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Abstract
We develop methods for the solution of inhomogeneous Robin-type boundary value
problems (BVPs) that arise for certain linear parabolic partial differential equations
(PDEs) on a half-line, as well as a second-order generalization. We are able to obtain
nonstandard solutions to equations arising in a range of areas, including
mathematical finance, stochastic analysis, hyperbolic geometry, and mathematical
physics. Our approach uses the odd and even Hilbert transforms. The solutions we
obtain and the method itself seem to be new.
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1 Introduction
There is a well-established theory for the solution of parabolic PDEs subject to the most
common types of boundary conditions. The book by Friedman [1] provides a rigorous
introduction to this topic. The classical method makes use of a fundamental solution of the
PDE satisfying boundary conditions. The construction is straightforward, and we present
an illustrative example in the Appendix.

However, the classical method can produce cumbersome representations of the solu-
tion, and the desired fundamental solution may not even be known. So we ask if it is possi-
ble to construct an analytical solution to a boundary value problem using only elementary
solutions, without needing the fundamental solution required by the classical theory? This
has potentially important practical implications, because there are many PDEs for which
elementary solutions are readily obtainable but for which appropriate fundamental solu-
tions are not known.

We will focus on parabolic PDEs on a half-line (b,∞) subject to the boundary condition

αu(b, t) + βux(b, t) + γ uxx(b, t) = g(t). (1.1)
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We will refer to this as a second-order Robin condition. If γ = 0, then this reduces to the
usual Robin condition.1 The Dirichlet condition u(b, t) = 0 and the Neumann condition
ux(b, t) = 0 are particular cases. We are also able to solve certain moving boundary prob-
lems. We give an example in the final section.

This particular nonclassical boundary value problem arises in a number of areas of ap-
plied mathematics. The earliest example that we know is a paper by Langer [3] in 1932, in
which he studies the cooling of metal bars when one end is held in a liquid. The condition
appears in the study of the boundary reaction of the diffusion of chemicals [4] and the
modeling of transient flow pump experiments in a porous medium [5]. An investigation
of the boundary condition for the heat equation with source term is presented in [6].

Here we develop a new method for the solution of these problems. Our technique relies
on the odd and even Hilbert transforms and does not require a fundamental solution. We
only need two elementary solutions. These can be found in a number of ways, such as
separation of variables.

Suppose that we have a linear parabolic PDE ut = Lu on an interval (b,∞), where L may
be time dependent. The essential idea is to look for solutions of the form

u(x, t) =
∫ ∞

0
ϕ(ξ )w1(x, t; ξ )dξ +

∫ ∞

0
ψ(ξ )w2(x, t; ξ )dξ , (1.2)

where w1,2(x, t; ξ ) satisfy the PDE for each ξ . Imposing (1.1) and an initial condition lead
to a pair of integral equations for ϕ and ψ .

In general, there is no reason to suppose that these equations will be analytically
tractable, though we might attempt to solve them numerically. This idea is reminiscent
of the well-known boundary integral method used for higher-dimensional BVPs. See, for
example, [7].

However, it turns out that for certain types of important problems, these equations ad-
mit explicit solutions and lead to representation of the solutions that differ from those
produced by the classical method. In particular, we have a solution of the BVP that does
not rely on knowing the fundamental solution.

In the current work, we focus on problems where w1 and w2 involve the sine and cosine
functions. This will be made explicit in Sect. 3. We develop this new technique and present
interesting examples. The outline of the paper is as follows. Theorem 5.1 is a general result
covering a range of PDEs. We will present solutions to a number of problems that do not
seem to be solved in the literature. For example, we solve the classical Robin problem
for the Kolmogorov backward equation arising from a five-dimensional squared Bessel
process.

We begin with a general discussion of boundary value problems and the representation
of their solutions. We mention some recent work, particularly, that of Fokas.

Following this, Sect. 2, we turn to the solution of the problem that motivated this study,
namely the second-order Robin problem for the Black–Scholes equation. We reduce the
solution of this problem to the inversion of the Fourier sine transform. Our result appears
to be new. We also briefly give the fundamental solution for the classical Robin problem,
which can be solved by the same method.

1There is a historical curiosity here. The boundary condition with γ = 0 is named after Gustave Robin. However, according
to [2], Robin never stated or studied this type of boundary conditions. It appears nowhere in his collected works. Why this
condition was named after Robin is apparently a mystery.
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Since the fundamental solution in the second-order case is cumbersome, we ask if it is
possible to solve the Robin problem without the fundamental solution? The answer is pos-
itive, and we develop our new theory for the explicit case of the Black–Scholes equation.
The method relies on the odd and even Hilbert transforms, and we begin by presenting the
properties of these transforms we need. See Sect. 3.1. This work begins in Sect. 3 with the
classical Robin problem. We then proceed to the second-order Robin problem in Sect. 4.
We follow this with an example. Then in Sect. 5, we turn to the second-order Robin prob-
lem for a larger class of PDEs. For a class of second-order Robin problems, Theorem 5.1
gives explicit solutions involving the sine and cosine problems. The techniques we de-
veloped for the Black–Scholes example make the proof easier. This new method is the
main contribution of our paper. Then we present examples of PDEs and the families of
elementary solutions our method requires. In Sect. 5.1, we turn to the question of PDEs
uncovered by Theorem 5.1. In Sect. 5.2, we briefly mention PDEs with time-dependent
coefficients and then solve two further problems; first, for the harmonic oscillator, which
requires a different set of elementary solutions. In Sect. 6, we solve the Robin problem
for a five-dimensional squared Bessel process. This has the feature of using elementary
solutions that involve sums of sines and cosines. In both cases, our method is effective.

In summary, our major contribution is the development of a method for solving a wide
variety of BVPs without requiring a fundamental solution, in contrast with the classical
method. We can solve BVPs using only elementary solutions. The connection between
the Hilbert type transforms that we use and the Fourier sine and cosine transforms means
that our methods can be potentially applied using fast Fourier transform techniques.

1.1 Boundary value problems
The literature on boundary value problems is enormous, but Sagan’s book provides a
good elementary introduction [8]. Boundary integral methods play an important role in
the study of multidimensional BVPs. See, for example, McLean’s book [9]. For a study of
boundary conditions in the theory of diffusions, see [10]. We also mention the work of
Fokas [11], which presents a novel integral transform method for the solution of BVPs
on a half-line. There are obviously thousands of references, and we could not attempt to
provide an exhaustive list. However, for Robin problems, we mention some recent work.
Abels and Moser [12] investigated a nonlinear Robin boundary condition in a bounded
smooth domain. Geng and Zhuge [13] studied a family of second-order elliptic systems
subject to a periodically oscillating Robin boundary condition. In [14] the authors stud-
ied the diffusion equation with a stochastic boundary that randomly switches between
Dirichlet and Neumann conditions, proving that the mean of the solution satisfies a new
type of Robin condition.

It is worth mentioning also the paper [15], where the authors consider the eigenvalues of
the Robin boundary value problem for the Laplacian. Finally, Bondurant and Fulling [16]
introduce a map between Dirichlet and Robin boundary conditions for linear constant-
coefficient equations.

The current work arose from the study of barrier options within the Black–Scholes (BS)
framework. For so-called knock out barrier options, we have absorbing boundaries. Re-
flecting boundaries occur where the option is knocked in. Although many formulae exist
for the pricing of barrier options, the solution of the Robin problem for the BS equation
does not seem to have appeared in the literature. In fact, we solve the second-order Robin
problem for the BS equation.
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The fundamental solution we obtain appears to be new. A glance at the Appendix shows
that this solution is extremely complex. This leads to the question, which is the main part
of our study: Is it possible to solve the BVP without the fundamental solution? Although
any well-posed BVP has a unique solution, there is in general no unique representation of
that solution. This is not a trivial fact. For example, consider the BVP

ut = uxx, x > 0, t > 0, u(x, 0) = f (x), x > 0, f ∈ L1(R+),

u(0, t) – γ ux(0, t) = g(t), t > 0.

Its solution can be written in terms of the classical heat kernel. This is well known. See
Cannon’s book [4] for details.

However, another representation of the solution to this problem was obtained by Fokas.
We quote the result from [11]. The solution can be written as

u(x, t) =
1

2π

∫ ∞

–∞
eikx–k2 t̂ f (k)dk –

1
2π

∫
∂D+

eikx–k2t
[

2k
k + iγ

GR(k2)

–k
k – iγ
k + iγ

f̂ (–k)

]
dk + 
(–γ )2γ eγ x+γ 2t[GR(–γ 2) – f̂ (iγ )],

where 
 is the Heaviside step function, GR(k) =
∫ T

0 eksg(s)ds, k ∈C, D+ is the wedge in the
upper half-plane making an angle of π/4 with the real axis on both sides of the origin (see
Fig. 2 of [11]), and f̂ (k) =

∫∞
0 f (x)e–ikxdx.

A discussion of the advantages of this alternative way of obtaining the solution is beyond
our scope, though we remark that Fokas-type representations can often be evaluated nu-
merically with considerable efficiency. However, this is a large subject, and for brevity, we
refer the reader to the aforementioned book by Fokas. We also mention the work of Don-
aldson [17] on obtaining alternative representations for the solutions of BVPs. There is a
considerable literature on this topic.

We will use a combination of separation-of-variables and classical transform methods.
The Hilbert transform has been used to solve integral equations for over a hundred years.
See [18] for a lengthy discussion with examples. We in fact use the related odd and even
Hilbert transforms. Our method has the elegant feature that it turns a pair of integral
equations into a pair of simultaneous equations.

Some of our results rely upon the inversion of the Laplace transform. However, there are
thousands of Laplace transform pairs known, and more can be constructed by standard
methods; see [19]. For polynomial data, inversion produces Dirac delta functions and their
derivatives, and these are easy to handle. If g(t) = 0, then there is no Laplace transform to
invert.

Remark 1.1 We make an important comment here. There are many PDEs on the line that
can be mapped to the heat equation. Some of our examples have this property, though
not all. (For example, equation (6.3) cannot be reduced to the heat equation). We might
think that it would be more efficient to reduce a suitable PDE to the heat equation, solve
the resulting BVP, and then map back. However this ignores the question of what happens
to the boundary conditions under the change of variables? This is a crucial question. The
resulting boundary value problem may not have a known solution.
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To illustrate, suppose that we wish to solve ut = uxx + Axu, u(x, 0) = f (x), u(0, t) = 0.
The PDE can be mapped to the heat equation. However, the result of the mapping is a
formidable moving boundary problem. For complete details, see [20]. Thus mapping to
the heat equation in this case makes the problem much harder.

A similar phenomenon occurs with the harmonic oscillator. Reducing even the simple
problem ut = uxx – x2u, u(x, 0) = f (x), u(0, t) = 0 to the heat equation produces another
moving boundary problem, which is much harder than the original one. There are nu-
merous examples of this phenomenon.

There are also many PDEs that can theoretically be mapped to the heat equation, but the
change of variables is itself impossible to compute. Consider the equation ut = σ (x)uxx +
f (x)ux, x ∈ � ⊂ R. Suppose that it can be reduced to the heat equation. To do so, we first
let y =

∫ x
x0

(σ (z))–1/2dz. This makes the coefficient of the second derivative term equal to 1.
For arbitrary σ , there is no reason why this integral should be computable. Inverting the
change of variables to write x in terms of y may also be impossible.

Thus methods that produce solutions of BVPs without the need for a change of variables
are important. Our results yield novel solutions for a wide variety of problems without
having to make a change of variables.

2 The second-order Robin problem for the Black–Scholes equation
For the theory of option pricing and stochastic calculus, we refer the reader to a standard
reference [21]. The conventional method for studying the Black–Scholes equation is to
reduce to the heat equation, but we work in the original variables. For our purposes, the
second-order Robin problem can be written as

wt =
1
2
σ 2S2wSS + rSwS, (2.1)

w(S, 0) = f (S), (2.2)

αw(b, t) + βwS(b, t) + γ wSS(b, t) = g(t), (2.3)

where S > b > 0.
We will assume that the solution is nonnegative and satisfies a bound of the form

w(S, t) ≤ MSθ for some positive constants M and θ . This is the usual type of behavior
as S → ∞ that appears in the literature. See, for example, the discussion of boundary con-
ditions for the Black–Scholes equation in [21].

We will construct a fundamental solution for this problem in the case g(t) = 0. We first
obtain separable solutions that satisfy the boundary condition. We then use these to con-
struct a solution that also satisfies the initial condition. This second problem can be re-
duced to the solution of a tractable integral equation.

