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Abstract
This paper links terraced matrices with other well-known integer sequences, such as the
Hankel matrices and related Fibonacci and Lucas matrices. These, in turn, are connected with
related results of Macmahon and Sloane as well as we introduce the r-Terraced matrix as a
generalization of the Terraced matrix, along with its symmetric counterpart, the symmetric
r-Terraced matrix. We derive key properties of these matrices, including their spectral and
Euclidean norms, upper bounds for their spreads, and characteristic polynomials. To validate
and exemplify the theoretical findings, we apply them to Fibonacci numbers, providing
illustrative examples that strengthen the theory and confirm its accuracy. In addition to the
theoretical results,we investigated how the choice of the parameter r and thematrix dimension
affect the upper bounds of the spread. Our findings reveal that selecting values of r < 1 and
using lower-dimensional matrices lead to tighter upper bounds while reducing computational
complexity. These results highlight the practical benefits of our approach, particularly in
optimization-related applications where efficiency is crucial.
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1 Introduction

Terraced matrices are a specialized class of structured matrices characterized by a distinct
pattern in their entries. They are particularly significant in the study of sequence spaces and
summability theory. A terraced matrix is defined by its action on sequences, often transform-
ing a given sequence into another by applying specific coefficients arranged in a terraced
pattern.

Absolutely summing behavior: Terraced matrices have been studied for their absolutely
summing properties, which are crucial in understanding their behavior in various sequence
spaces. Research has shown that certain conditions are necessary and sufficient for a terraced
matrix to be absolutely summing.

Applications in summability theory: These matrices play a role in summability theory,
where they are used to analyze and transform series and sequences. Their structured form
allows for the examination of convergence properties and the summation of divergent series.

InAlmasri (2016), Almasri provides a comprehensive study on the conditions underwhich
terraced matrices are absolutely summing, offering valuable insights into their mathematical
properties and applications. This paper provides a solid foundation for understanding the
significance and applications of terraced matrices in mathematical analysis.

Rhaly terraced matrix sequences (Rhaly 1989) offer opportunities to link them with other
well-known integer sequences, such as the Fibonacci sequence. The Rhaly terraced matrices
have the form

Ra �
⎡
⎣
t1 0 0
t2 t2 0
t3 t3 t3

0 . . .

0 . . .

0 . . .

⎤
⎦, (1.1)

So, we plan to examine extensions such as the Rhaly terraced Fibonacci matrix

RF �

⎡
⎢⎢⎣

1 0 0
1 1 0
2 2 2

0 . . .

0 . . .

0 . . .

3 3 3 3 . . .

⎤
⎥⎥⎦, (1.2)

in which the sums of the rows result in the sequence {nFn}, and the sums of the leading
diagonals result in the sequence {An} � {1, 1, 3, 5, 10, 16, 29, 45, 75, 115, …}. These two
sequences are respectively A045925 and A000990 of Sloane’s OIES (2024). MacMahon
(1924) found the non-zero general terms of {An} as

tn �
n∑

k�
⌊
n+1
2

⌋
Fk+1 (1.3)

For example,

t5 � F3 + F4 + F5 � 10.

Other valuable studies on matrices are the studies carried out by adapting number
sequences to matrices. In these studies, circulant matrices were generally considered and
many important properties of these matrices, such as their norm properties, characteristic
equations, determinants, eigenvalues, and principal minors, were examined (Kuloğlu et al.
2023a, b; Kumari et al. 2023; Kızılateş and Tuğlu 2016, 2018; Prasad et al. 2024). Also,
Akbıyık et al. (2021) A symmetric matrix family constructed with harmonic Pell numbers
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as its elements, along with its Hadamard exponential matrix. Several linear algebraic prop-
erties and inequalities investigated using matrix norms. Additionally, summation identities
for harmonic Pell numbers are derived. Shi and Kızılateş (2024) new generalization of the
Frank matrix and its some properties studied.

Durna andYıldırım (2016) defined thegeneralized terracedmatrix byusing thegeneralized
Cesàro matrix, and gave some properties of this matrix.

Definition 1.1 (Horn 1990) Let X � [
xi j

]
, i , j � 1,2, 3, . . . , n and

Y � [
yi j

]
, i , j � 1,2, 3, . . . , n be n × n matrices, the Hadamard products of this matrix

are defined as follows:

X ◦ Y � [
xi j yi j

]
, i , j � 1,2, 3, . . . , n (1.4)

Definition 1.2 (Horn 1990) For any given matrix X , the spectral norm, l p norm, Euclidean
norm are given by the following equations, respectively:

‖X‖2 �
√
maxλk(XH X ), 1 ≤ k ≤ n (1.5)

Here, λk
(
XH X

)
represents an eigenvalue of XH X , where XH denotes the conjugate

transpose of the matrix X .

‖X‖p � p

√√√√
n∑

i , j�1

∣∣xi j
∣∣p , p ≥ 2 (1.6)

‖X‖E �
√√√√

n∑
i , j�1

∣∣xi j
∣∣2 (1.7)

Definition 1.3 Let X � [
xi j

]
, i , j � 1,2, 3, . . . , n, n × n matrices. The spread of a matrix,

S(X) � max︸︷︷︸
i , j

∣∣λi−λ j
∣∣,

S(X) ≤
√
2‖X‖2E − 2

n
|tr(X)|2 (1.8)

here, λi represents an eigenvalue of X matrix.

Lemma 1.4 (Horn and Johnson 1991) Let X � [
xi j

]
, i , j � 1,2, 3, . . . , n and

Y � [
yi j

]
, i , j � 1,2, 3, . . . , n be m × n matrices, following equality holds:

‖X ◦ Y‖2 ≤ r(X)c(Y ) (1.9)

Here, r(X) � max
√∑n

j�1
∣∣xi j

∣∣2, 1≤ i≤m and c(Y )�max
√∑m

i�1
∣∣yi j

∣∣2, 1≤ j ≤n.

