
Vol.:(0123456789)

Data Science and Engineering
https://doi.org/10.1007/s41019-024-00278-3

RESEARCH PAPERS

IGFM: An Enhanced Graph Similarity Computation Method
with Fine‑Grained Analysis

Min Pei1 · Jianke Yu2 · Chen Chen3 · Hanchen Wang2 · Xiaoyang Wang4 · Ying Zhang1

Received: 29 August 2024 / Revised: 14 November 2024 / Accepted: 15 December 2024
© The Author(s) 2025, corrected publication 2025

Abstract
In the rapidly advancing field of graph-based applications, accurate graph similarity computing (GSC) has become increas-
ingly important. However, due to the complexity of graph structures, this task remains a challenge because of the intricate
calculations involved. To solve the limitations of existing works, this paper introduces the Interpretable Graph Fusion Model
(IGFM), a novel framework designed to enhance the accuracy and efficiency of graph similarity computation. Specifically,
our model can fully utilize graph structure information and comprehensively assess graph similarity at both fine-grained
and coarse-grained levels, ultimately achieving more accurate predictions. Experimented extensively across four real-world
datasets, IGFM demonstrates a significant improvement over existing SOTA methods to solve the GSC challenge. In numer-
ous experimental tests, our model shows performance improvements in terms of MSE (Mean Squared Error), ranging from
4.66% to as much as 56.92% compared to the second-best method.

Keywords Neural network · Graph similarity computation · Graph edit distance · Data mining

1 Introduction

With the rapid development of information technology,
a significant number of works have discussed graph
structures [1–4]. Graph similarity computation, as one of
the most traditional problems in this field, has garnered
significant attention in recent works [5, 6]. Nowadays,
various applications across different fields are based on
graph similarity computation, such as recommendation
systems [7], social networks [8–10], computer vision [11],
and chemical composition analysis [12]. To adapt to these
application scenarios, many diverse and remarkable accurate
graph similarity measurement metrics have been proposed,
such as Graph Edit Distance (GED) [13], Maximum
Common Subgraph [14], Graph Isomorphism [15, 16],
etc. Specifically, GED is one of the most crucial measure
metrics. It quantifies the minimal number of operations
necessary to transform one graph into another. It includes
modifications to both nodes and edges [17]. Figure 1 shows
an example of GED, showing one of the minimum edit
distance operations from Gs to Gt . In this toy example, GED
computation is achieved through three atomic operations:
deleting an edge between nodes 1 and 5, adding an edge
between nodes 2 and 5, and modifying the label of node 2.
As a result, the GED between Gs and Gt is 3. For simplicity,

 * Jianke Yu
 jianke.yu@student.uts.edu.au

 Min Pei
 22020100071@pop.zjgsu.edu.cn

 Chen Chen
 chenc@uow.edu.au

 Hanchen Wang
 hanchen.wang@uts.edu.au

 Xiaoyang Wang
 xiaoyang.wang1@unsw.edu.au

 Ying Zhang
 ying.zhang@zjgsu.edu.cn

1 Zhejiang Gongshang University, Hangzhou 310018, China
2 University of Technology Sydney, Ultimo, NSW 2007,

Australia
3 University of Wollongong, Wollongong, NSW 2522,

Australia
4 University of New South Wales, Kensington, NSW 2052,

Australia

http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-024-00278-3&domain=pdf
http://orcid.org/0009-0000-4481-0724
http://orcid.org/0000-0002-2032-7727
http://orcid.org/0000-0003-3908-6545
http://orcid.org/0000-0003-3158-9586
http://orcid.org/0000-0003-3554-3219
http://orcid.org/0000-0002-2674-1638

 M. Pei et al.

we represent this process as GED(Gs,Gt) = 3 . However, the
computation of this metric, as well as other accurate metrics,
poses substantial computational challenges because it has
been proven to be NP-hard [18].

As traditional solutions, combinatorial search-based algo-
rithms are employed to solve GED. These approaches, such as
Beam [17], Hungarian [19], VJ [20], calculate GED by prun-
ing infeasible search spaces, establishing lower bounds, and
leveraging efficient techniques. While these solutions avoid the
complexities associated with NP-hard problems, they still face
challenges regarding high computational costs. As learning-
based methods have grown, an increasing number of approaches
have been proposed to obtain approximate solutions efficiently
for the GED. These methods are mainly based on graph neu-
ral networks (GNNs) and Neural Tensor Networks (NTN) and
typically utilize graph-level interactions to capture the simi-
larity between two graphs [21–24]. Certain models [22–24]
have proposed superior strategies for GED prediction based
on integrating higher-dimensional embedding at the graph or
subgraph level. Moreover, some approaches have further aug-
mented graph-level processing with additional node-level data to
refine model performance [21, 25, 26]. Among these works, the
Eric model [27] introduced a notably advanced module named
Alignment Regularization, which facilitates both node-to-graph
and graph-to-graph similarity matching. This technique under-
scores the significance of fine-grained information, marking a
departure from prior learning-based algorithms. Despite these
advancements, current models focus predominantly on coarse-
grained information and rarely consider fine-grained informa-
tion to optimize their algorithms. However, node-to-node infor-
mation is also crucial to compute GED. The model can make
prediction easier when node alignment is provided. As a result,
existing methods still have space for improvement because they
have limitations in using node-to-node information.

Motivated by the above works, we propose a novel model
named Interpretable Graph Fusion Model (IGFM). It is a
learnable end-to-end model for graph similarity computation.
Compared with existing works, the model can better utilize
the matching relationships between nodes of two graphs,
thereby achieving more excellent predictions of similarity
between the graphs. Specifically, IGFM employs three main
components: local structure analysis module, fine-grained
node-level analysis module, and coarse-grained graph-
level analysis module. The local structural analysis module

employs cohesive subgraph matching methods (k-core [28],
k-truss [29], and clique [30], etc.) to capture the local struc-
tural information of connected groups. By discovering these
tight groups of nodes, IGFM can capture important details
about their local structure, making distinguishing the similar-
ity easier between nodes from different graphs. Then, IGFM
utilizes a fine-grained node-level analysis module, which
employs the Gumbel-Sinkhorn permutation algorithm and
plays a crucial role in facilitating precise node alignment. The
result of this fine-grained alignment is crucial for predicting
the similarity between two graphs. Inspired by the Neural
Tensor Network (NTN) [31] and the Euclidean Distance
(ED) [32], the third module of IGFM, named graph-level
analysis module, is designed to enhance the model’s capabil-
ity in discerning the differences at the graph level. This mod-
ule effectively facilitates the computation of a comprehensive
similarity assessment for pairs of graphs, thereby bolstering
the overall analytical strength of IGFM. The contribution of
this work can be summarized as follows:

• To the best of our knowledge, our model is the first to
use cohesive subgraph matching techniques to improve
GED prediction by capturing fine-grained local structural
information. This approach extracts more detailed infor-
mation for analyzing and computing graph similarities.

• The proposed IGFM demonstrates its capability in balanc-
ing fine-grained node-level alignment with coarse-grained
graph-level alignment. This dual approach enhances the
effectiveness of GED computation simultaneously.

• Comprehensive experimental results obtained from four
real-world datasets are presented to validate the effec-
tiveness and efficiency of our model. These experiments
demonstrate the superior performance of our model
compared to existing methods. The code is published at
https:// github. com/ peimi n0815/ IGFM.

