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Abstract
This paper introduces a novel mixed integer programming (MIP) reformulation for the joint chance-constrained optimal power 
flow problem under uncertain load and renewable energy generation. Unlike traditional models, our approach incorporates 
a comprehensive evaluation of system-wide risk without decomposing joint chance constraints into individual constraints, 
thus preventing overly conservative solutions and ensuring robust system security. A significant innovation in our method is 
the use of historical data to form a sample average approximation that directly informs the MIP model, bypassing the need 
for distributional assumptions to enhance solution robustness. Additionally, we implement a model improvement strategy 
to reduce the computational burden, making our method more scalable for large-scale power systems. Our approach is vali-
dated against benchmark systems, i.e., IEEE 14-, 57- and 118-bus systems, demonstrating superior performance in terms of 
cost-efficiency and robustness, with lower computational demand compared to existing methods.

Keywords Chance-constrained optimisation · Mixed integer programming · Optimal power flow

List of symbols
P  Ambiguity set
U  Uncertainty set
�i  Participation factor of the ith generator
�  Violation probability
B  Set of buses
G  Set of conventional generators
L  Set of transmission branches
Ω  Total power mismatch

�i  Fluctuation at the ith bus
Φ  Power transmission distribution factor
di  Forecast load at the ith bus
fij  Power flow on line ij
f LB
ij

  Lower bound of fij
fUB
ij

  Upper bound of fij
gi  Scheduled power generation
M  Big-M coefficient
N  Number of scenarios

Abbreviations
AC  Alternating current
AGC   Automatic generation control
CCs  Chance constraints
DC  Direct current
DRO  Distributionally robust optimization
GP  Gaussian process
GPR  Gaussian process regression
JCC  Joint chance-constrained
MIP  Mixed integer programming
PTDF  Power transmission distribution factor
OPF  Optimal power flow
RC  Robust constraints
RO  Robust optimization
SA  Scenario approach
SAA  Sample average approximation
SCC  Single chance-constrained
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SDP  Semidefinite programming
SOC  Second-order cone

1  Background

In power systems, power balance is performed continually. 
Optimal power flow (OPF) is a power dispatching mecha-
nism that performs every 5–30 min in a power system for 
generators to provide sufficient energy with the lowest 
operational costs while maintaining system reliability and 
security [1]. The traditional OPF model considers only the 
limitations of physical components in the system, i.e., the 
power balance, constraints of generation plants and power 
flows. Such a problem can be easily formulated and solved 
deterministically, and power generation can be scheduled 
accordingly to satisfy the forecast load. While the involve-
ment of renewable generation has brought additional uncer-
tainties, limits for the physical components are more likely 
to be reached. Therefore, studies of OPF considering uncer-
tainties were conducted to incorporate fluctuations in renew-
able energy.

2  Literature review

2.1  Uncertainty modeling techniques

Modeling uncertainties in power systems is pivotal for 
ensuring reliability and efficiency. The integration of uncer-
tainties, whether from stochastic load, renewable generation, 
or other sources, significantly affects operational costs and 
causes the system to violate constraints. Techniques like 
probabilistic models, stochastic optimization, and robust 
optimisation manage unpredictability inherent in system 
variables like load demand and generation capacity. A com-
mon approach in alternating current (AC) and direct cur-
rent (DC) OPF models is chance-constrained programming, 
defining a risk parameter for constraint violation.

Recent literature showcases diverse uncertainty mod-
eling approaches. A study [2] in automatic generation 
control (AGC) systems under non-Gaussian wind power 
uncertainty employed an Ito-theory-based model with a 
stochastic control approach for computational efficiency. 
This method transforms the stochastic control problem into 
a deterministic one, maintaining performance while reduc-
ing computational complexity. The study in [3] explored 
uncertainty quantification in power system dynamics 
through polynomial chaos-based methods. A generalized 
polynomial chaos model offers computational efficiency 
for short-term simulations, while a multi-event generalized 
polynomial model provides enhanced accuracy and stability 
for long-term scenarios, both effectively handling diverse 

uncertainty distributions. Another work [4] presented an 
uncertainty evaluation algorithm for power systems with 
correlated renewable sources using the probabilistic col-
location method and Copula function. This approach effi-
ciently models nonparametric distributions using kernel 
density estimation, offering improved accuracy and reduced 
computational load in quantifying system stability uncer-
tainties. In social event detection, Ren et al. [5] presented 
an uncertainty-guided contrastive learning loss framework 
for imbalanced social event detection, leveraging evidential 
deep learning and Dempster–Shafer theory for uncertainty 
estimation. This approach emphasizes boundary learning in 
latent space, dynamically adjusting class separability based 
on uncertainty, thereby improving the detection of uncertain 
classes.

These diverse methodologies underscore the importance 
of context-specific approaches to uncertainty modeling in 
various domains. In our ongoing research, we are explor-
ing the application of chance-constrained programming in 
AC and DC OPF models. This approach, aligning with the 
trends observed in current literature, aims to offer a flex-
ible and realistic framework for addressing uncertainties in 
power generation and demand, contributing to the broader 
discourse on effective uncertainty management in power 
systems.

2.2  AC and DC‑OPF

To account for the uncertainties in a power system, intro-
ducing chance constraints (CCs) into the OPF problem is a 
common approach. These CCs can define a risk parameter 
to allow constraint violation, which is crucial in both AC 
and DC-OPF models.

Chance-constrained AC-OPF [6–14] accounts for voltage 
magnitudes, active, and reactive power, but faces challenges 
due to the nonlinearities of the power flow equations and 
the CCs. These nonlinearities often necessitate linearization 
steps for computation. For example, Zhang and Li [6] mod-
eled the OPF problem with chance-constrained program-
ming under uncertain loads, applying linearization to estab-
lish a relationship between constrained outputs and uncertain 
inputs. Similar linearization strategies were adopted by [8, 
9], with the latter focusing on voltage magnitude control but 
requiring further investigation into scalability.

The nonlinear nature of AC-OPF introduces noncon-
vexities, often resulting in a feasible space with multiple 
disconnected components [15]. This complexity has led to 
many optimisation problems within AC power flow systems 
being classified as NP-Hard [16, 17]. While metaheuristic 
algorithms, such as whale optimisation [18], reptile search 
[19], and partial swarm optimisation [20], exist to ensure 
global optimal, they often do not provide explicit solutions 
and are very time-consuming, especially when uncertainties 
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are integrated into the system. This integration becomes 
critical in short-term planning, where uncertainties from 
stochastic load and renewable generations have significant 
impacts on operational costs and constraints [21]. Recent 
advancements, like deep reinforcement learning approaches 
such as proximal policy optimisation, have shown promise 
in managing distribution networks with renewable energy 
and storage devices [22, 23]. However, they too face difficul-
ties in providing explicit solutions in a computation-efficient 
manner under uncertainty. Therefore, distributed computing 
methods have been proposed to improve computational effi-
ciency [24, 25], including solving the OPF problem while 
preserving confidentiality [25]. Nonetheless, probabilistic 
AC power flow models might produce multiple or no solu-
tions, posing significant challenges in assessing the impact 
of uncertainties.

In contrast, the DC-OPF model, being a linear approxima-
tion, simplifies the integration of uncertainties. This model 
has seen extensive exploration in applying different chance-
constrained optimisation techniques [26–39]. Approaches 
range from assuming distributions for uncertain variables to 
adopting distributionally-robust methods and sample-based 
approaches that do not require distributional assumptions 
or ambiguity sets. Such techniques in DC-OPF provide a 
reference for power system operators, with the potential for 
achieving reasonable solutions within a feasible timeframe.

