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Abstract
In the rapidly advancing field of graph-based applications, accurate graph similarity computing (GSC) has become increas-
ingly important. However, due to the complexity of graph structures, this task remains a challenge because of the intricate 
calculations involved. To solve the limitations of existing works, this paper introduces the Interpretable Graph Fusion Model 
(IGFM), a novel framework designed to enhance the accuracy and efficiency of graph similarity computation. Specifically, 
our model can fully utilize graph structure information and comprehensively assess graph similarity at both fine-grained 
and coarse-grained levels, ultimately achieving more accurate predictions. Experimented extensively across four real-world 
datasets, IGFM demonstrates a significant improvement over existing SOTA methods to solve the GSC challenge. In numer-
ous experimental tests, our model shows performance improvements in terms of MSE (Mean Squared Error), ranging from 
4.66% to as much as 56.92% compared to the second-best method.

Keywords Neural network · Graph similarity computation · Graph edit distance · Data mining

1 Introduction

With the rapid development of information technology, 
a significant number of works have discussed graph 
structures [1–4]. Graph similarity computation, as one of 
the most traditional problems in this field, has garnered 
significant attention in recent works  [5, 6]. Nowadays, 
various applications across different fields are based on 
graph similarity computation, such as recommendation 
systems [7], social networks [8–10], computer vision [11], 
and chemical composition analysis [12]. To adapt to these 
application scenarios, many diverse and remarkable accurate 
graph similarity measurement metrics have been proposed, 
such as Graph Edit Distance (GED)  [13], Maximum 
Common Subgraph  [14], Graph Isomorphism  [15, 16], 
etc. Specifically, GED is one of the most crucial measure 
metrics. It quantifies the minimal number of operations 
necessary to transform one graph into another. It includes 
modifications to both nodes and edges [17]. Figure 1 shows 
an example of GED, showing one of the minimum edit 
distance operations from Gs to Gt . In this toy example, GED 
computation is achieved through three atomic operations: 
deleting an edge between nodes 1 and 5, adding an edge 
between nodes 2 and 5, and modifying the label of node 2. 
As a result, the GED between Gs and Gt is 3. For simplicity, 
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we represent this process as GED(Gs,Gt) = 3 . However, the 
computation of this metric, as well as other accurate metrics, 
poses substantial computational challenges because it has 
been proven to be NP-hard [18].

As traditional solutions, combinatorial search-based algo-
rithms are employed to solve GED. These approaches, such as 
Beam [17], Hungarian [19], VJ [20], calculate GED by prun-
ing infeasible search spaces, establishing lower bounds, and 
leveraging efficient techniques. While these solutions avoid the 
complexities associated with NP-hard problems, they still face 
challenges regarding high computational costs. As learning-
based methods have grown, an increasing number of approaches 
have been proposed to obtain approximate solutions efficiently 
for the GED. These methods are mainly based on graph neu-
ral networks (GNNs) and Neural Tensor Networks (NTN) and 
typically utilize graph-level interactions to capture the simi-
larity between two graphs [21–24]. Certain models [22–24] 
have proposed superior strategies for GED prediction based 
on integrating higher-dimensional embedding at the graph or 
subgraph level. Moreover, some approaches have further aug-
mented graph-level processing with additional node-level data to 
refine model performance [21, 25, 26]. Among these works, the 
Eric model [27] introduced a notably advanced module named 
Alignment Regularization, which facilitates both node-to-graph 
and graph-to-graph similarity matching. This technique under-
scores the significance of fine-grained information, marking a 
departure from prior learning-based algorithms. Despite these 
advancements, current models focus predominantly on coarse-
grained information and rarely consider fine-grained informa-
tion to optimize their algorithms. However, node-to-node infor-
mation is also crucial to compute GED. The model can make 
prediction easier when node alignment is provided. As a result, 
existing methods still have space for improvement because they 
have limitations in using node-to-node information.

Motivated by the above works, we propose a novel model 
named Interpretable Graph Fusion Model (IGFM). It is a 
learnable end-to-end model for graph similarity computation. 
Compared with existing works, the model can better utilize 
the matching relationships between nodes of two graphs, 
thereby achieving more excellent predictions of similarity 
between the graphs. Specifically, IGFM employs three main 
components: local structure analysis module, fine-grained 
node-level analysis module, and coarse-grained graph-
level analysis module. The local structural analysis module 

employs cohesive subgraph matching methods (k-core [28], 
k-truss [29], and clique [30], etc.) to capture the local struc-
tural information of connected groups. By discovering these 
tight groups of nodes, IGFM can capture important details 
about their local structure, making distinguishing the similar-
ity easier between nodes from different graphs. Then, IGFM 
utilizes a fine-grained node-level analysis module, which 
employs the Gumbel-Sinkhorn permutation algorithm and 
plays a crucial role in facilitating precise node alignment. The 
result of this fine-grained alignment is crucial for predicting 
the similarity between two graphs. Inspired by the Neural 
Tensor Network (NTN) [31] and the Euclidean Distance 
(ED) [32], the third module of IGFM, named graph-level 
analysis module, is designed to enhance the model’s capabil-
ity in discerning the differences at the graph level. This mod-
ule effectively facilitates the computation of a comprehensive 
similarity assessment for pairs of graphs, thereby bolstering 
the overall analytical strength of IGFM. The contribution of 
this work can be summarized as follows:

• To the best of our knowledge, our model is the first to 
use cohesive subgraph matching techniques to improve 
GED prediction by capturing fine-grained local structural 
information. This approach extracts more detailed infor-
mation for analyzing and computing graph similarities.