2 Related Work

In this section, we review significant graph similarity com-
putation works within each category. While there have been
extensive studies on graph similarity computation, we cat-
egorize the notable works into two main types of methods:
(1) combinatorial search-based methods that utilize heuristic

Fig. 1 An example of GED
computation. The result of the
GED between graphs G

s
 and G

t

is GED(G
s
,G

t
) = 3

https://github.com/peimin0815/IGFM

IGFM: An Enhanced Graph Similarity Computation Method with Fine-Grained Analysis

searches and lower bound estimations (2) learning-based
methods leveraging graph neural networks and neural tensor
networks for graph-level interactions. Additionally, we intro-
duce a novel cohesive subgraph mining strategy to enhance
graph similarity calculation by identifying dense, intercon-
nected clusters and enhancing node information.

2.1 Graph Similarity Computation

In graph similarity computation, various methods are
employed to measure the similarity between graphs. Nota-
ble among these methods are Graph Edit Distance (GED)
[33], Maximum Common Subgraph (MCS) [34], and Graph
Isomorphism [35]. The calculation of these measures is
inherently complex and classified as NP-hard [36, 37]. This
complexity arises from the combinatorial nature of graph
comparison, which requires considering numerous possible
mappings between nodes and edges of the graphs. To tackle
the computational challenges, various combinatorial search-
based methods have been developed. These methods include
heuristic searches and lower-bound estimations that aim to
approximate the GED efficiently. Some of the notable algo-
rithms in this category are A*-Beam search Algorithm [17].
This algorithm employs a queue of limited size, controlled
by a parameter called beam size. It prunes the search space
by only keeping the most promising nodes in the queue, thus
reducing the computational load. Hungarian Algorithm [19,
38] was originally designed for solving assignment prob-
lems. This algorithm has been adapted for graph-matching
tasks and provides a way to find the optimal assignment
between nodes of two graphs, minimizing the total cost. VJ
Algorithm [20] combines ideas from various heuristic meth-
ods to improve the efficiency of GED computation. Despite
the efficiency improvements these algorithms offer, they still
suffer from high time complexity, typically cubic in nature,
which limits their scalability to large graphs.

2.2 Learning‑Based GED Computation

Recent advancements in deep learning, particularly in Graph
Neural Networks (GNNs), have significantly impacted Graph
Edit Distance (GED) prediction [39–41, 44]. GNNs, through
message passing for node representation learning, effectively
capture graph structures and node relationships, enhancing
GED computation with remarkable scalability [23, 24, 42,
43]. By training the model with appropriate loss functions
and ground-truth GED labels, these models learn embed-
dings to ensure their distance correlates strongly with GED.

Recent work has addressed special scenarios, such
as GED calculation in dynamic graphs [44] and bipar-
tite graphs [45]. In contrast, this work focuses on the

traditional GED calculation problem in standard static
graphs. SimGNN [21] pioneered the application of GNNs
to GED computation. It employs a neural tensor network
and a non-differentiable node alignment method to generate
graph-level embeddings, simplifying GED computation by
outputting a similarity score as the predicted GED. How-
ever, SimGNN is limited in that it cannot explicitly predict
node-matching relations, reducing its interpretability and
fine-grained accuracy. GMN [11] introduces a cross-graph
attention layer for interaction between nodes in two graphs,
but it only considers graph-level information, resulting in
relatively poor prediction accuracy. MGMN [25] introduces
a cross-graph matching network that learns interactions
between two graphs. It leverages attention mechanisms to
combine information at cross-level interactions between
each node of one graph, enhancing the accuracy of GED
predictions. Despite its remarkable approach, MGMN faces
challenges in fine-grained node-level alignments, which are
crucial for precise GED calculations.

Additionally, the recent approach EGSC [22] speeds up
graph similarity computation by simplifying SimGNN and
overlooking node-level interactions, utilizing knowledge dis-
tillation to accelerate the inference stage. However, EGSC’s
omission of cross-graph node-level interactions results in
less detailed similarity information, leading to less accurate
prediction performance. TaGSim [42] creatively splits GED
prediction into predicting the number of each type of graph
edit operation, the sum of which is the predicted GED. It
proposes a concise network architecture using a graph aggre-
gation layer, improving efficiency and scalability. However,
TaGSim’s focus on graph-level interactions limits its ability
to capture fine-grained node-level information, affecting the
accuracy of its predictions. ERIC [27] introduces alignment
regularization, which improves similarity computations by
effectively aligning nodes and graphs. This model marks a
significant advancement in learning-based GED computa-
tion but still faces challenges in achieving high accuracy
and interpretability, particularly in fine-grained node-level
alignments. GedGNN [26] introduces a cross-matrix module
that receives node-level embeddings as input, explicitly con-
structing a node-matching matrix. This approach allows for
precise prediction of node-matching relations, addressing a
significant limitation of earlier models such as SimGNN and
TaGSim. However, despite its accuracy in node matching,
GedGNN still requires further improvements in efficiency
and scalability to handle large graphs effectively. Despite the
advancements made by these models, learning-based GED
algorithms still face significant challenges, particularly in
achieving high accuracy and interoperability. Fine-grained
node-level alignments are crucial for precise GED calcula-
tions but are often overlooked by existing models.

To address these challenges, our approach introduces
an innovative method employing the Gumbel-Sinkhorn

 M. Pei et al.

permutation algorithm. This algorithm transforms the
non-differentiable node alignment problem into a differen-
tiable permutation problem, making it easier to optimize
and improve the overall performance of GED predictions.
In summary, while traditional combinatorial search-based
methods provide exact solutions to GED at high computa-
tional costs, learning-based methods offer scalable and effi-
cient approximations. Our novel approach aims to bridge the
gap by enhancing node-level alignments, ultimately leading
to more accurate and interpretable GED computations. By
employing advanced techniques such as cohesive subgraph
mining and the Gumbel-Sinkhorn permutation algorithm, we
enhance both the accuracy and efficiency of learning-based
GED computation.

2.3 Cohesive Subgraph Mining

Cohesive subgraph mining, a technique for identifying dense,
interconnected clusters in graphs, plays a crucial role in
enhancing node information by revealing common patterns
and characteristics. This field has seen various models, such
as k-truss [46, 47], k-core [48], quasi-clique [49], clique [50,
51], (�,�)-core [52] and (k,�)-core [53]. The k-core of
a graph is a subgraph where each node has at least k con-
nections, allowing it to capture densely connected regions
effectively. In contrast, methods like k-truss and k-clique also
extract cohesive subgraphs, but k-truss requires each edge
to participate in a certain number of triangles, and k-clique
requires full connectivity, leading to higher computational
costs. This work selects the k-core approach as it balances
computational efficiency with the ability to capture meaning-
ful structural patterns, which enhances model performance
by focusing on nodes within these cohesive regions.

3 Preliminaries and Problem Statement

The graphs mentioned in our study are undirected and
unweighted. We consider a graph denoted as G(V ,E,Λ) ,
where V represents a set of nodes containing n elements, E
denotes the set of edges, and Λ represents the set of labels
for the graph’s nodes. Then, we denote A ∈ {0, 1}n×n as the
adjacency matrix of graph G, where each entry Aij is 1 if
there is an edge between nodes i and j, and 0 otherwise. This
adjacency matrix represents the connections between nodes in
G. X ∈ ℝ

n×d represents the feature matrix of the graph, where
each row corresponds to the d-dimensional feature vector of a
node. Among various methods for computing the similarity of
graphs, GED is one of the most crucial metrics to measure the
similarity of two graphs, which is defined as follows:

Definition 1 (Graph Edit Distance) Given two graphs: a source
graph Gs and a target graph Gt . The Graph Edit Distance

(GED) between Gs and Gt GED(Gs,Gt) is defined as the mini-
mum number of atomic operations required to transform Gs
into Gt . These operations include adding or removing a node,
adding or removing an edge, and relabeling a node label.