2.3  Joint chance constraints

The majority of chance-constrained OPF problems in the 
current literature are predominantly solved using a single 
chance constraint approach. Despite its prevalence, this 
method often fails to capture complex interdependencies 
between multiple system components, which can be crucial 
for the overall system reliability. Recognising this limitation, 
some researchers have explored joint chance-constrained 
(JCC) formulations, which ensure that all engineering limits 
are met concurrently with a joint probability, thus offering a 
more robust guarantee of system security [40].

The single chance constrained (SCC) OPF, while sim-
pler to solve due to its focus on individual constraints with 
unique probabilities [41], can result in solutions that exhibit 
a lower overall joint violation probability [34]. This existing 
outcome suggests that while SCC OPF is computationally 
efficient, it might not always provide the most reliable or 
cost-effective solutions.

Conversely, the JCC approach requires multiple con-
straints to be satisfied simultaneously with a prescribed 
probability, emphasising a holistic view of system security. 
This approach, however, presents significant computational 
challenges. A common strategy is to decompose the JCC 
problem into a series of single CCs, as demonstrated in [13], 
which simplifies the problem but requires careful allocation 

of individual risk levels. Selecting these risk levels opti-
mally is crucial for accurately approximating the JCC prob-
lem [42], yet it often leads to overly conservative and costly 
solutions [35, 43].

In this paper, we address the complexities of JCC opti-
misation by proposing a model that employs the JCC frame-
work comprehensively. We evaluate the risk across the entire 
system collectively, rather than assessing individual con-
straints separately. This holistic consideration of system-
wide risk enables a more accurate and unified assessment 
of uncertainties. By solving all constraints concurrently 
without decomposing them into simpler components, our 
model avoids producing overly conservative solutions that 
typically incur higher costs. This direct and integrated 
approach ensures robust system security while optimising 
computational efficiency. This approach aims to strike a 
balance between the ease of solution and the assurance of 
overall system security.

2.4  Reformulations of chance constraints

CCs are inherently nonlinear and nonconvex, making them 
challenging to compute and solve deterministically; thus, 
reformulations are often necessary. The work [10] intro-
duced a convex relaxation of the chance-constrained DC 
OPF using a semidefinite programming (SDP) reformula-
tion, incorporating both Gaussian distributed uncertainties 
and realistic forecast data. They demonstrated that realistic 
data could yield solutions with reduced computation time 
and violation probability. The work [26] proposed a second-
order cone (SOC) reformulation of the probabilistic con-
strained OPF, targeting minimum generation costs while 
accommodating random power injections, thereby enhancing 
computational tractability. Through extending the results in 
[26, 34] developed a corrective control policy based on nor-
mally distributed forecast uncertainties, reformulating the 
CC OPF problem as an SOC program efficiently solvable 
for large systems. Several authors in [34] further advanced 
this approach in [8], constructing an AC model that uses 
partial linearisation for nonlinear CCs, reducing computa-
tion time through an iterative algorithm. In [29], the authors 
assumed a multivariate normal distribution of uncertainties, 
devising an analytical reformulation using confidence bound 
approximations, which could be effectively addressed with 
a cutting-plane algorithm.

Building upon [26, 32] adopted a robust optimisation 
framework, considering uncertainty sets for the mean and 
variance of Gaussian distributions. Although this method 
employed a cutting-plane algorithm, it sometimes failed to 
maintain high reliability, especially under JCC. Distribu-
tionally robust optimisation (DRO) has gained traction, as 
exemplified by [11, 30, 31], where the authors formulated 
ambiguity sets based on empirical data moments. These 



1114 International Journal of Machine Learning and Cybernetics (2025) 16:1111–1127

approaches, despite being more reliable, often result in 
longer computation time. The work [31] addressed two-sided 
CCs with DRO, facilitating efficient solutions through stand-
ard solvers. Conversely, Xu et al. [44] critiqued the reliance 
on mean and variance alone, pointing out the impractical-
ity of ignoring tail events in distributions, which are cru-
cial given that constraint violations typically occur in these 
regions.

In summary, while direct analytical reformulations of CC 
often rely on assumptions about uncertainty distributions, 
they generally overlook tail events, as [10] suggested. Utiliz-
ing realistic scenarios for deriving optimal solutions can be 
more practical. The sample average approximation (SAA) 
method leverages realistic scenarios without presuming an 
uncertainty set, using an empirical distribution to approxi-
mate CCs [47]. This approach enables direct problem-solv-
ing via mixed integer programming (MIP), which, unlike 
the method used by [28], does not impose stringent data size 
requirements due to its direct modelling of constraint viola-
tions using binary variables. In summary, Table 1 presents 
the comparison between recent work and ours in terms of 

test system, type of CCs, types of CCs reformulation and 
uncertainty representation.

2.5  Contributions

The contributions of this paper are summarised as follows. 

1. We introduce a novel SAA method applied to JCC OPF 
models considering uncertain load and renewable energy 
generation. This approach enhances the traceability of 
the problem without compromising the solution qual-
ity, offering a practical solution framework that bridges 
the gap between theoretical robustness and operational 
feasibility.

2. Unlike existing approaches that rely on distributional 
assumptions of uncertainties, our method leverages his-
torical data to formulate an MIP that can be directly 
solved with off-the-shelf solvers. This strategy signifi-
cantly mitigates the risks associated with distributional 
assumptions and inaccuracies, providing a more reliable 
basis for decision-making in uncertain environments.

Table 1  The comparison between recent work and the proposed work

References Year Test system Type of CCs Type of CCs reformulation Uncertainty representation

[40] 2013 IEEE 30-bus system Single Convex reformulation, Heuristic 
algorithm

Scenarios, quantiles

[45] 2017 IEEE 118-, 300-bus systems Joint Analytical reformulation Distribution, moments
[46] 2018 RTS96, IEEE 118-, 300-bus sys-

tems, Polish 2383 system
Joint Analytical reformulation Distribution

[9] 2017 IEEE 37-bus system Single Convex reformulation Distribution
[10] 2018 IEEE 24-, 118-bus systems Joint Semidefinite reformulation Uncertainty set
[11] 2018 IEEE 14-, 118-bus systems Single Distributionally robust reformula-

tion
Family of probability distributions

[12] 2019 IEEE 5-, 30-bus systems Single Moment-based reformulation Moments
[13] 2019 IEEE 37-bus system Joint Analytical reformulation Scenarios
[14] 2019 IEEE 118-bus system Joint Analytical reformulation Distribution
[26] 2014 IEEE 9-, 30-, 39-, 118-bus systems Single Conic reformulation Distribution, moments
[28, 29] 2017 IEEE 30-bus system Single Analytical reformulation Distribution
[30] 2016 IEEE 3-, 39-, 118-bus systems Single Distributionally robust reformula-

tion
Family of probability distributions

[31] 2017 IEEE 39-bus system Joint Distributionally robust reformula-
tion

Family of probability distributions

[32] 2015 BPA system Single distributionally robust reformula-
tion

Family of probability distributions

[33] 2020 IEEE 5-, 118-bus systems Single Distributionally robust reformula-
tion

Family of probability distributions

[35] 2020 IEEE 14-, 57-, 118-bus systems Joint Sample-based approximation Scenarios
[36] 2021 IEEE 5-, 118-bus systems Single Analytical reformulation Distribution, scenarios
[37] 2021 IEEE 9-, 14-, 30-, 118-, 300-bus 

systems
Joint Distributionally robustreformula-

tion
Family of probability distributions

[38] 2020 IEEE 118-bus system Joint Boolean Reformulation Scenarios
Our work – IEEE 14-, 57-, 118-bus systems Joint Data-driven MIP reformulation Scenarios
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3. Our model addresses the joint chance constraints in their 
entirety, avoiding the common practice of decomposing 
them into individual constraints. This holistic view pre-
vents the suboptimal and overly conservative solutions 
often associated with individual constraint optimisa-
tion. By considering all constraints jointly, our approach 
ensures a more accurate representation of system-wide 
risk levels and operational reliability.