• The proposed IGFM demonstrates its capability in balanc-
ing fine-grained node-level alignment with coarse-grained 
graph-level alignment. This dual approach enhances the 
effectiveness of GED computation simultaneously.

• Comprehensive experimental results obtained from four 
real-world datasets are presented to validate the effec-
tiveness and efficiency of our model. These experiments 
demonstrate the superior performance of our model 
compared to existing methods. The code is published at 
https:// github. com/ peimi n0815/ IGFM.

2  Related Work

In this section, we review significant graph similarity com-
putation works within each category. While there have been 
extensive studies on graph similarity computation, we cat-
egorize the notable works into two main types of methods: 
(1) combinatorial search-based methods that utilize heuristic 

Fig. 1  An example of GED 
computation. The result of the 
GED between graphs G

s
 and G

t
 

is GED(G
s
,G

t
) = 3
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searches and lower bound estimations (2) learning-based 
methods leveraging graph neural networks and neural tensor 
networks for graph-level interactions. Additionally, we intro-
duce a novel cohesive subgraph mining strategy to enhance 
graph similarity calculation by identifying dense, intercon-
nected clusters and enhancing node information.

2.1  Graph Similarity Computation

In graph similarity computation, various methods are 
employed to measure the similarity between graphs. Nota-
ble among these methods are Graph Edit Distance (GED) 
[33], Maximum Common Subgraph (MCS) [34], and Graph 
Isomorphism [35]. The calculation of these measures is 
inherently complex and classified as NP-hard [36, 37]. This 
complexity arises from the combinatorial nature of graph 
comparison, which requires considering numerous possible 
mappings between nodes and edges of the graphs. To tackle 
the computational challenges, various combinatorial search-
based methods have been developed. These methods include 
heuristic searches and lower-bound estimations that aim to 
approximate the GED efficiently. Some of the notable algo-
rithms in this category are A*-Beam search Algorithm [17]. 
This algorithm employs a queue of limited size, controlled 
by a parameter called beam size. It prunes the search space 
by only keeping the most promising nodes in the queue, thus 
reducing the computational load. Hungarian Algorithm [19, 
38] was originally designed for solving assignment prob-
lems. This algorithm has been adapted for graph-matching 
tasks and provides a way to find the optimal assignment 
between nodes of two graphs, minimizing the total cost. VJ 
Algorithm [20] combines ideas from various heuristic meth-
ods to improve the efficiency of GED computation. Despite 
the efficiency improvements these algorithms offer, they still 
suffer from high time complexity, typically cubic in nature, 
which limits their scalability to large graphs.

2.2  Learning‑Based GED Computation

Recent advancements in deep learning, particularly in Graph 
Neural Networks (GNNs), have significantly impacted Graph 
Edit Distance (GED) prediction [39–41, 44]. GNNs, through 
message passing for node representation learning, effectively 
capture graph structures and node relationships, enhancing 
GED computation with remarkable scalability [23, 24, 42, 
43]. By training the model with appropriate loss functions 
and ground-truth GED labels, these models learn embed-
dings to ensure their distance correlates strongly with GED.

Recent work has addressed special scenarios, such 
as GED calculation in dynamic graphs  [44] and bipar-
tite graphs  [45]. In contrast, this work focuses on the 

traditional GED calculation problem in standard static 
graphs. SimGNN [21] pioneered the application of GNNs 
to GED computation. It employs a neural tensor network 
and a non-differentiable node alignment method to generate 
graph-level embeddings, simplifying GED computation by 
outputting a similarity score as the predicted GED. How-
ever, SimGNN is limited in that it cannot explicitly predict 
node-matching relations, reducing its interpretability and 
fine-grained accuracy. GMN [11] introduces a cross-graph 
attention layer for interaction between nodes in two graphs, 
but it only considers graph-level information, resulting in 
relatively poor prediction accuracy. MGMN [25] introduces 
a cross-graph matching network that learns interactions 
between two graphs. It leverages attention mechanisms to 
combine information at cross-level interactions between 
each node of one graph, enhancing the accuracy of GED 
predictions. Despite its remarkable approach, MGMN faces 
challenges in fine-grained node-level alignments, which are 
crucial for precise GED calculations.

Additionally, the recent approach EGSC [22] speeds up 
graph similarity computation by simplifying SimGNN and 
overlooking node-level interactions, utilizing knowledge dis-
tillation to accelerate the inference stage. However, EGSC’s 
omission of cross-graph node-level interactions results in 
less detailed similarity information, leading to less accurate 
prediction performance. TaGSim [42] creatively splits GED 
prediction into predicting the number of each type of graph 
edit operation, the sum of which is the predicted GED. It 
proposes a concise network architecture using a graph aggre-
gation layer, improving efficiency and scalability. However, 
TaGSim’s focus on graph-level interactions limits its ability 
to capture fine-grained node-level information, affecting the 
accuracy of its predictions. ERIC [27] introduces alignment 
regularization, which improves similarity computations by 
effectively aligning nodes and graphs. This model marks a 
significant advancement in learning-based GED computa-
tion but still faces challenges in achieving high accuracy 
and interpretability, particularly in fine-grained node-level 
alignments. GedGNN [26] introduces a cross-matrix module 
that receives node-level embeddings as input, explicitly con-
structing a node-matching matrix. This approach allows for 
precise prediction of node-matching relations, addressing a 
significant limitation of earlier models such as SimGNN and 
TaGSim. However, despite its accuracy in node matching, 
GedGNN still requires further improvements in efficiency 
and scalability to handle large graphs effectively. Despite the 
advancements made by these models, learning-based GED 
algorithms still face significant challenges, particularly in 
achieving high accuracy and interoperability. Fine-grained 
node-level alignments are crucial for precise GED calcula-
tions but are often overlooked by existing models.

