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Abstract
Background Acute vestibular syndrome usually represents either vestibular neuritis (VN), an innocuous viral illness, or 
posterior circulation stroke (PCS), a potentially life-threatening event. The video head impulse test (VHIT) is a quantitative 
measure of the vestibulo-ocular reflex that can distinguish between these two diagnoses. It can be rapidly performed at the 
bedside by any trained healthcare professional but requires interpretation by an expert clinician. We developed machine 
learning models to differentiate between PCS and VN using only the VHIT.
Methods We trained machine learning classification models using unedited head- and eye-velocity data from acute VHIT 
performed in an Emergency Room on patients presenting with acute vestibular syndrome and whose final diagnosis was 
VN or PCS. The models were validated using an independent test dataset collected at a second institution. We compared the 
performance of the models against expert clinicians as well as a widely used VHIT metric: the gain cutoff value.
Results The training and test datasets comprised 252 and 49 patients, respectively. In the test dataset, the best machine learn-
ing model identified VN with 87.8% (95% CI 77.6%–95.9%) accuracy. Model performance was not significantly different 
(p = 0.56) from that of blinded expert clinicians who achieved 85.7% accuracy (75.5%–93.9%) and was superior (p = 0.01) 
to that of the optimal gain cutoff value (75.5% accuracy (63.8%–85.7%)).
Conclusion Machine learning models can effectively differentiate PCS from VN using only VHIT data, with comparable 
accuracy to expert clinicians. They hold promise as a tool to assist Emergency Room clinicians evaluating patients with 
acute vestibular syndrome.
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Introduction

The acute vestibular syndrome (AVS) refers to sudden onset 
severe, persistent vertigo and/or imbalance [1] and is a com-
mon presentation to the Emergency Room. Correctly identi-
fying the cause is important as it is usually due to one of two 
conditions with very different therapeutic and prognostic 
implications: posterior circulation stroke (PCS), which is 
potentially life-threatening and may necessitate urgent rep-
erfusion therapy, or vestibular neuritis (VN), a relatively 
benign self-limiting illness. Untrained clinicians may strug-
gle to make the correct diagnosis, especially as focal neu-
rological signs may not be apparent in two-thirds of stroke 
patients with AVS [2] and so cannot be relied upon. HINTS 
(Head Impulse, Nystagmus, Test of Skew) is a well-known 
three-step bedside assessment that, when performed by an 

expert examiner, can identify stroke in AVS patients with 
96% specificity and 100% sensitivity and is more sensitive 
than early MRI [3]. HINTS became HINTS “plus” [4] by 
adding bedside screening for new hearing loss as a red flag 
for ischemia. Figure 1a shows the current clinical workflow 
of an expert clinician assessing AVS using HINTS. How-
ever, the real-life utility of HINTS is limited by a lack of 
familiarity and confidence in its application among front-
line clinicians who assess AVS patients [5]. Non-experts 
will often perform HINTS incorrectly, particularly the head 
impulse test [6] which is the most useful component for sep-
arating VN and PCS [2]; additionally, they may misinterpret 
the results even when HINTS is performed correctly, such 
as by treating a completely normal HINTS as an innocuous 
finding [7]. Thus, there is need for an alternative to HINTS 
that can be used by non-expert clinicians.

Fig. 1  Diagnostic workflow for acute vestibular syndrome. a Cur-
rent workflow used by expert clinicians. b Proposed machine learning 
augmented workflow for non-expert clinicians. The history separates 
patients with AVS from other vertigo/dizziness syndromes. Currently, 
expert clinicians can diagnose VN using HINTS plus; non-VN cases 
receive neuroimaging and are treated as PCS. For non-expert clini-
cians who are not confident with HINTS, we propose that VHIT with 