4. To tackle the challenge of increasing complexity with 
larger sample sizes in MIP, we implement a model 
improvement strategy that significantly reduces the num-
ber of binary variables required. This adjustment low-
ers the computational burden, making our method more 
practical and scalable compared to existing approaches, 
which often struggle with computational intractability 
as sample sizes increase.

5. Our approach uniquely models power generation and 
line flow constraints jointly as two-sided chance con-
straints. This comprehensive modelling ensures that all 
constraints are met with a predefined probability of com-
pliance. Despite the influence of dataset size on compu-
tation time, our method includes strategic improvements 
that lessen this impact, thereby facilitating the efficient 
management of larger datasets without a corresponding 
increase in computational demand.

In the remainder of this paper. Section 3 describes the 
chance-constrained formulation of OPF. Section 4 presents 
the sample-based mixed integer programming reformulation 
and improvements. Section 5 illustrates the numerical results 
of our approach with benchmarks and another sample-based 
approach. Section 6 concludes this paper.

3  Chance‑constrained OPF

3.1  Power system model formulation

With assumptions of neglecting thermal losses of power 
transmission, the same voltage magnitude and small voltage 
angle differences among buses, we consider DC lineariza-
tion [26, 40, 48, 49] for the OPF problem in this paper. Let 
B , G and L denote the set of buses, conventional generators 
and transmission branches of a system, respectively. Assume 
the total power mismatch between load and generation is Ω.

3.1.1  Power demand

The forecast of the load is used to estimate the uncertain 
power demand at each bus for OPF calculation, while inac-
curacies exist. Therefore, the actual power demand on the ith 
bus di(�) is modeled by its forecast load di with a fluctuation 
component �i as follows,

where the sum of fluctuations on every bus is the total power 
mismatch of the system Ω =

∑
i∈B �i . In addition, as power 

generation from renewable energies is often uncontrollable, 
we model it as a negative load in this paper. For the ith bus, 
the forecast generation is −di and the forecast error is −�i.

3.1.2  Power generation

Since the load model includes renewable power generation, 
we model only the generation from conventional power 
plants. For the ith bus, the actual power generation gi(�) is 
composed of a scheduled generation and the action of AGC 
as follows,

where the scheduled generation gi provides a referencing 
operating point, and we use an affine control policy �iΩ to 
model the action of AGC system [40], such that the power 
mismatch can be compensated. Here, the participation fac-
tor �i takes a value from 0 to 1, which represents the por-
tion of energy that the ith generator would contribute to the 
total mismatch. A classic approach to determine the par-
ticipation factor �i is based on the proportion of its maxi-
mum generation capacity to the total. We optimise both the 
scheduled generation gi and the participation factor �i in our 
formulation.

3.1.3  Power flow

The power flow across transmission lines can be evaluated 
directly with the voltage angle difference and the line sus-
ceptance. To reduce the number of variables, we introduce 
a linear sensitivity, i.e., the power transmission distribution 
factor (PTDF) [50], to calculate the power flow. The solution 
obtained by the PTDF is equivalent to alternative approaches 
using voltage angles at every bus [35]. We denote this solu-
tion as Φ , which is an |L| × |B| matrix that correlates the 
injection of power with line flows. Thus, by denoting ij ∈ L 
as the line connecting buses i and j, the power flow at each 
branch can be written as follows,

3.2  Uncertain variables

The uncertain variable �i represents the load and renewable 
generation forecast error, and Ω =

∑
i∈B �i . A straightfor-

ward approach is to input scaled real-world data without any 
assumptions [10, 32]. With a large number of samples, this 
approach can provide the most realistic solution. However, 

(1)di(�) = di + �i, ∀i ∈ B,

(2)gi(�) = gi − �iΩ, ∀i ∈ G,

(3)fij(�) =
[
Φ ⋅ (g(�) − d(�))

]
ij
, ∀ij ∈ L.
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it is also possible that there is a limitation for sample size 
and that additional scenarios must be generated. The previ-
ous work [6, 31] suggested generating uncertain variables 
from an assumed multivariate normal distribution. In con-
trast, since the uncertain load and renewable generations 
are stochastic, an assumed distribution introduces additional 
uncertainties.

Another approach is to implement forecasting techniques 
for additional scenario generation. The main forecasting 
models include physical models that are built based on 
the actual environment and statistical models that forecast 
based on available past data. It is possible to build a physi-
cal model for a specified system, while with the increase 
of system size, there is an extremely large number of vari-
ables to be calibrated [51]. More importantly, as the model 
is build-to-spec, it is not able to implement any other cases. 
The purpose of this work is to develop a generic model that 
can be directly applied, and the use of statistical models is 
more practical. Since the OPF problems are solved in a short 
amount of time, it would be beneficial to consider a short-
term wind power forecast technique, and Gaussian Process 
regression (GPR) is a viable approach [52].

GPR is mostly used to provide forecast information based 
on historical information. We adopt this method to generate 
additional scenarios for our case studies. Firstly, we take 
the scale real-world data and treat it as a random variable 
x . Then, a Gaussian process (GP) is specified by its mean 
function and covariance function [53]. The mean function 
and covariance matrix of a real process f (x) are defined as 
follows,

For simplicity, we preprocess the data to set the 
mean function to zero. Let K(X, X) denote a covariance 
matrix evaluated at all pairs of training instances and 
[K(X,X)]ij = k

(
xi, xj

)
. K

(
X,X

∗

)
 denotes a covariance matrix 

evaluated at all pairs of training and test instances. K
(
X
∗
,X

)
 

and K
(
X
∗
,X

∗

)
 are defined likewise. Then, the joint distribu-

tion of observed targets, say, the vector y, and the function 
values at the test locations, say, the vector f

∗
 , is

where � ∼ (0, �2
n
) denotes independent, identically distrib-

uted noise to the observations, i.e., y = f (x) + � . Then, the 
mean of the forecast value f

∗
 is evaluated as follows,

Last, the training process sets the GP parameters by maxi-
mizing the log marginal likelihood,

(4)
m(x) = �

[
f (x)

]
,

k
(
x, ��

)
= �

[
(f (x) − m(x))

(
f
(
�
�
)
− m

(
�
�
))]

.

(5)
[
y

f
∗

]
∼ N

(
0,

[
K(X,X) + �2

n
I K

(
X,X

∗

)

K
(
X

∗
,X

)
k
(
X

∗
,X

∗

)
])

,

(6)f̄
∗
= K

(
X

∗
,X

)[
K(X,X) + 𝜎2

n
I
]−1

y.

where N is the number of training instances. The work in 
[53] shows that the marginal likelihood incorporates a trade-
off between model fit and model complexity automatically.