In this work, the problem is to predict the GED between
Gs and Gt . This predicted GED value serves as a measure of
the similarity between the two graphs.

Analyzing the structural distribution of two graphs is
the key step in calculating graph similarity. In our study,
we achieve the goal by searching dense subgraphs for the
graphs. Specifically, IGFM chooses k-core criterion to ana-
lyze the subgraph density around a certain node, where each
node in a k-core connects with at least k other nodes. The
definition of k-core is the following:

Definition 2 (k-core) Given a graph G(V, E) and an integer
k, the k-core of G is the union of all maximal connected
induced subgraphs where each node has a degree of at least
k. We denote the k-core as Gk , with node set Vk ⊆ V and
edge set Ek ⊆ E.

Note that Gk may consist of multiple disconnected com-
ponents. Figure 2 shows an example to search k-core sub-
graphs of a graph. We gradually remove nodes with degrees
less than 1, obtaining the 1-core subgraph. Then, we delete
nodes with a degree less than 2, resulting in the 2-core sub-
graph. Finally, we follow the same process to get the 3-core
subgraph.

After analyzing the density level of nodes by decompos-
ing the graph to k-core subgraph, the coreness of each node
can generate its local structure feature.

Definition 3 (coreness) Given a graph G(V, E), the coreness
Core(v) of a node v ∈ V is defined as the largest integer for
which the node is included in a Core(v)-core.

The local structural feature generated by coreness can
give the model a better command of extracting local infor-
mation from graphs.

Problem Statement. For the graph similarity computa-
tion problem, Our objective is to design a learnable end-to-
end model for GSC. Specifically, given a pair of graphs Gs
and Gt are entered into a well-designed model to predict the
GED value between them to represent the similarity between
these two graphs.

IGFM: An Enhanced Graph Similarity Computation Method with Fine-Grained Analysis

4 Model

Algorithm 1 IGFM Framework

In this section, we introduce the details of IGFM. The
model comprises three main parts. The local structural
analysis module is presented in Sect. 4.1, followed by the

fine-grained node-level analysis module in Sect. 4.2, and
lastly, the coarse-grained graph-level analysis module is dis-
cussed in Sect. 4.3. Figure 3 shows the model overview, and
the framework is illustrated in Algorithm 1. The three main
steps of the framework correspond to the three modules. The
local structural analysis module is the first step in Lines 4 to
10. For each node, we use k-core to generate local structure
information for the node as the enhanced feature. Then, a
GNN encoder aggregates node-level embedding. Lines 13
to 14 show the second step. The Gumbel-Sinkhorn Permuta-
tion (GSP) algorithm assists the model in capturing the fine-
grained node alignment of input graph pairs. Finally, Lines
16 to 18 describe the third step. A multi-scale discriminate
mechanism designed to train coarse-grained graph-level
similarity. After these steps, the target score used to guide
model training is calculated.

4.1 Local Structural Analysis Module

This section primarily focuses on the local structural analy-
sis module, detailing the generation strategy of local struc-
tural information for both source and target graphs. Note that
the operations performed on both the source graph and the
target graph are identical.

First, IGFM calculates the coreness of each node in
graphs. It progressively identifies each k-core. For each
k, nodes with degrees less than k are iteratively removed
until all remaining nodes have at least degree k. Nodes
removed during the iteration for a particular k are assigned
a coreness of k − 1 . IGFM continues by increasing k and
identifying the next k-core, until no further k-cores can be
formed. Figure 2 is an example of calculating coreness for
each node. We start by identifying the 2-core subgraph,
resulting in the deletion of nodes {1, 2, 3, 11}, which have
a coreness of 1. These nodes have a local structure vec-
tor of [1, 1, 0, 0], indicating their presence in the 0-core

Fig. 2 An example of k-core
decomposition and its corre-
sponding local structure vectors

 M. Pei et al.

and 1-core substructures. Next, in the 3-core subgraph, we
identify deleted nodes {4, 5, 6} with local structure vec-
tors of [1, 1, 1, 0]. Finally, the remaining nodes {7, 8, 9,
10} have a coreness of 3 and local structure vectors of [1,
1, 1, 1]. Thanks to the analysis strategy, IGFM can effec-
tively extract a dc-dimensional local structural information
X̄v for each node v ∈ V :

Finally, we get all local structural feature matrix X̄s and X̄t
of the source graph Gs and target graph Gt . We employ a
Multi-layer Perceptron (MLP) to enhance structural feature
matrices for the following modules. This enhancement is
crucial for providing a reference for node differentiation, aid-
ing the model in future downstream tasks. The l-th layer of
the MLP is operated by the equation X̄l

v
= 𝜎(X̄

(l−1)

v
Wl + bl) ,

where X̄(0)

v
= X̄v , W

l and bl represent the learnable weight
matrix and bias vector of the l-th layer, respectively.

Then, X̄l

v
 participates in the encoding process to

strengthen the effectiveness of the model. More specifi-
cally, we chose the GIN [54] as the encoder. It is known
for its ability to represent graph structures. The process of
l-th GIN layer is as follows:

where � is a learnable parameter or fixed scalar parameter
to control the importance of the node itself, X̄l

v
 indicates the

local structure feature of node v at l-th MLP layer, notation

(1)X̄v =
[
xi
]dc
i=1

, where xi =

{
1 if i ≤ Core(v),

0 otherwise.

(2)Z(l+1)
v

= 𝜙l

(
(
1 + 𝜖l

)
⋅ X̄

l

v
⊕ Zl

v
+

∑

u∈Nn

Zl
u

)
,

⊕ denotes concatenating process, N(v) is the set of neigh-
bor nodes of node v, Zl

v
∈ ℝ

1×dl denotes the feature at the
l-th layer and Z(0)

v
= Xv . With the assistance of the L layer

GNN encoder module, node embeddings for Gs and Gt can
be obtained as Hs and Ht , respectively.

4.2 Fine‑Grained Node‑Level Analysis

Aligning corresponding nodes in graphs based on structural
similarity is crucial for obtaining accurate GED predic-
tions. Therefore, the objective of this module is to generate
a reordered adjacency matrix A′

t
 of Gt , which is optimally

aligned with the adjacency matrix As of graph Gs . We pad
the smaller graphs (A and X) with zeros to ensure the same
node number between graph pairs. Once the optimal A′

t

is generated, the calculation of the GED between the two
graphs can be processed as follows:

 where | ⋅ | represents absolute value, ns and nt are the num-
bers of two graph nodes, || ⋅ ||1 represents L1 norm, The
function LD(Λs,Λt) quantifies the dissimilarity between the
label sets Λs of Vs and Λt of Vt , measuring how different the
labels of corresponding nodes are between the two graphs.
However, finding the optimal A

′

t
 is challenging, as node

alignment represents a quadratic term assignment problem.
It is notoriously difficult to solve within polynomial time
constraints [55]. Therefore, we approach this difficulty by
searching for a permutation matrix P . This matrix is used to
reorder the columns and rows of At to optimally align it with

(3)GED(Gs,Gt) = |ns − nt| +
||As − A�

t
||1

2
+ LD(Λs,Λt),

Fig. 3 The overall framework of IGFM

IGFM: An Enhanced Graph Similarity Computation Method with Fine-Grained Analysis

As . In other words, the goal of this approach is to search the
optimal P and obtain A�

t
= PAtP

T . As a result, the optimal
P can be denoted as follow:

It’s important to note that P is uniquely structured with
exactly 1 in each row and column, and all other elements
are 0. Figure 4 shows an example of a node alignment pro-
cess, where an optimal permutation matrix P is used to
transform the adjacency matrix At into a new matrix A′

t
 that

closely aligns with At . In this example, an additional node
is added to graph Gs when searching for the permutation
matrix P , to ensure that the matrices As and PAtP

T are of
compatible dimensions, allowing for the valid calculation
of |As − PAtP

T |.
Obtaining an accurate P remains challenging. A naive

approach is to employ linear assignment [56]. However,
this discrete solution does not support the optimization of
learnable models. Inspired by [55], we employ the Gum-
bel-Sinkhorn permutation (GSP) as a fine-grained learning
module to transform it into a continuous method, enabling
IGFM to achieve end-to-end implementation. At the same
time, each permutation matrix is guaranteed to have a certain
randomness by adding noise � to H and using � to control the
sensitivity of Ht . Finally, a nearly optimal ordering matrix
P is obtained through the normalization of the rows and
columns of � times.