To address these challenges, our approach introduces 
an innovative method employing the Gumbel-Sinkhorn 
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permutation algorithm. This algorithm transforms the 
non-differentiable node alignment problem into a differen-
tiable permutation problem, making it easier to optimize 
and improve the overall performance of GED predictions. 
In summary, while traditional combinatorial search-based 
methods provide exact solutions to GED at high computa-
tional costs, learning-based methods offer scalable and effi-
cient approximations. Our novel approach aims to bridge the 
gap by enhancing node-level alignments, ultimately leading 
to more accurate and interpretable GED computations. By 
employing advanced techniques such as cohesive subgraph 
mining and the Gumbel-Sinkhorn permutation algorithm, we 
enhance both the accuracy and efficiency of learning-based 
GED computation.

2.3  Cohesive Subgraph Mining

Cohesive subgraph mining, a technique for identifying dense, 
interconnected clusters in graphs, plays a crucial role in 
enhancing node information by revealing common patterns 
and characteristics. This field has seen various models, such 
as k-truss [46, 47], k-core [48], quasi-clique [49], clique [50, 
51], ( �,�)-core  [52] and (k,�)-core  [53]. The k-core of 
a graph is a subgraph where each node has at least k con-
nections, allowing it to capture densely connected regions 
effectively. In contrast, methods like k-truss and k-clique also 
extract cohesive subgraphs, but k-truss requires each edge 
to participate in a certain number of triangles, and k-clique 
requires full connectivity, leading to higher computational 
costs. This work selects the k-core approach as it balances 
computational efficiency with the ability to capture meaning-
ful structural patterns, which enhances model performance 
by focusing on nodes within these cohesive regions.

3  Preliminaries and Problem Statement

The graphs mentioned in our study are undirected and 
unweighted. We consider a graph denoted as G(V ,E,Λ) , 
where V represents a set of nodes containing n elements, E 
denotes the set of edges, and Λ represents the set of labels 
for the graph’s nodes. Then, we denote A ∈ {0, 1}n×n as the 
adjacency matrix of graph G, where each entry Aij is 1 if 
there is an edge between nodes i and j, and 0 otherwise. This 
adjacency matrix represents the connections between nodes in 
G. X ∈ ℝ

n×d represents the feature matrix of the graph, where 
each row corresponds to the d-dimensional feature vector of a 
node. Among various methods for computing the similarity of 
graphs, GED is one of the most crucial metrics to measure the 
similarity of two graphs, which is defined as follows:

Definition 1 (Graph Edit Distance) Given two graphs: a source 
graph Gs and a target graph Gt . The Graph Edit Distance 

(GED) between Gs and Gt GED(Gs,Gt ) is defined as the mini-
mum number of atomic operations required to transform Gs 
into Gt . These operations include adding or removing a node, 
adding or removing an edge, and relabeling a node label.

In this work, the problem is to predict the GED between 
Gs and Gt . This predicted GED value serves as a measure of 
the similarity between the two graphs.

Analyzing the structural distribution of two graphs is 
the key step in calculating graph similarity. In our study, 
we achieve the goal by searching dense subgraphs for the 
graphs. Specifically, IGFM chooses k-core criterion to ana-
lyze the subgraph density around a certain node, where each 
node in a k-core connects with at least k other nodes. The 
definition of k-core is the following:

Definition 2 (k-core) Given a graph G(V, E) and an integer 
k, the k-core of G is the union of all maximal connected 
induced subgraphs where each node has a degree of at least 
k. We denote the k-core as Gk , with node set Vk ⊆ V  and 
edge set Ek ⊆ E.

Note that Gk may consist of multiple disconnected com-
ponents. Figure 2 shows an example to search k-core sub-
graphs of a graph. We gradually remove nodes with degrees 
less than 1, obtaining the 1-core subgraph. Then, we delete 
nodes with a degree less than 2, resulting in the 2-core sub-
graph. Finally, we follow the same process to get the 3-core 
subgraph.

After analyzing the density level of nodes by decompos-
ing the graph to k-core subgraph, the coreness of each node 
can generate its local structure feature.

Definition 3 (coreness) Given a graph G(V, E), the coreness 
Core(v) of a node v ∈ V  is defined as the largest integer for 
which the node is included in a Core(v)-core.

The local structural feature generated by coreness can 
give the model a better command of extracting local infor-
mation from graphs.

Problem Statement. For the graph similarity computa-
tion problem, Our objective is to design a learnable end-to-
end model for GSC. Specifically, given a pair of graphs Gs 
and Gt are entered into a well-designed model to predict the 
GED value between them to represent the similarity between 
these two graphs.



IGFM: An Enhanced Graph Similarity Computation Method with Fine-Grained Analysis  

4  Model

Algorithm 1  IGFM Framework

In this section, we introduce the details of IGFM. The 
model comprises three main parts. The local structural 
analysis module is presented in Sect. 4.1, followed by the 

fine-grained node-level analysis module in Sect. 4.2, and 
lastly, the coarse-grained graph-level analysis module is dis-
cussed in Sect. 4.3. Figure 3 shows the model overview, and 
the framework is illustrated in Algorithm 1. The three main 
steps of the framework correspond to the three modules. The 
local structural analysis module is the first step in Lines 4 to 
10. For each node, we use k-core to generate local structure 
information for the node as the enhanced feature. Then, a 
GNN encoder aggregates node-level embedding. Lines 13 
to 14 show the second step. The Gumbel-Sinkhorn Permuta-
tion (GSP) algorithm assists the model in capturing the fine-
grained node alignment of input graph pairs. Finally, Lines 
16 to 18 describe the third step. A multi-scale discriminate 
mechanism designed to train coarse-grained graph-level 
similarity. After these steps, the target score used to guide 
model training is calculated.