3.3  Joint chance‑constrained OPF

In a power system, the failure of the transmission line usu-
ally occurs gradually with the heating due to overloading. 
Hence, violations of line flow constraints may not be unac-
ceptable for power providers. Moreover, these violations 
could be economically beneficial as long as they are con-
trolled under a secure level; therefore, we consider them 
“soft constraints". Thus, we model them as CCs with a pre-
scribed violation probability �.

Our objective is to minimize the total operational cost 
Cost(gi, �i,Ω) . Considering a generic linear cost function, 
the joint chance-constrained OPF is formulated as follows, 

Since the cost of generation varies for each generator, 
we optimise both the scheduled generation gi and the par-
ticipation factor �i for each conventional generator. Unlike 
the CCs, the power balance is mandatory for the system, 
and therefore, we consider the associated constraints (8b) 
and (8c) as “hard constraints”. As the participation factor 
compensates for the fluctuations, we ensure the balance of 
total power mismatch by (8c). Therefore, the constraint of 
power balance (8b) consists of the scheduled power only. 
Equation (8d) indicates that the participation factor takes a 
value between 0 and 1. Equation (8e) describes the joint CCs 
for both line flow and generation. Here, we denote by aLB 
and aUB the lower and upper bounds for a, respectively. The 
power flow among line ij and generation of the ith genera-
tor are constrained between their lower and upper bounds. 

(7)
log p(y|X ) = −

1

2
yT
(
K(X,X) + �2

n
I
)−1

y

−
1

2
log

|||K(X,X) + �2
n
I
||| −

N

2
log 2�,

(8a)min
gi,�i

∑

i∈G

Cost(gi, �i,Ω)

(8b)s.t.
∑

i∈G

gi −
∑

j∈B

dj = 0,

(8c)
∑

i∈G

�i = 1,

(8d)0 ≤ �i ≤ 1, ∀i ∈ G,

(8e)ℙ

(
f LB
ij

≤ fij(�) ≤ fUB
ij

, ∀ij ∈ L

gLB
i

≤ gi(�) ≤ gUB
i

, ∀i ∈ G

)
≥ 1 − �.
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Constraints of line flow and generation are required to be 
satisfied jointly with an acceptance probability of 1 − �.

4  Mixed integer programming 
reformulation

The joint CCs (8e) usually cannot be evaluated directly. 
Since historical data for the power system are often avail-
able, we can estimate the empirical distribution of the 
probabilistic constraint (8e) via SAA. For simplicity, let 
m = 2|G| + 2|L| , we denote (8e) as follows,

where for j = 1,… ,m , cj(gi, �i,�) takes one of the follow-
ing forms,

There are a total of m constraints that must be jointly 
satisfied with an acceptance probability 1 − �.

In Fig. 1, we present the block diagram of our approach, 
illustrating the sequence of steps taken to solve the modified 
IEEE test cases using our proposed model. The process begins 
with uncertainty modelling, where historical data is initially 

(9)ℙ
(
cj(gi, �i,�) ≤ 0

)
≥ 1 − �, ∀i ∈ B

(10)

f LB
ij

− fij(�) ≤ 0, ∀ij ∈ L,

fij(�) − fUB
ij

≤ 0, ∀ij ∈ L,

gLB
i

− gi(�) ≤ 0, ∀i ∈ G,

gi(�) − gUB
i

≤ 0, ∀i ∈ G.

loaded to understand the variability and trends in power sys-
tem operations. GPR is then applied to this historical data to 
model the uncertainty and generate additional scenarios for the 
system uncertain variables.

Next, the JCC-OPF model is defined, incorporating the 
uncertain variables derived from the uncertainty modelling 
step. This model ensures that the system operates reliably 
under different scenarios. The SAA method is then applied 
to these scenarios, transforming the probabilistic constraints 
into deterministic ones and facilitating a more tractable 
problem formulation.

The deterministic MIP reformulation obtained from 
SAA can be solved using standard optimisation techniques. 
To enhance the efficiency of the MIP model, an optimised 
Big-M coefficient tightening technique is applied, improving 
computational performance and ensuring numerical stabil-
ity. Additionally, a constraint reduction technique is imple-
mented to improve the solution time by reducing the number 
of constraints, making the problem more computationally 
efficient without significantly sacrificing accuracy.

Finally, the reduced MIP model is solved using a branch-
and-bound method, as implemented in the Gurobi solver. 
This step provides the final solution, optimising the power 
flow while considering the uncertainties and maintaining 
the prescribed power flow risk limits. This methodical flow 
ensures a robust and efficient approach to solving the OPF 
problem under uncertainty, providing a reliable and practi-
cal solution for real-world power systems. Additionally, a 
pseudo code for our problem-solving approach is provided 
in the Appendix to offer further clarity on the implementa-
tion details.

4.1  Sample average approximation

Without loss of generality, we take a generic example for 
illustration. The constraints cj(gi, �i,�) ≤ 0, j = 1,… ,m 
must be satisfied with an acceptance probability 1 − � . If the 
uncertain variable � is available in a realization set 
{�1,… ,�N

} , to satisfy the CC in the empirical distribution, 
at least ⌈N(1 − �)⌉ scenarios need to be satisfied, where ⌈a⌉ 
is the smallest integer that is larger than or equal to a real 
number a. Therefore, by introducing a binary variable yk and 
a sufficiently large positive number Mk

j
 that satisfies 

cj(gi, �i,�
k
) ≤ Mk

j
 for each scenario k, we have, 

(11a)cj(gi, �i,�
k
) ≤ ykMk

j
, ∀k = 1,… ,N,

(11b)
N�

k=1

yk ≤ ⌊N�⌋,

(11c)yk ∈ {0, 1}, ∀k = 1,… ,N,

Reduced MIP

Apply Sample Average

Approximation

MIP Reformulation (13)

Optimized Big-M

Coefficient (12)

Constraint

Reduction (20)

Final Solution

Uncertainty Modelling (1)

Apply Gaussian Process

Regression (GPR)
Load Historical Data

Generate Additional Scenarios

Define JCC-OPF Model

(8)

Fig. 1  Block diagram of the proposed methodology
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 where ⌊a⌋ denotes the largest integer that is smaller than or 
equal to a real number a.

Equation (11a) represents the approximation of samples 
k = 1,… ,N . In the case of no constraint violation, yk = 0 is 
allowed as cj(gi, �i,�k

) ≤ 0 . In the case of cj(gi, 𝛽i,𝜔k
) > 0 , 

we must set yk = 1 , such that cj(gi, �i,�k
) ≤ Mk

j
 , and (11a) is 

satisfied. The total number of constraint violations is limited 
by (11b). Hence, the prescribed violation probability � can 
be maintained.

It is critical to choose the value of the big-M coefficient, 
such that the constraint does not cut-off the feasible region 
while maintaining a strong relaxation. For the kth scenario 
and the jth row, we determine the big-M coefficient with 
single scenario optimisation as follows, 

Similarly, the original JCC-OPF can be approximated as 
follows, 

The JCC is approximated with Nm + 1 linear constraints 
with an introduction of N binary variables. This reformu-
lated OPF model (13) can be efficiently solved using off-the-
shelf solvers, such as Gurobi [54].

In the implementation of the SAA method within our 
study, we draw upon the theoretical framework detailed by 
[47], particularly as detailed in Section 2.2 of [47]. This 
section offers an in-depth theoretical analysis of the SAA 
method, with a focus on the probabilistic estimation of fea-
sible regions. It highlights how the sample approximation 

(12a)
Mk

j
∶= max

gi,�i

cj(gi, �i,�
k
) ∀i ∈ G,

s.t. Eqns. (8b)-(8d).