Matrix analysis is fundamental in various fields, with the spread—defined as the difference
between the largest and smallest eigenvalues—being a key spectral property. Optimizing the
spread is crucial for applications such as coding theory and signal processing. Prior studies
(Horn and Johnson 2013; Golub and Van Loan 2013) show that smaller matrix dimensions
and appropriate scaling parameters improve computational efficiency and spectral quality.
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226 Page 4 of 22 A. G. Shannon et al.

This work focuses on matrices constructed with Fibonacci sequences and scaling parame-
ters. Increasing the matrix size leads to higher upper bounds for the spread, confirming trends
noted by Parlett (1998).

Our primary goal in this study is to define generalized Terraced matrices, obtain different
norms and extensions of these matrices, and obtain matrices that will find a place in many
applied branches of science other than mathematics through applications. In this context, all
theorems and propositions given at the end of Sect. 3 and Sect. 4 are proven to be correct
with Fibonacci numbers by application with the examples, and then it is aimed to reduce the
upper bounds to 1 with different n and r values.

The study reveals that tuning the parameter r provides a powerful mechanism to con-
trol the spectral behaviour of matrices constructed from Fibonacci numbers. Lower r values
foster spectral stability with minimal spread, beneficial in control systems and computa-
tional methods requiring fats convergence. Conversely, higher r values produce matrices
with broad spectral dispersion, useful in fields like encryption, randomness modelling and
systems requiring wide frequency responses.

Importantly, the inherent connection to the golden ratio through the Fibonacci diagonal
entries ensures that even small adjustments to r can produce significant spectral shifts. As the
matrix size decreases and structures become more complex, this sensitivity becomes even
more pronounced, offering rich avenues for future exploration in mathematical modelling,
engineering applications and data driven technologies.

The analysis demonstrates that varying r provides a powerful mechanism to control both
the spread and the Euclidean norm of the Fibonacci-based matrix. By carefully selecting r ,
practitioners can tailor the matrix’s stability and spectral properties to specific applications.
Future research could explore higher-order recurrence relations or the use of other integer
sequences to broaden the spectrum of potential applications.

Also, larger upper bound values were obtained at the same r and n values with generalized
symmetric Rhaly r-Terraced Matrices and generalized r-Terraced matrices, and generaliza-
tions of operations were tried to be made with generalized r-terraced matrices.

2 Sums and products of the terraced Fibonacci and Lucas matrices

We next check the Rhaly terraced Lucas matrix

RL �

⎡
⎢⎢⎣

1 0 0
3 3 0
4 4 4

0 . . .

0 . . .

0 . . .

7 7 7 7 . . .

⎤
⎥⎥⎦, (2.1)

The leading diagonals seem to yield an OEIS sequence A028831,

{Bn} ≡ {1,3, 7,11,22,43,83,159,307, . . . }
the elements of which satisfy a 4th order linear homogeneous recurrence relation

Bn � Bn−1 + Bn−2 + Bn−3 + Bn−4, n > 4,

with initial conditions B1 � 1, B2 � 3, B3 � 7, B4 � 11. We note that after n � 3, {Bn}
seems to be related to a convolution of the Lucas sequence, and the row sums result in the
sequence {nLn}[OEIS, A145005], somewhat similar to RF and {nFn}. In turn the, for the
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4 × 4 case, we obtain

RL RF �

⎡
⎢⎢⎣

1 0
0 3

0 0
0 0

0 0
0 0

8 0
0 21

⎤
⎥⎥⎦ � RF RL (2.2)

which is a bisection of the Fibonacci sequence (Sloane 2024), (A00196), It is also well known
that FnLn � F2n (Hoggatt 1969). If, however, we refine our notation for the Rhaly terraced
Fibonacci matrix to

RF(n) �

⎡
⎢⎢⎣

1 0 0
1 1 0
2 2 2

0 . . .

0 . . .

0 . . .

3 3 3 3 . . .

⎤
⎥⎥⎦ (2.3)

then, for the 4 × 4 case,

RL(n)RF(n) � RF(2n) (2.4)

and

RF(n−1) + RF(n+1) � RL , (2.5)

A Hankel or catalecticant matrix (Masano 1985) has the symmetric form

Ha �
⎡
⎣
a1 a2 a3
a2 a3 a4
a3 a4 a5

. . .

⎤
⎦ (2.6)

and we can define a Hankel symmetric Fibonacci matrix as

HF �

⎡
⎢⎢⎣

1 1 2
1 2 3
2 3 5

. . .

. . .

⎤
⎥⎥⎦, (2.7)

so for the 4 × 4 case it can be calculated that, for example,

RF HF �

⎡
⎢⎢⎣

1 1 2 3
2 3 5 8
8 12 21 33
20 32 54 87

⎤
⎥⎥⎦ �� HF RF �

⎡
⎢⎢⎣

15 14
24 23

13 9
21 15

39 37
63 60

34 24
55 38

⎤
⎥⎥⎦, (2.8)

though they have their own independent internal and diagonal patterns; for example, the
leading diagonal sums of HF form the same sequences as the row sums of RF , namely
{nFn}. Further explorations are fairly obvious.

3 Extensions of the Rhaly terracedmatrices

In this section, r -Terraced Rr , n matrices, which are amore general form of Terracedmatrices,
will be created and the general properties of these matrices will be introduced.
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226 Page 6 of 22 A. G. Shannon et al.

Let r ∈ C and t1 < t2 < . . . tn . r -Terraced Rr , n is represent as follows:

Rr , n �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

t1 0 0 0 0 · · · 0 0
r t2 t2 0 0 0 · · · 0 0
r t3 r t3 t3 0 0 · · · 0 0
r t4 r t4 r t4 t4 0 · · · 0 0
...

...
...

...
...

. . .
...

...
r tn r tn r tn r tn r tn · · · r tn tn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.1)

and their elements satisfy:

Ri , j �
⎧⎨
⎩

0, i f j > j
r tk , i f j < i
tk , i � j

Theorem 3.1 Let Rr , n(λ) be the characteristic polynomial of matrix Rr , n . Then Rr , n(λ)
satisfies recurrence relation as in follows:

Rr , n(λ) � (tn − λ)Rr , n−1(λ) (3.2)

where Rr , 1(λ) � (t1 − λ).

Proof Let the characteristic polynomials of Rr , n , Rr , n(λ).

