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Abstract
In 2023, Turkiye faced a series of devastating earthquakes and these earthquakes affected 
millions of people due to damaged constructions. These earthquakes demonstrated the 
urgent need for advanced automated damage detection models to help people. This study 
introduces a novel solution to address this challenge through the AttentionPoolMobile-
NeXt model, derived from a modified MobileNetV2 architecture. To rigorously evaluate 
the effectiveness of the model, we meticulously curated a dataset comprising instances of 
construction damage classified into five distinct classes. Upon applying this dataset to the 
AttentionPoolMobileNeXt model, we obtained an accuracy of 97%. In this work, we have 
created a dataset consisting of five distinct damage classes, and achieved 97% test accu-
racy using our proposed AttentionPoolMobileNeXt model. Additionally, the study extends 
its impact by introducing the AttentionPoolMobileNeXt-based Deep Feature Engineering 
(DFE) model, further enhancing the classification performance and interpretability of the 
system. The presented DFE significantly increased the test classification accuracy from 
90.17% to 97%, yielding improvement over the baseline model. AttentionPoolMobileN-
eXt and its DFE counterpart collectively contribute to advancing the state-of-the-art in 
automated damage detection, offering valuable insights for disaster response and recovery 
efforts.

Keywords AttentionPoolMobileNeXt · Construction damage classification · Deep feature 
engineering · Image classification

1 Introduction

Earthquakes pose perilous threats to human life and property, ranking among the most dev-
astating natural disasters humanity faces [1, 2]. In densely populated urban regions, the 
risk of building damage or collapse during seismic events reaches an exceedingly grave 
magnitude [3]. Following an earthquake, the rapid and meticulous assessment of struc-
tural harm becomes paramount for effective emergency response, rescue operations, and 

Extended author information available on the last page of the article

http://orcid.org/0000-0001-9677-5684
http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-024-19163-2&domain=pdf


1822 Multimedia Tools and Applications (2025) 84:1821–1843

1 3

subsequent reconstruction efforts [4]. In recent times, remote sensing technologies have 
emerged as invaluable instruments for discerning, detecting, and evaluating natural calami-
ties, harnessing diverse data modalities including aerial or satellite images, Lidar, and SAR 
[5–7]. Thus, the precise classification of distinct forms of building impairment through the 
scrutiny of remote sensing imagery has become an exigent concern [8].

Various models for construction damage detection have been proposed in the literature. 
Some of these models are discussed below. Roy and Bhaduri [9] utilized DenseNet and Swin-
Transformer for damage detection. The proposed DenseSPH-YOLOv5 model aimed to improve 
the accuracy and efficiency of damage detection in engineering informatics, using a large-scale 
road damage dataset (9053 road damage images) and achieving a precision of 89.51%. Seemab 
et al. [10] presented a method for detecting propagating cracks in reinforced concrete beams using 
digital image correlation measurements, providing effective crack detection. Zhu and Tang [11] 
proposed an automated hydraulic structures damage detection approach using drones, offering 
profound insights into maintenance and repairs by leveraging drone imagery and cutting-edge arti-
ficial intelligence techniques. A literature review regarding damage detection is given in Table 1.

It may be noted from the above table that, the research gaps are as follows:

– Explainable models are not much explored.
– The CNNs employed for such works are either customized versions of VGG or 

1D-CNN. Additionally, while YOLO is a prevalent tool used for damage detection, 
there is a shortage of original CNN models with attention mechanisms.

– The two class datasets: (i) damaged and (ii) non-damaged have been used.