We make the ansatz w(S, t) = eλtv(S). Then 1
2σ 2S2v′′(S) + rSv′(S) – λv(S) = 0 with the

constant λ and the function v to be determined. Assuming that v(S) = Sδ , we obtain the
condition

1
2
σ 2S2δ(δ – 1)Sδ–2 + rSδSδ–1 – λSδ = 0.
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This means that we must have 1
2σ 2δ(δ – 1) + rδ – λ = 0, which gives

δ =
–
(

r – σ 2

2

)
±
√(

r – σ 2
2

)2
+ 2σ 2λ

σ 2 .

We now set
(

r – σ 2

2

)2
+ 2σ 2λ = –ξ 2σ 4. So we have

λ = –
ξ 2σ 2

2
–

1
2σ 2

(
r –

σ 2

2

)2

. (2.4)

Hence we can write δ = μ ± iξ , where μ = σ 2–2r
2σ 2 .

This gives us the solution, which can be easily checked to be valid for all ξ > 0:

w(S, t,λ) = eλt (c1Sμ+iξ + c2Sμ–iξ ) .

We now wish to construct a solution of the PDE that satisfies the boundary condition.
Observe that

Sμ±iξ = Sμ (cos(ξ ln S) ± i sin(ξ ln S)) .

The real and imaginary parts must both satisfy the equation. So we obtain a solution that
can be written as

wξ (S, t) = eλtSμ (A cos(ξ ln S) + B sin(ξ ln S))

= e– ξ2σ2
2 t+ctSμ (A cos(ξ ln S) + B sin(ξ ln S)) ,

(2.5)

where c = – 1
2σ 2

(
r – σ 2

2

)2
, and A, B are constants. We choose A and B by requiring that the

solution satisfies the second-order Robin boundary condition with g(t) = 0. Substituting
the solution into the PDE and imposing the boundary condition, we obtain

A = sin(ξ log(b))z1 + ξz2 cos(ξ log(b)), (2.6)

B = – cos(ξ log(b))z1 + ξz2 sin(ξ log(b)), (2.7)

where z1 =
(
αb2 + βbμ + γ (μ – 1)μ – γ ξ 2) and z2 = (bβ + γ (2μ – 1)).

The reader can check that for this choice of the coefficients A and B, the function wξ

solves the PDE and also satisfies the homogeneous form of the second-order Robin bound-
ary condition (2.1). These choices are not unique. However, every other choice in fact leads
to the same solution. This is not hard to check, but it is somewhat tedious.

We now have to obtain a solution that also satisfies the initial data and boundary condi-
tion. To do this, we will construct a solution of the form

w(S, t) =
∫ ∞

0
ϕ(ξ )wξ (S, t)dξ . (2.8)
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If the function ϕ has sufficient decay, then it is easy to show that w(S, t) is also a solution
of our PDE. See [22] for more on this idea. We note that wξ (S, t) is locally integrable in ξ ,
since it is continuous in ξ for all S > 0 and has Gaussian decay for all t > 0.

Moreover, by construction, (2.8) satisfies the boundary condition. Our task now is to
choose the function ϕ so that the initial condition is also satisfied. Taking t = 0, we get the
integral equation

f (S) =
∫ ∞

0
ϕ(ξ )wξ (S, 0)dξ ,

that is,
∫ ∞

0
ϕ(ξ ) (A cos(ξ ln S) + B sin(ξ ln S))dξ = S–μf (S). (2.9)

This can be reduced to a Fourier sine transform. To see this, notice that using some ele-
mentary trigonometric identities, we can rewrite (2.9) as

∫ ∞

0
ϕ(ξ )

(
β̃ξ cos

(
ξ ln

(
S
b

))
+
(
γ ξ 2 – α̃

)
sin

(
ξ ln

(
S
b

)))
dξ = F(S),

where F(S) = S–μf (S), and

α̃ = αb2 + βbμ + γμ(μ – 1), (2.10)

β̃ = bβ + γ (2μ – 1). (2.11)

We now reduce this integral equation to a Fourier sine transform via the solution of a
second-order ordinary differential equation.

Let ζ (x) =
∫∞

0 ϕ(ξ ) sin(ξx)dξ . After the change of variable x = ln
( S

b
)
, differentiating

twice, we see that ζ must satisfy the equation

–γ ζ ′′(x) + β̃ζ ′(x) – α̃ζ (x) = b–μe–μxf (bex) (2.12)

with initial conditions ζ (0) = 0 and ζ ′′(0) = 0. We will assume that � = β̃2 – 4γ α̃ > 0. For
the particular cases where � ≤ 0, the differential equation for ζ has different solutions.
However, we can proceed as we do here, and we obtain fundamental solutions valid for
those particular choices of the parameter. We will omit the details for brevity.

Using variation of parameters, we see that the solution of (2.12) is given by

ζ (x) =
2b–μ

β̃
√

�

(
γ f (b)e

β̃x
2γ sinh

(
x
√

�

2γ

)
– β̃

∫ x

0
f
(
bez)K(x, z)dz

)
,

where K(x, z) = e–μz+(x–z) β̃
2γ sinh

(
(x–z)

√
�

2γ

)
.

Recall that the inverse Fourier sine transform of f̂ ∈ L1([0,∞)) is

f (x) =
2
π

∫ ∞

0
f̂ (y) sin(yx)dy; (2.13)

see [23].
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Inverting the Fourier sine transform in (2.8) then allows us to write down the solution
of the BVP:

w(S, t) =
∫ ∞

0
ϕ(ξ )wξ (S, t)dξ

=
∫ ∞

0

2
π

∫ ∞

0
ζ (η) sin(ξη) wξ (S, t)dηdξ

=
∫ ∞

0

∫ ∞

0

2
π

ζ (η) sin(ξη)wξ (S, t)dξdη

=
∫ ∞

0
ζ (η)G(S, t,η)dη,

(2.14)

where on the second line, we introduced the inversion integral for the Fourier sine trans-
form. We have

G(S,η, t) =
2
π

∫ ∞

0
sin(ξη)wξ (S, t)dξ

=
ect–

(
η–ln

(
S
b
))2

2σ2t Sμ

√
2π
(
σ 2t
)5/2 k(S,η, t).

Let L(S, t) = γ ln
( S

b
)

+ β̃σ 2t. Then

k(S,η, t) = e–
2η ln

(
S
b
)

σ2t

(
α̃σ 4t2 + ln

(
S
b

)
(2γ η + L(S, t)) + σ 2t

(
ηβ̃ – γ

)

+ γ η2
)

– α̃σ 4t2 + ln

(
S
b

)
(2γ η – L(S, t)) + σ 2t

(
ηβ̃ + γ

)
– γ η2

with α̃ and β̃ given by (2.10) and (2.11). We would like to write the solution in the form

w(S, t) =
∫ ∞

0
f (y)p(S, y, t)dy,

where f is the initial data, and p(S, y, t) is a fundamental solution. To do this, we use Fubini’s
Theorem, which leads us to an explicit expression for our fundamental solution subject to
the homogeneous second-order Robin boundary conditions. In fact, we can rewrite the
solution as

w(S, t) =
∫ ∞

0
ζ (η)G(S, t,η)dη

=
∫ ∞

0

2b–μ

β̃
√

�

(
γ f (b)e

β̃η
2γ sinh

(
η
√

�

2γ

)
– β̃

∫ η

0
f
(
bez)K(η, z)dz

)

× G(S, t,η)dη

=
∫ ∞

0

2b–μ

β̃
√

�
γ f (b)e

β̃η
2γ sinh

(
η
√

�

2γ

)
G(S, t,η)dη

–
∫ ∞

0

2b–μ

β̃
√

�

(∫ η

0
f
(
bez)K(η, z)dz

)
G(S, t,η)dη
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= �(S, t) –
∫ ∞

0
f
(
bez)∫ ∞

z

2b–μ

β̃
√

�
K(η, z)G(S, t,η)dηdz, (2.15)

where

�(S, t) :=
∫ ∞

0

2b–μ

β̃
√

�
γ f (b)e

β̃η
2γ sinh

(
η
√

�

2γ

)
G(S, t,η)dη. (2.16)

If we set

p̄(S, z, t) :=
∫ ∞

z

2b–μ

β̃
√

�
K(η, z)G(S, t,η)dη, (2.17)

then we can express w(S, t) as

w(S, t) = �(S, t) –
∫ ∞

0
f
(
bez) p̄(S, z, t)dz

= �(S, t) –
∫ ∞

b
f
(
y
)

p̃(S, y, t)dy,
(2.18)

where

p̃(S, y, t) :=
1
y

p̄
(

S, ln
( y

b

)
, t
)

. (2.19)

Lastly, formula (2.18) can be rewritten as

w(S, t) =
∫ ∞

b
f
(
y
)

p(S, y, t)dy, (2.20)

where

p(S, y, t) =
�(S, t)
f (b)

δ(b)(y) – p̃(S, y, t), (2.21)

with δ(b) denoting the Dirac delta centered in b ∈R. The kernel in (2.19) can be computed
explicitly in Mathematica in terms of Gaussians and error functions. It is complicated, so
we present it in the Appendix.

Remark 2.1 We have solved the second-order Robin problem in the case g(t) = 0. We
can also solve the standard Robin problem by this method. We sketch the calculation.
We begin with (2.8) and apply the boundary condition. The analysis is very similar to the
second-order case, though somewhat easier. We find that a solution satisfying the bound-
ary condition is

wξ (S, t) = e– ξ2σ2
2 t+ctSμ (A cos(ξ ln S) + B sin(ξ ln S)) , (2.22)

where c = – 1
2σ 2

(
r – σ 2

2

)2
, and

A =βξ cos(ξ ln b) + bα sin(ξ ln b) + βμ sin(ξ ln b), (2.23)
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B = – bα cos(ξ ln b) – βμ cos(ξ ln b) + βξ sin(ξ ln b). (2.24)

Setting u(S, t) =
∫∞

0 ϕ(ξ )wξ (S, t)dξ and imposing the initial condition lead to an integral
equation, which also reduces to a Fourier sine transform. The difference is that in place
of the second-order equation (2.12) for ζ , we have βζ ′(x) + (bα + βμ)ζ (x) = b–μeμxf (be–x)

with ζ (0) = 0, which is of first order. Obtaining ζ , we proceed exactly as in the secon-order
case and obtain the fundamental solution

p(S, y, t) = –
e

ct+ σ2tÃ2
2β2 Sμ– Ã

β

βyμ+1+ Ã
β

Ãb
2Ã
β erfc

⎛
⎝σ 2tÃ + β

(
ln b

y + ln
( b

S
))

√
2β2σ 2t

⎞
⎠

+
ectSμy–μ–1
√

2πσ 2t

(
b

2 ln b
y +ln S

σ2t + S
2 ln b

y +ln b

σ2t

)
e

⎛
⎝–

(
ln b

y +ln S
)2

+2 ln b ln b
y +ln2 b

2σ2t

⎞
⎠

.

The classical approach to the solution of the problem with g ≠ 0 is found in Friedman’s
book [1]. For completeness, we present it in the Appendix. Our purpose now is to develop
a new method for solution of these problems that does not require any knowledge of the
fundamental solution.

3 A novel representation using Hilbert transform methods
In this section, we construct a solution to

wt =
1
2
σ 2S2wSS + rSwS, S > b > 0, (3.1)

w(S, 0) = f (S), (3.2)

αw(b, t) + βwS(b, t) = e– 1
2 σ 2μ2tg(t), (3.3)

which does not require a fundamental solution. We will then extend our method to include
second-order Robin conditions and a significantly wider class of PDEs. We assume that
α,β ≠ 0 for the remainder of the paper, unless stated otherwise. Choosing one of these
constants to be zero reduces the BVP to one of either Dirichlet or Neumann type.

Although explicit solutions can be obtained by our method for many interesting prob-
lems, in most cases the representations we obtain will require numerical evaluation. How-
ever, this is true for every representation and is beyond the scope of our study. Note that
there is a considerable literature on the numerical evaluation of Hilbert transforms. We
refer the reader to Chap. 14 of [24] for an introduction to this topic.

Our approach to the problem uses the even and odd Hilbert transforms. For an exhaus-
tive treatment of the Hilbert transform, we refer to King’s two-volume treatise [18, 24].

3.1 The odd and even Hilbert transforms
For the reader’s convenience, we introduce here the material we require. The odd and
even Hilbert transforms have some very useful properties, which we will exploit. Although
these are important operators in their own right, they arose originally as particular cases
of the classical Hilbert transform.