Rr , n(λ) � det
(
Rr , n − λI

) �

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

t1 − λ 0 0 0 0 · · · 0 0
r t2 t2 − λ 0 0 0 · · · 0 0
r t3 r t3 t3 − λ 0 0 · · · 0 0
r t4 r t4 r t4 t4 − λ 0 · · · 0 0
...

...
...

...
...

. . .
...

...
r tn r tn r tn r tn r tn · · · r tn tn − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

� (t1 − λ)(t2 − λ) . . . (tn − λ) �
n∏

i�1

(ti − λ).

When we expand this determinant by the last column, we obtain the recurrence relation
for the characteristic polynomial of the r-Terraced matrix as follows:

Rr , n(λ) � (tn − λ)Rr , n−1(λ)

Theorem 3.2 Assume that Rr , n is a matrix in (3.1), the given matrix can be written as:

Rr , n �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

t1 0 0 0 0 · · · 0 0
r t2 t2 0 0 0 · · · 0 0
r t3 r t3 t3 0 0 · · · 0 0
r t4 r t4 r t4 t4 0 · · · 0 0
...

...
...

...
...

. . .
...

...
r tn r tn r tn r tn r tn · · · r tn tn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
[
Rr , n−1 0
rY tn

]

where Y � (tn , tn , tn , . . . ., tn). If Rr , n is non-singular matrix, then the inverse of Rr , n is

R−1
r , n �

[
R−1
r , n−1 0

−rkY R−1
r , n−1 k

]

in which k � 1
tn

.
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Proof We can prove this theorem by mathematical induction on n. For n � 2 we obtain

Rr , 2 �
[
t1 0
r t2 t2

]

R−1
r , 2 � 1

det(Rr , 2)

[
t2 0

−r t2 t1

]
�
[

1
t1

0
−r
t1

1
t2

]

On the other hand, for n � 2, we obtain

R−1
r , 2 �

[
1
t1

0
−r
t2
t2

1
t1

1
t2

]
�
[

1
t1

0
−r
t1

1
t2

]

Our conclusion is true for n � 2. Assume that our claim is true for n − 1. Then identity
Rr , n−1R

−1
r , n−1 � In−1.We show that the result is true for all n.Bymultiplying Rr , n and R−1

r , n

together, we find that
[
Rr , n−1 0
rY tn

][
R−1
r , n−1 0

−rkY R−1
r , n−1 k

]
�
[

Rr , n−1R
−1
r , n−1 0

rY R−1
r , n−1 − tnrkY R−1

r , n−1 ktn

]
�
[
In−1 0
0 1

]
.

Theorem 3.3 Let the r− Terraced matrix Rr , n be as in (3.1) and tn > tn−1 > . . . > t3 >

t2 > t1. Then we have the upper bound for the spectral norm as follows:

‖Rr , n‖2 ≤
√√√√(

(n − 1)|r |2 + 1
) n∑
i�1

|ti |2 (3.3)

In addition, the l p norm and Euclidean norm of the r− Terraced matrix Rr , n provide the
following equalities:

‖Rr , n‖p
p �

n∑
i�1

|ti |p + |r tn |p +
n∑

i�2

|r ti |p +
n∑

i�3

|r ti |p + · · · +
n∑

i�n−1

|r ti |p (3.4)

‖Rr , n‖2E �
n∑

i�1

|ti |2 + |r tn |2 +
n∑

i�2

|r ti |2 +
n∑

i�3

|r ti |2 + · · · +
n∑

i�n−1

|r ti |2 (3.5)

Proof Let AandB form the following matrices:

A �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 · · · 0 0
r 1 0 0 · · · 0 0
r r 1 0 · · · 0 0
...

...
...

. . . · · · ...
...

r r r
. . . · · · 1 0

r r r r · · · r 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

B �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

t1 0 0 0 · · · 0 0 0
t2 t2 0 0 · · · 0 0 0
t3 t3 t3 0 · · · 0 0 0
...

...
...

...
. . .

...
...

...
tn−1 tn−1 tn−1 tn−1 · · · tn−1 tn−1 0
tn tn tn tn · · · tn tn tn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Therefore, we obtain

‖Rr , n‖2 ≤ r1(A)c1(B)

where

r1(A) �
√

(n − 1)|r |2 + 1

and

c1(B) �
√√√√

n∑
i�1

|ti |2

Since Rr , n � A ◦ B and from Lemma 1.4, we obtain

‖Rr , n‖2 ≤
√√√√(

(n − 1)|r |2 + 1
) n∑
i�1

|ti |2

From the definition of the l p norm, we obtain (3.4). Taking p � 2 in (3.4) we get the
Euclidean norm as in (3.5).

Theorem 3.4 The coefficients of the characteristic polynomial

Rr , n(λ) � β(n)
n λn + β

(n)
n−1λ

n−1 + · · · + β
(n)
1 λ + β

(n)
0 (3.6)

of the r− Terraced matrix Rr , n satisfy

β
(n−1)
n−1 � 0, β

(n−1)
n−2 � tn , β

(n−1)
n−i � tnβ

(n−1)
n−i+1, β

(n)
n−1 � β

(n−1)
n−2 + β

(n)
n−1 − tn .

Proof From (3.6) we have

Rr , n−1(λ) � λn−1 + β
(n−1)
n−2 λn−2 + · · · + β

(n−1)
1 λ + β

(n−1)
0 (3.7)

Substituting (3.6), (3.7) in (3.2) and some after calculations we get

Rr , n(λ) � β(n)
n λn + β

(n)
n−1λ

n−1 + · · · + β
(n)
1 λ + β

(n)
0

� (tn − λ)β
(n−1)
n−1 λn−1 + β

(n−1)
n−2 λn−2 + β

(n−1)
n−3 λn−3 + β

(n−1)
n−4 λn−4 + · · · + β

(n−1)
1 λ + β

(n−1)
0

λn
(
β(n)
n + β

(n−1)
n−1

)
+ λn−1

(
β
(n)
n−1 − tn + β

(n−1)
n−2

)
+ λn−2

(
β
(n)
n−2 − tnβ

(n−1)
n−2 + β

(n−1)
n−3

)

+ λn−3
(
β
(n)
n−3 − tnβ

(n−1)
n−3 + β

(n−1)
n−4

)
+ · · · + λ

(
β
(n)
1 − tnβ

(n−1)
1 + β

(n−1)
0

)
+ tnβ

(n−1)
0

Thus, we can express it in the general form:

β
(n−1)
n−2 � tn

β
(n−1)
n−3 � tnβ

(n−1)
n−2 , β

(n−1)
n−4 � tnβ

(n−1)
n−3 , β

(n−1)
n−i � tnβ

(n−1)
n−i+1

Lemma 3.5 For the r− Terraced matrix Rr , n, we have

tr
(
Rr , n

) � t1 + t2 + t3 + · · · + tn �
n∑

i�1

ti
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Proof This is clear from the definition of the trace of a matrix which is defined as the sum of
the elements on its main diagonal.