Table 1  Literature review based on damage detection

**CNN: Convolutional neural network; Avg Pre: Average precision; Acc: accuracy; STFT: short-time Fou-
rier transform; Rec: recall; Pre: precision; F1: F1-score; Sen: Sensitivity

Study Methods Data Results (%)

Marín-García et al. [12] CNN 765 building facade images Avg Pre: 89.40
Hacıefendioglu et al. [13] CNN 1068 wood images Acc: 92.16
Hake et al. [14] VGG19 99.764 harbor structures images Acc: 98.80

Rec: 95.00
Chen et al. [15] CNN 600 sample images Acc: 92.30
Teng et al. [16] 1D-CNN 100 numerical models Acc: 97.30
Zhang et al. [17] CNN 3549 images Acc: 89.60
Hake et al. [18] ResNet-50 1300 images Acc: 98.00
Chennareddy et al. [19] CNN 4380 images Acc: 95.00
Mostofi et al. [20] Ensemble Learning 759 images Acc: 63.00

Pre: 71.00
F1: 63.00

Kamoona et al. [21] CNN 74 wood images Sen: 87.00
Pre: 77.00

Kumar et al. [22] YOLO-v3 800 images Acc: 94.24
Pan and Yang [23] YOLOv2 686 images Acc: 98.20
Zhang et al. [24] YOLO-ResNet50 5810 images F1: 91.97

Rec: 94.53
Pre: 91.00

Teng et al. [25] CNN 48.400 images Acc: 99.00
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1.1  Motivation and our model

The year 2023 witnessed a series of catastrophic earthquakes in Turkiye, resulting in the 
deaths of over 50,000 people and rendering millions homeless. To alleviate the suffering 
of those affected by this tragedy, the foremost priority is to detect the extent of damage 
caused. However, this task can be a tedious and time-consuming process. To address this 
issue, we propose an automated damage detection model and have curated a novel data-
set comprising five classes, namely (i) Debris, (ii) Damaged Buildings, (iii) Non-Damaged 
Buildings, (iv) Damaged Highways, and (v) Non-Damaged Highways.

To achieve high classification performance while retaining a lightweight deep learn-
ing model, we have modified the popular deep learning model, MobileNetV2 [26]. 
Since the introduction of vision transformers (ViT) [27], we have observed that atten-
tion blocks are efficient in achieving high classification performance. Therefore, we have 
added pooling-based attention blocks to MobileNetV2 to enhance its classification perfor-
mance. Moreover, we have used the ConvNeXt strategy to modify MobileNetV2 blocks 
and we have obtained a more lightweight model. This modification has given rise to 
AttentionPoolMobileNeXt.

We have proposed a pyramidal deep feature engineering (DFE) model by utilizing the 
presented AttentionPoolMobileNeXt CNN. Firstly, we have trained the training dataset uti-
lized by the proposed CNN. After that, we used the dropout layer of this pretrained Atten-
tionPoolMobileNeXt as a deep feature extractor and this layer generated 256 features. We 
have utilized four leveled multilevel discrete wavelet transform (MDWT) [28] approxima-
tion to generate wavelet filters and we have extracted features from the raw image, low-
low pass filter band (LL band), and low-high pass filter band (LH band). Subsequently, we 
have employed iterative neighborhood component analysis (INCA) [29] as a feature selec-
tor to identify the most relevant features, which have been classified using a support vector 
machine (SVM) [30, 31] classifier. Our proposed AttentionPoolMobileNeXt has achieved 
a testing accuracy of 90.17%, demonstrating the effectiveness of the cooperation between 
deep learning and feature engineering. Furthermore, our presented MDWT and Attention-
PoolMobileNeXt deep learning models have attained a classification accuracy of 97%.

We have tried to address the literature gaps by introducing the following:

– Introduced a novel deep CNN model.
– Attained interpretable results from the proposed attention model to concentrate on 

regions of interest.
– Compiled a new image dataset comprising five distinct classes.

1.2  Innovations and contributions

The innovations and contributions of our work are given below:

Novelties:

– Collected a novel image dataset dedicated to construction damage detection, addressing 
the need for specialized data in this domain (automated damage detection).

– Introduced an attention-based CNN architecture named AttentionPoolMobileNeXt, 
emphasizing its unique design for improved performance.
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– Presented a comprehensive deep feature engineering model by synergizing Attention-
PoolMobileNeXt, the MDWT-based approximation inspired by watermarking methods, 
and machine learning algorithms such as INCA and SVM.

Contributions:

– Proposed a novel automated damage detection model for accurate classification of five 
classes.

– Developed a lightweight deep learning model designed for rapid and accurate classifi-
cation of damages, aiming to address the need for efficiency in real-world scenarios.

