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Introduction

Climate-induced ocean warming is transforming marine 
ecosystems worldwide, with temperate regions experiencing 
an influx of expatriated tropical fish species (referred to as 
‘vagrant’ fish) (Figueira and Booth 2010; Fowler et al. 2018; 
Nakamura et al. 2013). This phenomenon is particularly evi-
dent in climate change hotspots (Hobday and Pecl 2014), 
where strengthening poleward currents facilitate the trans-
port of tropical larvae to temperate habitats (Suthers et al. 
2011). As a result, these regions serve as natural laboratories 
for studying the early life history dynamics and survival of 
vagrant fish species in novel environments.

One such hotspot is the southeastern coast of Australia, 
where the strengthening of the East Australian Current 
(EAC) has increased the presence of vagrant tropical fish 
(Booth et al. 2018). However, this phenomenon is not unique 
to southeast Australia; similar observations have been made 
on the temperate west coast of Australia (Pearce et al. 2016) 
and in other temperate regions globally, such as Japan (Beck 
et al. 2016, 2017), the Mediterranean Sea (Azzurro et al. 
2011), and the western North Atlantic (Zarzyczny et al. 
2024). These temperate ecosystems are gradually shift-
ing towards tropical conditions, with the establishment of 
vagrant fish populations currently limited by their ability to 
survive the critical settlement phase and the cooler tempera-
tures of winter to the next season (overwintering) (Figueira 
and Booth 2010).

The settlement phase is a crucial period for reef fishes, 
particularly vagrant fish species arriving in temperate 
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regions, as they transition from pelagic larval stages to 
benthic juvenile stages and face novel challenges in terms 
of diet, habitat preference, and growth rates (Kimirei et al. 
2013). Early life history traits (ELHTs), such as size at 
hatching, size at settlement, pelagic larval duration (PLD), 
and growth rates, are common metrics linked to the sur-
vival and success of individual fish during this critical phase 
(Bergenius et al. 2005, 2002; Vigliola and Meekan 2002). 
A larger settlement size is often considered advantageous, 
as it can confer benefits in resource competition and preda-
tor avoidance (Hoey and McCormick 2004). However, the 
relationship between ELHT and post-settlement survivor-
ship is complex, with studies suggesting a decreasing risk 
of predation and rapid growth (Dingeldein and White 2016).

In the context of vagrant tropical fish species settling in 
temperate environments, the importance of ELHT may be 
heightened due to the novel challenges they face in these 
non-native habitats. Factors such as thermal stress, novel 
habitats and ecological interactions may result in a shift in 
or strengthening of, the selective pressures acting on ELHT 
compared to those in their native range (Coni et al. 2022; 
Kingsbury et al. 2020; Rankin and Sponaugle 2011). Tempo-
ral studies following individual cohorts offer a unique oppor-
tunity to investigate which factors influence the survival of 
vagrant fish species during settlement. This approach is par-
ticularly valuable for understanding the challenges faced by 
vagrant fish species in temperate environments, as the set-
tling fish persistence is often limited to the warmer seasons, 
with few individuals successfully overwintering (Figueira 
et al. 2009).

Fish otoliths are small, calcified structures in fish’s inner 
ears that grow in concentric rings, typically representing 
daily growth (Panella 1971). The size and microstructure 
of these rings provide a historical timeline (proxy) of a 
fish’s age, growth rate, and settlement timing. The validity 
of otolith analysis has been well-established (Panfili et al. 
2009a), including for the species reported here, the sergeant 
major damselfish A. vaigiensis (Rigg et al. 2023). Temporal 
studies using otolith analysis offer a unique opportunity to 
investigate demographic factors influencing the growth and 
survival of vagrant fish species during settlement, as they 
allow for a focussed examination of the relationship between 
ELHT and post-settlement persistence.