interpretation by a machine learning model would similarly allow 
accurate diagnosis. Note that the VHIT replaces HINTS and still 
allows  for rapid clinical assessment. AVS acute vestibular syndrome, 
HINTS Head Impulse, Nystagmus, Test of Skew, PCS posterior circu-
lation stroke, RPV recurrent positional vertigo, RSV recurrent sponta-
neous vertigo, VHIT video head impulse test, VN vestibular neuritis
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The video head impulse test (VHIT) [8] is an instru-
mented, quantitative version of the bedside head impulse 
test. A full test of all six semicircular canals can be rapidly 
performed at the bedside in 15 min or less by any trained 
healthcare professional (such as a doctor, nurse, physiothera-
pist or audiologist, including Emergency Room staff) and 
is well-tolerated by symptomatic patients [9]. The VHIT 
uses specialized goggles to measure a patient’s head and eye 
position over time in response to a rapid passive head turn. 
The head and eye traces are used to calculate the vestibulo-
ocular reflex (VOR) ‘gain’, a measure of the function of the 
semicircular canal that is aligned in the same direction as 
the head turn.

In VN, there is unilateral VOR impairment, which mani-
fests on VHIT as reduced gain with catchup saccades in par-
ticular patterns of affected canals [10]. Conversely, posterior 
circulation stroke patients have variable results on VHIT that 
range from normal to abnormalities that can either resemble 
or differ from those seen in VN [11]. In practice, experts can 
rapidly identify VN on VHIT by its distinctive appearance, 
enabling its separation from PCS; this is done not by utiliz-
ing fixed rules, but by applying pattern recognition-based 
decision-making with clinical judgment. Previous investiga-
tors have used solely an optimal horizontal canal VOR gain 
cutoff to separate VN and PCS with up to 90% accuracy [12, 
13]. However, the optimal gain cutoff value varies widely in 
different cohorts [14, 15] which limits its generalizability.

Our hypothesis was that the head and eye position data 
from VHIT testing performed on a widely available com-
mercial system could be exported and used, without addi-
tional manual review or processing, to train machine learn-
ing models to separate VN and PCS using solely VHIT data 
with the accuracy of an expert. We compared our models 
against expert clinicians as well as a simple VOR gain cutoff. 
To simulate a frontline setting, we used VHIT data that did 
not undergo post-testing quality control. We demonstrated 
generalizability of our models by evaluating them using a 
test dataset collected at a separate institution. Our objective 
was to develop and evaluate a prediction tool that allows 
frontline clinicians, without access to neuro-otology exper-
tise, to harness the power of VHIT for more accurate diagno-
sis of AVS patients. Figure 1b shows a proposed diagnostic 
workflow for AVS in the Emergency Room that incorporates 
VHIT together with our classification models as a substitute 
for HINTS plus.

Methods

We followed a standard data science lifecycle approach [16, 
17] consisting of problem formulation, data acquisition 
and preparation, model development and evaluation. As a 
research study culminating in a proof of concept, the last 

stage of production including deployment, monitoring, and 
refinement has been excluded from this paper.

Problem formulation and collaboration

A team of data scientists and neuro-otologists approached 
the problem of separating vestibular neuritis (VN) from pos-
terior circulation stroke (PCS) using only VHIT data. Our 
hypothesis was that VHIT data alone might be sufficient to 
distinguish the two conditions. A panel of clinical experts 
independently validated the external results. All VHIT data 
were labeled with the ground truth by diagnosing clinical 
specialists who used history, examination findings, and 
results from VHIT, vestibular-evoked myogenic potentials, 
subjective visual horizontal, audiometry and neuroimaging.