– Achieved an exceptional test classification accuracy of over 90% on the curated dataset, 
demonstrating the efficacy and reliability of the proposed approaches.

Our work contributed to the field of construction damage detection and classification. 
By introducing innovative combinations of attention-based CNN architecture, MDWT-
based feature extraction, and machine learning algorithms, our work not only addresses 
the challenges associated with existing methods but also provides comprehensive tech-
nical details, emphasizing both methodological and empirical advancements.

2  Dataset

To evaluate our model’s performance, we collected a novel image dataset consisting of 
five distinct classes [32–36]. The dataset’s classes are as follows: (1) Debris, (2) Dam-
aged building, (3) Damaged highway, (4) Non-damaged building, and (5) Non-damaged 
highway. Furthermore, we partitioned the dataset into training and testing subsets. The 
images were stored in either JPEG or JPG format and had varying dimensions. The 
dataset’s attributes are presented in Table 2.

As can be observed from Table 2, the construction damage image dataset is inher-
ently imbalanced.

The collected dataset is publicly available on Kaggle, and researchers can download 
it using the following URL: https:// www. kaggle. com/ datas ets/ turke rtunc er/ damag ed- 
const ructi ons- image- datas et.

Table 2  Characteristics of 
the collected image dataset 
for construction damage 
classification

No Class name Train Test Total

1 Debris 413 100 513
2 Damaged building 448 100 548
3 Damaged highway 719 100 819
4 Non-damaged building 1659 200 1859
5 Non-damaged highway 530 100 630
Total 3769 600 4369

https://www.kaggle.com/datasets/turkertuncer/damaged-constructions-image-dataset
https://www.kaggle.com/datasets/turkertuncer/damaged-constructions-image-dataset
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3  The proposed AttentionPoolMobileNeXt

Our essential objective is to present a novel lightweight deep learning model, termed 
AttentionPoolMobileNeXt. To achieve this, we have expanded upon the MobileNetV2 
architecture by incorporating two attention blocks, drawing inspiration from Pool-
Former [37]. Additionally, we have made enhancements to the MobileNetV2 blocks 
akin to ConvNeXt, utilizing combinations of convolution + normalization and convolu-
tion + activation. To provide a comprehensive understanding of our proposed model, we 
initially provide a succinct overview of the MobileNetV2 architecture. We have used 
the attention layer to focus region of interest and we have used a ConvNeXt-based strat-
egy to extract a meaningful feature map with less number of learnable parameters than 
MobileNetV2.

MobileNetV2 leverages convolutions, linear bottlenecks, and inverted residuals [26], 
employing 1 × 1 and 3 × 3 convolutions for extracting image features. Feature transfor-
mation involves bottleneck inputs, 1 × 1 convolution, and depth-wise convolution with 
3 × 3 filter sizes. While the architecture integrates addition-based shortcuts reminis-
cent of Residual Networks to address the vanishing gradient problem, it lacks atten-
tion blocks. To address this limitation and enhance classification performance, we have 
introduced two attention blocks to the MobileNetV2 architecture. Our selection of 
the MobileNetV2 architecture stems from its efficiency, with ongoing research efforts 
focusing on the development of MobileNetV3 [38].

In this study, we extended the MobileNetV2 architecture by incorporating attention 
blocks, resulting in the development of AttentionPoolMobileNeXt. This lightweight 
deep-learning model is designed to enhance classification performance. Our proposed 
architecture encompasses convolution, residual mobile ConvNeXt blocks (ResMoB), 
mobile ConvNeXt blocks (MoB), pooling-based attention blocks, and output blocks. 
To facilitate a clearer understanding of AttentionPoolMobileNeXt, we have provided a 
schematic overview of the model.

Figure 1 illustrates our utilization of both average pooling and maximum pooling to 
construct an attention mechanism resembling that of PoolFormer. This strategic imple-
mentation has allowed us to introduce a more lightweight model compared to Mobile-
NetV2. Furthermore, the transition details of this AttentionPoolMobileNeXt are pre-
sented in Table 3.

Table 3 outlines the architecture and operations performed at various stages of the 
proposed AttentionPoolMobileNeXt.