Here, we examine the relationship between ELHTs and 
early post-settlement persistence in the vagrant tropical dam-
selfish, Abudefduf vaigiensis, to understand the traits that 
contribute to its successful settlement in temperate waters. 
We employed a site-specific temporal approach, tracking 
newly settled fish over 56 d at a single location through-
out a high recruitment period in an ocean warming hotspot 
off southeastern Australia. By analysing hatch size, pelagic 
larval duration (PLD), size at settlement, and growth rates, 
we identified ELHTs that could enhance post-settlement 

persistence. Understanding the factors that mediate the sur-
vival of a vagrant tropical fish during settlement is crucial 
for better predicting potential poleward range expansions 
and the establishment of warm-water populations in temper-
ate regions.

Methods

Abudefduf vaigiensis was chosen as a model species because 
it is a common vagrant fish that often arrives in high num-
bers in temperate waters during summer–autumn recruit-
ment seasons (Beck 2014; Beck et al. 2014). Additionally, 
the ELHTs of A. vaigiensis have been previously validated 
through otolith analysis (Rigg et al. 2023) making it suitable 
for investigating the relationship between these traits and 
post-settlement persistence in a vagrant tropical fish.

The study was carried out on a shallow subtidal rocky 
reef at Little Manly, Sydney, Australia, over 56 d from the 
4th of March 2021 to the 29th of April 2021 (coordinates: 
33.8068°S, 151.2867°E). During this time, there was a sig-
nificant influx of A. vaigiensis larvae which led to the estab-
lishment of several shoals in the area. Fish were collected 
during seven sampling events over 8-weeks using hand nets, 
with each sampling event targeting randomly selected indi-
viduals from these shoals. The shoals consisted of fish of 
approximately the same size class during each event, ensur-
ing a consistent sample in terms of size across the study 
period. Prior to sampling, fish were immobilised using a 
clove oil solution (1:5 dilution in ethanol). Following collec-
tion, specimens were euthanised using an ice bath.

The total length of each fish was measured to the nearest 
0.1 cm using callipers, and mass was measured to the nearest 
0.001 g. The lapillus otoliths were extracted and mounted 
because the lapillus was found to be flatter and resulted in 
clearer depositions and markings for analysis (Rigg et al. 
2023). The mediolateral axis was oriented for analysis 
(Online Resource 3). To achieve a flat surface, samples were 
polished using lapping paper (3 µm) and water to minimise 
marks generated during grinding. Measurements spanned 
from the primordium’s centre to the furthest point on the 
anterior–posterior axis (Online Resource 3).

A Nikon Eclipse Ni-E microscope was used at 200 × mag-
nification, with Nikon NIS-elements Advanced Research 
software (V5.02.02) for measurements. Cedarwood oil was 
applied during microscopy to improve clarity for reading 
otoliths.

A strong positive relationship between otolith radius 
and fish total length was established (R2 = 0.8668, Online 
Resource 1), validating this study’s use of otolith measure-
ments as proxies for fish size and growth. Based on this rela-
tionship, the hatch radius, used as a proxy for size at hatch, 
was determined by measuring the distance from the centre 
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of the primordium to the edge of the hatch check mark, 
expressed in micrometres (μm). Daily increment width was 
determined by measuring the distance between the edges 
of two consecutive increments. The settlement mark cor-
responds to the settlement day and was used to calculate the 
PLD by counting the increments between the hatch check 
and the settlement mark. The otolith radius at the settlement 
mark, measured from the hatch check, was used as a proxy 
for size at settlement. The growth rate immediately prior to 
settlement was calculated by averaging the increment widths 
for each fish 7 d before settlement and was expressed in μm/
day. To characterise the dependent variables, we examined 
their distributions. These histograms, coupled with density 
plots, highlighted the range, central tendency, and spread of 
the data for each trait (Online Resource 3).