Participants

VHIT data were collected as separate, consecutively 
recruited patient cohorts from two major tertiary hospitals 
with comprehensive stroke services in Sydney, Australia. 
The first cohort, used for model training, was recruited from 
Royal Prince Alfred Hospital between March 2018 and 
March 2023. The second cohort, used for model evaluation, 
was collected at Liverpool Hospital between May 2018 and 
September 2021. Both cohorts consisted of patients present-
ing with sudden onset vertigo/dizziness to the Emergency 
Room who were referred to the neurology service, had VHIT 
performed and received a final diagnosis of VN or PCS. This 
diagnosis acted as the gold standard for comparison against 
the machine learning models. Patients who presented with 
dissection already demonstrated on imaging were excluded 
as VHIT is contraindicated. In the second cohort, patients 
with focal neurological deficits (namely diplopia, dysar-
thria, facial/limb weakness or sensory loss and limb ataxia) 
were also excluded. In both cohorts, VN was diagnosed if 
patients met all of the following criteria: (1) acute vertigo/
dizziness persisting at rest for hours; (2) spontaneous uni-
directional nystagmus seen on videonystagmography; (3) 
either VHIT with impaired VOR gain in a canal pattern 
consistent with superior, inferior or pan-neuritis, or unilat-
erally positive bedside head impulse test performed by an 
experienced examiner plus consistent corresponding catchup 
saccades on VHIT; and (4) no diffusion restriction on MRI 
performed > 48 h (performed in first cohort if VHIT sugges-
tive of inferior VN or if skew present, and in second cohort 
on all patients). Note that our VN criteria included patients 
with a normal VOR gain on their VHIT provided appropri-
ate catchup saccades were present, consistent with reports 
in the literature of VN patients showing this result on acute 
VHIT [11, 18]. All PCS patients in both cohorts had CT and/
or MRI imaging confirming ischemic or hemorrhagic stroke. 
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Only patients who were reviewed within 7 days of symptom 
onset were included.

Video head impulse testing

The first cohort had VHIT performed by a doctor, nurse, 
or audiologist, and the second cohort by an audiologist. 
The ICS impulse system (Natus, CA, USA) was used at 
both sites. Impulses were collected from all six semicircu-
lar canals. Testing usually took about 10–15 min. VHITs 
were included in this study if they had at least ten impulses 
recorded from all six semicircular canals (this number of 
impulses has been suggested as the minimum that allows 
gain to be accurately estimated without post-processing 
[19]) with peak head velocity < 250°/s for horizontal canals 
or < 200°/s for vertical canals. VHITs meeting inclusion cri-
teria did not have manual adjustment or quality review after 
collection.

Classification by machine learning models

The VHIT data used for machine learning were extracted 
directly from the XML files generated by the ICS Impulse 
software for each VHIT. The VHIT variables in the dataset 
consist of the head- and eye-velocities recorded over 175 
timepoints for each impulse (reflecting the 750 ms data col-
lection duration) as well as identifiers for the correspond-
ing patient, canal, and impulse, and finally which group the 
patient was in (VN or PCS). Dataset metadata is shown in 
Supplementary Table 1. Data from the first ten impulses 
collected per canal per patient were used for model develop-
ment. See Supplementary Methods for details on how data 
were prepared for machine learning.

We used the sktime Python machine learning library ver-
sion 0.28.0 to develop, validate, and evaluate models that 
classified patients as either VN or PCS based on their VHIT 
data. For the demographics collected, no group was mar-
ginalized or excluded in model development. The training 
dataset consisted of patients from the first cohort. For com-
parison, we trained models on either data from all six semi-
circular canals or data from the two horizontal canals only. 
Furthermore, as it is not possible to predict which machine 
learning algorithm would be optimal for a particular data-
set, we trialed four different algorithms suited to time-series 
data: Arsenal [20], catch22 [21], Random Interval Classifier 
[22] and Rocket [23]. Hyperparameter tuning was performed 
manually using the training set. The resultant models were 
then validated by evaluating them on the metrics specified 
in statistical analysis using an external test set consisting of 
patients from the second cohort. Figure 2 summarizes the 
machine learning model development workflow. Finally, we 
explored the impact on model performance of using different 
training and test sets derived by combining both cohorts and 

applying an 80/20 training/test split; again, we compared 
models generated using the four different algorithms on data 
from either two or six canals. For evaluation of these mod-
els, 5-fold stratified cross-validation was applied, and all 
models used the same training/test splits.

Classification by blinded experts

We compared the performance of our models on the test 
set to the majority opinion of four blinded clinicians with 
neuro-otology expertise: three neuro-otologists (authors 
C.W., G.A. and M.W.) and a neuro-otology clinical nurse 
consultant (author N.R.). In the event of a tie, the result 
was determined by the opinion of another blinded neuro-
otologist (author G.M.H.). The experts had 4–30 years 
of subspeciality experience; none were affiliated with the 
hospital at which the test set was recruited. The clinicians 
independently classified each patient in both the training 
and test sets as VN or PCS relying solely on a deidentified 
image of their VHIT showing the traces and gains of the 
six semicircular canals. This image was adapted from the 
PDF generated by the ICS Impulse software for each test. 
The experts were not given criteria to follow, but used their 
prior experience classifying VN and PCS using the VOR 
gain, presence and amplitude of catchup saccades, pattern of 
canal dysfunction (i.e., whether the canal abnormalities were 
consistent with a superior, inferior or pan-neuritis pattern) 
and overall waveform of the VHIT response.