4  The proposed deep feature engineering model

This research introduces a novel DFE model based on the presented AttentionPoolMo-
bileNeXt, aimed at enhancing test classification. This pyramidal DFE model comprises 
three pivotal phases: (i) deep feature extraction utilizing MDWT and the pretrained 
AttentionPoolMobileNeXt, (ii) feature selection based on INCA, and (iii) classification 
using Support Vector Machine (SVM). To assess the effectiveness of our model, we 
apply it to test images and present the results. Figure 2 illustrates a block diagram of our 
developed deep feature engineering model based on AttentionPoolMobileNeXt, offering 
a clearer insight into its architectural design.
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The steps of the developed deep feature engineering model are presented as follows.

Step 1: Read each image from the collected test image dataset.
Step 2: Apply MDWT with four levels to each image. In this step, we have used low-
pass filter bands (LL and LH) to extract features. Moreover, the ‘haar’ mother wave-
let mother function has been used to get images.

(1)
[

LL1, LH1,HL1,HH1

]

= �(Im)

(2)
[

LLk, LHk,HLk,HHk

]

= �
(

LLk−1
)

, k ∈ {2, 3, 4}

Fig. 1  Schematic representation of the presented AttentionPoolMobileNeXt. Herein, Conv.: convolution, 
BN: batch normalization, Avg. Pool: average pooling, Max Pool: maximum pooling, GAP: global average 
pooling
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where LL, LH,HL and HH are the low-low, low–high, high-low and high-high filter bands, �() 
defines the DWT function and Im is the raw image. We have used four leveled MDWT to get 
LL and LH bands. MDWT generates floating point bands. Therefore, we have used normaliza-
tion to get images.

Step 3: Create features from the raw image and low-pass filter bands. We have used the 
pretrained AttentionPoolMobileNeXt CNN. We have used the dropout layer of the pre-
sented AttentionPoolMobileNeXt. We have generated 256 features from the generated 
images.

(3)f (j) = �(Im), j ∈ {1, 2,… , 256}

(4)f (j + h × 256) = �
(

LLt
)

, t ∈ {1, 2, 3, 4}, h ∈ {2, 4, 6, 8}

(5)f (j + 256 × (2h − 1)) = �
(

LHt

)

,

Fig. 2  Block diagram of the developed deep feature engineering model based on the recommended Atten-
tionPoolMobileNeXt. Herein, MDWT: multilevel discrete wavelet transform, B: wavelet band, f: individual 
features, INCA: iterative neigbourhood component analysis
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Herein, f  defines the feature vector, �(.) is the pretrained AttentionPoolMobileNeXt. 
In this phase, we have generated 9 feature vectors and we merged these feature vectors. 
In this step, 2304 (= 256 × 9) features have been extracted.

Step 4: Apply the iterative feature selector to the generated features with a length of 
2304. INCA was proposed by Tuncer et al. [29] in 2020. In this work, an improved 
Neighborhood Component Analysis (NCA) [39] has been utilized to select the most 
relevant feature vector from the created set of features. Our approach, the iterative 
neighborhood component analysis (INCA), automatically determines the optimal 
number of features to be selected. Specifically, the qualified feature indexes are ini-
tially generated using the NCA feature selector. We then create a loop to iteratively 
select the relevant features and use a classifier to calculate the selected feature vec-
tors and loss value array. The feature vector with the minimum misclassification 
value is chosen as the final feature vector. The mathematical formulation of our pro-
posed feature selector is provided below for further clarity.

Herein, id1 represents the qualified indexes that are generated by NCA ( NCA(.) ) fea-
ture selector, y is the actual/real output, s implies the selected feature vector, sv defines 
start value of the loop and fv is the final value of the loop. NI is the number of images. 
We have calculated loss values ( loss ) of the selected feature vector by deploying a clas-
sifier ( C(.) ). By using the loss value array calculated, the most suitable feature vector 
has been selected below.

where id2 is the index of the loss value with minimum loss value and selfeat is the final 
selected feature.

In this work, we have calculated the loss values employing SVM classifier. In this 
work, the most relevant 116 features have been selected.