Various Hilbert transforms are given by integrals defined in the principal value sense.
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Definition 3.1 We will define the even Hilbert transform of a function f : [0,∞) → R by
the principal value integral

(Hef )(x) =
2x
π

P
∫ ∞

0

f (y)

x2 – y2 dy, (3.4)

assuming that it exists. Similarly, we define the odd Hilbert transform of a function f :
[0,∞) → R by the principal value integral

(Hof )(x) =
2
π

P
∫ ∞

0

yf (y)

x2 – y2 dy, (3.5)

again assuming the convergence in the principal value sense.

It is sufficient that f ∈ L2[0,∞) for these transforms to exist. If f ∈ L2[0,∞), then Hef ∈
L2[0,∞) and Hof ∈ L2[0,∞). We can extend the operators to other function spaces, but
we will avoid a discussion and simply refer the reader to [24].

Remark 3.2 The Hilbert transform of a suitable function f is defined by

(Hf )(x) =
1
π

P
∫ ∞

–∞
f (s)
x – s

ds. (3.6)

Again, if f ∈ L2(R), then the Hilbert transform exists, and Hf ∈ L2(R).
The Hilbert transform has many useful properties, most of which can be found in King’s

books. An extensive table of transform pairs can be found in [18]. The inverse of the
Hilbert transform is simply –H, that is, H2 = –I , where I is the identity operator.

Now suppose that f is even. Then a simple change of variables in the integral yields

(Hf )(x) =
2x
π

P
∫ ∞

0

f (y)

x2 – y2 dy = (Hef )(x). (3.7)

Conversely, if f is odd, then we obtain

(Hf )(x) =
2
π

P
∫ ∞

0

yf (y)

x2 – y2 dy = (Hof )(x). (3.8)

So the odd and even Hilbert transforms can be regarded as particular cases of the usual
Hilbert transform. This is extremely useful for obtaining properties of He and Ho.

The fundamental relationship between the even and odd transforms is

HeHo = HoHe = –I.

See [24, p. 261]. Note also that if k(x) = xh(x), then

(Hek)(x) =
2x
π

P
∫ ∞

0

yh(y)

x2 – y2 dy = x(Hoh)(x). (3.9)
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This fact will be of importance below. For the second-order problem, we will require the
even Hilbert transform of y2(Hof )(y), but this is best presented in context. See equation
(4.6).

The odd and even Hilbert transforms arise because of their connection with the Fourier
cosine and sine transforms. If Fc and Fs are the cosine and sine transforms, respectively,
then we have F–1

s Fc = He and F–1
c Fs = –Ho. A proof can be found in [24, p. 259].2

3.2 The solution of the Robin problem
We will construct a solution of problem (3.1)–(3.3). We will assume that α + μ

β
≠ 0. The

case where α + μ

β
= 0 can be handled by a modification of our method.

We will use two linearly independent solutions of the PDE to solve our modified prob-
lem. These are

hξ
1(S, t) =

(
S
b

)μ

e– 1
2 σ 2t(ξ2+μ2) cos

(
ξ ln

(
S
b

))
, (3.10)

hξ
2(S, t) =

(
S
b

)μ

e– 1
2 σ 2t(ξ2+μ2) sin

(
ξ ln

(
S
b

))
. (3.11)

Notice that our BVP has a slightly different form to that used previously. We pose the
problem in this way to avoid a technicality involving the Laplace transform. This arises
in taking the inverse Laplace transform of easF(s), a > 0. If a < 0, then the inverse Laplace
transform is simply f (t + a)H(t + a), where f is the inverse Laplace transform of F , and H
is the Heaviside function.

However, if a is positive, then we have to decide what the inverse transform will be. A
natural choice is to insist that f be zero to the left of the origin, in which case the inverse
Laplace transform will be f (t + a). However, the issue requires a discussion of the Laplace
transform as a distribution. So we solve the modified problem and refer the reader to
Schwartz’s treatment of the Laplace transform within the theory of distributions in the
book [25].

We construct a solution of the PDE of the form

w(S, t) =
∫ ∞

0
ϕ(ξ )hξ

1(S, t)dξ +
∫ ∞

0
ψ(ξ )hξ

2(S, t)dξ . (3.12)

Our aim is to choose ϕ and ψ so that the solution satisfies the boundary and initial con-
ditions. Hence we must have

w(S, 0) =
(

S
b

)μ [
ϕ̂c

(
ln

(
S
b

))
+ ψ̂s

(
ln

(
S
b

))]
= f (S), (3.13)

where ϕ̂c and ψ̂s are the cosine transform of ϕ and the sine transform of ψ , respectively.
Setting y = ln

( S
b
)
, we obtain

ϕ̂c(y) + ψ̂s(y) = e–μyf
(
bey) . (3.14)

2Note: King uses a slightly different definition of the sine and cosine transforms by including a multiplicative factor of
√

2
π

.
Our statements are equivalent to his.
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Applying the inverse Fourier cosine transform, we obtain the relation

ϕ(ξ ) =
2
π

∫ ∞

0
e–μyf

(
bey) cos(ξy)dy – (F–1

c Fsψ)(ξ )

=
2
π

∫ ∞

0
e–μyf

(
bey) cos(ξy)dy + (Hoψ)(ξ ). (3.15)

Set F(ξ ) = 2
π

∫∞
0 e–μyf (bey) cos(ξy)dy. Then ϕ(ξ ) = F(ξ ) + (Hoψ)(ξ ).

It is easy to see that

w(b, t) =
∫ ∞

0
ϕ(ξ )e– 1

2 σ 2t(ξ2+μ2)dξ , (3.16)

and after some straightforward calculations, we obtain

αw(b, t) + βwS(b, t) =
(

α +
μβ

b

)∫ ∞

0
ϕ(ξ )e– 1

2 σ 2t(ξ2+μ2)dξ

+
β

b

∫ ∞

0
ξψ(ξ )e– 1

2 σ 2t(ξ2+μ2)dξ = e– 1
2 σ 2μ2tg(t).

Canceling the factor of e– 1
2 σ 2μ2t and using the substitutions z = ξ 2 and s = 1

2σ 2t gives us

(
α +

μβ

b

)∫ ∞

0

ϕ(
√

z)

2
√

z
e–zsdz +

β

b

∫ ∞

0

1
2
ψ(

√
z)e–zsdz = g

(
2s
σ 2

)
.

We assume that
(
α + μβ

b

)
≠ 0. The case where

(
α + μβ

b

)
= 0 reduces to the inversion of

a single Laplace transform for ψ . From this and the relation ϕ(ξ ) = F(ξ ) + (Hoψ)(ξ ) we
immediately obtain ϕ, and we have our solution.

Assuming that
(
α + μβ

b

)
≠ 0, taking the inverse Laplace transform, and letting z = ξ 2, we

obtain
(

α +
μβ

b

)
ϕ(ξ ) = 2ξL–1

[
g
(

2s
σ 2

)
; ξ 2
]

–
ξβ

b
ψ(ξ ). (3.17)

Set K(ξ ) = 2ξL–1 [g ( 2s
σ 2

)
; ξ 2]. Obviously, in the homogeneous case, K(ξ ) = 0, so there is

no Laplace transform inversion necessary. Using (3.15), we have the relation

(
α +

μβ

b

)
(F(ξ ) + (Hoψ)(ξ )) = K(ξ ) –

ξβ

b
ψ(ξ ). (3.18)

We now take the even Hilbert transform of both sides to obtain
(

α +
μβ

b

)
[(HeF)(ξ ) – ψ(ξ )] = (HeK)(ξ ) –

β

b
ξ (Hoψ)(ξ ), (3.19)

where we used relation (3.9). So we have obtained a pair of simultaneous equations for
Hoψ and ψ . Clearly, equation (3.18) gives us

(Hoψ)(ξ ) =
(

α +
μβ

b

)–1 [
K(ξ ) –

ξβ

b
ψ(ξ )

]
– F(ξ ), (3.20)
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so that

(HeF)(ξ ) – ψ(ξ ) =
(HeK)(ξ ) – β

b ξ

([
K(ξ )– ξβ

b ψ(ξ )
]

(
α+ μβ

b

) – F(ξ )

)

(
α + μβ

b

) . (3.21)

Rearranging this gives

ψ(ξ ) =
ν
[

bα+μβ

b (HeF)(ξ ) – (HeK)(ξ ) + βξ

b

(
b

αb+μβ
K(ξ ) – F(ξ )

)]

(αb + μβ)2 + β2ξ 2 ,

where ν = b(αb + μβ). From this we find ϕ and obtain a potential solution to the boundary
value problem. This leads us to the following result.

Theorem 3.3 Let f ∈ L1
(

(b,∞), dη

ημ+1

)
and g(t) =

∫∞
0 G(x)e–xtdx where G, G′(x), and G′′

are integrable. Let hξ
1 and hξ

2 be given by (3.10) and (3.11), respectively. Then if α + μβ

b ≠ 0
and ν = b(αb + μβ), then problem (3.1)–(3.3) has a solution

w(S, t) =
∫ ∞

0
ϕ(ξ )hξ

1(S, t)dξ +
∫ ∞

0
ψ(ξ )hξ

2(S, t)dξ , (3.22)

where

ψ(ξ ) =
ν
[

bα+μβ

b (HeF)(ξ ) – (HeK)(ξ ) + βξ

b

(
b

αb+μβ
K(ξ ) – F(ξ )

)]

(αb + μβ)2 + β2ξ 2 ,

and

ϕ(ξ ) =
(

α +
μβ

b

)–1 [
σ 2ξG

(
σ 2ξ 2

2

)
–

βξ

b
ψ(ξ )

]
,

where F(ξ ) = 2
π

∫∞
0 e–μyf (bey) cos(ξy)dy and K(ξ ) = σ 2ξG

(
σ 2ξ2

2

)
.

Proof To complete the proof, we must establish sufficient conditions to guarantee that we
do in fact have a solution. To this end, we make the following observations. Since He =
F–1

s Fc, we easily obtain

(HeF)(ξ ) = F–1
s Fc

2
π

∫ ∞

0
e–μyf

(
bey) cos(ξy)dy

=
2
π

∫ ∞

0
e–μyf (bey) sin(ξy)dy

=
2
π

∫ ∞

b

(η

b

)–μ

f (η) sin
(
ξ ln

(η

b

)) dη

η
.

Let f ∈ L1((b,∞),η–μ–1dη) and denote ∥k∥b =
∫∞

b |k(x)|xμ–1dx. Then we obtain the in-
equality

|HeF| ≤ 2
πbμ

∥f ∥b. (3.23)
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It is also easy to see that |F| ≤ 2
πbμ ∥f ∥b. From this we can conclude that

∂ j

∂Sj

(
–b(αb + μβ)

(αb + μβ)2 + β2ξ 2 (HeF)(ξ )hξ

k(S, t)
)

(3.24)

is integrable for k = 1, 2 and j = 0, 1, 2. Similarly,

∂

∂t

(
–b(αb + μβ)

(αb + μβ)2 + β2ξ 2 (HeF)(ξ )hξ

k(S, t)
)

(3.25)

is integrable. Both facts follow from the Gaussian decay of the solutions hξ

k(S, t). Specifi-
cally, we can bound (3.24) in ξ by

∣∣∣∣ ∂ j

∂Sj

(
–b(αb + μβ)

(αb + μβ)2 + β2ξ 2 (HeF)(ξ )hξ

k(S, t)
)∣∣∣∣≤ Cξ je–γ ξ2

(3.26)

for some positive constants γ and C, which depend on S. Similarly for (3.25).
The same argument shows that

∂ j

∂Sj

(
bβξ

(αb + μβ)2 + β2ξ 2 F(ξ )hξ

k(S, t)
)

and

∂

∂t

(
–bβξ

(αb + μβ)2 + β2ξ 2 F(ξ )hξ

k(S, t)
)

are also integrable for k = 1, 2 and j = 0, 1, 2.
Next, we suppose that g(t) =

∫∞
0 G(x)e–xtdx, and for simplicity, we will suppose that

∥G∥L1 =
∫∞

0 |G(x)|dx < ∞. In fact, this assumption can be relaxed to allow
∫∞

0 |erxG(x)|dx <
∞ for some r > 0. We can also allow G to be a distribution. We will not go into these tech-
nicalities here, but below we will present an example where G is a distribution.

