time and diversified

application capabilities. Future research will explore the fusion of multi-modal data, such as

combining text with image generation to achieve more intelligent and personalized genera-

tion tasks. At the same time, we will also strive to improve the generalization ability of the

model in complex real-world environments and ensure that these generation technologies

play a greater role in more application scenarios.
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