Step 5: Fed to choose 116 features for the SVM classifier with 10-fold cross-valida-
tion. SVMs have long been recognized as one of the preeminent shallow classifiers. 
To this end, we sought to combine the power of SVMs with that of INCA in our 
research. We have tuned the parameters of the used SVM by deploying the Bayes-
ian optimization [40]. The hyperparameters utilized for the SVM are outlined below: 
Kernel: Polynomial, Kernel Scale: 1, Standardize: True, Polynomial Order: 2, Box 
Constraint: 983.4589707080628, Coding: One-vs-All, Validation: 10-Fold Cross-
Validation

We have dubbed this particular instantiation of the SVM the Quadratic SVM.

(6)id1 = NCA(f , y)

(7)
sr−sv+1(dim, i) = f (dim, id1(i)), i ∈ {1, 2,… , r},

dim ∈ {1, 2,… ,NI}, r ∈ {sv, sv + 1,… , fv}

(8)loss(r) = C(sr, y)

(9)id2 = min(loss)

(10)selfeat = sid2
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Herein, pr defines the predicted vector by applying the SVM classifier.

5  Experimental results

Our work introduces two novel contributions to the field: The proposed CNN, and a deep 
feature engineering model. We partitioned the dataset into separate training and testing 
sets, and present the results of our experiments in this section.

5.1  Setup

To implement our proposed AttentionPoolMobileNeXt model, we utilized a personal 
computer (PC) equipped with an NVidia Ge-force 2070 graphical processing unit (GPU), 
64  GB of memory, a 3.6  GHz processor, and the Windows 11 operating system. We 
employed the MATLAB programming environment, leveraging both the deep network 
designer and classification learner toolboxes to create our proposed models.

In our approach, we first trained the AttentionPoolMobileNeXt model on the training 
dataset and then computed a pretrained AttentionPoolMobileNeXt. The training options for 
the AttentionPoolMobileNeXt model were an initial learning rate of 0.005, a maximum of 
20 epochs, and a mini-batch size of 32. We split the data into training and validation sets at 
an 80:20 ratio.

5.2  Results

In this section presents the classification results obtained using our proposed models. Our 
first step was to train the AttentionPoolMobileNeXt model, and provide the classification 
curve for this model during the training phase in Fig. 3.

(11)pr = SVM(selfeat, y)

(a) Accuracy (b) Loss

Fig. 3  Training and validation curves obtained for the proposed AttentionPoolMobileNeXt with damaged 
construction dataset
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Figure 3 provides evidence of AttentionPoolMobileNeXt’s remarkable training accu-
racy, which reached 100%. In addition, the final validation accuracy was 97.35%. To 
evaluate the model’s performance further, we utilized the test dataset and generated a 
confusion matrix, as depicted in Fig. 4.

As depicted in Fig. 4, the AttentionPoolMobileNeXt model exhibited a test classifi-
cation accuracy of 90.17%. To enhance this performance, we introduced a DFE model 
that improved the classification capabilities of AttentionPoolMobileNeXt. In this DFE 
model, we extracted features from various sources, including the dropout layer of the 
pretrained AttentionPoolMobileNeXt, raw image data, and the LL and LH wavelet 
bands of the images.

Our deep feature extractor generated 256 features from each input, and with nine 
inputs, a total of 2304 features were extracted from each image. Employing INCA as a 
feature selector, we identified the most valuable 116 features out of the initial 2304. In 
the final phase, a SVM was employed for classification, resulting in our developed DFE 
model achieving an impressive 97% classification accuracy.

Fig. 4  Confusion matrix obtained 
for the proposed method. * 1: 
Debris, 2: Damaged building, 3: 
Damaged highway, 4: Non-dam-
aged building, 5: Non-damaged 
highway

Fig. 5  Confusion matrix 
obtained for the proposed DFE 
model based on AttentionPool-
MobileNeXt
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The confusion matrix for our AttentionPoolMobileNeXt-based model is presented in 
Fig. 5.

As shown in Fig.  5, our deep feature engineering model achieved a classification 
accuracy of 97%.