It immediately follows from our assumption that

K(ξ ) = 2ξL–1
[

g
(

2s
σ 2

)
; ξ 2
]

= σ 2ξG
(

σ 2ξ 2

2

)
.

Consequently, a simple change of variables gives ∥K∥L1 = ∥G∥L1 < ∞. Arguing as previ-
ously, we see that

∂ j

∂Sj

(
bβξ

(αb + μβ)2 + β2ξ 2 K(ξ )hξ

k(S, t)
)

are integrable for k = 1, 2 and j = 0, 1, 2, as is

∂

∂t

(
bβξ

(αb + μβ)2 + β2ξ 2 K(ξ )hξ

k(S, t)
)

.

Turning to HeK , we observe that if k is twice differentiable and k′ and k′′ are integrable,
then the Fourier cosine transformFck is also integrable. This is a famous result and follows
via integration by parts; see [26].
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The observation that |Fck| ≤ ∥k∥L1 is elementary. So we have

|F–1
s (Fck)| ≤ 2

π
|Fck| ≤ 2

π
∥k∥L1 .

Hence we can conclude that if G′ and G′′ are integrable, then |HeK | ≤ 2
π
∥G∥L1 .

This implies that for all k = 1, 2 and j = 0, 1, 2,

∂ j

∂Sj

(
(αb + μβ)2

(αb + μβ)2 + β2ξ 2 (HeK)(ξ )hξ

k(S, t)
)

,

is integrable, as is

∂

∂t

(
(αb + μβ)2

(αb + μβ)2 + β2ξ 2 (HeK)(ξ )hξ

k(S, t)
)

.

From this we see that if

w(S, t) =
∫ ∞

0
ϕ(ξ )hξ

1(S, t)dξ +
∫ ∞

0
ψ(ξ )hξ

2(S, t)dξ , (3.27)

then three applications of the dominated convergence theorem allows us to differentiate
under the integral sign with respect to t and twice with respect to S. Since hξ

1(S, t) and
hξ

2(S, t) satisfy the PDE, it follows that (3.22) also solves the PDE. By construction it also
satisfies the boundary conditions and initial data. □

Remark 3.4 Thus we have constructed a solution of the BVP that does not require us
to know a fundamental solution for the problem. An alternative representation for the
solution of a BVP can be very useful. It may be more tractable or more computationally
efficient than the classical method. However, a discussion of this issue is beyond the scope
of the current work. We content ourselves with an illustrative example.

Example 3.1 Let g(t) = t and f (S) = 1
σ 2

(
α + μβ

b

)–1 ( S
b
)μ (

ln
( S

b
))2, and assume that α + μβ

b ≠
0. Now recall that if δ is the Dirac delta function, then by definition on [0,∞),

∫ ∞

0
δ′(x)f (x)dx = – lim

h→0+
f ′(h). (3.28)

Hence
∫∞

0 δ′(x)e–sxdx = s. After some calculations, it turns out that we can take ψ = 0 and

ϕ(ξ ) =
(

α +
μβ

b

)–1 4ξ

σ 2 δ′(ξ 2). (3.29)

Consequently, a solution of our problem with g(t) = t is

w(S, t) =
∫ ∞

0

4ξ

σ 2
(
α + μβ

b

)δ′(ξ 2)

(
S
b

)μ

e– 1
2 σ 2t(ξ2+μ2) cos

(
ξ ln

S
b

)
dξ

=
2
( S

b
)μ

σ 2
(
α + μβ

b

)e– 1
2 σ 2μ2t

∫ ∞

0
δ′(z)e– 1

2 σ 2zt cos

(√
z ln

S
b

)
dz
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Figure 1 Plot of (3.30) for S ∈ (1, 5) and t ∈ (0, 3), which corresponds to the solution of the BVP (3.1)–(3.3) with

b = 1, f (S) = 1
σ2

(
α + μβ

b

)–1 (
S
b

)μ (
ln
(
S
b

))2
, g(t) = t, σ = 0.5, r = 0.05, α = 1, β = 1, and μ = 1

=
2
( S

b
)μ

σ 2
(
α + μβ

b

)e– 1
2 σ 2μ2t

[
σ 2t
2

+
1
2

(
ln

(
S
b

))2
]

. (3.30)

The apparent singularity at z = 0 is removable. We used a Taylor expansion to evaluate the
integral. Specifically,

∫ ∞

0
δ′(z)e– 1

2 σ 2zt cos

(√
z ln

(
S
b

))
dz = –

∫ ∞

0
δ(z)

×
(

e– 1
2 σ 2zt

(
–

σ 2t
2

cos

(√
z ln

(
S
b

))
– ln

(
S
b

)
sin
(√

z ln
( S

b
))

2
√

z

))
dz

=
σ 2t
2

+ ln

(
S
b

)∫ ∞

0
δ(z)

[
1
2

e– 1
2 σ 2zt

∞∑
n=0

(–1)n

(2n + 1)!

(
ln

(
S
b

))2n+1

zn

]
dz

=
σ 2t
2

+
1
2

(
ln

(
S
b

))2

.

Note that all terms in the infinite series are zero after n = 0. This gives the result. It is not
hard to see that

w(S, 0) =
1
σ 2

(
α +

μβ

b

)–1(S
b

)μ(
ln

(
S
b

))2

.

So the initial condition is satisfied. Using Mathematica, it is easy to see that the bound-
ary conditions are satisfied. Choosing g to be a polynomial leads to the appearance of
derivatives of the Dirac delta, and integrals involving these distributions particularly easy
to evaluate.

In Fig. 1, we plot the solution (3.30) for S ∈ (1, 5) and t ∈ (0, 3).

4 Hilbert transform methods for second-order boundary conditions
The result of the previous section give rise to a number of questions. The first is whether
the Hilbert transform approach can be extended to the second-order Robin problem? A
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more important question is whether the method can be applied to boundary value prob-
lems for other PDEs? The answer to both questions is positive.

We start with the extension to the second-order Robin problem and then turn to the
second question. We will solve

wt =
1
2
σ 2S2wSS + rSwS, (4.1)

w(S, 0) = f (S), (4.2)

αw(b, t) + βwS(b, t) + γ wSS(b, t) = e– 1
2 σ 2μ2tg(t), (4.3)

where S > b > 0.
In fact, the same method can be used to solve this problem with an extra step. Our

solution will again be of the form (3.12) as in the previous section. It is straightforward to
show that w(b, 0) =

∫∞
0 ϕ(ξ )dξ = f (b). This fact will be useful.

As in the regular Robin condition case, we deduce that ϕ(ξ ) = F(ξ ) + (Hoψ)(ξ ), where F
is as before. Here we make the observation that

∫ ∞

0
(Hoψ)(ξ )dξ =

∫ ∞

0
(ϕ(ξ ) – F(ξ ))dξ = f (b) –

∫ ∞

0
F(ξ )dξ .

Here we assume that F is integrable. This can be guaranteed by imposing mild conditions
on f . We will give a sufficient condition for integrability below.

Introduce the constants A = α + 1
b2 γμ(μ – 1) + μβ

b and B = β

b + γ

b2 (2μ – 1). Then the
boundary condition yields the equation

∫ ∞

0
(A –

γ

b2 ξ 2)ϕ(ξ )e– 1
2 σ 2tξ2

dξ + B
∫ ∞

0
ξψ(ξ )e– 1

2 σ 2tξ2
dξ = g(t). (4.4)

Converting the integrals to Laplace transforms and inverting as previously, we obtain

(A –
γ

b2 ξ 2)ϕ(ξ ) + Bξψ(ξ ) = 2ξL–1
[

g
(

2s
σ 2

)
; ξ 2
]

.

We will insist that A and γ have opposite signs to ensure that ϕ is nonsingular. Let G(ξ ) =
2ξL–1 [g ( 2s

σ 2

)
; ξ 2]. Then we can rewrite the equation as

(A –
γ

b2 ξ 2)[F(ξ ) + (H0ψ)(ξ )] + Bξψ(ξ ) = G(ξ ).

or, equivalently,

A(H0ψ)(ξ ) –
γ

b2 ξ 2(H0ψ)(ξ ) + Bξψ(ξ ) = G(ξ ) – (A –
γ

b2 ξ 2)F(ξ ). (4.5)

To proceed, we need to take the even Hilbert transform of both sides. We make the
observation that

He(y2(H0ψ)(y))(x) =
2x
π

P
∫ ∞

0

y2(H0ψ)(y)

x2 – y2 dy

=
2x
π

P
∫ ∞

0

(y2 – x2 + x2)(H0ψ)(y)

x2 – y2 dy
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= –
2x
π

P
∫ ∞

0
(H0ψ)(y)dy + x2(HeHoψ)(x)

= –
2x
π

(
f (b) – P

∫ ∞

0
F(y)dy

)
– x2ψ(x)

= Cx – x2ψ(x), (4.6)

where C = – 2
π

(
f (b) –

∫∞
0 F(y)dy

)
. We dropped the principal value because we are assum-

ing suitable integrability. We can of course weaken this assumption and reintroduce the
principal values of the integrals.

Taking the even Hilbert transform of (4.5) gives us the relation

–(A –
γ

b2 ξ 2)ψ(ξ ) –
γ

b2 Cξ + Bξ (H0ψ)(ξ ) = He[G(ξ ) – (A –
γ

b2 ξ 2)F(ξ )]. (4.7)

Now we easily see that

(Hex2F(x))(ξ ) = –
2ξ

π
P
∫ ∞

0
F(x)dx + ξ 2(HeF)(ξ ).

So our assumptions on F and the assumptions of the previous section are sufficient to
guarantee that the right-hand side of (4.7) exists.

We know that ϕ(ξ ) = G(ξ )–Bξψ(ξ )
A– γ

b2 ξ2 , so that

(H0ψ)(ξ ) =
G(ξ ) – Bξψ(ξ )

A – γ

b2 ξ 2 – F(ξ ).

We thus have

–Aψ(ξ ) –
γ

b2 (Cξ – ξ 2ψ(ξ )) + Bξ

(
G(ξ ) – Bξψ(ξ )

A – γ

b2 ξ 2 – F(ξ )

)
= M(ξ )

with M(ξ ) = He[G(ξ ) – (A – γ

b2 ξ 2)F(ξ )].
This gives

–

(
A –

γ

b2 ξ 2 +
B2ξ 2

A – γ

b2 ξ 2

)
ψ = C

γ

b2 ξ + M(ξ ) + BξF(ξ ) – Bξ
G(ξ )

A – γ

b2 ξ 2 .

Let

N(ξ ) = C
γ

b2 ξ + M(ξ ) + BξF(ξ ) – Bξ
G(ξ )

A – γ

b2 ξ 2 . (4.8)

Then we have

ψ(ξ ) =
–N(ξ )(A – γ

b2 ξ 2)

(A – γ

b2 ξ 2)2 + B2ξ 2 . (4.9)

Combining this, we have the following result.
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Theorem 4.1 Suppose that f and g satisfy the conditions in Theorem 3.3. Suppose further
that ηf ′(η),η2f ′′(η) ∈ L1

(
(b,∞), dη

ημ+1

)
. Let F , G be as in Theorem 3.3. Then Problem 4.1

with α,β ,γ ≠ 0 has a solution given by

w(S, t) =
∫ ∞

0
ϕ(ξ )hξ

1(S, t)dξ +
∫ ∞

0
ψ(ξ )hξ

2(S, t)dξ , (4.10)

where hξ
1,2(S, t) are as in Theorem 3.3,

ψ(ξ ) =
–N(ξ )(A – γ

b2 ξ 2)

(A – γ

b2 ξ 2)2 + B2ξ 2 , (4.11)

and

ϕ(ξ ) =
G(ξ ) – Bξψ(ξ )

A – γ

b2 ξ 2 ,

where A = α + 1
b2 γμ(μ – 1) + μβ

b , B = β

b + γ

b2 (2μ – 1), N is as defined in (4.8), and A and γ

have opposite signs.

Proof The proof follows the lines of the proof of Theorem 3. So here we only consider the
integrability of F . We recall that

F(ξ ) =
2
π

∫ ∞

0
e–μyf

(
bey) cos(ξy)dy.

Obviously, we can write

∫ ∞

0
F(ξ )dξ =

∫ 1

0
F(ξ )dξ +

∫ ∞

1
F(ξ )dξ .

A simple application of Fubini’s theorem shows that | ∫ 1
0 F(ξ )dξ | < ∞, provided that

∫ 1

0

∣∣e–μyf
(
bey)∣∣ dy

y
< ∞.