4.1  Local Structural Analysis Module

This section primarily focuses on the local structural analy-
sis module, detailing the generation strategy of local struc-
tural information for both source and target graphs. Note that 
the operations performed on both the source graph and the 
target graph are identical.

First, IGFM calculates the coreness of each node in 
graphs. It progressively identifies each k-core. For each 
k, nodes with degrees less than k are iteratively removed 
until all remaining nodes have at least degree k. Nodes 
removed during the iteration for a particular k are assigned 
a coreness of k − 1 . IGFM continues by increasing k and 
identifying the next k-core, until no further k-cores can be 
formed. Figure 2 is an example of calculating coreness for 
each node. We start by identifying the 2-core subgraph, 
resulting in the deletion of nodes {1, 2, 3, 11}, which have 
a coreness of 1. These nodes have a local structure vec-
tor of [1, 1, 0, 0], indicating their presence in the 0-core 

Fig. 2  An example of k-core 
decomposition and its corre-
sponding local structure vectors



 M. Pei et al.

and 1-core substructures. Next, in the 3-core subgraph, we 
identify deleted nodes {4, 5, 6} with local structure vec-
tors of [1, 1, 1, 0]. Finally, the remaining nodes {7, 8, 9, 
10} have a coreness of 3 and local structure vectors of [1, 
1, 1, 1]. Thanks to the analysis strategy, IGFM can effec-
tively extract a dc-dimensional local structural information 
X̄v for each node v ∈ V :

Finally, we get all local structural feature matrix X̄s and X̄t 
of the source graph Gs and target graph Gt . We employ a 
Multi-layer Perceptron (MLP) to enhance structural feature 
matrices for the following modules. This enhancement is 
crucial for providing a reference for node differentiation, aid-
ing the model in future downstream tasks. The l-th layer of 
the MLP is operated by the equation X̄l

v
= 𝜎(X̄

(l−1)

v
Wl + bl) , 

where X̄(0)

v
= X̄v , W

l and bl represent the learnable weight 
matrix and bias vector of the l-th layer, respectively.

Then, X̄l

v
 participates in the encoding process to 

strengthen the effectiveness of the model. More specifi-
cally, we chose the GIN [54] as the encoder. It is known 
for its ability to represent graph structures. The process of 
l-th GIN layer is as follows:

where � is a learnable parameter or fixed scalar parameter 
to control the importance of the node itself, X̄l

v
 indicates the 

local structure feature of node v at l-th MLP layer, notation 

(1)X̄v =
[
xi
]dc
i=1

, where xi =

{
1 if i ≤ Core(v),

0 otherwise.

(2)Z(l+1)
v

= 𝜙l

(
(
1 + 𝜖l

)
⋅ X̄

l

v
⊕ Zl

v
+

∑

u∈Nn

Zl
u

)
,

⊕ denotes concatenating process, N(v) is the set of neigh-
bor nodes of node v, Zl

v
∈ ℝ

1×dl denotes the feature at the 
l-th layer and Z(0)

v
= Xv . With the assistance of the L layer 

GNN encoder module, node embeddings for Gs and Gt can 
be obtained as Hs and Ht , respectively.

4.2  Fine‑Grained Node‑Level Analysis

Aligning corresponding nodes in graphs based on structural 
similarity is crucial for obtaining accurate GED predic-
tions. Therefore, the objective of this module is to generate 
a reordered adjacency matrix A′

t
 of Gt , which is optimally 

aligned with the adjacency matrix As of graph Gs . We pad 
the smaller graphs (A and X) with zeros to ensure the same 
node number between graph pairs. Once the optimal A′

t
 

is generated, the calculation of the GED between the two 
graphs can be processed as follows:

 where | ⋅ | represents absolute value, ns and nt are the num-
bers of two graph nodes, || ⋅ ||1 represents L1 norm, The 
function LD(Λs,Λt) quantifies the dissimilarity between the 
label sets Λs of Vs and Λt of Vt , measuring how different the 
labels of corresponding nodes are between the two graphs. 
However, finding the optimal A

′

t
 is challenging, as node 

alignment represents a quadratic term assignment problem. 
It is notoriously difficult to solve within polynomial time 
constraints [55]. Therefore, we approach this difficulty by 
searching for a permutation matrix P . This matrix is used to 
reorder the columns and rows of At to optimally align it with 

(3)GED(Gs,Gt) = |ns − nt| +
||As − A�

t
||1

2
+ LD(Λs,Λt),

Fig. 3  The overall framework of IGFM
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As . In other words, the goal of this approach is to search the 
optimal P and obtain A�

t
= PAtP

T . As a result, the optimal 
P can be denoted as follow:

It’s important to note that P is uniquely structured with 
exactly 1 in each row and column, and all other elements 
are 0. Figure 4 shows an example of a node alignment pro-
cess, where an optimal permutation matrix P is used to 
transform the adjacency matrix At into a new matrix A′

t
 that 

closely aligns with At . In this example, an additional node 
is added to graph Gs when searching for the permutation 
matrix P , to ensure that the matrices As and PAtP

T are of 
compatible dimensions, allowing for the valid calculation 
of |As − PAtP

T |.
Obtaining an accurate P remains challenging. A naive 

approach is to employ linear assignment [56]. However, 
this discrete solution does not support the optimization of 
learnable models. Inspired by [55], we employ the Gum-
bel-Sinkhorn permutation (GSP) as a fine-grained learning 
module to transform it into a continuous method, enabling 
IGFM to achieve end-to-end implementation. At the same 
time, each permutation matrix is guaranteed to have a certain 
randomness by adding noise � to H and using � to control the 
sensitivity of Ht . Finally, a nearly optimal ordering matrix 
P is obtained through the normalization of the rows and 
columns of � times.