To comprehensively evaluate the classification performance of our model, we 
employed commonly used metrics such as accuracy, recall, precision, and F1-score. The 
details of these metrics are given below [41]:

Classification accuracy: It is the ratio of correctly predicted instances to the total 
instances in the dataset. A high accuracy indicates the overall correctness of the mod-
el’s predictions. However, it may not be suitable for imbalanced datasets. Therefore, we 
need to use other metrics.
Recall: It measures the ability of a model to capture all the relevant instances and is 
termed class-wise classification accuracy. High recall implies fewer instances of the 
positive class being overlooked, which is crucial when false negatives are costly.
Precision: It assesses the accuracy of positive predictions made by the model. High pre-
cision indicates that a positive prediction by the model is likely to be accurate, minimiz-
ing false positives.
F1-score: It is the harmonic mean of precision and recall, providing a balanced metric. 
F1-score considers both false positives and false negatives, making it a suitable metric 
when there is an imbalance between classes.

Table 4  Performance measures (%) obtained for the presented models

Metric Class AttentionPoolMobile-
NeXt

AttentionPoolMo-
bileNeXt-based 
DFE

Accuracy Overall 90.17 97
Recall Debris 56 94

Damaged building 100 99
Damaged highway 97 95
Non-damaged building 100 99.50
Non-damaged highway 88 95
Overall 88.20 96.50

Precision Debris 100 96.91
Damaged building 95.24 97.06
Damaged highway 68.79 94.06
Non-damaged building 98.04 98.51
Non-damaged highway 93.62 96.94
Overall 91.14 96.70

F1 Debris 71.79 95.43
Damaged building 97.56 98.02
Damaged highway 80.50 94.53
Non-damaged building 99.01 99
Non-damaged highway 90.72 95.96
Overall 87.92 96.59
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The accuracy provides an overall view, recall, precision, and F1-score offer insights 
into specific aspects of a model’s performance, particularly when dealing with imbalanced 
datasets or scenarios where certain types of errors are more critical than others.

The calculated test results are summarized in Table 4.
Table 4 reveals that the proposed model has achieved a 90.17% and 97% test classifica-

tion accuracies. Notably, the non-damaged buildings class emerged as the best-performing 
class for the DFE model, exhibiting a remarkable 99.50% recall rate. In addition, Atten-
tionPoolMobileNeXt demonstrated exceptional recall performance of 100% for the dam-
aged building and non-damaged buildings class. However, both models exhibited poor per-
formance in the debris class, which emerged as the worst-performing class

Precision metrics reveal that the AttentionPoolMobileNeXt-based DFE model excels in 
precision across various categories, showcasing notable improvements in Damaged high-
way, Non-damaged building, and Non-damaged highway classifications. These enhance-
ments emphasize the model’s increased accuracy in correctly predicting positive instances, 
minimizing false positives.

Analyzing the F1-Score, a metric that balances precision and recall, the Attention-
PoolMobileNeXt-based DFE model consistently exhibits improvements across different 
classes and overall performance. Particularly noteworthy are the substantial improvements 
in Debris, Damaged building, and Non-damaged building classifications, emphasizing the 
model’s improved balance between precision and recall.

The class-specific performance analysis further underscores the AttentionPoolMobile-
NeXt-based DFE model’s proficiency in classifying Debris, Damaged buildings, and Non-
damaged buildings, achieving high recall, precision, and F1-Score. Notable improvements 
are also observed in the Damaged highway classification, showcasing the DFE model’s 
effectiveness across diverse construction damage categories.

The overall performance metrics, including accuracy, recall, precision, and F1-Score, 
collectively demonstrate the superiority of the AttentionPoolMobileNeXt-based DFE 
model over the baseline AttentionPoolMobileNeXt model. These findings underscore the 
efficacy and reliability of the deep feature engineering approach in advancing construction 
damage classification.

5.3  Explainable results

In our study, the application of AttentionPoolMobileNeXt, coupled with the Gradient-
weighted Class Activation Mapping (Grad-CAM) method [42, 43], has provided valuable 
insights in the domain of construction damage detection. Figure 6 visually represents our 
model’s capability in accurately identifying damaged areas, emphasizing the role of atten-
tion blocks within AttentionPoolMobileNeXt.