Classification by VOR gain cutoff

We assessed how effectively VN and PCS could be separated 
using the lower VOR gain (automatically calculated by the 
ICS Impulse software) from the two horizontal canals. To 
do this, we evaluated the performance, on both the training 
and test sets, of a binary classifier that used a cutoff of the 
optimal VOR gain from the training set as determined by 
Youden’s index; values below the cutoff were considered 
VN. Assessing the performance of a VOR gain cutoff in the 
test set using the optimal result from the training set is com-
parable to how machine learning models are evaluated on a 
test set after being developed using a training set.

Statistical analysis

Statistical analysis was performed using R (version 4.4.0). 
Statistical significance was defined as p ≤ 0.05. Age was 
compared between the cohorts using the two-tailed inde-
pendent samples t test for PCS and (due to non-normal dis-
tribution) the Mann–Whitney U test for VN. Sex was com-
pared between cohorts using the χ2 test for both diagnoses.

We evaluated the classification methods on both the 
training and test sets using the metrics (“performance 
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metrics”) of accuracy, precision, sensitivity, F1 score, 
specificity, and area under the receiver operating charac-
teristic curve (AUC). We derived 95% confidence intervals 
(CI) using DeLong’s method for AUC [24] and 2000 strati-
fied bootstrap replicates [25] for other variables, except for 
the models which used an 80/20 split of pooled patients, 
in which case the five iterations generated by cross-vali-
dation were treated as the sample set. As our two classes 
of VN and PCS had relatively balanced presentation in the 
training set, we chose accuracy as the primary metric to 

evaluate performance. However, as the classes were not 
perfectly balanced, we also considered as an alternative 
metric the F1 score, which is the harmonic mean of preci-
sion and recall (sensitivity). As VHIT is most effective 
for identifying VN, we defined VN as the positive diag-
nosis. Performance of the machine learning models was 
compared against that of the other classification methods 
using McNemar’s test on the proportion of incorrect pre-
dictions [26].

Fig. 2  Machine Learning Model Development Workflow. Data from 
the VHIT was used to train models to classify patients as vestibular 
neuritis or posterior circulation stroke. Models were developed using 
data from either the two horizontal semicircular canals or all six 
canals. The final models were externally validated using a test data-
set acquired at a separate institution and prepared in the same man-

ner as the training dataset; the models used the features of the test 
dataset to predict its diagnoses, which were evaluated against the 
true diagnoses. AUC  area under the receiver operating characteristic 
curve, PCS posterior circulation stroke, VHIT video head impulse test, 
VN vestibular neuritis
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Sample size calculation

To calculate sample size for separating VN and PCS using 
unedited VHIT data, we used the first saccade duration as 
a surrogate VHIT parameter. We conservatively selected 
first saccade duration out of several VHIT gain and sac-
cade parameters from previous work comparing VN and 
PCS (Nham, Wang et al. [27]), as its values required the 
largest sample size to achieve adequate statistical power. 
Using the reported first saccade duration values, as well as 
an estimated PCS:VN enrollment ratio of 0.60 (Comolli, 
Korda et al. [28]), we calculated a sample size of 26 VN 
and 16 PCS patients to achieve 80% power for separating 
the two conditions. For both training and test sets, we used 
all available collected data, and both sets met the sample 
size requirement.