Specifically, instead of P , we obtain approximates P̃ by 
utilizing both the Gumbel-Softmax [57] and the Sinkhorn 
Operator [55], thereby rendering the node alignment prob-
lem learnable. First, we initialize a raw similarity matrix 
R ∈ ℝ

n×n , which is constructed to represent the node simi-
larities between two graphs. To compute the matrix R , we 
use the node feature matrices Hs and Ht of the respective 
graphs. These matrices are processed through an MLP, and 
the resulting transformed features are then multiplied as 
follows:

(4)P = argmin
P
(|As − PAtP

T |).

(5)R = MLP(Hs) ×MLP(Ht)
T ,

where the element Rij indicates the similarity between node i 
in Gs and node j in Gt . Then, GSP calculates the approximate 
solution P̃ through Gumbel-Softmax and Sinkhorn Operator:

where � is the noise of the Gumbel distribution, parameter 
� is utilized to control the sensitivity of GSP during each 
iteration, Ncol and Nrow represent normalization operations 
on the columns and rows of the matrix, respectively. The 
temperature parameter � in the GSP algorithm controls the 
randomness of sampling, with lower values resulting in 
more deterministic outputs and higher values encouraging 
exploration of the solution space for effective node align-
ment in GED calculations. Setting � involves a trade-off: if 
� is too large, the accuracy of the alignment decreases due to 
excessive randomness; if it’s too small, accuracy also suffers 
because the model lacks sufficient exploration. Therefore, 
we choose an optimal intermediate value to balance these 
effects, aiming to achieve the best performance.

After finishing a sufficiently large number of iterations, 
we can obtain the final P̃ as the approximate solution of P . 
Finally, we can evaluate the obtained P̃ as follows:

where Sn(Gs,Gt) denotes the GSP module prediction score. 
The smaller this score, the better P we obtained because a 
smaller score means P provides a better-aligned result. This 
module can guide IGFM to make full use of fine-grained 
information.

4.3  Coarse‑Grained Graph‑Level Analysis

Based on the well-designed fine-grained learning module, 
IGFM integrates the ability to capture node-level similari-
ties. This capability is essential to improving the model’s 
effectiveness. Building on this foundation, we further 

(6)
P̃
(0)

= exp((log(R) + 𝜁 )∕𝛿),

P̃
(l+1)

= Ncol(Nrow(P̃
l
)),

(7)Sn(Gs,Gt) = ||Hs − P̃Ht||1,

Fig. 4  An example of node alignment
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improve the model performance from a graph-level per-
spective [22, 27]. Specifically, the global coarse-grained 
graph-level analysis (CGA) module integrates graph-level 
similarity computation and inter-graph difference computa-
tion to achieve the graph-level GED prediction. The core of 
this approach is to extract a graph-level embedding repre-
sentation Q for each graph. This representation is obtained 
through the MLP process as follows:

where Pool(⋅) refers to the column-wise sum pooling func-
tion, MLP1l and MLP2l are independent MLPs with separate 
parameters, each corresponding to the l-th layer of the GIN. 
The pooling operation guarantees the permutation invari-
ance of node representations. Finally, we obtain the graph 
embedding Q by concatenating the aggregated graph-level 
information of each hop.

After gaining the graph-level embedding Qs and Qt of Gs 
and Gt , we use the Neural Tensor Network (NTN) [31] mod-
ule to compute the coarse-grained similarity between graph 
pairs. NTN model can capture higher-order relationships and 
patterns in graphs, making it excellent in graph similarity 
calculation. This module is defined as:

where W[1∶H]
n

 is a learnable parameter matrix of the NTN, 
equipped with a multi-head strategy involving H heads, and 
Mn , bn are the other learnable parameter matrix and bias of 
it, and � is a non-linear activation function.

Furthermore, Euclidean Distance (ED) [32] is utilized 
to optimize the performance of coarse-grained graph-level 
analysis. This approach significantly boosts the model’s 
ability to discern differences between similar graphs. The 
formula for this method can be represented as follows:

where || ⋅ ||2 denotes the L2 norm process, exp represents 
the calculation involving the natural exponential base. This 
approach guides the model in optimizing parameters by lev-
eraging the difference between two graphs.

After computing both the similarity and difference rep-
resentations, we can evaluate the similarity between two 
graphs in a coarse-grained view as follows:

where Sg(⋅) is the CGA prediction score, � and � are learn-
able weights that automatically adjust the level of impor-
tance the model assigns to the NTN and ED components.

(8)
Q =

[
Q(1) Q(2)

⋯ Ql
]

Ql = MLPl
1

(
Pool

(
MLPl

2
(Zl)

))
,

(9)Sntn(Gs,Gt) = 𝜎(QT
s
W[1∶H]

n
Qt +Mn(Qs ⊕ Qt) + bn),

(10)Sed(Gs,Gt) = �(exp(−||Qs − Qt||2)),

(11)Sg(Gs,Gt) = �Sntn(Gs,Gt) + �Sed(Gs,Gt),

4.4  Model Training

As discussed in Sects. 4.2 and 4.3, the GED prediction prob-
lem can be effectively approached by achieving both fine-
grained node-level and coarse-grained graph-level analysis.

In the fine-grained node-level analysis, the GED scores 
for graph pairs Gs and Gt are computed by the GSP module, 
and their similarity is assessed against ground-truth scores 
using mean square error (MSE) loss:

where D represents all training pairs, and S(⋅) is the ground-
truth similarity score normalized from the real GED.