Specifically, instead of P , we obtain approximates P̃ by
utilizing both the Gumbel-Softmax [57] and the Sinkhorn
Operator [55], thereby rendering the node alignment prob-
lem learnable. First, we initialize a raw similarity matrix
R ∈ ℝ

n×n , which is constructed to represent the node simi-
larities between two graphs. To compute the matrix R , we
use the node feature matrices Hs and Ht of the respective
graphs. These matrices are processed through an MLP, and
the resulting transformed features are then multiplied as
follows:

(4)P = argmin
P
(|As − PAtP

T |).

(5)R = MLP(Hs) ×MLP(Ht)
T ,

where the element Rij indicates the similarity between node i
in Gs and node j in Gt . Then, GSP calculates the approximate
solution P̃ through Gumbel-Softmax and Sinkhorn Operator:

where � is the noise of the Gumbel distribution, parameter
� is utilized to control the sensitivity of GSP during each
iteration, Ncol and Nrow represent normalization operations
on the columns and rows of the matrix, respectively. The
temperature parameter � in the GSP algorithm controls the
randomness of sampling, with lower values resulting in
more deterministic outputs and higher values encouraging
exploration of the solution space for effective node align-
ment in GED calculations. Setting � involves a trade-off: if
� is too large, the accuracy of the alignment decreases due to
excessive randomness; if it’s too small, accuracy also suffers
because the model lacks sufficient exploration. Therefore,
we choose an optimal intermediate value to balance these
effects, aiming to achieve the best performance.

After finishing a sufficiently large number of iterations,
we can obtain the final P̃ as the approximate solution of P .
Finally, we can evaluate the obtained P̃ as follows:

where Sn(Gs,Gt) denotes the GSP module prediction score.
The smaller this score, the better P we obtained because a
smaller score means P provides a better-aligned result. This
module can guide IGFM to make full use of fine-grained
information.

4.3 Coarse‑Grained Graph‑Level Analysis

Based on the well-designed fine-grained learning module,
IGFM integrates the ability to capture node-level similari-
ties. This capability is essential to improving the model’s
effectiveness. Building on this foundation, we further

(6)
P̃
(0)

= exp((log(R) + 𝜁)∕𝛿),

P̃
(l+1)

= Ncol(Nrow(P̃
l
)),

(7)Sn(Gs,Gt) = ||Hs − P̃Ht||1,

Fig. 4 An example of node alignment

 M. Pei et al.

improve the model performance from a graph-level per-
spective [22, 27]. Specifically, the global coarse-grained
graph-level analysis (CGA) module integrates graph-level
similarity computation and inter-graph difference computa-
tion to achieve the graph-level GED prediction. The core of
this approach is to extract a graph-level embedding repre-
sentation Q for each graph. This representation is obtained
through the MLP process as follows:

where Pool(⋅) refers to the column-wise sum pooling func-
tion, MLP1l and MLP2l are independent MLPs with separate
parameters, each corresponding to the l-th layer of the GIN.
The pooling operation guarantees the permutation invari-
ance of node representations. Finally, we obtain the graph
embedding Q by concatenating the aggregated graph-level
information of each hop.

After gaining the graph-level embedding Qs and Qt of Gs
and Gt , we use the Neural Tensor Network (NTN) [31] mod-
ule to compute the coarse-grained similarity between graph
pairs. NTN model can capture higher-order relationships and
patterns in graphs, making it excellent in graph similarity
calculation. This module is defined as:

where W[1∶H]
n

 is a learnable parameter matrix of the NTN,
equipped with a multi-head strategy involving H heads, and
Mn , bn are the other learnable parameter matrix and bias of
it, and � is a non-linear activation function.

Furthermore, Euclidean Distance (ED) [32] is utilized
to optimize the performance of coarse-grained graph-level
analysis. This approach significantly boosts the model’s
ability to discern differences between similar graphs. The
formula for this method can be represented as follows:

where || ⋅ ||2 denotes the L2 norm process, exp represents
the calculation involving the natural exponential base. This
approach guides the model in optimizing parameters by lev-
eraging the difference between two graphs.

After computing both the similarity and difference rep-
resentations, we can evaluate the similarity between two
graphs in a coarse-grained view as follows:

where Sg(⋅) is the CGA prediction score, � and � are learn-
able weights that automatically adjust the level of impor-
tance the model assigns to the NTN and ED components.

(8)
Q =

[
Q(1) Q(2)

⋯ Ql
]

Ql = MLPl
1

(
Pool

(
MLPl

2
(Zl)

))
,

(9)Sntn(Gs,Gt) = 𝜎(QT
s
W[1∶H]

n
Qt +Mn(Qs ⊕ Qt) + bn),

(10)Sed(Gs,Gt) = �(exp(−||Qs − Qt||2)),

(11)Sg(Gs,Gt) = �Sntn(Gs,Gt) + �Sed(Gs,Gt),

4.4 Model Training

As discussed in Sects. 4.2 and 4.3, the GED prediction prob-
lem can be effectively approached by achieving both fine-
grained node-level and coarse-grained graph-level analysis.

In the fine-grained node-level analysis, the GED scores
for graph pairs Gs and Gt are computed by the GSP module,
and their similarity is assessed against ground-truth scores
using mean square error (MSE) loss:

where D represents all training pairs, and S(⋅) is the ground-
truth similarity score normalized from the real GED.

Similarly, for coarse-grained graph-level analysis, the
CGA module predicts GED scores, also evaluated using
MSE loss:

The aforementioned two loss functions can be jointly opti-
mized as follows:

where � is a tunable hyper-parameter balancing fine and
coarse-grained analysis. The learnable parameters of IGFM
are optimized using this unified loss function, which maxi-
mizes the extraction of graph information for more accurate
GED predictions.

5 Experiment

This section thoroughly evaluates our proposed model IGFM
on four real-world datasets. We first detail the experimental
setup, including dataset descriptions and evaluation metrics.
To assess IGFM ’s effectiveness and efficiency, it is com-
pared against SOTA baselines. Additionally, we conduct effi-
ciency evaluations, ablation studies, parameter sensitivity
analyses, and permutation module analyses, complemented
by an in-depth model analysis. These analyses provide cru-
cial insights into each component’s role in the model’s per-
formance and enhance the model’s explainability. To main-
tain the efficiency of our model, the GSP module will only
be utilized in the training phase.