Results

The first cohort consisted of 252 patients (149 with VN 
and 103 with PCS) and the second cohort had 49 patients 
(33 with VN and 16 with PCS). Figure 3 shows patient 
enrollment. There were no statistically significant differ-
ences in age or sex distribution between the two cohorts for 
both VN and PCS. See Supplementary Table 2 for patient 

characteristics. Overall, patients tolerated VHIT well. Dur-
ing recruitment of the first cohort, VHIT was able to be per-
formed in 100% of VN patients, although 2% did not tolerate 
vertical canal testing, and 97% of PCS patients (excluding 
those in which it was contraindicated due to arterial dis-
section), with 9% unable to complete vertical canal testing. 
During recruitment of the second cohort, 100% of VN and 
PCS patients tolerated VHIT (4% of VN patients did not 
have vertical canal testing).

Classification by machine learning models

When the first cohort was used as the training set and the 
second as the test set, classification models using the Rocket 
algorithm achieved higher accuracies and F1 scores than 
the other three algorithms, both when trained on data from 
all six semicircular canals and from just the two horizontal 
canals. These models detected VN in the test set with 83.7% 
accuracy (95% CI 73.5%–93.9%) and 87.9% F1 score (95% 
CI 78.0%–95.5%) using six canals, and with 87.8% accu-
racy (95% CI 77.6%–95.9%) and 90.9% F1 score (95% CI 
82.8%−97.1%) using two canals. All four algorithms per-
formed reasonably well in the test set regardless of whether 
data from six or two canals were used, with accuracies of 
71.4–83.7% and 81.6–87.8%, respectively. Table 1 shows 
the complete performance metrics of the best six-canal and 

VN cohort
(n = 149)

a Pa�ent enrolment of training set b Pa�ent enrolment of external test set

ER ver�go
(n = 1155)

ER ver�go
(n = 279)

Excluded (n = 845):
• Other diagnosis (n = 841)
• Atypical VN without MRI (n = 4)

Excluded (n = 209):
• Other diagnosis (n = 194)
• No MRI (n = 15)

Diagnosis VN
(n = 164)

Diagnosis PCS
(n = 146)

Diagnosis VN
(n = 50)

Diagnosis PCS
(n = 20)

Missing
VHIT Data

(n = 15)

Missing 
VHIT Data

(n = 43)

PCS cohort
(n = 103)

Missing
VHIT Data

(n = 17)

VN cohort
(n = 33)

PCS cohort
(n = 16)

Missing
VHIT Data

(n = 4)

Fig. 3  Patient enrolment. a Training set. b Test set from external 
institution. Reasons for missing VHIT data for machine learning 
include unavailable raw data, inability to complete testing of all 6 

semicircular canals, inadequate impulses or VHIT contraindicated 
due to arterial dissection. ER emergency room, VHIT video head 
impulse test, VN vestibular neuritis, PCS posterior circulation stroke
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two-canal machine learning models in both the training and 
test sets, and Supplementary Table 3 shows the same for 
models developed using the other algorithms. There was no 
statistically significant difference between the six- and two-
canal models (p = 0.32). When the cohorts were pooled and 
then split 80/20 for training and testing, the best model of 
those trained on six canals reached 84.7% accuracy (95% CI 
79.3%–90.1%) and 87.3% F1 score (95% CI 82.3%–92.2%) 
in the test set; of the models developed using two canals, the 
best model achieved 82.7% accuracy (95% CI 77.5%–87.9%) 
and 85.7% F1 score (95% CI 81.6%–89.7%). The complete 
performance metrics of all models which used the 80/20 
split of pooled patients are shown in Supplementary Table 4.

Classification by blinded experts

The majority opinion of the blinded experts using data from 
all six canals identified VN in the second patient cohort (the 
test set) with 85.7% accuracy (95% CI 75.5%–93.9%) and 
89.2% F1 score (95% CI 80.6%–95.9%). Individually, the 
experts had 85.7–89.8% accuracy and 89.2–92.3% F1 score. 
Three experts concurred on every patient in the test set; the 
fourth expert disagreed with their colleagues on 12% of the 
patients. The complete performance metrics of the majority 
expert opinion for both the training and test sets are shown 
in Table 1. There was no statistically significant difference 
between the majority expert opinion using all six canals and 
either the best-performing six-canal (p = 0.65) or two-canal 
machine learning models (p = 0.56).