(13a)min
gi,�i

∑

i∈G

Cost(gi, �i,Ω)

(13b)s.t. gLB
i

− gi(�
k
) ≤ ykMk

j
, ∀i ∈ G;k = 1,… ,N,

(13c)gi(�
k
) − gUB

i
≤ ykMk

j
, ∀i ∈ G;k = 1,… ,N,

(13d)f LB
ij

− fij(�
k
) ≤ ykMk

j
, ∀ij ∈ L;k = 1,… ,N,

(13e)fij(�
k
) − fUB

ij
≤ ykMk

j
, ∀ij ∈ L;k = 1,… ,N,

(13f)
N∑

k=1

yk ≤ N�,

(13g)yk ∈ {0, 1}, ∀k = 1,… ,N,

Eqns. (8b)-(8d).

feasible region can reliably approximate the true feasible 
region, which is vital for ensuring that solutions derived 
from the SAA method are applicable to real-world con-
straints. Essentially, an MIP problem is NP-hard. Further-
more, the detailed computational cost analysis of the SAA 
method for different complexities can be referred to Sec-
tion 3.6 of [55] and Section 5 of [56]. These findings have 
directly influenced our approach to implementing the SAA 
method to address the complexities of power system opera-
tions, ensuring our solutions are both accurate and feasible.

Moreover, the thorough numerical experiments in [47] 
demonstrated the practical viability of SAA in handling large 
sample sizes and the corresponding computational consid-
erations. Their findings, particularly on the computational 
effort required for large sample sizes (e.g., N = 10, 000 ), 
guide our methodological choices, balancing computational 
intensity with solution quality.

Our research takes these theoretical and empirical insights 
and applies them to novel challenges in power systems. We 
tailor the SAA approach to address specific power system 
optimisation problems, ensuring that our methodology is 
not only theoretically robust but also practically relevant. 
Our novel contributions lie in extending and refining these 
foundational principles to cater to the unique demands of 
power systems optimization, thus bridging the gap between 
theoretical rigour and real-world applicability.

This section, therefore, not only reiterates the theoreti-
cal basis of our approach, drawing from the seminal work 
of [47], but also outlines our advancements beyond this 
groundwork. It underscores our commitment to leveraging 
established methodologies while pushing the boundaries of 
innovation in power system optimisation.

4.2  Model improvement

The SAA method provides an approach to approximate the 
CCs by the utilisation of past scenario data. Although the 
reformulated MIP can be solved with off-the-shelf solvers, it 
is essentially an NP-hard problem [56]. With the increasing 
number of scenarios, the number of binary variables and 
constraints increases accordingly. Therefore, this may lead to 
a significant increase in the computation time. To ease such 
an effect, we improve a constraint strengthening strategy that 
was first proposed in [57].

4.2.1  Power generation constraints

We use the lower bound power generation constraint as an 
example. First, we put the terms that vary by scenario at 
the right-hand side (rhs) by rearranging the constraint as 
follows,
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Note that the value of the decision variable �i does not 
change with respect to the scenario number k, i.e., the rhs 
depends only on the value of the uncertain variable Ωk . For 
the values of Ωk , k = 1,… ,N , we obtain a permutation � by 
sorting them in a nonascending order,

In addition, the cardinality constraint (11b) implies that there 
is at most ⌊N�⌋ scenarios of constraint violation. Let

For case k ≤ p , there exists at least one scenario of yk = 0 . 
Moreover, as the uncertain term Ωk has been rearranged in 
nonascending order, if binary variable yk = 0 appears for 
k ≤ p , the remaining constraints gLB

i
− gi ≤ Mk

j
yk − �iΩ

k 
with k > p are redundant. For every power generation CC in 
the joint CCs, the number of constraints can be reduced from 
N to p. We denote Pgl as the set of the first p elements of the 
permutation for the power generation lower bound con-
straints, respectively, i.e., Pgl

= {�1, �2,… , �p} , P
gu in a 

similar way.
In practice, we know that the higher the load is, the higher 

the power generation per plant is. Note that the uncertain 
term Ω is the total power mismatch, representing the differ-
ence between the actual load and the forecast. For the lower 
bound constraint, as the scenarios with higher values of Ω 
result in a higher value of power generation, they are less 
likely to lead to constraint violation. Hence, for the lower 
bound power generation constraints, the solutions of deci-
sion variables are more sensitive to a lower value of Ω.

4.2.2  Power flow constraints

The reduction technique cannot be directly implemented 
to the power flow constraints. However, based on a simi-
lar idea, we can obtain a relaxation of the original MIP by 
removing a large number of constraints. We take the lower 
bound flow constraint as an example. Similarly, the rear-
ranged flow constraint is written as follows,

where �
(ij,⋅) denotes the ijth row of the PTDF matrix.

In this case, the terms −�
(ij,⋅)�Ω

k and −�
(ij,⋅)d(�)

k on the 
rhs change by the scenario number k, where �

(ij,⋅)�Ω
k repre-

sents the change of power flow on the ijth line with regards 
to the action of AGC, and where �

(ij,⋅)d(�)
k represents the 

change of power flow on the ijth line with regards to the 
load. Unlike the previous case, �

(ij,⋅)�Ω
k involves a decision 

variable � and its value may vary when � varies. Moreover, 

(14)gLB
i

− gi ≤ Mk
j
yk − �iΩ

k.

(15)Ω
�1 ≥ Ω

�2 ≥ ⋯ ≥ Ω
�N .

(16)p = 1 + ⌊N�⌋.

(17)f LB
ij

− �
(ij,⋅)g ≤ Mk

j
yk − �

(ij,⋅)�Ω
k
− �

(ij,⋅)d(�)
k,

the summation of �
(ij,⋅)�Ω

k and �
(ij,⋅)d(�)

k may have differ-
ent orders with each of �

(ij,⋅)�Ω
k and �

(ij,⋅)d(�)
k . It is more 

likely that the indices associated with larger scenarios of 
�
(ij,⋅)�Ω

k and �
(ij,⋅)d(�)

k with respect to k will yield the larger 
�
(ij,⋅)�Ω

k
+ �

(ij,⋅)d(�)
k . Our relaxation in this section is moti-

vated by this idea.
We sort Ωk and �

(ij,⋅)d(�)
k as follows,

Since the term −�
(ij,⋅)�Ω

k is associated with decision vari-
able � , depending on the value of � , it is possible that the 
coefficient �

(ij,⋅)� of uncertain variable Ωk is negative. There-
fore, both the �p largest and the �p smallest Ωk from (18) 
can be candidates for the largest �p scenarios of �

(ij,⋅)�Ω
k , 

and we denote � as a relaxation factor for p to represent the 
scenarios that we consider.

Moreover, note that the permutations �i and �i may not be 
the same. For the term −�

(ij,⋅)d(�)
k , scenarios from the first 

�p elements of the permutation {�1, �2,… , �N} must be con-
sidered. In the meantime, as the two uncertain terms are 
added together, we expand our feasible region by doubling 
the considered scenarios, i.e., set � = 2 . Hence, we denote 
by PΩ the index set containing the first and last 2p elements 
o f  t h e  p e r m u t a t i o n  ( 1 8 ) ,  i . e . , 
P
Ω
= {�1, �2,… , �2p, �N−2p+1, �N−2p+2,… , �N} , and denote 

by Pfl

ij
 the index sets of first 2p elements of the permutation 

for the lower bound of �
(ij,⋅)d(�)

k , i.e., Pfl

ij
= {�1, �2,… , �2p} , 

and by Pfu

ij
 the upper bound of �

(ij,⋅)d(�)
k in a similar way. 