5.1 Experiment Setup

Datasets. We test our model and nine state-of-the-art base-
lines on four real-world datasets to evaluate both their

(12)Ln =
1

D

∑

(s×t)∈D

(Sn(Gs,Gt) − S(Gs,Gt))
2,

(13)Lg =
1

D

∑

(s×t)∈D

(Sg(Gs,Gt) − S(Gs,Gt))
2.

(14)L = �Ln + (1 − �)Lg,

IGFM: An Enhanced Graph Similarity Computation Method with Fine-Grained Analysis

effectiveness and efficiency. Here is a detailed description
of these datasets:

• LINUX [21, 58] comprises program dependence graphs
derived from the Linux kernel. Each graph corresponds
to a function, each node represents a statement, and each
edge denotes a dependency. This dataset does not contain
the node label set.

• AIDS700 [21, 59] is a graph of the molecular structure,
where the nodes represent the atoms in a molecule, and
the edges represent the chemical bonds between the
atoms. Each node has a chemical element label indicat-
ing its associated properties.

• IMDB (IMDBMulti) [60] is derived from the movie
information database, which contains multiple relation-
ships between entities such as actors and directors. Each
node in the graph represents entities (such as directors or
actors), and edges represent relationships between differ-
ent entities (such as actors in movies). This dataset does
not contain the node label set.

• NCI109 [61] contains 4127 chemical compounds. Their
ability to suppress or inhibit human tumor cell growth is
tested. Node labels represent the type of atoms, and edges
represent chemical bonds.

Table 1 provides an overview of these datasets, detailing
the number of graphs, the average number of nodes |V|
and edges |E|, along with the count of node labels and the
number of graph pairs. Consistent with existing studies, the
GED calculation process in our work does not take edge
labels into account. We split all datasets into training, vali-
dation, and testing sets in a 6:2:2 ratio. For the LINUX and
AIDS700 datasets, we used the exact A∗ algorithm [62] for
ground-truth calculations. As previous work [18], no reliable
algorithm can efficiently compute GED for graphs with more
than 16 nodes, like IMDB and NCI109. In these cases, we
considered the minimum values from three approximation
algorithms as ground-truth [21].

Baseline methods. In this paper, we mainly compare the
state-of-the-art baseline methods into two categories: heu-
ristic approximate GED algorithm and learning-based meth-
ods. Heuristic approximate GED methods design an accurate
estimation to predict the real GED, including:

• A*-Beam search (Beam) [17] Beam is a variant of the A*
algorithm that achieves sub-exponential time complexity
through Beam search.

• Hungarian [19, 38] a cubic time complexity algorithm, is
derived from the graph similarity computation problem
to solve the bipartite graph matching problem.

• VJ [20] is a variant of the Hungarian method.

Learning-based approaches aim to predict GED by training
well-designed models. Generally, the GNN models are used
to fully learn the structure information of graph pairs in the
training stage and predict the similarity value of graph pairs
in the test stage. In this work, the following learning-based
approaches are compared:

• SimGNN [21] uses graph embeddings based on the atten-
tion mechanism to compute relevance scores.

• MGMN [25] employs a node-graph matching network to
capture cross-level features between individual nodes of
one graph and the entirety of another graph.

• EGSC [22] is a graph similarity calculation method
based on knowledge distillation that uses a lighter student
model to learn from the teacher model.

• TaGSim [42] extracts node/edge-level embeddings by
graph aggregate layers (GALs) based on the unique trans-
formative impacts of this type of editing.

• ERIC [27] uses a novel alignment regularization (AReg)
technique, which can learn the optimal alignment infor-
mation between graphs through node-graph similarity
during the training phase.

• GedGNN [26] uses a cross-matrix module that captures
node-node interaction information between graph pairs.

Note that there are two versions of GedGNN, and we use the
more accurate GedGNN-value to compare it with our pro-
posed model. Furthermore, we keep the parameter settings
of all learning-based models as they are set in the published
paper or optimize the settings to get the best results when
the parameters are not provided.

Setting and environment of IGFM. We set the number of
GIN [54] layer as 3, the layer of Sinkhorn Operator L = 20 ,
a balancing parameter � = 0.5 and its temperature � = 0.001 .
The model parameters are optimized using the Adam opti-
mizer [63]. Experiments were conducted using PyTorch and
PyTorch Geometric on a system with two Intel(R) Xeon(R)
Silver 4208 CPU @ 2.10GHz, NVIDIA RTX 6000 24GB
GPU, and 128 G RAM, running Ubuntu 22.04.3 LTS. Core
decomposition method [64] is used to obtain the maximum
k-core subgraph in our model.

Evaluation metrics. Our model’s effectiveness was evalu-
ated using five commonly used graph similarity metrics. The

Table 1 The statistics of the datasets

Dataset #Graphs #Avg.|V| #Avg.|E| #Labels #Graph pairs

LINUX 1000 7.6 6.9 1 1 M
AIDS700 700 8.9 8.8 29 490 K
IMDB 1500 13.0 65.9 1 2.25 M
NCI109 4127 29.6 32.1 38 17 M

 M. Pei et al.

Mean Squared Error (MSE) measures the squared differ-
ence between predicted scores and ground-truth, with lower
values indicating more accurate similarity estimates. Spear-
man’s Rank Correlation Coefficient (�) and Kendall’s Rank
Correlation Coefficient (�) assess the consistency in ranking
similarity of nodes in two graphs. Precision at k (p@k) eval-
uates how many top-k results are similar to the query graph.
Higher values of � , � , and p@k indicate better performance.

5.2 Performance Evaluation

The experiment results are shown in Tables 2 and 3. The best
results are highlighted in bold, and the second-best results
are underlined. For simplicity, we scaled the reported MSE
values by multiplying them by 103 for better visibility and
easier comparison.

Generally analyzing these experimental results On these
four datasets, the overall performance of IGFM outperforms
all other baselines. More detailed, learning-based methods,
including IGFM, generally showed superior performance
over search-based algorithms. These results indicate
that, compared with traditional methods, learning-based
algorithms have a powerful ability to analyze complex graph
structures. Specifically, IGFM demonstrated improvements
over the second-best baseline by more than 27.01% , 14.88% ,
4.66% , and 56.92% in MSE across the datasets, and also

excelled in global sorting metrics (� , � , p@10, p@20).
Models that focus only on graph-level considerations,
including SimGNN, and TagSim, overlook the benefits
of node alignment and GED accuracy. As a result, their
effectiveness is typically lower than other learning-based
methods utilizing more fine-grained information. Due
to the MGMN model’s excessively dense node-graph
computations, it exceeds GPU memory limits on the
NCI109 dataset. GedGNN considers node-level information.
However, it primarily focuses on generating editable
paths. This oversight is the reason why GedGNN’s GED
predict effectiveness is limited. ERIC is the best baseline
now because of its fine-grained analysis ability. However,
its node-to-graph approach does not sufficiently consider
fine-grained node-level information. This results in lower
prediction accuracy than IGFM.

In summary, IGFM exhibited remarkable performance
in graph similarity prediction tasks. It surpasses both com-
binatorial search-based algorithms and the most advanced
existing learning-based algorithms.