It may be noted from Fig. 6 that, the embedded attention mechanisms effectively focus 
on key features which are indicative of construction damage. Grad-CAM highlights spe-
cific regions in the images where the AttentionPoolMobileNeXt’s attention is concentrated, 
offering visual interpretation of the decision-making process. This transparency contrib-
utes to AttentionPoolMobileNeXt’s interpretability, a crucial aspect to instill robustness in 
our findings.

The attention blocks play a crucial role in enabling the model to discern intricate pat-
terns and subtleties associated with different forms of construction damages. This meticu-
lous attention to relevant features enhances the overall classification accuracy of our model 
in identifying damaged areas.
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Additionally, the Grad-CAM visualization acts as an interpretability tool and window 
to the internal workings of AttentionPoolMobileNeXt during classification. This helps to 
grasp the rationale behind specific decisions, providing valuable insights for further refine-
ment of the model and practical application in real-world scenarios.

The combined use of AttentionPoolMobileNeXt and Grad-CAM has resulted in obtain-
ing higher classification accuracies, and interpretability. The visual representations in 
Fig. 6 justifies the effectiveness of attention mechanisms in enhancing model performance 
and offer a transparent view into the decision-making processes, promoting trust and 
understanding of the model’s predictions.

6  Discussions

We have introduced a novel attention-based CNN by adapting MobileNetV2, termed 
AttentionPoolMobileNeXt. This model represents a cutting-edge approach to deep feature 
engineering for image classification. The primary objective of AttentionPoolMobileNeXt 
is to explore the classification outcomes achieved through attention mechanisms in con-
junction with a lightweight network. We deploy this network with a humanitarian focus, 
particularly in response to the profound impact of the 2023 seismic events in Turkiye. 
These earthquakes underscore the critical need for swift damage detection to assist dis-
aster-stricken communities, considering the time-intensive nature of manual assessment. 

(a) (a) (a)

(b) (b) (b)
Debris Damaged building Damaged highway

(a) (a)

(b) (b)
Non-damaged building Non-damaged highway

Fig. 6  Heat map images obtained using the Grad-CAM technique for different images
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Therefore, an automated damage detection model is imperative, and leveraging the capa-
bilities of deep learning stands out as one of the most effective approaches to address this 
urgent requirement.

We formulate the damage detection problem as a computer vision problem and gather 
an image dataset from open-source image datasets. Our presented AttentionPoolMobileN-
eXt and AttentionPoolMobileNeXt-based deep feature engineering models achieve clas-
sification accuracies of 90.17% and 97%, respectively. In the presented DFE model, we 
generate deep features from raw image low-pass filter images. INCA, an iterative feature 
selector, is then used to select the most relevant features, and SVM is employed to classify 
the selected features.

In the following (Fig. 7), we provide a detailed analysis of these features.
Figure  7 reveals that out of the selected 116 features, 68 were generated from raw 

images, while the other 48 were generated using wavelet bands. Notably, LL (36 features 
were generated from LL bands) bands are more beneficial than LH (12 out of the selected 
112 features were generated from LH bands) bands. Furthermore, Fig. 8 demonstrated that 
all inputs contributed to obtaining an accuracy of 97%.

We utilized SVM for both selecting the most relevant feature vector in INCA and 
obtaining classification results. In selecting the appropriate SVM classifier, we con-
ducted tests using decision tree (DT), linear discriminant (LD), k-nearest neighbors 

Fig. 7  Number of features 
selected in various wavelet bands

Fig. 8  Classification accuracy 
obtained for various classifiers
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(k-NN), artificial neural network (ANN), bagged tree (BT), and SVM classifiers. The 
results of these tests are illustrated in Fig. 9.

It can be noted from Fig. 8 that, the best classifier used is SVM, which attained a 97% 
classification accuracy. Additionally, LD attained a 96.17% classification accuracy for 
our selected features. In contrast, the worst-performing classifier is DT, which achieved 
an accuracy of 91.33%.