For the lower bound constraint, we consider the scenarios 
k ∈ P

Ω
∪ P

fl

ij
 . Since both the signs of the term −�

(ij,⋅)�Ω
k are 

considered, for the upper bound constraint, we consider the 
scenarios k ∈ P

Ω
∪ P

fu

ij
 . The number of every power flow 

constraint can be reduced from N to 6p. The price is that we 
relax the feasible region in (13d) and (13e).

In summary, we propose a relaxation of (13) that reduces 
the number of every power generation CC to p and the num-
ber of power flows CC to 6p, 

(18)Ω
�1 ≥ Ω

�2 ≥ ⋯ ≥ Ω
�N ,

(19)�
(ij,⋅)d(�)

�1 ≥ �
(ij,⋅)d(�)

�2 ≥ ⋯ ≥ �
(ij,⋅)d(�)

�N .

(20a)min
gi,�i

∑

i∈G

Cost(gi, �i,Ω)

(20b)s.t. gLB
i

− gi(�
k
) ≤ ykMk

j
, ∀i ∈ G;k ∈ P

gl,

(20c)gi(�
k
) − gUB

i
≤ ykMk

j
, ∀i ∈ G;k ∈ P

gu,

(20d)f LB
ij

− fij(�
k
) ≤ ykMk

j
, ∀ij ∈ L;k ∈ P

Ω
∪ P

fl

ij
,
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 Since the violation probability � is often small, p and 6p 
are small when compared to N. That is, our relaxation can 
remove many constraints. Our simulation results in Sect. 5.1 
indicate that the relaxation is quite tight compared to that of 
the original MIP (13).

4.3  Model comparison

Our model leverages historical scenario data to manage 
uncertainty, similar to the scenario approach (SA) [58] and 
robust constraints (RC) approach [59]. Like our approach, 
SA utilises past data but pairs it with a robust optimisation 
technique. The difference is that the robust optimisation 
(RO) technique does not allow for constraint violation, and 
that the solution is robust to all the scenarios it has consid-
ered. As a result, SA with traditional RO is more computa-
tionally efficient, while the obtained solution may be overly 
conservative.

The work [28] modelled the uncertain renewable genera-
tion and load reserve to formulate a multi-period CC OPF. 
The authors adopted a probabilistically RO technique to 
ensure a priori probability guarantee with a large number 
of samples considered [28]. Similarly, we determine a cer-
tain number of scenarios as NSA . All of the NSA past sce-
narios must be satisfied. The following equation is adopted 
to obtain NSA,

where � is chosen as 1 × 10−4 , � is the risk level as defined in 
(8e), and n is the number of decision variables. Our approach 
optimizes the scheduled generation and participation factor, 
which is twice of the number of generators.

The RC approach, on the other hand, approximates CCs 
with robust constraints that form a robust optimisation prob-
lem, constructed from historical data. This reformulation 
replaces probabilistic constraints with a worst-case scenario 
framework,

where U represents the uncertainty set derived from histori-
cal data.

To further substantiate the robustness and effectiveness 
of the proposed model, we extend our comparison to include 
a more advanced framework, the DR CC-OPF, as detailed 
in [60]. This model distinguishes itself by leveraging the 

(20e)fij(�
k
) − fUB

ij
≤ ykMk

j
, ∀ij ∈ L;k ∈ P

Ω
∪ P

fu

ij
,

Eqns. (18b)-(18d), and (13f)-(13g).

(21)NSA
≥

2

�

(
ln
(
1

�

)
+ n

)
,

(22)
f LB
ij

≤ min
�∈U

fij(�), max
�∈U

fij(�) ≤ fUB
ij

, ∀ij ∈ L,

gLB
i

≤ min
�∈U

gi(�), max
�∈U

gi(�) ≤ gUB
i

, ∀i ∈ G,

DRO methodology for the reformulation of CCs. Unlike 
traditional RO, DRO does not presume full knowledge of 
the underlying probability distributions. Instead, it operates 
under the assumption that the true distribution of historical 
data is unknown, yet it falls within a predefined ambiguity 
set of distributions. For our comparison, we adopt the boxed-
based ambiguity set approach, as outlined by [60], utilising 
uncertain historical data to define the set. We formulate the 
corresponding joint chance constraint as follows,

where P  represents the ambiguity set that we are 
considering.

This comparison is crucial for demonstrating the effi-
cacy and efficiency of our model, particularly its ability to 
manage uncertainties with potentially less conservative and 
better objective values. By comparing these models, we 
aim to illustrate the practical benefits of our approach to 
power system management under uncertainty, emphasising 
its superiority in balancing solution quality with computa-
tional resources.

5  Case studies

Numerical experiments are performed for the proposed 
model. Since the standard IEEE test cases assume infinite 
line flow limits, in our case study, we use the modified 
“IEEE 14-”, “57-”, and “118-bus" systems from the |pglib-
opf| package [61]. In such a way, prescribed line flow limits 
are associated.

We use the off-the-shelf solver Gurobi to solve our MIP 
reformulation. Branch-and-bound method is used for the 
solving process of our reformulation [54]. The computation 
time is referred to as the time taken for the solver to obtain a 
feasible solution with an objective value associated with an 
MIP gap of less than 0.01%, which is the difference between 
the lower and upper bounds of the objective.

A demonstration of model improvement is presented via 
the comparison of computation time. To assess the perfor-
mance and robustness of the proposed model, ten replica-
tions with different numbers of uncertain scenarios for all 
three systems are conducted. Last, a comparison with deter-
ministic [62], SA, RC, and DRO models [58] is performed.

5.1  Model improvement

The improvement of model solvability is mainly illustrated 
by the computation time for solving the MIP to a certain 
tolerance. Since the 118-bus system is the most complex 
case that we consider, it will require the most time to solve, 

(23)inf
ℙ∈P

ℙ

(
f LB
ij

≤ fij(�) ≤ fUB
ij

, ∀ij ∈ L

gLB
i

≤ gi(�) ≤ gUB
i

, ∀i ∈ G

)
≥ 1 − �,



1121International Journal of Machine Learning and Cybernetics (2025) 16:1111–1127 

and we choose it to demonstrate the effectiveness of our 
model improvement strategy. We generate ten uncertainty 
sets for different numbers of scenario sets. Three models 
with fixed big-M coefficients, predetermined big-M coeffi-
cients, and reduced CCs are run with the generated uncer-
tainty sets. To ensure the accuracy of the aforementioned 
models, the objective values and decision variables are 
cross-checked.

5.1.1  Choice of big‑M

The introduction of the big-M coefficient in our formula-
tion relaxes our model to allow constraint violation of the 
JCC. We use (12) to determine an appropriate value that 
is not too large to form a weak relaxation but not too tight 
to cut-off any feasible region.

Figure 2 illustrates the improvement of computation 
time when the big-M coefficients are tightened. Overall, 
out of ten sets of uncertainties, the mean computation time 
required to solve the model is reduced.

5.1.2  Constraint reduction

Figure 3 illustrates the reduction of computation time after 
applying the constraint reduction techniques. This is rea-
sonable as there are fewer constraints to be considered. 
Additionally, as the boxplot reveals the dispersion of the 
model run time, most of the computation time was reduced 
in a tight range. Moreover, since the MIP problem is NP-
hard, the computation time is more significant with the 
increase in considered scenarios, while the effect of time 
reduction is more pronounced.