Classification by VOR gain cutoff

In the training set, a binary classifier using the optimal VOR 
gain cutoff of < 0.73 identified VN with 84.9% accuracy 

(95% CI 80.6%–94.9%) and 86.9% F1 score (95% CI 
82.5%–91.0%). When the classifier applied the same cutoff 
value to the test set, it only achieved 75.5% accuracy (95% CI 
63.3%–85.7%) and 82.4% F1 score (95% CI 70.8%–90.9%). 
This classifier’s performance was not statistically differ-
ent from that of the best six-canal machine learning model 
(p = 0.10). However, the best-performing two-canal machine 
learning model (developed using the training set) achieved 
superior performance in the test set than the optimal VOR 
cutoff from the training set (p = 0.01). The full performance 
metrics of the classifier that used a VOR gain cutoff are 
shown in Table 1.

Findings in subgroups of interest

The inferior subtype of VN is characterized on VHIT by iso-
lated impairment of the ipsilateral posterior canal [29, 30]. 
In the training set, there were only two inferior VN patients 
(1% of all VN cases). One was incorrectly classified by the 
best two-canal and six-canal models as well as the VOR 
gain cutoff and blinded experts. The second was correctly 
classified by both machine learning models, but wrongly 
labeled as stroke by the gain cutoff and experts. In the test 
set, there were also two inferior VNs (6% of all VN). Both 
were incorrectly categorized as stroke by all classification 
methods (best two-canal and six-canal models, experts and 
VOR gain cut-off).

Strokes in the anterior inferior cerebellar artery (AICA) 
territory can have diverse results on VHIT [31]. There were 
no AICA strokes in the test set. In the training set, there 
were 7 AICA territory strokes which had variable VHIT 
patterns ranging from normal to bilateral abnormalities in 
several canals. None had a VHIT pattern typical for VN. 
The best six-canal model identified all seven cases correctly. 

Table 1  Performance metrics of classification methods for separating posterior circulation stroke and vestibular neuritis

The classification methods shown are, in order, the best-performing machine learning model that used data from all six semicircular canals, the 
best model that only used the two horizontal canals, a binary classifier using the optimal horizontal canal gain cutoff determined by Youden’s 
index from the training set, and the majority opinion of expert clinicians. Vestibular neuritis was defined as the positive class. The brackets indi-
cate 95% CI. F1 score is the harmonic mean of precision and recall (sensitivity)
AUC  area under the receiver operating characteristic curve

Accuracy, % Precision, % Sensitivity, % F1 score, % Specificity, % AUC 

Training set
 All canal model 92.5 (88.9–92.5) 94.5 (90.9–97.9) 92.6 (87.9–96.6) 93.6 (90.3–96.2) 92.2 (86.4–97.1) 0.92 (0.89–0.96)
 Horizontal canal model 92.9 (89.7–95.6) 95.8 (92.6–98.6) 91.9 (87.3–96.0) 93.8 (90.9–96.5) 94.2 (89.3–98.1) 0.93 (0.90–0.96)
 Horizontal canal gain method 84.9 (80.6–94.9) 89.4 (84.8–93.9) 84.6 (78.5–90.0) 86.9 (82.5–91.0) 85.4 (78.6–92.2) 0.85 (0.81–0.89)
 Expert clinicians 88.1 (83.7–92.1) 91.0 (86.6–95.0) 88.6 (83.2–93.3) 89.8 (86.0–93.3) 87.4 (80.6–93.2) 0.88 (0.84–0.92)

Test set
 All canal model 83.7 (73.5–93.9) 87.9 (79.5–96.8) 87.9 (75.8–97.0) 87.9 (78.0–95.5) 75.0 (56.3–93.8) 0.81 (0.69–0.94)
 Horizontal canal model 87.8 (77.6–95.9) 90.9 (82.9–100) 90.9 (81.8–100) 90.9 (82.8–97.1) 81.3 (62.5–100) 0.86 (0.75–0.97)
 Horizontal canal gain method 75.5 (63.3–85.7) 80.0 (71.4–90.0) 84.8 (72.7–97.0) 82.4 (70.8–90.9) 56.3 (31.3–81.3) 0.71 (0.57–0.85)
 Expert clinicians 85.7 (75.5–93.9) 90.6 (81.6–100) 87.9 (75.8–97.0) 89.2 (80.6–95.9) 81.3 (62.5–100) 0.85 (0.73–0.96)
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The best two-canal model only misclassified one patient as 
VN (which had asymmetric impairment of both horizontal 
canals), while the blinded experts incorrectly categorized a 
different patient. These two cases were both mislabeled by 
the VOR gain cutoff.