5.3 Efficiency Evaluation

We further assess the inference time of IGFM to evaluate its
efficiency, comparing it against baseline models as depicted
in Fig. 5. Since the A* algorithm cannot handle similarity

Table 2 Overall GED
performance evaluation on
LINUX and AIDS700

LINUX AIDS700

mse ↓ � ↑ � ↑ p@10 ↑ p@20 ↑ mse ↓ � ↑ � ↑ p@10 ↑ p@20 ↑

Beam 9.268 0.827 0.714 0.973 0.924 12.090 0.609 0.463 0.481 0.493
Hungarian 29.805 0.638 0.517 0.913 0.836 25.296 0.510 0.378 0.360 0.392
VJ 63.863 0.581 0.45 0.287 0.251 29.157 0.517 0.383 0.310 0.345
SimGNN 1.017 0.967 0.854 0.942 0.948 3.699 0.816 0.642 0.463 0.546
MGMN 1.564 0.972 0.877 0.968 0.939 2.509 0.897 0.739 0.434 0.507
EGSC 0.319 0.981 0.889 0.980 0.986 1.558 0.895 0.732 0.637 0.715
TaGSim 1.827 0.964 0.844 0.920 0.931 3.682 0.857 0.724 0.659 0.75
ERIC 0.137 0.987 0.906 0.983 0.991 1.533 0.891 0.732 0.667 0.737
GedGNN 0.487 0.967 0.906 0.973 0.989 3.06 0.873 0.742 0.586 0.653
IGFM 0.100 0.987 0.908 0.991 0.999 1.305 0.916 0.764 0.712 0.757

Table 3 Overall GED
performance evaluation on
IMDB and NCI109

IMDB NCI109

mse ↓ � ↑ � ↑ p@10 ↑ p@20 ↑ mse ↓ � ↑ � ↑ p@10 ↑ p@20 ↑

SimGNN 1.476 0.884 0.763 0.817 0.833 9.112 0.506 0.387 0.057 0.078
MGMN 13.82 0.816 0.621 0.249 0.307 – – – – –
EGSC 0.593 0.936 0.826 0.858 0.868 9.356 0.545 0.414 0.055 0.078
TaGSim 1.465 0.636 0.740 0.803 0.796 6.654 0.664 0.502 0.023 0.037
ERIC 0.407 0.878 0.773 0.878 0.872 8.690 0.537 0.401 0.083 0.097
GedGNN 1.899 0.691 0.615 0.735 0.736 7.277 0.403 0.287 0.017 0.029
IGFM 0.388 0.918 0.806 0.886 0.894 2.865 0.648 0.487 0.213 0.192

IGFM: An Enhanced Graph Similarity Computation Method with Fine-Grained Analysis

calculations on large graphs within a reasonable time, we
only conducted comparisons on LINUX and AIDS700.
The results show that IGFM is the most effective model.
Specifically, learning-based methods are much more
effective than heuristic approximate methods, and the second
most effective model is ERIC. However, ERIC’s Alignment
Regularization module involves a significant computational
load, which our alignment algorithm avoids. Therefore, the
efficiency of IGFM is higher than ERIC. Compared with
the heuristic approximate methods, the inference speed
of IGFM is three orders of magnitude or faster than them.
Overall, IGFM exceeds all baselines in inference speed
while delivering superior accuracy across all datasets.

5.4 Ablation Study

In this section, we evaluate the impact of two crucial com-
ponents of our IGFM model: the local structural analysis
module and the fine-grained node-level analysis module.
Since the GED calculation task is a graph-level task, the
graph-level analysis is essential for IGFM to predict the
GED results. So, our ablation study focuses on analyzing
the optimization effects of the above part on the model.
More detailed, we compare three additional variant models

of IGFM for comparison: IGFM (w/o Core), which omits
the local structural analysis module; IGFM (w/o GSP)
excludes the fine-grained node-level analysis module com-
pared with IGFM; and IGFM (w/o Both) removes both
components.

Table 4 shows the results of the ablation study. It can
be observed that the IGFM generally performed better
than several variant models on the three metrics we
compared while IGFM (w/o Both) maintained the worst
effectiveness. The results prove that integrating these
two modules into IGFM significantly boosts prediction
performance. When these key modules are included,
compared with IGFM (w/o Both), IGFM (w/o Core) and
IGFM (w/o GSP) demonstrate substantial improvements
in predictive accuracy and overall effectiveness. This
indicates that the local structural analysis module, as
well as the fine-grained node-level analysis module,
are essential for enhancing the final performance of the
model. Their principal contribution bolstered the model’s
ability to mine and analyze valuable fine-grained graph
information, which is crucial for achieving precise GED
predictions. Moreover, it can be observed that IGFM (w/o
GSP) is better than IGFM (w/o Core). It suggests that the
local structural feature is vital for the GED prediction
task. The strategy promotes the model to consider more

Fig. 5 Evaluation of Inference
Time. MGMN ran out of GPU
memory on the NCI109 dataset

 M. Pei et al.

comprehensive structural information and perform
outstanding effectiveness.

5.5 Parameter Sensitivity Analysis

Among the hyper-parameters in our model, the temperature
coefficient (�) is the most important one. That is because it
controls the sensitivity of the GSP during each iteration and
directly affects the fine-grained node alignment prediction
results. We conduct experiments exploring a range of � sizes
ranging from 1 to 1 × 10−4 in decreasing order of magnitude
and statistics the model’s effectiveness under different � . The
results evaluated by the five metrics are shown in Fig. 6.
Obviously, the performance of IGFM is stable when set-
ting different � . That is because the local structural feature
refined the local structure information of each node, making
the GSP more stable. Further analyzing the effectiveness of
the model under different � , it can be concluded that when
� = 0.001 , the overall prediction performance is the best.

5.6 Permutation Module Analysis

In order to verify the benefits of utilizing the GSP method,
we compare the predicted reorder results with the real
aligned relationship of a certain graph. More detailed, the
trained model is used to predict the reorder results of four
randomly selected graph pairs from the LINUX dataset that
do not participate in training. Then, we conducted a detailed
comparison between the node permutation matrices gener-
ated by the GSP and the real aligned relationships.

The results of this analysis are illustrated in Fig. 7. These
heatmaps provide a visual representation of the alignment
results, with identical numbers used in the node-to-node cor-
respondence matrix. The top row exhibits soft edge align-
ments generated by GSP, while the bottom row showcases
corresponding hard alignments obtained using the Hungar-
ian algorithm. Deeper colors indicate higher similarity lev-
els. It can be concluded that the locations with the highest
weights in the GSP-generated permutations closely corre-
spond to those identified by the Hungarian algorithm. These
experimental results demonstrate that GSP can accurately

Table 4 The result of ablation study

Bold values indicate the best experimental results, while underlined values highlight the second-best results

LINUX AIDS700 IMDB NCI109

mse ↓ � ↑ � ↑ mse ↓ � ↑ � ↑ mse ↓ � ↑ � ↑ mse ↓ � ↑ � ↑

IGFM 0.100 0.987 0.908 1.371 0.902 0.742 0.381 0.909 0.799 2.865 0.648 0.487
IGFM (w/o Core) 0.137 0.987 0.907 1.433 0.897 0.735 0.406 0.866 0.762 6.363 0.585 0.437
IGFM (w/o GSP) 0.120 0.986 0.902 1.376 0.901 0.741 0.384 0.868 0.767 6.009 0.695 0.523
IGFM (w/o Both) 0.155 0.986 0.902 1.464 0.896 0.735 0.526 0.850 0.742 6.460 0.625 0.465

Fig. 6 Impact of different temperature � on All datasets

IGFM: An Enhanced Graph Similarity Computation Method with Fine-Grained Analysis

achieve node alignment operations between graph pairs. This
excellent module strongly supports the validity of our model
and significantly enhances the GED prediction performance
of IGFM.

6 Conclusion

This paper proposes an advanced GED prediction model
named IGFM. This model can achieve the essential task of
graph similarity computation effectiveness and efficiency.
IGFM innovative integrates a local structural analysis mod-
ule and a coarse-grained graph-level analysis module, while
effectively employing the fine-grained node-level analysis
module to enhance GED prediction. Our comprehensive
evaluations across four real-world datasets demonstrate that
IGFM not only makes sense but significantly surpasses the
performance of the current SOTA methods, thereby mark-
ing a significant advancement in the field of graph similarity
computation.