5.2  Performance with different scenario numbers

Since our approach uses realistic scenario data directly, it is 
important to assess the performance of the proposed model 
with different numbers of scenarios. Out of ten replications, 
Table 2 records the minimum, average, and maximum values 
for the objective value, in-sample feasibility and computa-
tion time for 100, 200, 300, and 500 scenarios.

From Table 2, it can be seen that, as the number of con-
sidered scenarios increases, the range of objective values 
converges, i.e.,  out of ten replications, the objective val-
ues are less dispersed, the obtained solution would be more 
robust. The in-sample feasibility is referred to prob in Table  
2, where the actual constraint violation probability �actual can 
be calculated by 1 − prob . For small systems with 14 or 57 
buses, some of the in-sample feasibility are 1. This indicates 
that there is no constraint violation for the associated uncer-
tainty dataset, and the solution is robust to all the considered 
scenarios. With an increase in the bus number, the dimen-
sion of the decision variables and CCs increases, the system 
becomes more complex, and the feasibility decreases. Nev-
ertheless, as the CCs are constrained with a prescribed viola-
tion probability � as (8e), the in-sample feasibility is always 
maintained beyond the prescribed acceptance level of 95%. 
Finally, the computation time required to solve the OPF 
increases when the bus number and scenarios increase. The 
implementation of model improvement strategies reduces 
computation time significantly. For the 14- and 57-bus sys-
tems, it took less than one second to solve, while when the 
system is relatively large e.g., 118-bus system, the maximum 
computation time is 342 s. As such, in practice, since the 
OPF performs every 5–30 min for the power system, the 
consideration of 300–500 scenarios would be sufficient to 
provide acceptable results in a timely manner.
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5.3  Model comparison

Tables 3 and 4 illustrate the results similarly as in Table 2. 
However, we define out-of-sample feasibility as prob in 
them. This metric is determined by testing the feasibility 
of 106 additional uncertain scenarios against the obtained 
solutions. We use this metric to demonstrate the robustness 
of our proposed approach with some state-of-the-art models. 
For a comprehensive analysis, we choose our MIP approach 
with considerations of 300 and 500 scenarios for this com-
parison study. Specifically, we decide to perform the com-
parison studies for 14- and 57-bus systems with the deter-
ministic OPF, SA and the RC model against our proposed 
model, as detailed in Table 3. To further demonstrate the 
effectiveness of our approach, we extend the comparison to 
include the DR approach for the 118-bus system, as depicted 
in Table 4. This structured comparison aims to showcase the 

effectiveness and robustness of our proposed model across 
different system scales and against both conventional and 
advance optimisation methods.

5.3.1  IEEE 14‑, 57‑bus systems

The ‘nominal’ values, derived using the MATPOWER pack-
age [62], serve as a foundational benchmark, representing 
solutions to the deterministic OPF problem where uncer-
tainty is considered null � = 0 . It is also an approach that is 
widely used by utility companies.

From the objective value perspective, the nominal 
approach often yields the lowest mean cost under the 
assumption of no uncertainty. Our MIP approach, designed 
to accommodate certain degrees of constraint violations, 
tends to produce results with mean objectives that closely 
approximate the nominal, thereby highlighting its efficiency 
in handling uncertainties with minimal cost deviations. This 
adaptability contrasts with the SA and RC, which requires 
constraint satisfaction across all considered scenarios and 
often incurs higher total operational costs. Furthermore, our 
analysis reveals instances within ten replications where the 
SA method fails to provide a feasible solution, due to the 
impracticality of satisfying all scenarios, thus leading to 
‘inf’ objective value and 0 feasibility. For clarity, these infea-
sible instances are excluded from our mean value calcula-
tions. Overall, the results of objective values underscore our 

Table 2  Results of proposed model with feasibility and computation 
time

N = 100 N = 200 N = 300 N = 500

14-bus
Min. obj ($) 2040.8 2046.8 2047.8 2050.1
Avg. obj ($) 2050.9 2051.2 2052.1 2052.3
Max. obj ($) 2060.7 2055.2 2055.8 2054.2
Min. prob 1.000 1.000 1.000 1.000
Avg. prob 1.000 1.000 1.000 1.000
Max. prob 1.000 1.000 1.000 1.000
Min. time (s) 0.0390 0.0432 0.0563 0.0407
Avg. time (s) 0.0487 0.0616 0.0677 0.0494
Max. time (s) 0.0828 0.0760 0.0868 0.0705
57-bus
Min. obj ($) 34,759 34,727 34,749 34,741
Avg. obj ($) 34,800 34,768 34,784 34,768
Max. obj ($) 34,858 34,794 34,814 34,799
Min. prob 0.950 0.970 0.977 0.982
Avg. prob 0.985 0.984 0.993 0.995
Max. prob 1.000 1.000 1.000 1.000
Min. time (s) 0.121 0.172 0.324 0.319
Avg. time (s) 0.134 0.193 0.438 0.531
Max. time (s) 0.156 0.228 0.579 0.733
118-bus
Min. obj ($) 93,106 93,143 93,169 93,159
Avg. obj ($) 93,194 93,188 93,201 93,205
Max. obj ($) 93,254 93,247 93,235 93,229
Min. prob 0.950 0.950 0.950 0.950
Avg. prob 0.950 0.950 0.950 0.950
Max. prob 0.950 0.950 0.950 0.950
Min. time (s) 1.475 5.454 13.264 33.398
Avg. time(s) 1.929 6.498 18.870 93.140
Max. time (s) 3.063 7.782 28.958 341.985

Table 3  Model comparison against the nominal and scenario 
approach

Nominal SA RC MIP (300) MIP (500)

14-bus
Min. obj ($) – 2,461.5 2,051.6 2,047.8 2,050.1
Avg. obj ($) 2,051.5 2,489.0 2,062.5 2,052.1 2,052.3
Max. obj ($) – Inf 2,081.5 2,055.8 2,054.2
Min. prob 0.499 0 0.996 0.999 0.999
Avg. prob 0.500 0.993 0.999 0.999 0.999
Max. prob 0.501 0.994 0.999 0.999 0.999
Min. time (s) – 0.0325 0.040 0.0563 0.0407
Avg. time (s) 0.175 0.0425 0.042 0.0677 0.0494
Max. time (s) – 0.0492 0.049 0.0868 0.0705
57-bus
Min. obj ($) – 35,493 35,210 34,749 34,741
Avg. obj ($) 34,773 35,625 35,273 34,784 34,768
Max. obj ($) – Inf 35,327 34,814 34,799
Min. prob 0.000 0 0.994 0.978 0.982
Avg. prob 0.000 0.995 0.998 0.983 0.987
Max. prob 0.000 0.999 0.999 0.988 0.991
Min. time (s) – 0.2228 0.409 0.324 0.319
Avg. time (s) 0.173 0.2776 0.414 0.438 0.531
Max. time (s) – 0.3761 0.422 0.579 0.733
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MIP approach’s effectiveness, and demonstrate its capability 
to balance economic efficiency with operational robustness.

In conducting out-of-sample tests for our comparison 
studies, it is observed that not all solutions consistently meet 
the prescribed feasibility threshold of 0.95. Specifically, the 
nominal approach demonstrates limited feasibility for the 
simpler 14-bus system structure and is entirely infeasible for 
more complex systems. The limited feasibility for the 14-bus 
systems is due to the simplicity of the system configuration, 
where there are two active power generators and the balance 
between the total load of 259 MW and a generation capac-
ity of 399 MW. In contrast, the SA and RC models leverage 
the RO techniques which encompass a broader spectrum 
of scenarios, generally exhibiting higher feasibility across 
all tested cases. Despite this, our MIP approach stands out, 
not only achieving out-of-sample feasibility rates exceeding 
98% for both the 14- and 57-bus systems, but also present-
ing improved objective values when compared to the robust 
methods, illustrating its effectiveness in navigating uncer-
tainty while optimising operational costs.