Otolith microstructure analysis methods followed the 
guidelines provided by Panfili et al. (2009b) to ensure the 
reliability of the readings. Fish were randomised and read 
blind to avoid potential biases. Otoliths were read twice; if 
counts of daily increments in those readings differed by more 
than 10%, a third reading was done. The reading closest to 
the third reading was considered more reliable. If the two 
readings were similar, they were likely correct and accepted. 
Discussions with another researcher on the otolith markings 
(i.e. hatch, PLD, etc.) were conducted to reach a consensus.

To investigate the relationship between ELHTs and 
post-settlement persistence, we conducted linear regression 
analyses using age (days post-settlement) as the independ-
ent variable and each of the following traits as dependent 
variables: size at hatch, pelagic larval duration (PLD), size 
at settlement, and pre-settlement growth rate. We also tested 
the relationship between PLD and growth rates using the 
same process. The average otolith increment width over 7 d 
prior to settlement was used as a proxy for immediate pre-
settlement somatic growth. This approach is commonly used 
to estimate growth and development during the early life 
stages of fish and has been employed in numerous studies 
exploring ELHTs (Searcy and Sponaugle 2000; Sponaugle 
and Grorud-Colvert 2006; Wilson and McCormick 1999).

The regression models were evaluated using the coeffi-
cient of determination (R2) to assess the proportion of vari-
ance explained by the relationship. A p < 0.05 was consid-
ered significant. Assumptions of linearity, homoscedasticity, 
independence, and normality of residuals were checked. 
Linearity and homoscedasticity were assessed visually 
using residual plots. The Breusch–Pagan test was used to 
statistically test for homoscedasticity, with p > 0.05 indicat-
ing homoscedastic residuals. The normality of residuals was 
assessed by visually inspecting Q-Q plots.

All statistical analyses were performed using Python (ver-
sion 3.11.5) with the statsmodels and scipy libraries. Visu-
alisations of the regression analyses were created using the 
matplotlib and seaborn libraries.

Results and discussion

Early life history dynamics have been shown to drive sub-
sequent post-settlement population dynamics of reef fishes 
(Doherty and Fowler 1994). However, this has rarely been 
assessed for vagrant range-extending species. Here, we 
examined a suite of ELHTs using an 8-week sampling 
approach to understand which ELHTs influenced the post-
settlement persistence of A. vaigiensis at a temperate site. 
We defined post-settlement persistence as the duration an 
individual remained at the site after settlement, using days 
post-settlement as a proxy for this measure.

We found a significant negative relationship between PLD 
and days post-settlement (R2 = 0.24, p = 0.0005, Fig. 1a), 
indicating that individuals with shorter PLDs persisted 
longer after settlement. The PLDs we observed (21–29 d, 
Table 1) were longer than those reported for A. vaigiensis 
in its native tropical eastern Pacific range (17–20 d, n = 3) 
(Wellington and Victor 1989). This finding suggests that the 
sampled individuals may have experienced extended dura-
tion in the plankton.

While the relationship between PLD and dispersal dis-
tance is complex and often inconsistent across larval marine 
species (Feary et al. 2014; Shanks 2009), our findings sug-
gest that individuals with PLDs closer to those observed 
in the species’ native tropical range may have an advan-
tage when extending into temperate environments. This 
advantage in post-settlement persistence might stem from 
these individuals retaining more energy reserves for post-
settlement survival, possibly due to spending less time in the 
plankton. Additionally, these energy reserves could poten-
tially support faster growth rates, which may contribute to 
better survival in the new environment. Alternatively, these 
results could indicate a mixed cohort from different origins, 
with fish from populations closer to the study site having 
shorter PLDs and better survival. Future studies using analy-
sis of elemental isotopes in otoliths could reveal if fish had 
a common origin (Gillanders 2005; Trueman et al. 2012). 
Similarly, LA-ICPMS could provide finer-scale insights 
into natal origins by analysing otolith microchemistry 
(Fairclough et al. 2011); while, genomic approaches could 
assess genetic connectivity among populations (Gajdzik 
et al. 2021).