Discussion

We have developed machine learning models for classifying 
AVS patients as either VN or PCS using only unedited data 
from the VHIT and evaluated them on a test set collected at 
another institution. The performance of our machine learn-
ing models on this task was not significantly different from 
that of clinicians with neuro-otology expertise, and our find-
ings imply that only the two horizontal canals need to be 
tested. We suggest that the VHIT combined with our models 
could be incorporated into the current AVS diagnostic work-
flow in the Emergency Room (Fig. 1b). For non-expert clini-
cians, this would replace HINTS plus and, as a horizontal 
canal VHIT can be performed at the bedside by any trained 
healthcare professional in 5 min, this would still allow for 
rapid clinical assessment of AVS patients. The VHIT results 
would be the input for our model, which would then indicate 
the likely diagnosis within seconds.

Models versus VOR gain cut‑off

The most commonly proposed method in the literature for 
automated classification methods using VHIT has been to 
use an optimal cut-off value of horizontal canal VOR gain 
to separate VN and PCS [13, 14, 32–35]. This method has 
achieved up to 90% accuracy; furthermore, compared to 
other VHIT metrics such as saccade velocity or prevalence, 
it is easier to use (as the gain is automatically calculated by 
the software and available at a glance) while demonstrat-
ing similar or superior results [34, 35]. However, one major 
issue with using a VOR gain cut-off is that the exact opti-
mal value can vary greatly between populations. Although 
a value close to 0.70 has been suggested [36], the results in 
the literature have been achieved by cut-offs ranging from 
0.57 to 0.93 [14, 15], which limits the widespread use of 
this method. Furthermore, the gain cut-off approach crudely 
reduces a set of head and eye traces into a single number, 
and thus may discount important information. For example, 
saccade features can identify VN even when gains are nor-
mal [18].

In contrast, our machine learning models considered the 
whole VHIT trace, encompassing not only the portion used 
to calculate the gain but also the section in which saccades 
appear. Rather than comparing the performance of our mod-
els in the test set against the optimal cut-off from the test set, 
it is more analogous to compare against the best cut-off from 

the training set; in this setting, our best machine learning 
model was superior to VOR gain cut-off, thereby demon-
strating greater generalizability across clinical settings.

Comparison of two‑canal versus six‑canal models

Limiting the training dataset for the machine learning mod-
els to only data from the two horizontal semicircular canals 
did not result in different performance from when all six 
canals were used; in fact, the best model overall used only 
two canals to classify patients with high accuracy and F1 
score (87.8% and 90.9%). This suggests that using a trun-
cated VHIT that only tests the horizontal canals may be suf-
ficient, which would have benefits of being both shorter (5 
min rather than 15) and easier technically [37]. However, as 
the six-canal models have to interpret three times the infor-
mation, they require more training data and it is possible 
that a larger training dataset may unlock greater diagnostic 
capability.

Importantly, the six-canal models have the potential to 
be more useful for specific subgroups which can be diag-
nostically challenging. Inferior vestibular neuritis is a rare 
subtype of VN (~ 4% of all cases [30]) with isolated impair-
ment of the inferior division of the vestibular nerve. It pre-
sents on bedside assessment with a down-beating torsional 
nystagmus and a negative bedside head impulse test (as the 
horizontal canals are unaffected) [29], i.e., a central HINTS. 
Furthermore, sparing of the horizontal canals means that it 
will also be misclassified by a VOR gain cut-off and poten-
tially also by two-canal models. Both of the cases of inferior 
VN in the test set were misclassified by all methods, but in 
theory with enough training data, a six-canal model may 
learn that isolated impairment of one posterior canal is likely 
to be a form of VN. It is also possible that models which use 
the whole VHIT trace may be able to identify inferior VN 
using features beyond those currently used by clinicians. 
One case of inferior VN in the training set was correctly 
identified by not only the six-canal but also the two-canal 
model, despite horizontal canal traces which did not seem 
compatible with VN to experts. Extrapolation is limited by 
this single case and more data are needed.