Theorem 3.6 The upper bound for the spread of the r− terraced matrix Rr , n is given by

S
(
Rr , n

) ≤
√√√√2

(
n∑

i�1

|ti |2 + |r tn |2 +
n∑

i�2

|r ti |2 +
n∑

i�3

|r ti |2 + · · · +
n∑

i�n−1

|r ti |2
)

− 2

n

(
n∑

i�1

ti

)2

Proof Using Frobenius norm ‖Rr , n‖2E from Theorem 3.3 and trace formula from Lemma

3.5, we have following equation from Definition 1.3.

S
(
Rr , n

) ≤
√
2‖Rr , n‖2E − 2

n

∣∣tr(Rr , n
)∣∣2

�
√√√√2

(
n∑

i�1

|ti |2 + |r tn |2 +
n∑

i�2

|r ti |2 +
n∑

i�3

|r ti |2 + · · · +
n∑

i�n−1

|r ti |2
)

− 2

n

(
n∑

i�1

ti

)2

Theorem 3.7 The rank of the r− terraced matrix Rr , n is n.

Proof The rank of a matrix is defined as the maximum number of linearly independent rows
or columns in the matrix. Also, the sum eigenvalues of r− terraced matrix Rr , n are equal
tr
(
Rr , n

)
.

3.1 Example

In this sub-section, we provide a numerical example to validate our theoretical findings,
utilizing Wolfram Alpha for the computations. The example focuses on matrices derived
from the Fibonacci numbers Fn . The matrix Fi j was constructed with Fibonacci numbers on
themain diagonal and sub diagonal entries scaled by the parameter r . The choice of Fibonacci
numbers ensures a structured growth pattern influenced by the golden ratio, known for its
inherent stability and occurrence in natural growth models. By varying r , we examined how
the subdiagonal scaling affects both the spread and the Euclidean norm. In the examples
given below, different norm values and therefore different upper bounds for the spread are
obtained by increasing the size of the matrix and increasing r in different ways.

To begin,we define the Fibonacci numbers. These numbers are generated by the recurrence
formula

Fn+2 � Fn+1 + Fn ,

with the initial values F0 � 0 and F1 � 1.
In the example, in order to complywith theTheorem,we shall begin the Fibonacci numbers

from 1 and continue as 1, 2, 3, 5, 8, 13, . . .

Let

Ri j � Fi j �
⎧⎨
⎩r

0, i f j > i
Fn , i f j < i
Fn , i f i � j
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be a matrix as in matrix form in (3.1) for n � 5, r � 1
2 . Then we get

R 1
2 , 5

� F1
2 , 5

� F
i j

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

F1 0 0 0 0
1
2 F2 F2 0 0 0
1
2 F3

1
2 F3 F3 0 0

1
2 F4

1
2 F4

1
2 F4 F4 0

1
2 F5

1
2 F5

1
2 F5

1
2 F5 F5

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

1 2 0 0 0
3
2

3
2 3 0 0

5
2

5
2

5
2 5 0

4 4 4 4 8

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Using Theorems 3.1 and 3.4, the characteristic polynomial of the r− Terraced matrix
F1

2 , 5
satisfies the recurrence relation:

F1
2 , 5

(λ) � (F5 − λ)F1
2 , 4

(λ)

The coefficients of the characteristic polynomial

β
(5)
5 λ5 + β

(5)
4 λ4 + β

(5)
3 λ3 + β

(5)
2 λ2 + β

(5)
1 λ + β

(5)
0

of the r− Terraced matrix R 1
2 , 5

satisfy

F1
2 , 3

(λ) � (F3 − λ)R 1
2 , 2

(λ) � −λ3 + 6λ2 − 11λ + 6

F1
2 , 4

(λ) � (F4 − λ)R 1
2 , 3

(λ) � λ4 − 11λ3 + 41λ2 − 61λ + 30

F1
2 , 5

(λ) � (F5 − λ)R 1
2 , 4

(λ) � −λ5 + 19λ4 − 129λ3 + 389λ2 − 518λ + 240

On the other hand, for the characteristic polynomial F1
2 , 5

(λ) we obtain, the sum of the

roots is 19 and this is equal to the sum of the eigenvalues, with tr
(
F1

2 , 5
(λ)

)
� 19, as can be

clearly seen from Theorem 4. By virtue of Theorem 2, F1
2 , 5

matrix is written as follows:

F1
2 , 5

�
[
F1

2 , 4
0

1
2Y F5

]
,

where Y � (F5, F5, . . . , F5)

F1
2 , 5

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

F1 0 0 0 0
1
2 F2 F2 0 0 0
1
2 F3

1
2 F3 F3 0 0

1
2 F4

1
2 F4

1
2 F4 F4 0

1
2 F5

1
2 F5

1
2 F5

1
2 F5 F5

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

1 2 0 0 0
3
2

3
2 3 0 0

5
2

5
2

5
2 5 0

4 4 4 4 8

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

The inverse matrix of F1
2 , 5

is as follows:

(
F1

2 , 5

)−1 �
⎡
⎢⎣

(
F1

2 , 4

)−1
0

− 1
2

1
F5
Y
(
F1

2 , 4

)−1
1
F5

⎤
⎥⎦ �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

− 1
2

1
2 0 0 0

− 1
4 − 1

4
1
3 0 0

− 1
8 − 1

8 − 1
6

1
5 0

− 1
16 − 1

16 − 1
12 − 1

10
1
8

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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The spectral norm of matrix F1
2 , 5

is calculated as

(
F1

2 , 5

)T
F1

2 , 5
�

⎡
⎢⎢⎢⎢⎢⎣

26,5 26,5 26,75 28,5 32
26,5 28,5 26,75 28,5 32
26,75 26,75 31,25 28,5 32
28,5 28,5 28,5 41 32
32 32 32 32 64

⎤
⎥⎥⎥⎥⎥⎦

det

((
F1

2 , 5

)T
F1

2 , 5
− λI

)
� 0 � −λ5 + 191,25λ4 − 5488,125λ3

+ 44237,625λ2 − 108030λ + 57600

λ1 � 0,7345, λ2 � 3,0432, λ3 � 7,5286, λ4 � 21,62, λ5 � 158,3237

Spectral norm is ‖F1
2 , 5

‖
2

� √
λmax � √

158,3237 ∼� 12,5827

We know that from Theorem 3.3,

‖F1
2 , 5

‖
2

≤
√√√√(

(n − 1)|r |2 + 1
) n∑
i�1

|Fi |2

�
√√√√
(
4
1

4
+ 1

) 5∑
i�1

|Fi |2 �
√
2
(
F2
1 + F2

2 + F2
3 + F2

4 + F2
5

)

� √
2(1 + 4 + 9 + 25 + 64) ∼� 14,36

‖F1
2 , 5

‖
2

� 12,5827 ≤ 14,36

as desired.
The Euclidean norm of F1

2 , 5
as follows:

‖F1
2 , 5

‖2
E

�
5∑

i�1

|Fi |2 +
∣∣∣∣
1

2
F5

∣∣∣∣
2

+
5∑

i�2

∣∣∣∣
1

2
Fi

∣∣∣∣
2

+
5∑

i�3

∣∣∣∣
1

2
Fi

∣∣∣∣
2

+
5∑

i�4

∣∣∣∣
1

2
Fi

∣∣∣∣
2

� F2
1 + F2

2 + F2
3 + F2

4 + F2
5 +

(
1

2
F5

)2

+

(
1

2
F2

)2

+

(
1

2
F3

)2

+

(
1

2
F4

)2

+

(
1

2
F5

)2

+

(
1

2
F3

)2

+

(
1

2
F4

)2

+

(
1

2
F5

)2

+

(
1

2
F4

)2

+

(
1

2
F5

)2

� 191,25

Finally, let’s find an upper bound for the spread value of the r− Terraced matrix F1
2 , 5

:

S
(
F1

2 , 5

)
≤
√
2‖F1

2 , 5
‖2
E

− 2

5

∣∣∣tr
(
F1

2 , 5

)∣∣∣2

�

√√√√√2

(
5∑

i�1

|Fi |2 +
∣∣∣∣
1

2
F5

∣∣∣∣
2

+
5∑

i�2

∣∣∣∣
1

2
Fi

∣∣∣∣
2

+
5∑

i�3

∣∣∣∣
1

2
Fi

∣∣∣∣
2

+
5∑

i�4

∣∣∣∣
1

2
Fi

∣∣∣∣
2
)

− 2

5

(
5∑

i�1

Fi

)2

�
√√√√2

(
F2
1 + F2

2 + F2
3 + F2

4 + F2
5 +

( 1
2 F5

)2
+
( 1
2 F2

)2
+
( 1
2 F3

)2
+
( 1
2 F4

)2
+
( 1
2 F5

)2
+
( 1
2 F3

)2
+
( 1
2 F4

)2
+
( 1
2 F5

)2
+
( 1
2 F4

)2
+
( 1
2 F5

)2
)
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− 2

5
(F1 + F2 + F3 + F4 + F5)

2

� √
223,6 ∼� 14,9

S
(
F1

2 , 5

)
≤ 14,9.

Now let’s consider the Fibonacci values of the same size for r � 1
4 :

S
(
F1

4 , 5

)
≤
√
2‖F1

4 , 5
‖2
E

− 2

5

∣∣∣tr
(
F1

4 , 5

)∣∣∣2

�
√√√√2

(
F2
1 + F2

2 + F2
3 + F2

4 + F2
5 +

( 1
4 F5

)2
+
( 1
4 F2

)2
+
( 1
4 F3

)2
+
( 1
4 F4

)2
+
( 1
4 F5

)2
+
( 1
4 F3

)2
+
( 1
4 F4

)2
+
( 1
4 F5

)2
+
( 1
4 F4

)2
+
( 1
4 F5

)2
)

− 2

5
(F1 + F2 + F3 + F4 + F5)

2

�
√
75,475 ∼� 8,68

S
(
F1

4 , 5

)
≤ 8,68

Finally, let’s consider the Fibonacci values of the same size for r � 2:

S
(
F2, 5

) ≤
√
2‖F2, 5‖2E − 2

5

∣∣tr(F2, 5
)∣∣2

�
√
2

(
F2
1 + F2

2 + F2
3 + F2

4 + F2
5 + (2F5)2 + (2F2)2 + (2F3)2 + (2F4)2

+(2F5)2 + (2F3)2 + (2F4)2 + (2F5)2 + (2F4)2 + (2F5)2

)

− 2

5
(F1 + F2 + F3 + F4 + F5)

2

�
√
2885,6 ∼� 56,34

S
(
F2, 5

) ≤ 56,34

Now let’s find a new upper bound by increasing the matrix size, i.e. for the values
n � 6, r � 1

4 :

S
(
F1

4 , 6

)
≤
√
2‖F1

4 , 6
‖2
E

− 2

5

∣∣∣tr
(
F1

4 , 6

)∣∣∣2

�

√√√√√√2

⎛
⎜⎝

F2
1 + F2

2 + F2
3 + F2

4 + F2
5 + F2

6 +
( 1
4 F6

)2
+
( 1
4 F2

)2
+
( 1
4 F3

)2
+
( 1
4 F4

)2
+
( 1
4 F5

)2
+
( 1
4 F6

)2
( 1
4 F3

)2
+
( 1
4 F4

)2
+
( 1
4 F5

)2
+
( 1
4 F6

)2
+
( 1
4 F4

)2
+
( 1
4 F5

)2
+
( 1
4 F6

)2

⎞
⎟⎠

− 2

6
(F1 + F2 + F3 + F4 + F5 + F6)

2

�
√
320,45 ∼� 17,90

S
(
F1

4 , 6

)
≤ 17,90
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The Fibonacci numbers on the diagonal impart a structured spectral pattern influenced
by the golden ratio. As r increases, this structured growth is disrupted, highlighting the
delicate balance between the diagonal’s stability-driven sequence and the sub diagonal’s
scaling factor.