The obvious change of variables gives us

∫ 1

0

∣∣e–μyf
(
bey)∣∣ dy

y
= bμ

∫ be

b
|f (η)| dη

ημ+1 .

Thus f ∈ L1((b,∞), dη

ημ+1 ) guarantees that | ∫ 1
0 F(ξ )dξ | < ∞.

Now we assume that f is twice differentiable. Integration by parts gives us

∫ ∞

1

∫ ∞

0
e–μyf

(
bey) cos(ξy)dy =

∫ ∞

1

∫ ∞

0

d
dy
(
e–μyf

(
bey)) sin(ξy)

–ξ
dydξ

=
∫ ∞

1

([
d
dy

(e–μyf
(
bey)) cos(ξy)

ξ 2

]∞

0
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–
∫ ∞

0

d2

dy2 (e–μyf
(
bey)) cos(ξy)

ξ 2 dy
)

dξ

=
∫ ∞

1

μf (b) – bf ′(b)

ξ 2 dξ – I,

where I =
∫∞

1
∫∞

0
d2

dy2 (e–μyf (bey)) cos(ξy)
ξ2 dydξ . Clearly,

∫ ∞

1

μf (b) – bf ′(b)

ξ 2 dξ = μf (b) – bf ′(b).

Further,

|I| =
∣∣∣∣
∫ ∞

1

∫ ∞

0

d2

dy2 (e–μyf
(
bey)) cos(ξy)

ξ 2 dydξ

∣∣∣∣

≤
∫ ∞

1

∫ ∞

0

∣∣∣∣ d2

dy2 (e–μyf
(
bey)) cos(ξy)

ξ 2

∣∣∣∣dydξ

≤
∫ ∞

0

∣∣∣∣ d2

dy2 (e–μyf
(
bey))

∣∣∣∣dy < ∞,

where we have employed Fubini’s theorem on the assumption that the final integral is
finite. Thus the integrability of d2

dy2 (e–μyf (bey)) is sufficient to guarantee that | ∫∞
0 F(ξ )dξ | <

∞. Since

∫ ∞

0

∣∣∣∣ d2

dy2 (e–μyf
(
bey))

∣∣∣∣dy = bμ

∫ ∞

b

∣∣(Df )(ξ )
∣∣ dη

ημ+1 ,

where (Df )(ξ ) = μ2f (η) + b(1 – 2μ)ηf ′(η) + μ2η2f ′′(η), it is sufficient to require f (η),ηf ′(η),
η2f ′′(η) ∈ L1((b,∞), dη

ημ+1 ) for the integral of F to exist. This also justifies our use of Fubini’s
theorem.

The proof of the integrability of ϕ(ξ )hξ
1(S, t) and ψ(ξ )hξ

2(S, t) and the differentiability of
the integrals defining the solution proceeds along the lines of the proof of Theorem 3.3.

□

Again, we have a representation of the solution of the second-order Robin problem that
does not rely upon any knowledge of a fundamental solution. Given the complexity of
the fundamental solution in the second-order case, this may be preferred. The problem
of efficient evaluation of the solutions will be treated elsewhere. However, we remark that
the even and odd Hilbert transforms can be written in terms of the Fourier sine and cosine
transforms. Hence techniques for the evaluation of these transforms can be employed to
calculate the even and odd Hilbert transforms. In particular, we has access to fast Fourier
transform methods.

5 A general result for second-order Robin problems
It is possible to construct general formulae for different types of boundary conditions. We
present one particular case for second-order Robin conditions. In the simplest version of
the theory, we need a family of solutions of the form

w1(x, t; ξ ) = ρ(x) cos(ξμ(x))e–ξ2t , (5.1)
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w2(x, t; ξ ) = ρ(x) sin(ξμ(x))e–ξ2t , (5.2)

where μ and ρ are assumed to be twice continuously differentiable. There are many vari-
ations on this, and we will present some examples below. By linearity, if w1 and w2 are
solutions of a linear PDE, then so are

w̄1(x, t; ξ ) = ρ(x) cos(ξ (μ(x) – μ(a)))e–ξ2t , (5.3)

w̄2(x, t; ξ ) = ρ(x) sin(ξ (μ(x) – μ(a)))e–ξ2t . (5.4)

In fact, many PDEs on the line have solutions of this form. A simple characterization can
be obtained as follows.

If w1 is a solution of the PDE ut = P(x)uxx + Q(x)ux + R(x)u, where P, Q, R are smooth
functions, then we must have

P(x)(ρ ′′(x) cos(ξμ(x)) – 2ξρ ′(x) sin(ξμ(x)) – ξ 2ρ(x) cos(ξμ(x)))

+ Q(x)(ρ ′(x) cos(ξμ(x)) – ξρ(x)μ′(x) sin(ξμ(x))

+ R(x)(ρ(x) cos(ξμ(x)) + ξ 2) = 0.

Substitution into the PDE shows that for this to be a solution, we require P, Q, R, μ, and
ρ to satisfy the following system of equations:

P(x)ρ ′′(x) + Q(x)ρ(x) + R(x)ρ(x) = 0, (5.5)

1 – P(x)(μ′(x))2 = 0, (5.6)

Q(x)ρ(x)μ′(x) + 2P(x)μ′(x)ρ ′(x) + P(x)ρ(x)μ′′(x) = 0. (5.7)

This implies that μ′(x) = ±(P(x))–1/2.
Obviously, ρ must be a time-independent solution of the PDE. It is not hard to show

that w2(x, t; ξ ) will be a solution of the PDE whenever w1 is and vice versa. Most PDEs will
not possess solutions of this form, but there are numerous PDEs that do. These defining
equations allow us to generate examples, and we will present some below.

Now we present a general result for the solution of second-order Robin problems, where
the PDE has solutions of this form. We observe that by taking the limit as γ → 0 we obtain
the solution of the standard Robin problem. There are various particular cases that we will
not cover. They can all be handled by obvious modifications of our arguments. We make
several simplifying assumptions to make the proof easier. More precise conditions are
possible, but we will not present a full analysis here. The actual calculations are essentially
the same as in the Black–Scholes case, so we leave these to the reader.

Theorem 5.1 Suppose that the PDE

ut = P(x)uxx + Q(x)ux + R(x)u, x > b, t > 0, (5.8)

has solutions given by (5.3) and (5.4). Suppose that μ : [b,∞) → R is invertible, g has an
inverse Laplace transform, and f̃ ∈ L1[0,∞), where f̃ (y) = f (μ–1(y+μ(b)))

ρ(μ–1(y+μ(b)))
.
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Define the constants A = αρ(b) + βρ ′(b) + γρ ′′(b), B = –γρ(b)(μ′(b))2, C = βρ(b)μ′(b) +
γ (ρ(b)μ′′(b) + 2ρ ′(b)μ′(b)), χ = 2B

π

(
c –
∫∞

0 F(ξ )dξ
)
, and c = limz→b

f (z)
ρ(z) , which we assume

to exist. Suppose that A and B are nonzero and have opposite signs.
Let F(ξ ) = 2

π

∫∞
0 f̃ (η) cos(ξη)dη and G(ξ ) = 2ξL–1[g(t); ξ 2], and suppose that K(ξ ) =

G(ξ ) – (A – Bξ 2)F(ξ ) ∈ L2[0,∞). Then a solution of (5.8) satisfying u(x, 0) = f (x) and
αu(b, t) + βux(b, t) + γ uxx(b, t) = g(t) is

u(x, t) =
∫ ∞

0
ϕ(ξ )ρ(x) cos(ξ (μ(x) – μ(b)))e–ξ2tdξ

+
∫ ∞

0
ψ(ξ )ρ(x) sin(ξ (μ(x) – μ(b)))e–ξ2tdξ , (5.9)

where

ψ(ξ ) = –
(A – Bξ 2)((HeK)(ξ ) – χξ ) – CξK(ξ )

(A – Bξ 2)2 + C2ξ 2 , (5.10)

and

ϕ(ξ ) =
G(ξ ) – Cξψ(ξ )

A – Bξ 2 . (5.11)

Proof The derivation of the solutions follows the same lines as in the Black–Scholes case.
The initial condition gives ϕ(ξ ) = F(ξ ) + (Hoψ)(ξ ), and the boundary condition gives [A –
Bξ 2]ϕ(ξ ) + Cξψ(ξ ) = G(ξ ). We immediately obtain

[A – Bξ 2]ψ(ξ ) + Cξψ(ξ ) = K(ξ ).

Taking the even Hilbert transform of both sides gives us

–(A – Bξ 2)ψ(ξ ) + Cξ (Ho)ψ)(ξ ) + χξ = (HeK)(ξ ). (5.12)

We therefore have a pair of simultaneous equations. Solving gives us our expressions for
ψ and ϕ.

Now w1(x, t; ξ ) and w2(x, t; ξ ) are solutions of the PDE, and they have Gaussian decay in
ξ . By Riesz’s inequality (see [24]) there exists a constant R such that ∥HeK∥2 ≤ R∥K∥2.
It immediately follows from Hölder’s inequality and our assumptions on F and G that the
integral defining the solution is convergent. Similarly, the integrals

∫ ∞

0
η(ξ )

∂ j

∂xj w1,2(x, t; ξ )dξ ,

j = 1, 2, and

∫ ∞

0
η(ξ )

∂

∂t
w1,2(x, t; ξ )dξ

are convergent. Here η is either ϕ or ψ . Therefore (5.9) is a solution of the PDE, and by
construction it satisfies the boundary and initial conditions. □
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5.1 Some examples with elementary solutions
Using the previous remarks, we can generate an interesting variety of examples.

Example 5.1 For the heat equation with drift

ut = uxx + aux, x > 0, t > 0, (5.13)

we let u(x, 0) = f (x) and αu(0, t) + βux(0, t) + γ uxx(0, t) = e– a2
4 tg(t). The elementary solu-

tions are w1(x, t; ξ ) = e–ξ2t– a2
4 te– a

2 x cos(ξx) and w2(x, t; ξ ) = e–ξ2t– a2
4 te– a

2 x sin(ξx). Note that
the theorem is still valid because the additional factor of e– a2

4 t will cancel when we apply
the boundary conditions.

Example 5.2 An important class of stochastic processes are squared Bessel processes; see
[27]. An n-dimensional squared Bessel process is the squared distance from the origin of
an n-dimensional Brownian motion. For the three-dimensional case, we have

ut = 2xuxx + 3ux, x ≥ b > 0, t > 0. (5.14)

The elementary solutions are

w1(x, t;λ) =
1√
x

e–λ2t cos(λ(
√

2x –
√

2b))

and

w2(x, t;λ) =
1√
x

e–λ2t sin(λ(
√

2x –
√

2b)).

Choosing u(x, 0) = 0, b = 1, and the boundary condition u(1, t) = 1√
t+1 , we can explicitly

solve the corresponding BVP. Indeed, Theorem 5.1 gives

u(x, t) =
e–

(√
x–1

)2
2(t+1)

√
t + 1

√
x

–
e–

(√
x–1

)2
2(t+1) erf

( √
x–1√

2
√

t(t+1)

)
√

t + 1
√

x
. (5.15)

In Fig. 2, we plot solution (5.15) for x ∈ (1, 4) and t ∈ (0, 5).

Example 5.3 We consider the PDE

ut = uxx + 2(tanh x)ux, x > 0, t > 0. (5.16)

The elementary solutions are

w1(x, t; ξ ) = e–ξ2t cos(ξx)

cosh x
, w2(x, t; ξ ) = e–ξ2t sin(ξx)

cosh x
.

The solution to the BVP will be of the form (5.9).
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Figure 2 Plot of (5.15) for x ∈ (1, 4) and t ∈ (0, 5), which corresponds to the solution of the PDE (5.14) with
b = 1, initial condition u(x, 0) = 0, and boundary condition u(1, t) = 1√

t+1

We also remark that the PDE ut = uxx + 2(coth x)ux arises in hyperbolic geometry. See
the discussion in [28]. The elementary solutions are

w1(x, t; ξ ) = e–ξ2t cos(ξx)

sinh x
, w2(x, t; ξ ) = e–ξ2t sin(ξx)

sinh x
.

To avoid singularities, we must place the lower boundary at x = b > 0.

Example 5.4 Next, we consider a family of PDEs of the form

ut = uxx + (2x2 + a)ux + (x4 + ax2 + 2x)u, x > 0, t > 0.

The elementary solutions that we use are

w1(x, t; ξ ) = e– 1
4 (ξ2+a2)te– 1

3 x3– 1
2 ax cos

(
xξ

2

)
,

w2(x, t; ξ ) = e– 1
4 (ξ2+a2)te– 1

3 x3– 1
2 ax sin

(
xξ

2

)
.