We found a significant positive relationship between 
pre-settlement growth rate and persistence (R2 = 0.13, 
p = 0.0121, Fig. 1b). Fish with faster pre-settlement growth 
rates also tended to have shorter PLDs (R2 = 0.12, p = 0.0167, 
Fig. 2). This aligns with the "growth–mortality hypothesis" 
(Anderson 1988; Searcy and Sponaugle 2001), which states 
that faster-growing larvae can achieve the minimum size 
required for settlement more quickly, potentially reducing 
their exposure to high mortality rates in the pelagic environ-
ment. Our results extend this concept to vagrant populations, 
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suggesting that the ability to grow quickly and settle earlier 
might be an important factor for the successful establishment 
of this tropical species in temperate waters.

Surprisingly, we did not find a significant relation-
ship between days post-settlement and size at settlement 
(R2 = 0.00, p = 0.7989, Fig. 1c), suggesting that while faster-
growing individuals settled earlier, they did not necessarily 
settle at a larger size. Slower growers may need to stay in 
the plankton for longer to reach the larger sizes required for 
successful settlement (Searcy and Sponaugle 2001). This 
dynamic may explain our finding of lower persistence in 
fish with longer PLDs, as these individuals likely represent 

slower growers that remained in the plankton longer and 
possibly entered the settlement phase in a weaker condition 
compared to their faster-growing counterparts. This suggests 
that this range-extending tropical fish is subject to trade-offs 
in their novel ranges like their normal ranges, where body 
size at settlement is not a crucial mediator of their persis-
tence, but growth rate and PLD are key factors influencing 
post-settlement survival (Gagliano et al. 2007).

Our analysis revealed no significant relationship between 
days post-settlement and size at hatch (R2 = 0.05, p = 0.1518, 
Fig. 1a), contrasting with previous studies on other species 
within natal ranges where size at hatch influences early life 
survival and recruitment success (Gagliano et al. 2007; Vigl-
iola and Meekan 2002). However, our findings suggest that 
the relationship between size at hatch and early settlement 
may not hold for range-extending tropical fish in temperate 
waters for this species. The lack of correlation between size 
at hatch and post-settlement persistence in our study indi-
cates that the factors influencing the survival of this vagrant 
species in novel environments may differ from those in their 
native ranges.

In conclusion, our study provides evidence that early life 
history traits, particularly shorter pelagic larval duration and 
faster pre-settlement growth rates, may confer advantages 
for individuals of A vaigiensis and possibly other vagrant 
tropical fish early persistence in temperate environments. 

Fig. 1  Relationships between days post-settlement of A. vaigiensis 
and a Pelagic larval duration (days), b Pre-settlement growth rate 
(μm/day), c Size at settlement (μm), and d Size at hatch (μm). Dots 
represent individual fish and colours represent one of seven collection 

groups. The dashed lines indicate linear regression fits and the shaded 
area represents the CI 95% interval. R2 values show the coefficient 
of determination, and p-values indicate the statistical significance of 
each relationship

Table 1  Descriptive statistics for A. vaigiensis samples (n = 47), 
showing the range and mean (with standard deviation) for age, length, 
hatch size, Pelagic larval duration, size at settlement and pre-settle-
ment growth rate

SD = 1 standard deviation

Variable Range Mean ± SD

Age (days) 33–77 56.9 ± 14.3
Total body length (mm) 13.5–50.0 31.7 ± 9.7
Hatch size (μm) 7.5–16.9 11.4 ± 1.8
PLD (days) 21.0–29.0 26.0 ± 1.6
Total length at settlement (μm) 158.9–248.7 199.6 ± 22.1
Pre-settlement growth rate (μm/day) 4.4–13.3 7.7 ± 1.8
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As ocean warming continues to facilitate range expansions, 
understanding these traits amongst other species could help 
better predict which individuals and populations are more 
likely to successfully establish in new environments, with 
implications for ecosystem changes in temperate regions.
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