Similarly, for coarse-grained graph-level analysis, the 
CGA module predicts GED scores, also evaluated using 
MSE loss:

The aforementioned two loss functions can be jointly opti-
mized as follows:

where � is a tunable hyper-parameter balancing fine and 
coarse-grained analysis. The learnable parameters of IGFM 
are optimized using this unified loss function, which maxi-
mizes the extraction of graph information for more accurate 
GED predictions.

5  Experiment

This section thoroughly evaluates our proposed model IGFM 
on four real-world datasets. We first detail the experimental 
setup, including dataset descriptions and evaluation metrics. 
To assess IGFM ’s effectiveness and efficiency, it is com-
pared against SOTA baselines. Additionally, we conduct effi-
ciency evaluations, ablation studies, parameter sensitivity 
analyses, and permutation module analyses, complemented 
by an in-depth model analysis. These analyses provide cru-
cial insights into each component’s role in the model’s per-
formance and enhance the model’s explainability. To main-
tain the efficiency of our model, the GSP module will only 
be utilized in the training phase.

5.1  Experiment Setup

Datasets. We test our model and nine state-of-the-art base-
lines on four real-world datasets to evaluate both their 

(12)Ln =
1

D

∑

(s×t)∈D

(Sn(Gs,Gt) − S(Gs,Gt))
2,

(13)Lg =
1

D

∑

(s×t)∈D

(Sg(Gs,Gt) − S(Gs,Gt))
2.

(14)L = �Ln + (1 − �)Lg,
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effectiveness and efficiency. Here is a detailed description 
of these datasets:

• LINUX [21, 58] comprises program dependence graphs 
derived from the Linux kernel. Each graph corresponds 
to a function, each node represents a statement, and each 
edge denotes a dependency. This dataset does not contain 
the node label set.

• AIDS700 [21, 59] is a graph of the molecular structure, 
where the nodes represent the atoms in a molecule, and 
the edges represent the chemical bonds between the 
atoms. Each node has a chemical element label indicat-
ing its associated properties.

• IMDB (IMDBMulti)  [60] is derived from the movie 
information database, which contains multiple relation-
ships between entities such as actors and directors. Each 
node in the graph represents entities (such as directors or 
actors), and edges represent relationships between differ-
ent entities (such as actors in movies). This dataset does 
not contain the node label set.

• NCI109 [61] contains 4127 chemical compounds. Their 
ability to suppress or inhibit human tumor cell growth is 
tested. Node labels represent the type of atoms, and edges 
represent chemical bonds.

Table 1 provides an overview of these datasets, detailing 
the number of graphs, the average number of nodes |V| 
and edges |E|, along with the count of node labels and the 
number of graph pairs. Consistent with existing studies, the 
GED calculation process in our work does not take edge 
labels into account. We split all datasets into training, vali-
dation, and testing sets in a 6:2:2 ratio. For the LINUX and 
AIDS700 datasets, we used the exact A∗ algorithm [62] for 
ground-truth calculations. As previous work [18], no reliable 
algorithm can efficiently compute GED for graphs with more 
than 16 nodes, like IMDB and NCI109. In these cases, we 
considered the minimum values from three approximation 
algorithms as ground-truth [21].

Baseline methods. In this paper, we mainly compare the 
state-of-the-art baseline methods into two categories: heu-
ristic approximate GED algorithm and learning-based meth-
ods. Heuristic approximate GED methods design an accurate 
estimation to predict the real GED, including:

• A*-Beam search (Beam) [17] Beam is a variant of the A* 
algorithm that achieves sub-exponential time complexity 
through Beam search.

• Hungarian [19, 38] a cubic time complexity algorithm, is 
derived from the graph similarity computation problem 
to solve the bipartite graph matching problem.

• VJ [20] is a variant of the Hungarian method.

Learning-based approaches aim to predict GED by training 
well-designed models. Generally, the GNN models are used 
to fully learn the structure information of graph pairs in the 
training stage and predict the similarity value of graph pairs 
in the test stage. In this work, the following learning-based 
approaches are compared:

• SimGNN [21] uses graph embeddings based on the atten-
tion mechanism to compute relevance scores.

• MGMN [25] employs a node-graph matching network to 
capture cross-level features between individual nodes of 
one graph and the entirety of another graph.

• EGSC  [22] is a graph similarity calculation method 
based on knowledge distillation that uses a lighter student 
model to learn from the teacher model.

• TaGSim [42] extracts node/edge-level embeddings by 
graph aggregate layers (GALs) based on the unique trans-
formative impacts of this type of editing.

• ERIC [27] uses a novel alignment regularization (AReg) 
technique, which can learn the optimal alignment infor-
mation between graphs through node-graph similarity 
during the training phase.

• GedGNN [26] uses a cross-matrix module that captures 
node-node interaction information between graph pairs.

Note that there are two versions of GedGNN, and we use the 
more accurate GedGNN-value to compare it with our pro-
posed model. Furthermore, we keep the parameter settings 
of all learning-based models as they are set in the published 
paper or optimize the settings to get the best results when 
the parameters are not provided.

Setting and environment of IGFM. We set the number of 
GIN [54] layer as 3, the layer of Sinkhorn Operator L = 20 , 
a balancing parameter � = 0.5 and its temperature � = 0.001 . 
The model parameters are optimized using the Adam opti-
mizer [63]. Experiments were conducted using PyTorch and 
PyTorch Geometric on a system with two Intel(R) Xeon(R) 
Silver 4208 CPU @ 2.10GHz, NVIDIA RTX 6000 24GB 
GPU, and 128 G RAM, running Ubuntu 22.04.3 LTS. Core 
decomposition method [64] is used to obtain the maximum 
k-core subgraph in our model.