Variants of the Robin boundary condition can also be studied, and we present some
examples.

Example 5.5 Naturally, we cannot obtain a solution where none exists. Boundary condi-
tions must be suitable to the PDE. We illustrate this with the equation

ut = (x2 – 1)uxx + xux, x > 1, t > 0. (5.17)

We require u(1, t) = f (x) and αu(1, t) + β
√

x2 – 1ux(x, t)
∣∣
x→1 = g(t). It is not clear that the

standard Robin problem at x = 1 even has a solution. This is clearly not covered by The-
orem 5.1. Nevertheless, the same construction works as in that result. Our elementary
solutions are

w1(x, t; ξ ) = e–ξ2t cos
(
ξ cosh–1 x

)
, w2(x, t; ξ ) = e–ξ2t sin

(
ξ cosh–1 x

)
.
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From the initial data we obtain ϕ(ξ ) = F(ξ )+Hoψ)(ξ ) with F(ξ ) = 2
π

∫∞
0 f (cosh y) cos(ξy)dy.

The boundary condition gives

αϕ(ξ ) + βξψ(ξ ) = 2ξL–1[g(t); ξ 2],

and we have solved equations like those before.

5.1.1 Extension to time-dependent coefficients
We can also study problems with time-dependent coefficients. A full discussion would
be lengthy, so we only make some brief remarks. Suppose that r : [0,∞) → (0,∞) is a
continuous positive function. Suppose that the PDE (5.8) has solutions given by (5.3) and
(5.4). Then the PDE

1
r(t)

ut = P(x)uxx + Q(x)ux + R(x)u, x > b > 0, (5.18)

has solutions given by

v̄1(x, t; ξ ) = ρ(x) cos(ξ (μ(x) – μ(b)))e–ξ2 ∫ t
0 r(s)ds, (5.19)

v̄2(x, t; ξ ) = ρ(x) sin(ξ (μ(x) – μ(b)))e–ξ2 ∫ t
0 r(s)ds. (5.20)

The extension of Theorem 5.8 to (5.18) subject to the boundary condition (1.1) is entirely
straightforward, and we leave it to the interested reader. See however the remark in Sect. 7.

Many classes of equations with time-dependent coefficients can be solved, and we make
no attempt to list them all here, but, as an example, we simply present equations of the
form

ut = σ (t)uxx + (A(t) – B(t)x)ux, x > 0,σ (t) > 0. (5.21)

Here σ , A, B are continuous. Equations of this type admit solutions of the form

uc(x, t) = exp(–ξ 2k(t)) cos
(
ξ (xe–

∫ t
0 B(s)ds + C(t))

)
, (5.22)

us(x, t) = exp(–ξ 2k(t)) sin
(
ξ (xe–

∫ t
0 B(s)ds + C(t))

)
, (5.23)

where k(t) =
∫ t

0 σ (y)e–2
∫ y

0 B(s)dsdy and C(t) =
∫ t

0 A(y)e–
∫ y

0 B(s)dsdy. A variety of boundary
value problems for (5.21) can be solved by our method.

We take our solutions to be of the form

u(x, t) =
∫ ∞

0
ϕ(ξ ) exp(–ξ 2k(t)) cos

(
ξ (xe–

∫ t
0 B(s)ds + C(t))

)
dξ

+
∫ ∞

0
ψ(ξ ) exp(–ξ 2k(t)) sin

(
ξ (xe–

∫ t
0 B(s)ds + C(t))

)
dξ .

Since k(0) = C(0) = 0, we have

u(x, 0) = ρ(x)(ϕ̂c(x) + ψ̂s(x)) = f (x).
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This is the same condition that we had before. There are various cases where the equa-
tions resulting from the boundary conditions can also be solved using the odd and even
Hilbert transforms; however, some cases are challenging. If A(t) = 0, then the Neumann
and Dirichlet problems are reasonably straightforward. For example, the inhomogeneous
Dirichlet problem yields

u(0, t) =
∫ ∞

0
ϕ(ξ )e–ξ2k(t)dξ = g(t). (5.24)

Setting ξ 2 = z, we have the Laplace transform �̃(k(t)) = g(t). Here �̃ is the Laplace trans-
form of ϕ̃(z) = ϕ(

√
z)

2
√

z . Since k is increasing, it is invertible, and we write �̃(s) = g
(
k–1(s)

)
;

this can be inverted explicitly for a large number of cases. This gives us a solution of the
Dirichlet problem.

5.2 A modified Robin problem for the harmonic oscillator
The equation for the harmonic oscillator is

ut = σuxx – μx2u, x ∈ � ⊆R,μ > 0. (5.25)

This plays an important role in quantum mechanics, though it would normally be in the
form iut = σxxx – μx2u. The real form also plays an important role in the theory of heat
kernels. See Davies’ book [28].

It also arises in stochastic analysis. By the Feynman–Kac formula the functional u(x, t) =
E

[
f (Xt)e–μ

∫ t
0 X2

s ds
∣∣X0 = x

]
, where X = {Xt ; t ≥ 0} is a Brownian motion, is given by the so-

lution of the problem

ut =
1
2

uxx – μx2u, x ∈R,

u(x, 0) = f (x).

If f (x) = e–λx, then the solution of the initial value problem gives the Laplace transform of
the joint density of (Xt ,

∫ t
0 X2

s ds). Our intention is to solve a modified Robin problem of a
special form. However, we note here that the Dirichlet and Neumann problems can easily
be solved by our method. In fact, there are numerous problems that we can solve. The
standard Robin problem reduces to the solution of a different type of integral equation of
Laplace transform convolution type. We will present it elsewhere.

We will solve the problem

ut = uxx – x2u, x ≥ 0,

u(x, 0) = f (x),

αu(0, t) + βe–2tux(0, t) = g(t).

We will suppose that α and β are nonzero. It is worth noting that if we map this to the heat
equation, then we obtain a very complicated moving boundary problem, which appears
to be intractable.
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The boundary condition describes a situation where the lower boundary starts off as
partially absorbing and partially reflecting and exponentially decays to a purely absorbing
boundary. Such a situation can arise in many settings, such as the design of materials which
reflect, say, alpha or beta particles. These can cause serious damage to living tissue.

We can let u be the amount of radioactive material that has been absorbed. As the
protective material breaks down, the proportion reflected decreases to zero, and so the
boundary will become purely absorbing. For small t, the reflectivity will decay linearly,
but after a certain point is reached, the reflectivity will evaporate exponentially fast. These
are important considerations in the design of systems to protect against radiation. There
is a very vast literature on this subject, and we can only suggest a survey [29]. Our prob-
lem may be regarded as a toy problem that could be of value. However, we present it here
purely for its mathematical interest. We prove the following theorem.

Theorem 5.2 Let f ∈ L1([0,∞) and g(t) =
∫∞

0 G(x)e–xtdx, where G ∈ L1
(

[0,∞), dx
�
(

1+x
4

)
)

.

Then the boundary value problem

ut = uxx – x2u, x ≥ 0,

u(x, 0) = f (x),

αu(0, t) + βe–2tux(0, t) = g(t),

where α, β are nonzero, has a solution given by

u(x, t) =
∫ ∞

0
ϕ(λ)w1(x, t;λ)dλ +

∫ ∞

0
ψ(λ)w2(x, t;λ)dλ. (5.26)

Here

w1(x, t;λ) = exp

(
t +

1
2

x2 –
1
4
λ2(e4t – 1)

)
cos(λxe2t),

w2(x, t;λ) = exp

(
t +

1
2

x2 –
1
4
λ2(e4t – 1)

)
sin(λxe2t),

ψ(λ) =
α
[
α(HeF)(λ) – (HeK)(λ) + βλ

α
K(λ) – λβF(λ)

]

α2 + β2λ2 ,

ϕ(λ) = 1
α

K(λ)– λβ

α
ψ(λ), F(λ) = 2

π

∫∞
0 e– 1

2 y2 f (y) cos(λy)dy, K(λ) = λ
2L–1

[
ḡ(s); λ2

4

]
, and ḡ(s) =

1

(1+s)
1
4

g
( 1

4 ln(1 + s)
)
.

Proof We begin with the following solutions of the PDE:

w1(x, t;λ) = exp

(
t +

1
2

x2 –
1
4
λ2(e4t – 1)

)
cos(λxe2t), (5.27)

w2(x, t;λ) = exp

(
t +

1
2

x2 –
1
4
λ2(e4t – 1)

)
sin(λxe2t). (5.28)
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It is straightforward to check that these satisfy the equation for every λ. (Notice that they
are not however of the form (5.1) or (5.2).)

As usual, we construct a new solution of the PDE by setting

u(x, t) =
∫ ∞

0
ϕ(λ)w1(x, t;λ)dλ +

∫ ∞

0
ψ(λ)w2(x, t;λ)dλ. (5.29)

The initial condition then implies that

e
1
2 x2 [

ϕ̂c(x) + ψ̂s(x)
]

= f (x). (5.30)

Reasoning as previously, we deduce that

ϕ(λ) =
2
π

∫ ∞

0
e– 1

2 y2
f (y) cos(λy)dy + (Hoψ)(λ). (5.31)

We set F(λ) = 2
π

∫∞
0 e– 1

2 y2 f (y) cos(λy)dy.
Now we easily see that

u(0, t) =
∫ ∞

0
ϕ(λ) exp

(
t –

1
4
λ2(e4t – 1)

)
dλ (5.32)

and

ux(0, t) =
∫ ∞

0
λψ(λ) exp

(
3t –

1
4
λ2(e4t – 1)

)
dλ. (5.33)

From the boundary condition we have

α

∫ ∞

0
ϕ(λ)e– λ2

4 (e4t–1)dλ + β

∫ ∞

0
λψ(λ)e– λ2

4 (e4t–1)dλ = e–tg(t). (5.34)

Now we set s = e4t – 1, which implies t = 1
4 ln(1 + s). We also put λ2 = 4z. This transforms

(5.34) into

α

∫ ∞

0

ϕ(2
√

z)√
z

exp (–zs)dz + 2β

∫ ∞

0
ψ(2

√
z) exp (–zs)dz = ḡ(s), (5.35)

where

ḡ(s) =
1

(1 + s) 1
4

g
(

1
4

ln(1 + s)
)

.

Inverting the Laplace transform gives

α
ϕ(2

√
z)√

z
+ 2βψ(2

√
z) = L–1 [ḡ(s); z

]
, (5.36)

and so

αϕ(λ) + βλψ(λ) =
λ

2
L–1

[
ḡ(s);

λ2

4

]
= K(λ), (5.37)
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which immediately yields

α(F(λ) + (Hoψ)(λ)) = K(λ) – βλψ(λ). (5.38)

Taking the even Hilbert transform of both sides produces the result

α(HeF)(λ) – αψ(λ)) = (HeK)(λ) – βλ(Hoψ)(λ). (5.39)

However we also have

(Hoψ)(λ) =
1
α

[K(λ) – βλψ(λ)] – F(λ),

whence

α(HeF)(λ) – αψ(λ)) = (HeK)(λ) – βλ

[
1
α

[K(λ) – βλψ(λ)] – F(λ)

]
. (5.40)

Solving for ψ gives

ψ(λ) =
α
[
α(HeF)(λ) – (HeK)(λ) + βλ

α
K(λ) – λβF(λ)

]

α2 + β2λ2 . (5.41)

From this we can find ϕ. Proving the convergence of the integrals for these choices of ϕ

and ψ proceeds much as in our previous example. Since the details are similar, we focus
on the function K , which has a different structure than in the previous case. To proceed,
we suppose that

g(s) =
∫ ∞

0
G(x)e–xsdx. (5.42)

Then we immediately see that

1
(1 + s) 1

4
g
(

1
4

ln(1 + s)
)

=
∫ ∞

0

G(x)

(1 + s) 1+x
4

dx. (5.43)

Taking the inverse Laplace transform, we obtain

L–1

[
1

(1 + s) 1
4

g
(

1
4

ln(1 + s)
)

; z

]
=
∫ ∞

0

G(x)

�
( 1+x

4
)e– (x+1)z

4 z
x
4 – 3

4 dx. (5.44)

See [19] for the inverse Laplace transform.
Thus we obtain the expression

K(λ) =
(

λ

2

)– 1
2

e– λ2
4

∫ ∞

0

G(x)