The analysis of computational efficiency reveals that the 
deterministic approach, with no consideration of uncertainty, 
stands out for its speed. In the context of the 14-bus system, 
the computation time difference between the state-of-the-art 
approaches and our MIP is minimal, reflecting efficiency in 
less complex scenarios. However, as the complexity of the 
system structure increases, we observe a gradual escalation 
in computation time. Specifically, our MIP approach exhibits 
a correlative increase in computation time as the complexity 
of the system and the number of scenarios considered rise.

5.3.2  IEEE 118‑bus system

Table 4 presents the comparison results for the 118-bus sys-
tem, extending our analysis beyond the scopes of the 14- and 
57-bus systems. For this more complex system, we include 
the more advanced DR approach, which employs DRO tech-
niques to reformulate chance constraints. The DRO models 
are solved using the Mosek optimiser and the associated 
actual computation time is reported [63].

In the analysis of the 118-bus system, the observed trends 
align with those identified in smaller systems. Our MIP 
approach is confirmed as the most cost-efficient method, 
achieving a notable cost advantage. Specifically, the MIP 
approach, with consideration of 300 scenarios, yields an 
average objective value of 93,201. In comparison, the DRO 
approach incurs a 12.5% higher cost, resulting in an average 
of 104,887, the RC approach incurs a cost similar to MIP, 
yet slightly higher. This difference underscores our MIP 
approach’s cost benefits. The SA incurs the highest aver-
age operational cost at 122,553, underscoring its economic 
drawbacks compared to both MIP, RC, and DRO approaches.

The MIP approach not only excels in cost efficiency but 
also in computational performance. For the model consider-
ing 300 scenarios, it records an average computation time 
of 18.870 seconds, setting a benchmark for efficiency. In 
contrast, while SA and DRO achieve commendable compu-
tation time, they do not match the efficiency of MIP. The RC 
requires the most computational resources, primarily due to 
the increased size of the uncertainty set considered.

In conclusion, our comparison studies endorse the MIP 
approach as the superior methodology, providing an optimal 
balance between cost efficiency, operational robustness, and 
computational speed. The DRO approach emerges as a for-
midable alternative, offering a more cost-effective solution 
over SA while maintaining comparable robustness. How-
ever, when considering all factors, including cost, computa-
tion time, and out-of-sample feasibility, the MIP approach 
holds the best overall value under uncertainties.

5.3.3  Statistical analysis of model performance

To quantitatively assess the performance of our proposed 
MIP approach against the SA, RC, and DRO methods, we 
conduct a statistical analysis. This includes both a visual 
comparison using boxplots and a set of statistical tests.

Boxplots are generated to compare the objective values 
and computation time of the SA, RC, DRO and our MIP 
approach. Figure 4 presents these comparisons.

Table 4  Model comparison 
against the nominal and 
scenario approach 118-bus 
system

118-bus Nominal SA RC DRO MIP (300) MIP (500)

Min. obj ($) – 118,304 95,123 101,153 93,169 93,159
Avg. obj ($) 93,133 122,553 95,290 104,887 93,201 93,205
Max. obj ($) – Inf 95,613 105,431 93,235 93,229
Min. prob 0.000 0 0.998 0.992 0.888 0.931
Avg. prob 0.000 0.996 0.998 0.995 0.916 0.949
Max. prob 0.000 0.997 1 0.998 0.934 0.975
Min. time (s) – 21.222 374.029 14.688 13.264 33.398
Avg. time (s) 0.179 77.609 394.643 21.613 18.870 93.140
Max. time (s) – 94.166 426.589 36.578 28.958 341.985
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The boxplot of objective values clearly illustrates that our 
MIP approach consistently achieves better (lower) objec-
tive values compared to all the other methods. This visual 
representation underscores the economic efficiency of our 
approach.

Similarly, the boxplot for computation time demonstrates 
the computational efficiency of our method. Despite the 
complexity of the MIP approach, it exhibits competitive, 
if not faster, computation time compared to all the other 
methods.

Further, a t-test is performed to statistically compare the 
performance of the SA, RC, and DRO to the proposed MIP 
approach. The results of the t-tests for both objective values 
and computation time are significant (close to 0), confirming 
that the differences observed in the boxplot analysis are not 
due to random variation.

Overall, these statistical analyses provide strong evidence 
that our proposed MIP approach is not only more economi-
cally efficient but also computationally efficient compared to 
the SA, RC, and DRO methods. This underscores the viabil-
ity of our approach to practical implementation in power 
system operations, balancing cost-effectiveness with com-
putational feasibility.

6  Conclusion

This paper presented an MIP reformulation for the CC-OPF 
problem under uncertain load and renewable energy gen-
eration. The proposed methodology was tested on modified 

IEEE 14-, 57- and 118-bus systems, demonstrating its effec-
tiveness in providing a lower-cost solution while maintaining 
system requirements with an acceptable probability.

Summary of contributions We introduced a novel SAA 
method to the JCC-OPF model, enhancing the traceability 
of the problem without compromising solution quality. Our 
method leverages historical data to formulate an MIP prob-
lem that can be solved by off-the-shelf solvers, mitigating 
the risks associated with distributional assumptions. We 
addressed the joint CCs in their entirety, avoiding overly 
conservative solutions by considering all constraints jointly. 
To tackle the challenge of increasing complexity, we imple-
mented a model improvement strategy that significantly 
reduces the number of binary variables required, lower-
ing the computational burden. Furthermore, our approach 
uniquely models power generation and line flow constraints 
jointly as two-sided CCs, ensuring compliance with a pre-
defined probability.

Limitations Our approach relies on historical data to gen-
erate scenarios using GPR, which assumes the availability 
and quality of historical data. Sparse or poor-quality data 
can impact the accuracy of scenario generation. Addition-
ally, the MIP reformulation, despite the constraint reduction 
technique, remains computationally intensive, particularly 
for large-scale power systems with many scenarios. This 
can limit real-time applicability. The use of DC linearisation 
simplifies the AC power flow equations but may not capture 
all the nuances of real power system behaviour, especially 
in systems with significant reactive power flow and voltage 
variations.

Future works It is necessary to explore more advanced 
scenario generation techniques, such as non-parametric 
methods or machine learning approaches, and collect more 
real-world data to improve the accuracy and reliability of 
generated scenarios. Extending our approach to AC-OPF 
models would provide a more accurate representation of 
power system behaviour, involving the development of 
efficient solution techniques for the nonlinear and noncon-
vex nature of AC power flow equations under uncertainty. 
Further reducing the computational burden could make our 
method more suitable for real-time applications, potentially 
involving more efficient algorithms, parallel processing tech-
niques, or approximation methods. Future studies could also 
model and manage extreme events, such as natural disasters, 
which could significantly impact power system operations.

By addressing these limitations and pursuing these future 
research directions, we aim to further enhance the robust-
ness, efficiency, and practicality of JCC-OPF solutions under 
uncertainty, contributing to the robust and cost-effective 
operation of power systems.
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Appendix: Pseudo code

Algorithm 1  Algorithm implementation: Detailed pseudo code
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