Smaller r values preserve the inherent stability provided by the Fibonacci sequence, while
larger r values stretch the eigenvalues, revealing the underlying sensitivity to perturbations.
This interplay is crucial for applications requiring customizable stability profiles.

Here’s an improved and more insightful explanation with stronger academic language and
reasoning:

The constructed matrix was analyzed by choosing as consecutive Fibonacci numbers and
varying the parameter r over the set

{ 1
2 ,

1
4 , 2

}
. The analysis revealed that the smallest upper

bound for the spread was achieved when r � 1
4 . Upon increasing the matrix dimension to

include F6 � 13, the upper bound increased, despite using the same optimal r value.
Now let’s make a detailed explanation according to r r values:

1. For r � 1
4 (Upper Bound � 8.68):

At this smaller r value, the sub diagonal elements are relatively weak compared to the
dominant Fibonacci diagonal entries. This leads to a matrix that is strongly diagonally
dominant, resulting in eigenvalues that are closely clustered. Particularly useful in signal
and coding theory, where closely packed eigenvalues yield more efficient filtering and
encoding.

2. For r � 1
2 (Upper Bound � 14.9):

Doubling parameter r increases the weight of the sub diagonal elements causing a
moderate dispersion of the eigenvalues. Here thematrix exhibits less diagonal dominance
and the spread grows accordingly. Engineering systems where controlled eigenvalue
separation is needed may leverage this configuration.

3. For r � 2 (Upper Bound � 56.34):
With a significantly larger r , the sub diagonal elements become comparable to or

larger than the main diagonal entries, greatly reducing diagonal dominance. As a result,
the spread increases sharply, reflecting a wide dispersion of eigenvalues. Large spreads
may be beneficial in cryptographic algorithms requiring eigenvalue diversity to enhance
security measures.

This finding highlights two important insights. First, selecting r values less than one
generally improves the spread’s upper bound, indicating a stabilizing effect on the spectral
distribution. Second, increasing thematrix dimension tends to raise the upper bound, implying
that larger matrices may not always be advantageous for minimizing spread-related criteria.
From both a theoretical and practical perspective, these results suggest that working with
lower-dimensional matrices and appropriately chosen parameters particularly with r < 1
can yield more favorable spectral properties while reducing computational complexity and
time. This balance between matrix size and parameter choice is crucial for efficient and
effective matrix-based computations.

In Fig. 1, variation of the upper bound of the spread with respect to the parameter r is
given for increasing and decreasing values of r for the same size matrix:
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Fig. 1 Variation of the upper bound of the spread with respect to the parameter r

4 Generalized symmetric Rhaly r-terracedmatrices

In this section, generalized symmetric r− Terraced SRr , n matrices, which are a more general
form of Terraced matrices with symmetric entries, will be created and the general properties
of these matrices will be introduced.

Let r ∈ C and t1 < t2 < . . . tn . Generalized symmetric r− Terraced SRr , n is represent
as follows:

SRr , n �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t1 0 0 0 0 · · · 0 0
t2 t2 0 0 0 · · · 0 0r
t3 t3 t3 0 0 · · · 0r 0r
t4 t4 t4 t4 0 · · · 0 0
...

...
...

...
...

. . .
...

...
tn−1 tn−1 r tn−1 r tn−1 r tn−1 . . . r tn−1 0r
tn r tn r tn tn tn · · · r tn r tn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.1)

Theorem 4.1 Let SRr , n(λ) be the characteristic polynomial of matrix SRr , n .

Then SRr , n(λ) satisfies the recurrence relation is as follows:

SRr , n(λ) � (r tn − λ)SRr , n−1(λ) (4.2)

where SRr , 1(λ) � (t1 − λ).
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Proof Let the characteristic polynomials of SRr , n , SRr , n(λ).

SRr , n (λ) � det
(
SRr , n − λI

)

�

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

t1 − λ 0 0 0 0 · · · 0 0
r t2 t2 − λ 0 0 0 · · · 0 0
r t3 r t3 t3 − λ 0 0 · · · 0 0
r t4 r t4 r t4 t4 − λ 0 · · · 0 0
...

...
...

...
...

. . .
...

...
tn−1 tn−1 r tn−1 r tn−1 r tn−1 . . . r tn−1 − λ 0
tn r tn r tn r tn r tn · · · r tn r tn − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

If n is odd;

det
(
SRr , n−λI

)� (t1−λ) (t2−λ) . . .
(
t n+1

2
−λ

)
.
(
rt n+1

2 +1−λ
) (

rt n+1
2 +2−λ

)
. . . (r tn−λ) .

If n is even;

det
(
SRr , n − λI

) � (t1 − λ)(t2 − λ) . . .
(
t n
2

− λ
)
.
(
rt n

2 +1
− λ

)(
rt n

2 +2
− λ

)
. . . (r tn − λ).

When we expand this determinant by the last column, we obtain the recurrence relation
for the characteristic polynomial of the generalized symmetric r-Terraced matrix as follows:

SRr , n(λ) � (r tn − λ)SRr , n−1(λ)

Theorem 4.2 Assume that SRr , n is a matrix in (4.1), the given matrix can be written as:

SRr , n �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t1 0 0 0 0 · · · 0 0
t2 t2 0 0 0 · · · 0 0r
t3 t3 t3 0 0 · · · 0r 0r
t4 t4 t4 t4 0 · · · 0 0
...

...
...

...
...

. . .
...