�
( 1+x

4
)e– xλ2

16

(
λ

2

) x
2

dx. (5.45)
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If we suppose that G ∈ L1
(

[0,∞), dx
�
(

1+x
4

)
)

, then an application of the dominated con-

vergence theorem gives

lim
λ→∞

∫ ∞

0

1
�
( 1+x

4
)G(x)e– xλ2

16

(
λ

2

) x
2

dx = 0. (5.46)

We also have

∫ ∞

0

1
�
( 1+x

4
)G(x)e– xλ2

16

(
λ

2

) x
2

dx
∣∣
λ=0 = 0. (5.47)

Now the Lebesgue integral of a measurable function returns a uniformly continuous func-
tion; see [30]. Hence the integral in (5.45) is bounded, and we have the inequality

|K(λ)| ≤ C√
λ

e– λ2
4 (5.48)

for some positive constant C depending on G. Thus the even Hilbert transform of K exists.
We can prove that (HeK)(λ)wk(x, t;λ) is integrable for k = 1, 2 by similar means to the
Black–Scholes equation case. If we suppose that f is integrable, then similar statements
can be made for the even Hilbert transform of F . The remainder of the proof is similar to
our previous examples. □

6 The Robin problem for a five-dimensional squared Bessel process
The method is effective for elementary solutions of greater complexity. For example, so-
lutions of the form

w1(x, t) = (ρ1(x, t; ξ ) cos(ξA1(x, t)) + ρ2(x, t; ξ ) sin(ξA2(x, t)))e–ξ2t , (6.1)

w2(x, t) = (ρ3(x, t; ξ ) cos(ξA1(x, t)) + ρ4(x, t; ξ ) sin(ξA2(x, t)))e–ξ2t (6.2)

can be used. It is possible to formulate an analogue of Theorem 5.1 for equations with
elementary solutions of this form. However, we omit this for brevity. Instead, we content
ourselves by working through the details of a particular example of interest. We solve the
problem

ut = 2xuxx + 5ux, x > b, t > 0, (6.3)

u(x, 0) = f (x), x > b, (6.4)

αu(b, t) + βux(b, t) = g(t). (6.5)

We assume that f is continuously differentiable. This is associated with a five-dimensional
squared Bessel process and is not covered by Theorem 5.1. However, our method can be
extended to cover it. We look for a solution that can be written as

u(x, t) =
∫ ∞

0
ϕ(ξ )w1(x, t; ξ )dξ +

∫ ∞

0
ψ(ξ )w2(x, t; ξ )dξ , (6.6)
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where

w1(x, t; ξ ) = e–ξ2tx–3/2
(

2ξ
√

x sin (ξm(x)) +
√

2 cos (ξm(x))
)

, (6.7)

w2(x, t; ξ ) = e–ξ2tx–3/2
(√

2 sin (ξm(x)) – 2ξ
√

x cos (ξm(x))
)

(6.8)

with m(x) =
√

2x –
√

2b.
By the change of variables x = 1

2 (y +
√

2b)2 the initial condition reduces to

∫ ∞

0
ϕ(ξ )(cos(ξy) + (y +

√
2b)ξ sin(ξy))dξ

+
∫ ∞

0
ψ(ξ )(sin(ξy) – (y +

√
2b)ξ cos(ξy))dξ

=
1√
2

(
1
2

(y +
√

2b)2
)3/2

f
(

1
2

(y +
√

2b)2
)

= f̃ (y).

This seems to be quite different to the previous cases that we have encountered. However,
we can rewrite the above as

(
1 – (y +

√
2b)

d
dy

)
(ϕ̂c(y) + ψ̂s(y)) = f̃ (y) (6.9)

or, equivalently,

(
d
dy

–
1

y +
√

2b
)(ϕ̂c(y) + ψ̂s(y)) = –

1
y +

√
2b

f̃ (y). (6.10)

Introducing the integrating factor
1

y +
√

2b
, we have

d
dy

(
1

y +
√

2b
(
ϕ̂c(y) + ψ̂s(y)

))
= –

1
(y +

√
2b)2

f̃ (y). (6.11)

Hence

ϕ̂c(y) + ψ̂s(y) = (y +
√

2b)

(∫ y

0

–1
(η +

√
2b)2

f̃ (η)dη + I
)

= F(y), (6.12)

where I is a constant of integration. To determine the value of I , we need an initial condi-
tion, and we notice that ψ̂s(0) = 0 and ϕ̂c(0) =

∫∞
0 ϕ(ξ )dξ . Thus we need the value of the

integral
∫∞

0 ϕ(ξ )dξ . This same constant also arises from the boundary conditions. We will
see that it can be obtained by solving a pair of simultaneous equations.

From (6.12) we obtain the familiar condition

ϕ(ξ ) = F̂(ξ ) + (Hoψ)(ξ ) (6.13)

with F̂(ξ ) = 2
π

∫∞
0 F(η) cos(ηξ )dη.

We remark here that for the squared Bessel processes of odd order higher than five,
condition (6.13) is obtained by solving equations of Euler type for ϕ̂c(y) + ψ̂s(y) and the
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initial conditions are found by solving a system of linear equations. However, the details
are quite involved and so will be presented elsewhere.

The Robin boundary condition gives us

((2bα – 3β) + 2bβξ 2)ϕ(ξ )

2b5/2 +
3β – 2bα

b2 ξψ(ξ ) = 2ξL–1[g(t); ξ 2] = G(ξ ). (6.14)

This is equivalent to

(A + Bξ 2)(Hoψ)(ξ ) + Cξψ = G(ξ ) – (A + Bξ 2 )̂F(ξ ) (6.15)

with A = (2bα–3β)
2b5/2 and C = 3β–2bα

b2 . We assume that A + Bξ 2 has no real roots. We take the
even Hilbert transform of both sides, just as before. This gives

–Aψ + B
(

–
2ξ

π
P
∫ ∞

0
Hoψ(η)dη – ξ 2ψ(ξ )

)
+ Cξ (Hoψ) (ξ ) = J(ξ ), (6.16)

where J(ξ ) = (HeK)(ξ ) and K(ξ ) = G(ξ ) – (A + Bξ 2 )̂F(ξ ). Now as before, we require

P
∫ ∞

0
(Hoψ) (η)dη = P

∫ ∞

0
(ϕ(η) – F̂(η))dη. (6.17)

We will drop the principal value by assuming suitable integrability. The procedure for
determining the value of the integral

∫∞
0 ϕ(ξ )dξ will be addressed below.

From (6.15) we see that

(Hoψ)(ξ ) =
K(ξ ) – Cξψ(ξ )

A + Bξ 2 . (6.18)

Together with (6.16), we have a pair of simultaneous equations for ψ and Hoψ , and we
obtain

–
(A + Bξ 2)2 + C2ξ 2

A + Bξ 2 ψ(ξ ) = (HeK)(ξ ) + B
2ξ

π

∫ ∞

0
Hoψ(η)dη – k(ξ ), (6.19)

where k(ξ ) = CξK(ξ )
A+Bξ2 . This gives

ψ(ξ ) = –(A + Bξ 2)
(HeK)(ξ ) + B 2ξ

π

(∫∞
0 (ϕ(η) – F̂(η))dη

)
– CξK(ξ )

A+Bξ2

(A + Bξ 2)2 + C2ξ 2 . (6.20)

From this we obtain ϕ. To complete the calculation, we need to determine
∫∞

0 ϕ(ξ )dξ .
First, from the construction of the solution we have

u(b, 0) = f (b) = b–3/2√2
∫ ∞

0
ϕ(ξ )dξ –

2
b

∫ ∞

0
ξψ(ξ )dξ . (6.21)

Integrating both sides of (6.14) gives

A
∫ ∞

0
ϕ(ξ )dξ + B

∫ ∞

0
ξ 2ϕ(ξ )dξ + C

∫ ∞

0
ξψ(ξ )dξ =

∫ ∞

0
G(ξ )dξ . (6.22)
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We next calculate ux(b, 0) and after rearranging obtain

∫ ∞

0
ξψ(ξ )dξ = –

√
2a
3

∫ ∞

0
ξ 2ϕ(ξ )dξ +

1√
2b

∫ ∞

0
ϕ(ξ )dξ + f ′(b). (6.23)

Basic algebra leads to the pair of simultaneous equations

H1

∫ ∞

0
ϕ(ξ )dξ + H2

∫ ∞

0
ξ 2ϕ(ξ )dξ =

b3/2
√

2
f (b) –

√
2b

C

∫ ∞

0
G(ξ )dξ ,

H3

∫ ∞

0
ϕ(ξ )dξ + H4

∫ ∞

0
ξ 2ϕ(ξ )dξ =

b2

3
f ′(b) –

∫ ∞

0

G(ξ )

C
dξ ,

where H1 =
(

1 +
√

2bA
C

)
, H2 =

√
2bB
C , H3 =

(√
b
2 + A

C

)
, H4 =

(
B
C –

√
2b
3

)
. This gives∫∞

0 ϕ(ξ )dξ = γ , where

γ =
H4

(
b3/2√

2 f (b) –
√

2b
C
∫∞

0 G(ξ )dξ
)

– H2

(
b2

3 f ′(b) –
∫∞

0
G(ξ )

C dξ
)

H1H4 – H2H3
, (6.24)

provided that H1H4 – H2H3 ≠ 0. If g(t) = 0, then this simplifies to

∫ ∞

0
ϕ(ξ )dξ =

b3/2√
2 H4f (b) – b2

3 H2f ′(b)

H1H4 – H2H3
. (6.25)

We immediately obtain

F(y) = (y +
√

2b)

(∫ y

0

–1
(η +

√
2b)2

f̃ (η)dη +
γ√
2b

)
.

The question then arises as to how we are to interpret the Fourier cosine transform
of y +

√
2b? This is in terms of distributions. Clearly,

∫∞
0 δ(ξ ) cos(ξy)dξ = 1. Hence

2
π

∫∞
0 cos(ξy)dy = δ(ξ ). Now let φ be a suitable test function of Schwartz class. We de-

fine the distribution �(φ) =
∫∞

0 yφ̂c(y)dy and as a distribution
(∫∞

0 y cos(ξ )dy,φ
)

= �(φ).
Note that solutions (6.7) and (6.8) are in the Schwartz class, so that �(w1) and �(w2) are
well defined and can be computed easily.

It is possible to give conditions that guarantee the convergence and to prove that we do
indeed have a solution of the Robin problem. This proceeds along the lines of the treatment
given in the cases of the Black–Scholes equation and the harmonic oscillator. To avoid
repeating the same arguments as before, we will omit this analysis. However, we are able
to construct a solution to the problem by this method, which again does not require us to
know the fundamental solution.

7 Future directions
In this paper, we have introduced a new method, which yields new representations for
the solution of important boundary value problems. The idea of constructing solutions to
boundary value problems from elementary solutions of the PDE without use of a funda-
mental solution is potentially very important. Naturally, there are many open problems.
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First, we would like a fuller characterization of the types of equations for which the
method is effective. We have one result along those lines, and others are possible. We can
give a characterization of PDEs that possess solutions of the forms (6.1) and (6.2). We
proceed as in the discussion at the start of Sect. 5. We substitute the solutions into an
arbitrary linear PDE, which leads to conditions that guarantee that we have a solution.

There are also particular cases that we have not gone into detail to keep the current
paper to a manageable length. For most of these cases, the analysis is basically the same as
that presented for our main problems. In many cases, they are easier because certain terms
disappear from the equations. For example, in the derivation of Theorem 3.3, assuming
that

(
α + μβ

b

)
= 0 significantly reduces the difficulty in determining ϕ and ψ . We simply

invert a single Laplace transform to obtain ψ , and ϕ can be determined from this.
We do not yet know the full range of equations with time-dependent coefficients that

can be studied by this technique. However, we made some preliminary remarks on this
earlier. If we consider equation (5.18), then the extension of Theorem 5.1 to equations of
this form is not at all difficult. We simply construct a solution

u(x, t) =
∫ ∞

0
ϕ(ξ )ρ(x) cos(ξ (μ(x) – μ(b)))e–ξ2 ∫ t

0 r(s)dsdξ

+
∫ ∞

0
ψ(ξ )ρ(x) sin(ξ (μ(x) – μ(b)))e–ξ2 ∫ t

0 r(s)dsdξ .