The comparative results are presented in Table 5.
The information from Table  5 highlights that Liu et  al. [47] achieved the closest 

result to our method, attaining a 98% accuracy. It is crucial to note, however, that Liu 
et  al. [47] utilized a two-class dataset, while our study employed a more diverse five-
class construction dataset. This distinction underscores the complexity of our dataset, 
and despite this increased challenge, we achieved a commendable 97% classification 
accuracy.

Furthermore, we employed our dataset to showcase the high classification perfor-
mance of our model, employing well-established CNNs: MobileNetV2, ResNet50, 
DarkNet53, Xception, EfficientNetb0, DenseNet201, InceptionV3, and Inception-
ResNetV2. The test classification accuracies of these CNNs were compared with our 
proposed AttentionPoolMobileNeXt CNN, and the outcomes are presented in Fig. 9. To 
obtain accurate test classification accuracies and facilitate a reliable comparison, we uti-
lized the test classification results of these CNNs by applying DFE approaches, similar 
to our model. This comprehensive evaluation provides a clear perspective on the perfor-
mance of our model in comparison to widely recognized CNN architectures.

Figure  9 indicates that, our model achieved the highest test classification accuracy 
of 97% using our curated dataset. In comparison, MobileNetV2, our inspired CNN, 
attained a test classification accuracy of 92%. DenseNet201 performed the best, achiev-
ing a test classification accuracy of 95.83%. Our proposed AttentionPoolMobileNeXt is 
the lightest among them, with only approximately 1 million learnable parameters.

The findings, advantages, and limitations of our proposed method are given below.

Findings:

– Presented AttentionPoolMobileNeXt demonstrates a proficient ability to accurately 
identify areas affected by construction damage (Fig. 6).

Fig. 9  The comparative results. 
*Mob: MobileNetV2, Effb0: 
EfficientNetb0, IncV3: Incep-
tionV3, IncResNetV2: Incep-
tionResNetV2 and AttPoolMob: 
AttentionPoolMobileNeXt
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– The attention blocks within AttentionPoolMobileNeXt focuses on salient features of construction 
damages and helps in recognizing intricate patterns associated with diverse forms of damage.

– Grad-CAM provides transparency in the decision-making process by highlighting spe-
cific regions where the model’s attention is concentrated. This visual interpretation 
enhances the model’s elucidation, fostering confidence in the predictions.

– Developed DFE model has increased the test accuracy from 90.17% to 97%.

Merits:

– Collected diverse image dataset involving five classes for automatic construction dam-
age detection.

– Proposed the AttentionPoolMobileNeXt model by incorporating two pooling functions 
and two attention blocks into the MobileNetV2, to obtain high classification performance.

– Developed AttentionPoolMobileNeXt model is a lighter model than MobileNetV2 as it 
used 1 million learnable parameters.

– Presented AttentionPoolMobileNeXt reached higher classification performances than 
other commonly known CNNs (see Fig. 9).

– Developed both CNN and DFE-based models have demonstrated superior classification perfor-
mances.

– Generated models outperformed the existing models, highlighting their potential use-
fulness in practical applications.

Limitations:

– Although we tested our model on a significant dataset, additional evaluation on other 
datasets could further validate its performance. In this work, we focused on the serial 
earthquakes occurred in Turkiye. The model needs to be validated using the dataset 
obtained from other earthquake sites.

7  Conclusions

The impact of natural disasters on human lives is significant, and detecting the damage caused 
by these disasters is crucial. However, this process can be time-consuming, particularly for 
large-scale disasters. To address this issue, we propose a novel damage detection model to assist 
civil and construction engineers in identifying areas of damage more efficiently.

Our proposed model is based on attention-based CNN called AttentionPoolMobileNeXt. To 
evaluate the effectiveness of our approach, we acquired a new image dataset consisting of five 
classes. Our AttentionPoolMobileNeXt model achieved a 90.17% accuracy, while the Atten-
tionPoolMobileNeXt-based DFE model reached an even higher 97% accuracy. These results 
demonstrate the effectiveness of our developed models for construction damage detection.

Our future work will focus on collecting more diverse and comprehensive construction 
damage datasets. We also aim to develop a more efficient attention CNN to achieve higher 
classification performance with fewer parameters than current lightweight CNNs.
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