Acknowledgements Not applicable.

Author contributions Min Pei contributed to the conceptualization,
writing of the original draft, methodology, software development,and
investigation.Jianke Yu was responsible for the conceptualization,
writing - review & editing, methodology, and supervision.Chen Chen
provided resources, contributed to writing - review & editing, and per-
formed formal analysis.Hanchen Wang handled data curation and par-
ticipated in writing - review & editing.XiaoyangWang was involved in
the conceptualization, writing - review & editing, and project adminis-
tration.Ying Zhang contributed to funding acquisition and supervision.

Funding Not applicable.

Data availability The GED datasets are available at https:// pytor ch-
geome tric. readt hedocs. io/, and the code is published at https:// github.
com/ peimi n0815/ IGFM.

Declarations

Conflict of interests The authors declare that they have no competing
interests.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Zhao X, Xiao C, Lin X, Liu Q, Zhang W (2013) A partition-
based approach to structure similarity search. Proc VLDB Endow
7(3):169–180

 2. Zhang T, Gao Y, Zheng B, Chen L, Wen S, Guo W (2020)
Towards distributed node similarity search on graphs. World Wide
Web 23:3025–3053

 3. Jepsen TS, Jensen CS, Nielsen TD (2020) Relational fusion net-
works: graph convolutional networks for road networks. IEEE
Trans Intell Transp Syst 23(1):418–429

 4. Zhang Y, Cheung WK, Liu Q, Wang G, Yang L, Liu L (2024)
Towards explaining graph neural networks via preserving pre-
diction ranking and structural dependency. Inf Process Manag
61(2):103571

 5. Bai Y, Ding H, Gu K, Sun Y, Wang W (2020) Learning-based effi-
cient graph similarity computation via multi-scale convolutional

Fig. 7 Analyze the performance of GSP

https://pytorch-geometric.readthedocs.io/
https://pytorch-geometric.readthedocs.io/
https://github.com/peimin0815/IGFM
https://github.com/peimin0815/IGFM
http://creativecommons.org/licenses/by/4.0/

 M. Pei et al.

set matching. In: Proceedings of the AAAI conference on artificial
intelligence, vol 34, pp 3219–3226

 6. Roy I, Velugoti VSBR, Chakrabarti S, De A (2022) Interpret-
able neural subgraph matching for graph retrieval. In: Proceed-
ings of the AAAI conference on artificial intelligence, vol 36, pp
8115–8123

 7. Wang S, Hu L, Wang Y, He X, Sheng QZ, Orgun MA, Cao L,
Ricci F, Philip SY (2021) Graph learning based recommender
systems: a review. In: 30th international joint conference on
artificial intelligence, IJCAI 2021, pp 4644–4652

 8. Wang Y, Cong G, Song G, Xie K (2010) Community-based
greedy algorithm for mining top-k influential nodes in mobile
social networks. In: Proceedings of the 16th ACM SIGKDD
international conference on knowledge discovery and data min-
ing, pp 1039–1048

 9. Liu G, Liu Y, Zheng K, Liu A, Li Z, Wang Y, Zhou X (2017)
Mcs-gpm: multi-constrained simulation based graph pattern
matching in contextual social graphs. IEEE Trans Knowl Data
Eng 30(6):1050–1064

 10. Gong X, Wang H, Wang X, Chen C, Zhang W, Zhang Y (2024)
Influence maximization on hypergraphs via multi-hop influence
estimation. Inf Process Manag 61(3):103683

 11. Li Y, Gu C, Dullien T, Vinyals O, Kohli P (2019) Graph match-
ing networks for learning the similarity of graph structured
objects. In: International conference on machine learning.
PMLR, pp 3835–3845

 12. Ma G, Ahmed NK, Willke TL, Yu PS (2021) Deep graph simi-
larity learning: a survey. Data Min Knowl Disc 35:688–725

 13. Bunke H, Allermann G (1983) Inexact graph matching for struc-
tural pattern recognition. Pattern Recogn Lett 1(4):245–253

 14. Bunke H, Shearer K (1998) A graph distance metric based
on the maximal common subgraph. Pattern Recogn Lett
19(3–4):255–259

 15. Dijkman R, Dumas M, García-Bañuelos L (2009) Graph match-
ing algorithms for business process model similarity search.
In: Business process management: 7th international conference,
BPM 2009, Ulm, Germany, September 8–10, 2009. Proceedings
7. Springer, pp 48–63

 16. Wu Z, Pan S, Chen F, Long G, Zhang C, Philip SY (2020) A
comprehensive survey on graph neural networks. IEEE Trans
Neural Netw Learn Syst 32(1):4–24

 17. Neuhaus M, Riesen K, Bunke H (2006) Fast suboptimal algo-
rithms for the computation of graph edit distance. In: Structural,
syntactic, and statistical pattern recognition: joint IAPR inter-
national workshops, SSPR 2006 and SPR 2006, Hong Kong,
China, August 17–19, 2006. Proceedings. Springer, pp 163–172

 18. Blumenthal DB, Gamper J (2020) On the exact computation of
the graph edit distance. Pattern Recogn Lett 134:46–57

 19. Kuhn HW (2005) The Hungarian method for the assignment
problem. Naval Res Logist 52(1):7–21

 20. Fankhauser S, Riesen K, Bunke H (2011) Speeding up graph
edit distance computation through fast bipartite matching. In:
Graph-based representations in pattern recognition: 8th IAPR-
TC-15 international workshop, GbRPR 2011, Münster, Ger-
many, May 18–20, 2011. Proceedings 8. Springer, pp 102–111

 21. Bai Y, Ding H, Bian S, Chen T, Sun Y, Wang W (2019) Simgnn:
A neural network approach to fast graph similarity computation.
In: Proceedings of the twelfth ACM international conference on
web search and data mining, pp 384–392

 22. Qin C, Zhao H, Wang L, Wang H, Zhang Y, Fu Y (2021) Slow
learning and fast inference: efficient graph similarity computa-
tion via knowledge distillation. Adv Neural Inf Process Syst
34:14110–14121

 23. Zhang Z, Bu J, Ester M, Li Z, Yao C, Yu Z, Wang C (2021)
H2mn: Graph similarity learning with hierarchical hypergraph

matching networks. In: Proceedings of the 27th ACM SIG-
KDD conference on knowledge discovery & data mining, pp
2274–2284

 24. Ranjan R, Grover S, Medya S, Chakaravarthy V, Sabharwal Y,
Ranu S (2022) Greed: a neural framework for learning graph dis-
tance functions. Adv Neural Inf Process Syst 35:22518–22530

 25. Ling X, Wu L, Wang S, Ma T, Xu F, Liu AX, Wu C, Ji S (2021)
Multilevel graph matching networks for deep graph similarity
learning. IEEE Trans Neural Netw Learn Syst

 26. Piao C, Xu T, Sun X, Rong Y, Zhao K, Cheng H (2023) Comput-
ing graph edit distance via neural graph matching. Proc VLDB
Endow 16(8):1817–1829

 27. Zhuo W, Tan G (2022) Efficient graph similarity computation
with alignment regularization. Adv Neural Inf Process Syst
35:30181–30193