Note that k(t) =
∫ t

0 r(s)ds is increasing and so is invertible. We have

u(x, 0) = ρ(x)
(
ϕ̂c(μ(x) – μ(b)) + ψ̂s(μ(x) – μ(b))

)
= f (x),

and the equations arising from the boundary conditions can be solved by the use of the
odd and even Hilbert transforms. The analysis is similar to the case where r(s) = 1, and
the solution is a modification of that given in Theorem 5.1. The solution is in terms of the
inverse Laplace transform of g(k–1(s)), as with our example for the equation (5.21).

For (5.21), it is clear that there are numerous possible cases that can be considered. We
have seen that the Dirichlet problem is straightforward if we set A(t) = 0, which corre-
sponds to a time-dependent Ornstein–Uhlenbeck process. The Neumann problem can
also be solved in the same manner. For different choices of the coefficients, a variety of
boundary value problems can be solved. There are other time-dependent equations that
can be studied, but we will not discuss them here.

Another application of these techniques is to equations with nonstandard boundary
conditions. We mentioned previously that certain moving boundary problems can be
solved. We will give one example. Consider the PDE ut = uxx – xu, x ≥ t2, subject to
u(t2, t) = g(t), u(x, 0) = f (x). The PDE has solutions

u1(x, t; ξ ) = e
1
3 t3–xt–ξ2t cos(ξ (x – t2)), (7.1)

u2(x, t; ξ ) = e
1
3 t3–xt–ξ2t sin(ξ (x – t2)). (7.2)

We can solve a number of different problems with these elementary solutions; see [22]. To
solve the moving boundary problem, we define

u(x, t) =
∫ ∞

0
ϕ(ξ )u1(x, t; ξ )dξ +

∫ ∞

0
ϕ(ξ )u2(x, t; ξ )dξ . (7.3)
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Then u(x, 0) = ϕ̂c(x) + ψ̂s(x) = f (x). The moving boundary condition leads to

∫ ∞

0
ϕ(ξ )e–ξ2tdξ = e2t3/3g(t). (7.4)

This reduces to a Laplace transform, and inverting the transform gives us ϕ, and from this
we obtain ψ . There are other moving boundary problems that we can study for different
PDEs. This is ongoing work.

We also remark that different families of elementary solutions that do not involve sines
and cosines can also be used in our basic construction. There are also PDEs that possess
elementary solutions for which the integral equations arising from (1.2) can be solved by
means other than the Hilbert transform. Much work remains to be done on these prob-
lems; however, see preprint [31] for work in this direction.

Appendix
The classical approach to solving the Robin problem when g is nonzero is presented here.
For a more technical treatment of the solution of boundary problems for parabolic oper-
ators, we recommend [1]. We wish to solve

ut(S, t) = Lu(S, t), (A.1)

u(S, 0) = f (S), (A.2)

αu(b, t) + βuS(b, t) + γ uSS(b, t) = g(t), (A.3)

with S ≥ b, t > 0, b > 0, and L a positive second-order operator in S. In our case, L is the
second-order Black–Scholes operator:

Lu(S, t) =
1
2
σ 2S2uSS(S, t) + rSuS(S, t).

To solve problem (A.1)–(A.3), we set u(S, t) = v(S, t) + h(S, t), where

αv(b, t) + βvS(b, t) + γ vSS(b, t) = 0,

and

αh(b, t) + βhS(b, t) + γ hSS(b, t) = g(t). (A.4)

This gives

⎧⎪⎪⎨
⎪⎪⎩

vt(S, t) = Lv(S, t) + K(S, t),

v(S, 0) = f (S) – h(S, 0),

αv(b, t) + βvS(b, t) + γ vSS(b, t) = g(t),

(A.5)

where K(S, t) = Lh – ht(S, t) and S > 0, t > 0. We assume that g(t) is differentiable and
integrable. Then we have the following result. We omit the proof, which is available on
request.
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Proposition A.1 Let h(S, t) be a function that satisfies (A.4), and let q(S, y, t) be a fun-
damental solution of qt = Lq such that αq(b, y, t) + βqS(b, y, t) + γ qSS(b, y, t) = 0. Then the
solution of the boundary value problem (A.1)–(A.3) can be written as

u(S, t) =h(S, t) +
∫ ∞

b
(f (y) – h(y, 0))q(S, y, t)dy

+
∫ t

0

∫ ∞

b

(
Lh(y, τ ) –

∂h
∂t

(y, τ )

)
q(S, y, t – τ )dydτ .

In general, the function h(S, t) is not unique, and different choices for it may lead to
different representations of the solution to the BVP. The fundamental solution in this case
is given by (2.21) in which

p̃(S, y, t) =
Sμb–

ln
( y

b
)

+2 ln(S)

σ2t
–μM(S, t)N(S, t)

4
√

2π�yβ̃
(
σ 2t
)3/2
(
α̃ + μ

(
β̃ + γμ

))e–
y
(
β̃+

√
�
)

2γ

× exp

(
–

4
(
–4 ln(b) ln(S) + ln2(b) + ln2(S)

)
+ 4 ln2 ( y

b
)

+
(
σ 2 – 2r

)2 t2

8σ 2t

)
,

where

M(S, t) =
(

–
√

�β̃ + R
(

2γ f (b)
(
α̃ + μ

(
β̃ + γμ

))
– β̃
(
β̃ + 2γμ

))

β̃
(
β̃ + 2γμ

)
+ 2

√
�β̃e

y
(
β̃+2γμ+

√
�
)

2γ +
√

�β̃

(
–e

√
�y
γ

))
,

R =
(

e
√

�y
γ – 1

)
,

N(s, t) =

(√
2πσ 3t3/2α̃b

log
( y

b
)

σ2t e
ln2
( y

b
)

+ln2(b)+ln2(S)

2σ2t Z(S, y) + 2b
ln(S)
σ2t S–

ln
( y

b
)

σ2t

×
(

b
2 ln
( y

b
)

σ2t
(
σ 2tβ̃ + γ ln

( y
b

))
+ S

2 ln
( y

b
)

σ2t
(
σ 2tβ̃ – γ ln

( y
b

)))

– 2γ ln

(
S
b

)
S–

ln
( y

b
)

σ2t b
2 ln
( y

b
)
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,

and Z(S, y) = erf
(

ln
(

S
b

)
+ln
(

y
b

)
√

2σ 2t

)
– erf

(
ln
(

S
y

)
√

2σ 2t

)
.

Acknowledgements
Not applicable.

Author contributions
The authors equally contributed to the paper

Funding
Not applicable.

Data Availability
No datasets were generated or analysed during the current study.



Craddock et al. Boundary Value Problems         (2025) 2025:12 Page 38 of 38

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1School of Mathematical and Physical Sciences, University of Technology Sydney, PO Box 123, Broadway, New South
Wales 2007, Australia. 2Department of Mathematics “Tullio Levi Civita”, University of Padova, via Trieste 63, 35121 Padova,
Italy. 3Léonard de Vinci Pôle Universitaire, Research Center, 92916 Paris la Défense, France.

Received: 19 September 2024 Accepted: 27 December 2024

References
1. Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice Hall, Englewood Cliffs (1964)
2. Gustafson, K., Abe, T.: The third boundary condition. Was it Robin’s? Math. Intell. 20, 63–71 (1998)
3. Langer, R.: A problem in diffusion or in the flow of heat for a solid in contact with a fluid. Tohoku Math. J. 35, 360–375

(1932)
4. Cannon, J.: The One-Dimensional Heat Equation. Cambridge University Press, Cambridge (1984)
5. Lesnic, D., Elliott, L., Ingham, D.B., Knipe, R.J., Clennell, B.: The identification of hydraulic conductivities of composite

rocks. In: Jones, G., Fisher, Q.J., Knipe, R.J. (eds.) Faulting, Fault Sealing and Fluid Flow in Hydrocarbon Reservoirs.
Geological Society Special Publication, vol. 147, pp. 200–215. Geol. Soc. of London, London (1998)

6. Ismailovb, M.I., Hazaneea, A., Lesnica, D., Kerimovc, N.B.: An inverse time-dependent source problem for the heat
equation with a non-classical boundary condition. Appl. Math. Model. 39(20), 6258–6272 (2015)

7. Costabel, M.: Boundary integral operators for the heat equation. Integral Equ. Oper. Theory 13, 498–552 (1990)
8. Sagan, H.: Boundary and Eigenvalue Problems in Mathematical Physics. Wiley, New York (1961)
9. McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)
10. Stroock, D.W., Varadhan, S.R.S.: Diffusion processes with boundary conditions. Commun. Pure Appl. Math. 19(24),

147–225 (1972)
11. Fokas, A.S.: A Unified Approach to Boundary Value Problems. Regional Conference Series in Applied Mathematics,

vol. 78. SIAM, Philadelphia (2008)
12. Abels, H., Moser, M.: Convergence of the Allen–Cahn equation with a nonlinear Robin boundary condition to mean

curvature flow with contact angle close to 90◦ . SIAM J. Math. Anal. 54(1), 114–172 (2022)
13. Geng, J., Zhuge, J.: Oscillatory integrals and periodic homogenization of Robin boundary value problems. SIAM J.

Math. Anal. 52(1), 104–134 (2020)
14. Lawley, S.D., Keener, J.P.: A new derivation of Robin boundary conditions through homogenization of a stochastically

switching boundary. SIAM J. Appl. Dyn. Syst. 14(4), 1845–1867 (2015)
15. Daners, D., Kennedy, J.: Uniqueness in the Faber–Krahn inequality for Robin problems. SIAM J. Math. Anal. 39(4),

1191–1207 (2008)
16. Bondurant, J.D., Fulling, S.A.: The Robin-to-Dirichlet transform. J. Phys. A, Math. Gen. 38, 1505–1532 (2005)
17. Donaldson, J.: Fractional calculus and its applications. In: Ross, B. (ed.) A Family of Integral Representations for the

Solution of the Diffusion Equation. Lecture Notes in Mathematics, vol. 457, pp. 146–150. Springer, Berlin (1975)
18. King, F.W.: Hilbert Transforms. Volume 2. Encyclopedia of Mathematics and Its Applications, vol. 125. Cambridge

University Press, Cambridge (2009)
19. Roberts, G.E., Kaufman, H.: Table of Laplace Transforms. Saunders, Philadelphia (1966)
20. Craddock, M., Grasselli, M.: Lie symmetry methods for local volatility models. Stoch. Process. Appl. 130(6), 3802–3841

(2020)
21. Dewynne, J., Howison, S., Wilmott, P.: The Mathematics of Financial Derivatives. A Student Introduction. Cambridge

University Press, Cambridge (1995)
22. Craddock, M.: Fundamental solutions, transition densities and the integration of Lie symmetries. J. Differ. Equ. 246(1),

2538–2560 (2009)
23. Zayed, A.: Handbook of Function and Generalized Function Transformations. CRC Press, Boca Raton (1996)
24. King, F.W.: Hilbert Transforms. Volume 1. Encyclopedia of Mathematics and Its Applications, vol. 124. Cambridge

University Press, Cambridge (2009)
25. Schwartz, L.: Mathematics for the Physical Sciences. Dover, New York (2008)
26. Katznelson, Y.: An Introduction to Harmonic Analysis. Dover, New York (1968)
27. Klebaner, F.C.: Introduction to Stochastic Calculus with Applications, 2nd edn. Imperial College Press, London (2005)
28. Davies, E.B.: Heat Kernels and Spectral Theory. Cambridge University Press, Cambridge (1989)
29. Butler, J.: Evolution of shielding methods and data: a continuing process of adjustment to changing project needs. In:

Roussin, R.W., Abbott, L.S., Bartine, D.E. (eds.) International Conference on Reactor Shielding, pp. 11–21. Science Press
Princeton, Princeton NJ (1977)

30. Stein, E., Shakarchi, R.: Real Analysis. Princeton Lectures in Analysis, vol. 3. Princeton University Press, Princeton (2005)
31. Craddock, M.: Symmetries, Laplace transforms and new representations for solutions of inhomogeneous. Bound.

Value Probl. Submitted (2019)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Novel exact solutions for PDEs with mixed boundary conditions
	Abstract
	Mathematics Subject Classification
	Keywords

	Introduction
	Boundary value problems

	The second-order Robin problem for the Black–Scholes equation
	A novel representation using Hilbert transform methods
	The odd and even Hilbert transforms
	The solution of the Robin problem

	Hilbert transform methods for second-order boundary conditions
	A general result for second-order Robin problems
	Some examples with elementary solutions
	Extension to time-dependent coefficients

	A modified Robin problem for the harmonic oscillator

	The Robin problem for a five-dimensional squared Bessel process
	Future directions
	Appendix
	References