AICA strokes can demonstrate bilateral, unilateral, or no 
impairment on bedside and video head impulse testing [31]. 
Unilateral impairment can result from damage to AICA-sup-
plied structures such as the labyrinth, vestibular nucleus, 
root entry zone, and flocculus [38], and these cases can 
mimic a peripheral HINTS [39]. Similarly, the variability of 
their VHIT gain results means that they cannot be effectively 
identified using a VOR gain cut-off [40]. The 7 AICA cases 
in the training set (which did demonstrate diverse VHIT 
findings, although notably none had a typical VN pattern) 
were all correctly labeled by the six-canal model but not by 
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the two-canal model, gain cut-off or blinded experts; this is a 
promising finding, but must be validated with more samples 
and using an external test set.

Comparison with earlier studies

A previous study [15] also trained machine learning mod-
els on VHIT trace data to separate AVS patients into VN 
or PCS. They used data from the horizontal canals only, 
collected using a different VHIT system from 57 patients. 
Their neural network model’s accuracy of 87.9% was almost 
identical to that of our best model (87.8%). We used a larger 
dataset and an external test set for more robust results. Fur-
thermore, their VHITs were reviewed for ‘data quality and 
artefacts’ by two neuro-otologists, and only ‘clean data with 
non-disruptive artefacts’ was included. In contrast, we tried 
to simulate the real-world setting of the intended clinical 
use (in which expert review after collection is unlikely to 
be available) by not performing post-testing quality control 
and achieved similar model performance. Their model’s 
accuracy was not significantly different from that of the 
optimal VOR gain cut-off (91.2%), which was a lower value 
(0.57) than ours; our use of an external test set allowed us to 
demonstrate the superiority of our models to a gain cut-off 
approach.

Limitations

Only the VN patients in our training set who had atypical 
features received MRI, so it is possible that some were mis-
diagnosed. However, all the VN patients in the test set had 
MRI, so this would only impact the training process and 
not the validity of the evaluation. Other than VN and PCS, 
there are also less common causes of AVS such as vestibular 
migraine which can make up 10% of AVS [41] and which 
was not included in this study. Currently, stroke cannot be 
confidently excluded in a patient presenting with their first 
episode of vestibular migraine on the basis of history, bed-
side examination or VHIT (as it usually has normal findings 
[42]); nevertheless, future model iterations will include ves-
tibular migraine patients with AVS in case machine learn-
ing models can help identify this group. The ICS impulse 
system we used is not the only commercially available VHIT 
system, but it is the most widely used in the literature [43]. 
Results from model evaluation using a single test set can be 
susceptible to variance. However, our results from the exter-
nal test set were very similar to those obtained by combining 
the datasets and evaluating via 5-fold cross-validation, dem-
onstrating robustness of our model’s results. Nevertheless, 
in future work, we will need to evaluate our model against 
data from multiple institutions to ensure the generalizability 
of our findings. We did not perform model calibration in 
this study due to the small test set size, but this will be a 

refinement step prior to clinical implementation once more 
external evaluation data are collected. Finally, we did not 
collect sociodemographic information beyond age and sex, 
and thus it was not possible to evaluate for relevant biases; 
this will also need to be addressed in the next iteration of 
the model.

Summary

The present study demonstrated that machine learning mod-
els can effectively classify AVS patients as vestibular neu-
ritis or posterior circulation stroke using only raw, unedited 
data from the VHIT. Our models showed generalizability 
across clinical settings when validated using an external test 
dataset. They are likely to be helpful as a diagnostic deci-
sion aid for Emergency Room clinicians without access to 
neuro-otology expertise in their assessment of AVS patients.

Data and code availability

The study dataset contains patient health data and is not 
publicly available for privacy reasons. A deidentified version 
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With this mediated access, the data are FAIR compliant. 
The code is similarly also available on reasonable request.
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