Evaluation metrics. Our model’s effectiveness was evalu-
ated using five commonly used graph similarity metrics. The 

Table 1  The statistics of the datasets

Dataset #Graphs #Avg.|V| #Avg.|E| #Labels #Graph pairs

LINUX 1000 7.6 6.9 1 1 M
AIDS700 700 8.9 8.8 29 490 K
IMDB 1500 13.0 65.9 1 2.25 M
NCI109 4127 29.6 32.1 38 17 M
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Mean Squared Error (MSE) measures the squared differ-
ence between predicted scores and ground-truth, with lower 
values indicating more accurate similarity estimates. Spear-
man’s Rank Correlation Coefficient ( � ) and Kendall’s Rank 
Correlation Coefficient ( � ) assess the consistency in ranking 
similarity of nodes in two graphs. Precision at k (p@k) eval-
uates how many top-k results are similar to the query graph. 
Higher values of � , � , and p@k indicate better performance.

5.2  Performance Evaluation

The experiment results are shown in Tables 2 and 3. The best 
results are highlighted in bold, and the second-best results 
are underlined. For simplicity, we scaled the reported MSE 
values by multiplying them by 103 for better visibility and 
easier comparison.

Generally analyzing these experimental results On these 
four datasets, the overall performance of IGFM outperforms 
all other baselines. More detailed, learning-based methods, 
including IGFM, generally showed superior performance 
over search-based algorithms. These results indicate 
that, compared with traditional methods, learning-based 
algorithms have a powerful ability to analyze complex graph 
structures. Specifically, IGFM demonstrated improvements 
over the second-best baseline by more than 27.01% , 14.88% , 
4.66% , and 56.92% in MSE across the datasets, and also 

excelled in global sorting metrics ( � , � , p@10, p@20). 
Models that focus only on graph-level considerations, 
including SimGNN, and TagSim, overlook the benefits 
of node alignment and GED accuracy. As a result, their 
effectiveness is typically lower than other learning-based 
methods utilizing more fine-grained information. Due 
to the MGMN model’s excessively dense node-graph 
computations, it exceeds GPU memory limits on the 
NCI109 dataset. GedGNN considers node-level information. 
However, it primarily focuses on generating editable 
paths. This oversight is the reason why GedGNN’s GED 
predict effectiveness is limited. ERIC is the best baseline 
now because of its fine-grained analysis ability. However, 
its node-to-graph approach does not sufficiently consider 
fine-grained node-level information. This results in lower 
prediction accuracy than IGFM.

In summary, IGFM exhibited remarkable performance 
in graph similarity prediction tasks. It surpasses both com-
binatorial search-based algorithms and the most advanced 
existing learning-based algorithms.

5.3  Efficiency Evaluation

We further assess the inference time of IGFM to evaluate its 
efficiency, comparing it against baseline models as depicted 
in Fig. 5. Since the A* algorithm cannot handle similarity 

Table 2  Overall GED 
performance evaluation on 
LINUX and AIDS700

LINUX AIDS700

mse ↓ � ↑ � ↑ p@10 ↑ p@20 ↑ mse ↓ � ↑ � ↑ p@10 ↑ p@20 ↑

Beam 9.268 0.827 0.714 0.973 0.924 12.090 0.609 0.463 0.481 0.493
Hungarian 29.805 0.638 0.517 0.913 0.836 25.296 0.510 0.378 0.360 0.392
VJ 63.863 0.581 0.45 0.287 0.251 29.157 0.517 0.383 0.310 0.345
SimGNN 1.017 0.967 0.854 0.942 0.948 3.699 0.816 0.642 0.463 0.546
MGMN 1.564 0.972 0.877 0.968 0.939 2.509 0.897 0.739 0.434 0.507
EGSC 0.319 0.981 0.889 0.980 0.986 1.558 0.895 0.732 0.637 0.715
TaGSim 1.827 0.964 0.844 0.920 0.931 3.682 0.857 0.724 0.659 0.75
ERIC 0.137 0.987 0.906 0.983 0.991 1.533 0.891 0.732 0.667 0.737
GedGNN 0.487 0.967 0.906 0.973 0.989 3.06 0.873 0.742 0.586 0.653
IGFM 0.100 0.987 0.908 0.991 0.999 1.305 0.916 0.764 0.712 0.757

Table 3  Overall GED 
performance evaluation on 
IMDB and NCI109

IMDB NCI109

mse ↓ � ↑ � ↑ p@10 ↑ p@20 ↑ mse ↓ � ↑ � ↑ p@10 ↑ p@20 ↑

SimGNN 1.476 0.884 0.763 0.817 0.833 9.112 0.506 0.387 0.057 0.078
MGMN 13.82 0.816 0.621 0.249 0.307 – – – – –
EGSC 0.593 0.936 0.826 0.858 0.868 9.356 0.545 0.414 0.055 0.078
TaGSim 1.465 0.636 0.740 0.803 0.796 6.654 0.664 0.502 0.023 0.037
ERIC 0.407 0.878 0.773 0.878 0.872 8.690 0.537 0.401 0.083 0.097
GedGNN 1.899 0.691 0.615 0.735 0.736 7.277 0.403 0.287 0.017 0.029
IGFM 0.388 0.918 0.806 0.886 0.894 2.865 0.648 0.487 0.213 0.192
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calculations on large graphs within a reasonable time, we 
only conducted comparisons on LINUX and AIDS700. 
The results show that IGFM is the most effective model. 
Specifically, learning-based methods are much more 
effective than heuristic approximate methods, and the second 
most effective model is ERIC. However, ERIC’s Alignment 
Regularization module involves a significant computational 
load, which our alignment algorithm avoids. Therefore, the 
efficiency of IGFM is higher than ERIC. Compared with 
the heuristic approximate methods, the inference speed 
of IGFM is three orders of magnitude or faster than them. 
Overall, IGFM exceeds all baselines in inference speed 
while delivering superior accuracy across all datasets.