 28. Seidman SB (1983) Network structure and minimum degree. Soc
Netw 5(3):269–287

 29. Cohen J (2008) Trusses: cohesive subgraphs for social network
analysis. Natl Sec Agency Tech Rep 16(3.1):1–29

 30. Luce RD, Perry AD (1949) A method of matrix analysis of group
structure. Psychometrika 14(2):95–116

 31. Socher R, Chen D, Manning CD, Ng A (2013) Reasoning with
neural tensor networks for knowledge base completion. Adv Neu-
ral Inf Process Syst 26

 32. Krislock N, Wolkowicz H (2012) Euclidean distance matrices and
applications. Springer, Berlin

 33. Sanfeliu A, Fu K-S (1983) A distance measure between attributed
relational graphs for pattern recognition. IEEE Trans Syst Man
Cybern 3:353–362

 34. Bunke H (1997) On a relation between graph edit distance and
maximum common subgraph. Pattern Recogn Lett 18(8):689–694

 35. Corneil DG, Gotlieb CC (1970) An efficient algorithm for graph
isomorphism. J ACM 17(1):51–64

 36. Fernández M-L (2001) Valiente G: a graph distance metric com-
bining maximum common subgraph and minimum common
supergraph. Pattern Recogn Lett 22(6–7):753–758

 37. Chen L, Gao Y, Li X, Jensen CS, Chen G (2015) Efficient metric
indexing for similarity search. In: 2015 IEEE 31st international
conference on data engineering. IEEE, pp 591–602

 38. Riesen K, Bunke H (2009) Approximate graph edit distance com-
putation by means of bipartite graph matching. Image Vis Comput
27(7):950–959

 39. Duan Y, Liu J, Chen S, Chen L, Wu J (2024) G-prompt: graphon-
based prompt tuning for graph classification. Inf Process Manag
61(3):103639

 40. Shang B, Zhao Y, Liu J (2024) Knowledge graph representation
learning with relation-guided aggregation and interaction. Inf Pro-
cess Manag 61(4):103752

 41. Liu Z, Meng L, Sheng QZ, Chu D, Yu J, Song X (2024) Poi
recommendation for random groups based on cooperative graph
neural networks. Inf Process Manag 61(3):103676

 42. Bai J, Zhao P (2021) Tagsim: type-aware graph similarity learning
and computation. Proc VLDB Endow 15(2)

 43. Jin D, Wang L, Zheng Y, Li X, Jiang F, Lin W, Pan S (2022)
Cgmn: a contrastive graph matching network for self-supervised
graph similarity learning. arXiv preprint arXiv: 2205. 15083

 44. Wang R, Zhang T, Yu T, Yan J, Yang X (2021) Combinatorial
learning of graph edit distance via dynamic embedding. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp 5241–5250

 45. Riesen K, Bunke H (2015) Improving bipartite graph edit distance
approximation using various search strategies. Pattern Recognit
48(4):1349–1363

http://arxiv.org/abs/2205.15083

IGFM: An Enhanced Graph Similarity Computation Method with Fine-Grained Analysis

 46. Zhang F, Zhang W, Zhang Y, Qin L, Lin X (2017) Olak: an effi-
cient algorithm to prevent unraveling in social networks. Proc
VLDB Endow 10(6):649–660

 47. Zhang F, Zhang Y, Qin L, Zhang W, Lin X (2018) Efficiently
reinforcing social networks over user engagement and tie strength.
In: 2018 IEEE 34th international conference on data engineering
(ICDE). IEEE, pp 557–568

 48. Linghu Q, Zhang F, Lin X, Zhang W, Zhang Y (2020) Global rein-
forcement of social networks: The anchored coreness problem. In:
Proceedings of the 2020 ACM SIGMOD international conference
on management of data, pp 2211–2226

 49. Matsuda H, Ishihara T, Hashimoto A (1999) Classifying molecu-
lar sequences using a linkage graph with their pairwise similari-
ties. Theor Comput Sci 210(2):305–325

 50. Sun R, Chen C, Wang X, Zhang Y, Wang X (2020) Stable com-
munity detection in signed social networks. IEEE Trans Knowl
Data Eng 34(10):5051–5055

 51. Sun R, Zhu Q, Chen C, Wang X, Zhang Y, Wang X (2020) Dis-
covering cliques in signed networks based on balance theory. In:
Database systems for advanced applications: 25th international
conference, DASFAA 2020, Jeju, South Korea, September 24–27,
2020, Proceedings, Part II 25. Springer, pp 666–674

 52. Yu J, Wang H, Wang X, Li Z, Qin L, Zhang W, Liao J, Zhang
Y (2023) Group-based fraud detection network on e-commerce
platforms. In: Proceedings of the 29th ACM SIGKDD conference
on knowledge discovery and data mining, pp 5463–5475

 53. Liu X, Wang X (2021) Cohesive subgraph identification in
weighted bipartite graphs. Appl Sci 11(19):9051

 54. Xu K, Hu W, Leskovec J, Jegelka S (2018) How powerful are
graph neural networks? In: International conference on learning
representations

 55. Mena G, Belanger D, Linderman S, Snoek J (2018) Learning
latent permutations with gumbel-sinkhorn networks. In: Interna-
tional conference on learning representations, vol 2018

 56. Bruff D (2005) The assignment problem and the Hungarian
method. Notes Math 20(29–47):5

 57. Jang E, Gu S, Poole B (2016) Categorical reparameterization
with gumbel-softmax. In: International conference on learning
representations

 58. Wang X, Ding X, Tung AK, Ying S, Jin H (2012) An efficient
graph indexing method. In: 2012 IEEE 28th international confer-
ence on data engineering. IEEE, pp 210–221

 59. Liang Y, Zhao P (2017) Similarity search in graph databases: a
multi-layered indexing approach. In: 2017 IEEE 33rd international
conference on data engineering (ICDE). IEEE, pp 783–794

 60. Yanardag P, Vishwanathan S (2015) Deep graph kernels. In: Pro-
ceedings of the 21th ACM SIGKDD international conference on
knowledge discovery and data mining, pp 1365–1374

 61. Wale N, Watson IA, Karypis G (2008) Comparison of descriptor
spaces for chemical compound retrieval and classification. Knowl
Inf Syst 14:347–375

 62. Riesen K, Emmenegger S, Bunke H (2013) A novel software
toolkit for graph edit distance computation. In: Graph-based rep-
resentations in pattern recognition: 9th IAPR-TC-15 international
workshop, GbRPR 2013, Vienna, Austria, May 15–17, 2013. Pro-
ceedings 9. Springer, pp 142–151

 63. Kingma D, Ba J (2015) Adam: A method for stochastic optimi-
zation. In: International conference on learning representations
(ICLR)

 64. Malliaros FD, Giatsidis C, Papadopoulos AN, Vazirgiannis M
(2020) The core decomposition of networks: theory, algorithms
and applications. VLDB J 29(1):61–92

	IGFM: An Enhanced Graph Similarity Computation Method with Fine-Grained Analysis
	Abstract
	1 Introduction
	2 Related Work
	2.1 Graph Similarity Computation
	2.2 Learning-Based GED Computation
	2.3 Cohesive Subgraph Mining

	3 Preliminaries and Problem Statement
	4 Model
	4.1 Local Structural Analysis Module
	4.2 Fine-Grained Node-Level Analysis
	4.3 Coarse-Grained Graph-Level Analysis
	4.4 Model Training

	5 Experiment
	5.1 Experiment Setup
	5.2 Performance Evaluation
	5.3 Efficiency Evaluation
	5.4 Ablation Study
	5.5 Parameter Sensitivity Analysis
	5.6 Permutation Module Analysis

	6 Conclusion
	Acknowledgements
	References