...
tn−1 tn−1 r tn−1 r tn−1 r tn−1 . . . r tn−1 0r
tn r tn r tn tn tn · · · r tn r tn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
[
SRr , n−1 0

K rtn

]

where K � (tn , r tn , r tn , . . . ., r tn). If SRr , n is non-singular matrix, then the inverse of
SRr , n is

SR−1
r , n �

[
SR−1

r , n−1 0
−sK SR−1

r , n−1 s

]

in which s � 1
r tn

.

Proof We can prove this theorem by mathematical induction on n. For n � 2 we obtain

SRr , 2 �
[
t1 0
t2 r t2

]

SR−1
r , 2 � 1

det(Rr , 2)

[
r t2 0
−t2 t1

]
�
[

1
t1

0
−1
r t1

1
r t2

]
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On the other hand, for n � 2, we obtain

SR−1
r , 2 �

[
1
t1

0
−1
r t2

t2
1
t1

1
r t2

]
�
[

1
t1

0
−1
r t1

1
r t2

]

Our conclusion is true for n � 2. Assume that our claim is true for n − 1. Then identity
SRr , n−1SR

−1
r , n−1 � In−1.We show that the result is true for all n. By multiplying SRr , n and

SR−1
r , n together, we find that

[
SRr , n−1 0

K rtn

][
SR−1

r , n−1 0
−sK SR−1

r , n−1 s

]
�
[

SRr , n−1SR
−1
r , n−1 0

K SR−1
r , n−1 − tnrsK SR−1

r , n−1 sr tn

]

�
[

1 0
In−1 1

]
.

Theorem 4.3 Let the symmetric r− Terraced matrix SRr , n be as in (4.1) and tn > tn−1 >

. . . > t3 > t2 > t1. Then we have the upper bound for the spectral norm as follows:

If r > 1

‖SRr , n‖2 ≤
√√√√(

(n − 1)|r |2 + 1
) n∑
i�1

|ti |2 (4.3)

If r < 1

‖SRr , n‖2 ≤
⎧⎨
⎩

√( n
2 |r |2 + n

2

)∑n
i�1 |ti |2, I f n is even√( n+1

2 +
( n+1

2 − 1
)|r |2)∑n

i�1 |ti |2, I f n is odd
(4.4)

In addition, the l p norm and Euclidean norm of the symmetric r− Terraced matrix SRr , n

provide the following equalities:
If n is even;

‖SRr , n‖p
p �

n
2∑

i�1

i |ti |p +
n∑

i� n
2

(n − i)|ti+1|p +
n∑

i� n
2 +1

(2i − n − 1)|r ti |p (4.5)

‖SRr , n‖2E �
n
2∑

i�1

i |ti |2 +
n∑

i� n
2

(n − i)|ti+1|2 +
n∑

i� n
2 +1

(2i − n − 1)|r ti |2 (4.6)

If n is odd;

‖SRr , n‖p
p �

n+1
2∑

i�1

i |ti |p +
n∑

i� n+1
2 +1

(n − i + 1)|ti |p +
n∑

i� n+1
2 +1

(i − 2)|r ti |p (4.7)

‖SRr , n‖2E �
n+1
2∑

i�1

i |ti |2 +
n∑

i� n+1
2 +1

(n − i + 1)|ti |2 +
n∑

i� n+1
2 +1

(i − 2)|r ti |2 (4.8)
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Proof Let A′andB form the following matrices:

A′ �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 · · · 0 0
1 1 0 0 · · · 0 r
1 1 1 0 · · · r r
...

...
...

. . . · · · ...
...

1 1 r
. . . · · · r r

1 r r r · · · r r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

B �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

t1 0 0 0 · · · 0 0 0
t2 t2 0 0 · · · 0 0 0
t3 t3 t3 0 · · · 0 0 0
...

...
...

...
. . .

...
...

...
tn−1 tn−1 tn−1 tn−1 · · · tn−1 tn−1 0
tn tn tn tn · · · tn tn tn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Therefore, we obtain

‖SRr , n‖2 ≤ r1(A
′)c1(B)

where

r1
(
A′) �

√
(n − 1)|r |2 + 1(If r > 1)

r1
(
A′) �

√(n
2
|r |2 + n

2

)
(If r < 1 and n is even)

r1
(
A′) �

√(
n + 1

2
+

(
n + 1

2
− 1

)
|r |2

)
(If r < 1 and n is odd)

and

c1(B) �
√√√√

n∑
i�1

|ti |2

Since SRr , n � A′ ◦ B and from Lemma 1.4, we obtain
If r > 1

‖SRr , n‖2 ≤
√√√√(

(n − 1)|r |2 + 1
) n∑
i�1

|ti |2

If r < 1

‖SRr , n‖2 ≤
⎧⎨
⎩

√( n
2 |r |2 + n

2

)∑n
i�1 |ti |2, I f n is even√( n+1

2 +
( n+1

2 − 1
)|r |2)∑n

i�1 |ti |2, I f n is odd
From the definition of the l p norm and Euclidean norm, we get (4.5)–(4.8).
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Theorem 4.4 The upper bound for the spread of the symmetric r− Terraced matrix SRr , n is
given by

If n is even;

S
(
SRr , n

) ≤

√√√√√√2

⎛
⎜⎝

n
2∑

i�1

i |ti |2 +
n∑

i� n
2

(n − i) |ti+1|2 +
n∑

i� n
2 +1

(2i − n − 1) |r ti |2
⎞
⎟⎠ − 2

n

⎛
⎜⎝

n
2∑

i�1

ti +
n∑

i� n
2 +1

r ti

⎞
⎟⎠
2

If n is odd;

S
(
SRr , n

)

≤

√√√√√√√2

⎛
⎜⎝

n+1
2∑

i�1

i |ti |2 +
n∑

i� n+1
2 +1

(n − i + 1) |ti |2 +
n∑

i� n+1
2 +1

(i − 2) |r ti |2
⎞
⎟⎠ − 2

n

⎛
⎜⎝

n+1
2∑

i�1

ti +
n∑

i� n+1
2 +1

r ti

⎞
⎟⎠
2

Proof Using Frobenius norm ‖SRr , n‖2E from Theorem 4.2, Trace formula and Definition

1.3. We achieve the desired results.

4.1 Example

In this sub-section, we provide a numerical example to validate our theoretical findings,
utilizing Wolfram Alpha for the computations. The example focuses on matrices derived
from the Fibonacci numbers Fn .