5.4  Ablation Study

In this section, we evaluate the impact of two crucial com-
ponents of our IGFM model: the local structural analysis 
module and the fine-grained node-level analysis module. 
Since the GED calculation task is a graph-level task, the 
graph-level analysis is essential for IGFM to predict the 
GED results. So, our ablation study focuses on analyzing 
the optimization effects of the above part on the model. 
More detailed, we compare three additional variant models 

of IGFM for comparison: IGFM (w/o Core), which omits 
the local structural analysis module; IGFM (w/o GSP) 
excludes the fine-grained node-level analysis module com-
pared with IGFM; and IGFM (w/o Both) removes both 
components.

Table 4 shows the results of the ablation study. It can 
be observed that the IGFM generally performed better 
than several variant models on the three metrics we 
compared while IGFM (w/o Both) maintained the worst 
effectiveness. The results prove that integrating these 
two modules into IGFM significantly boosts prediction 
performance. When these key modules are included, 
compared with IGFM (w/o Both), IGFM (w/o Core) and 
IGFM (w/o GSP) demonstrate substantial improvements 
in predictive accuracy and overall effectiveness. This 
indicates that the local structural analysis module, as 
well as the fine-grained node-level analysis module, 
are essential for enhancing the final performance of the 
model. Their principal contribution bolstered the model’s 
ability to mine and analyze valuable fine-grained graph 
information, which is crucial for achieving precise GED 
predictions. Moreover, it can be observed that IGFM (w/o 
GSP) is better than IGFM (w/o Core). It suggests that the 
local structural feature is vital for the GED prediction 
task. The strategy promotes the model to consider more 

Fig. 5  Evaluation of Inference 
Time. MGMN ran out of GPU 
memory on the NCI109 dataset
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comprehensive structural information and perform 
outstanding effectiveness.

5.5  Parameter Sensitivity Analysis

Among the hyper-parameters in our model, the temperature 
coefficient ( � ) is the most important one. That is because it 
controls the sensitivity of the GSP during each iteration and 
directly affects the fine-grained node alignment prediction 
results. We conduct experiments exploring a range of � sizes 
ranging from 1 to 1 × 10−4 in decreasing order of magnitude 
and statistics the model’s effectiveness under different � . The 
results evaluated by the five metrics are shown in Fig. 6. 
Obviously, the performance of IGFM is stable when set-
ting different � . That is because the local structural feature 
refined the local structure information of each node, making 
the GSP more stable. Further analyzing the effectiveness of 
the model under different � , it can be concluded that when 
� = 0.001 , the overall prediction performance is the best.

5.6  Permutation Module Analysis

In order to verify the benefits of utilizing the GSP method, 
we compare the predicted reorder results with the real 
aligned relationship of a certain graph. More detailed, the 
trained model is used to predict the reorder results of four 
randomly selected graph pairs from the LINUX dataset that 
do not participate in training. Then, we conducted a detailed 
comparison between the node permutation matrices gener-
ated by the GSP and the real aligned relationships.

The results of this analysis are illustrated in Fig. 7. These 
heatmaps provide a visual representation of the alignment 
results, with identical numbers used in the node-to-node cor-
respondence matrix. The top row exhibits soft edge align-
ments generated by GSP, while the bottom row showcases 
corresponding hard alignments obtained using the Hungar-
ian algorithm. Deeper colors indicate higher similarity lev-
els. It can be concluded that the locations with the highest 
weights in the GSP-generated permutations closely corre-
spond to those identified by the Hungarian algorithm. These 
experimental results demonstrate that GSP can accurately 

Table 4  The result of ablation study

Bold values indicate the best experimental results, while underlined values highlight the second-best results

LINUX AIDS700 IMDB NCI109

mse ↓ � ↑ � ↑ mse ↓ � ↑ � ↑ mse ↓ � ↑ � ↑ mse ↓ � ↑ � ↑

IGFM 0.100 0.987 0.908 1.371 0.902 0.742 0.381 0.909 0.799 2.865 0.648 0.487
IGFM (w/o Core) 0.137 0.987 0.907 1.433 0.897 0.735 0.406 0.866 0.762 6.363 0.585 0.437
IGFM (w/o GSP) 0.120 0.986 0.902 1.376 0.901  0.741 0.384 0.868 0.767 6.009 0.695 0.523
IGFM (w/o Both) 0.155 0.986 0.902 1.464 0.896 0.735 0.526 0.850 0.742 6.460 0.625 0.465

Fig. 6  Impact of different temperature � on All datasets
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achieve node alignment operations between graph pairs. This 
excellent module strongly supports the validity of our model 
and significantly enhances the GED prediction performance 
of IGFM.

6  Conclusion

This paper proposes an advanced GED prediction model 
named IGFM. This model can achieve the essential task of 
graph similarity computation effectiveness and efficiency. 
IGFM innovative integrates a local structural analysis mod-
ule and a coarse-grained graph-level analysis module, while 
effectively employing the fine-grained node-level analysis 
module to enhance GED prediction. Our comprehensive 
evaluations across four real-world datasets demonstrate that 
IGFM not only makes sense but significantly surpasses the 
performance of the current SOTA methods, thereby mark-
ing a significant advancement in the field of graph similarity 
computation.
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