Let be a matrix as in matrix form in (4.1) for n � 5, r � 1
2 . Then we get

SR 1
2 , 5

� SF 1
2 , 5

� SF
i j

�

⎡
⎢⎢⎢⎢⎢⎣

F1 0 0 0 0
F2 F2 0 0 0
F3 F3 F3 0 0
F4 F4

1
2 F4

1
2 F4 0

F5
1
2 F5

1
2 F5

1
2 F5

1
2 F5

⎤
⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0
1 2 0 0 0
3 3 3 0 0
5 5 5

2
5
2 0

8 4 4 4 4

⎤
⎥⎥⎥⎥⎥⎦

By virtue of Theorem 4.2, SF 1
2 , 5

matrix is written as follows:

SF 1
2 , 5

�
[
SR 1

2 , 4
0

K r F5

]

The inverse matrix of SF 1
2 , 5

,

SF−1
1
2 , 5

�

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0
−1 1

2 0 0 0
0 − 1

2
1
3 0 0

0 − 1
2 − 1

3
2
5 0

−1 1
2 0 − 2

5
1
4

⎤
⎥⎥⎥⎥⎥⎦

�
⎡
⎣ SF−1

1
2 , 4

0

−K 2
F5
SF−1

1
2 , 4

2
F5

⎤
⎦
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The spectral norm of matrix SF 1
2 , 5

is calculated as

(
SF 1

2 , 5

)T
SF 1

2 , 5
�

⎡
⎢⎢⎢⎢⎢⎣

103 70 53,5 44,5 32
70 54 37,5 28,5 16
53,5 37,5 31,25 22,25 16
44,5 28,5 22,25 22,25 16
32 16 16 16 16

⎤
⎥⎥⎥⎥⎥⎦

det

((
SF 1

2 , 5

)T
SF 1

2 , 5
−λI

)
� λ5 − 226,5λ4 + 3776,75λ3 − 14752,75λ2 + 16577λ− 3600

λ1 � 208,744, λ2 � 12,707, λ3 � 3,327, λ4 � 0,284, λ5 � 1,438

Spectral norm is ‖SF 1
2 , 5

‖
2

� √
λmax � √

208,744 ∼� 14,448

We know that from Theorem 4.3,

‖SF 1
2 , 5

‖
2

≤
√√√√
(
n + 1

2
+

(
n + 1

2
− 1

)
|r |2

) n∑
i�1

|Fi |2 � √
(3,5) (1 + 4 + 9 + 25 + 64) ∼� 18,98

‖SF 1
2 , 5

‖
2

� 14,448 ≤ 18,98

This shows that inequality is achieved.
The Euclidean norm of SF 1

2 , 5
as follows:

‖SF 1
2 , 5

‖2
E

�
3∑

k�1

k |Fk |2 +
5∑

k�4

(6 − k) |Fk |2

+
5∑

k�4

(k − 2)

∣∣∣∣
1

2
Fk

∣∣∣∣
2

� 1 + 8 + 27 + 50 + 64 +
25

2
+ 48 � 210,5

The upper bound for the spread of the symmetric r-Terraced matrix as follows:
n is odd;

S
(
SF 1

2 , 5

)

≤

√√√√√2

(
3∑

k�1

k |Fk |2 +
5∑

k�4

(6 − k) |Fk |2 +
5∑

k�4

(k − 2)

∣∣∣∣
1

2
Fk

∣∣∣∣
2
)

− 2

5

(
3∑

k�1

Fk +
5∑

k�4

1

2
Fk

)2

�
√
421 − 2

5

(
1 + 2 + 3 +

5

2
+ 4

)
� √

416

So, we get

S
(
SF 1

2 , 5

)
≤ √

416 � 20.39.

123



226 Page 20 of 22 A. G. Shannon et al.

5 Conclusion

In this study, we introduced the r-Terraced matrix as a generalization of the Terraced matrix
and developed its symmetric counterpart, the symmetric r-Terraced matrix. Key properties
of these matrices were derived, including their spectral and Euclidean norms, upper bounds
for their spreads, and characteristic polynomials. By applying these theoretical results to
Fibonacci numbers, we provided illustrative examples that not only validated the accuracy
of our findings but also reinforced the broader applicability of the derived results.

Thework presented here contributes to the ongoing study of structuredmatrices by extend-
ing the scope of Terraced matrices and exploring their theoretical and practical implications.
The symmetric r-Terraced matrix, in particular, opens up new avenues for analysing sym-
metric structures in linear algebra and their potential applications.

Also, in this study based on the obtained results, it is observed that selecting values of r
less than 1, leads to a smaller upper bound for the spread. This finding suggests that working
with lower-dimensionalmatrices and choosing smaller r values not only yields higher-quality
matrices in terms of spread minimization but also reduces computational effort. Therefore,
it is both efficient and effective to focus on smaller matrices with carefully selected r values
for achieving optimal results.

Suggestions for Future Research:

1. Application to other number sequences: Future studies could explore the application of
r-Terraced matrices to other special sequences, such as Lucas numbers or Pell numbers,
to investigate whether similar properties and patterns emerge.

2. Numerical analysis and optimization: The derived properties, such as norms and spreads,
can be utilized in optimization problems or in the analysis of numerical methods that rely
on structured matrices.

3. Generalization to higher dimensions: Extending the r-Terraced matrix framework to
higher-dimensional tensors or multi-index matrices could provide deeper insights and
broader applications in fields like data analysis and machine learning.

4. Connections with graph theory: The symmetric r-Terraced matrix could be studied in the
context of graph theory, particularly for analysing adjacency or Laplacian matrices of
structured graphs.

By building on the foundations laid in this work, further research can uncover additional
properties and applications of r-Terraced matrices, cementing their role in both theoretical
studies and applied mathematics.
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first draft of the manuscript was written by Bahar KULOĞLU and author commented on previous versions of
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