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Abstract Designing, modeling, and analyzing novel nonlinear elastic elements for the
nonlinear energy sink (NES) have long been an attractive research topic. Since gravity
is difficult to overcome, previous NES research mainly focused on horizontal vibration
suppression. This study proposes an origami-inspired NES. A stacked Miura-origami
(SMO) structure, consisting of two Miura-ori sheets, is adopted to construct a nonlinear
elastic element. By adjusting the initial angle and the connecting crease torsional stiff-
ness, the quasi-zero stiffness (QZS) and load-bearing capacity can be customized to match
the corresponding mass, establishing the vertical SMO-NES. The dynamic model of the
SMO-NES coupled with a linear oscillator (LO) is derived for vibrations in the vertical
direction. The approximate analytical solutions of the dynamic equation are obtained by
the harmonic balance method (HBM), and the solutions are verified numerically. The
parameter design principle of the SMO-NES is provided. Finally, the vibration reduction
performance of the SMO-NES is studied. The results show that the proposed SMO-
NES can overcome gravity and achieve quasi-zero nonlinear restoring force. Therefore,
the SMO-NES has the ability of wide-frequency vibration reduction, and can effectively
suppress vertical vibrations. By adjusting the initial angle and connecting the crease tor-
sional stiffness of the SMO, the SMO-NES can be achieved with different loading weights,
effectively suppressing the vibrations with different primary system masses and excita-
tion amplitudes. In conclusion, with the help of popular origami structures, this study
proposes a novel NES, and starts the research of combining origami and NES.
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1 Introduction

Controlling vertical-direction vibrations in structures has become increasingly critical[1–2].
Prolonged vertical vibrations can cause fatigue, crack formation, and structural failure in build-
ings and bridges, especially in earthquake-prone areas[3]. They can also loosen mechanical
equipment components, accelerate wear, and lead to equipment failure. Excessive vertical vi-
brations in vehicles (such as trains and cars) and airplanes can affect passenger comfort and
safety[4]. Therefore, effective vertical vibration control is urgently needed.

A tuned mass damper (TMD) is a passive device designed to reduce vibrations in structures[5].
Its frequency is tuned to match one of the natural frequencies of the target structure. However,
if the excitation frequency changes, the effectiveness of the TMD would substantially decrease.
Furthermore, when a structure exhibits multiple vibration modes, a single TMD can suppress
only one mode, with limited influence on the others[6]. These two drawbacks severely constrain
the engineering applications of TMDs.

The nonlinear energy sink (NES) is a passive nonlinear device[7–12]. Due to its unique non-
linear coupling and broadband absorption characteristics[13–16], the NES has significant advan-
tages in suppressing complex broadband vibrations[17–23]. Compared with traditional TMDs,
NESs can operate effectively over a wider frequency range and possess higher adaptability[24–27].
Wang et al.[28] proposed a bistable side-track NES with asymmetric structures, and experimen-
tally demonstrated that the NES can effectively reduce horizontal vibrations. Zeng et al.[29]

proposed a stable state adjustable NES to suppress the horizontal vibrations of different excita-
tion intensities. Geng et al.[30] proposed a magnetically limited NES to improve the reliability
of NESs, and showed that the limitation of nonlinear magnetic force enhanced the horizontal
vibration suppression effect and reduced the vibrations of the NES. Kremer and Liu[31] used
an NES consisting of a fixed beam and magnets to suppress horizontal vibrations and harvest
energy. Al-Shudeifat et al.[32] and Saeed et al.[33] experimentally and numerically studied the
use of the rotating NES in passive nonlinear target energy transfer, and found that the rotat-
ing NES could effectively suppress horizontal vibration. The above research proves that NESs
have remarkable vibration reduction efficiency for horizontal vibrations. However, for the main
system with dominant vertical vibrations in engineering practice, the equilibrium position is
affected by the NES gravity. The initial deformation caused by the gravity of an NES will in-
crease the linear stiffness of the NES[34–35], thereby weakening its wideband vibration reduction
capability. Thus, designing novel NESs that can eliminate the unexpected effects of gravity
in vertical motion will overcome the limitations of the existing NESs in attenuating vertical
vibrations, and requires more research effort.

Origami structures can be formulated based on the art of paper folding, where folded and
planar geometric shapes create forms with specific functions and structural characteristics[36].
Due to their unique geometric properties, adjustability, and lightweight, origami structures
have found broad applications in engineering and science, emerging as an innovative method in
engineering design[37]. Origami structures based on quasi-zero stiffness (QZS) characteristics
are an innovative vibration isolation technology, which allows for low dynamic stiffness within
small displacement ranges, effectively isolating low-frequency vibrations[38–39]. Ye and Ji[40–41]

and Ye et al.[42] proposed a QZS isolator formed by stacking Miura-origami structures with
truss springs, which could provide the required ultra-low dynamic stiffness for isolation while
maintaining high static stiffness for load support capacity, achieving effective suppression of low-
frequency vibrations. The origami structures based on the QZS characteristics have a certain
load support capacity and low dynamic linear stiffness, fully meeting the design requirements
for effectively suppressing the vertical vibration of an NES. However, to the best of the authors’



An origami-inspired nonlinear energy sink: design, modeling, and analysis 603

knowledge, there has been no research on origami-based NES design.
Inspired by the benefit of the origami structures, to suppress vertical vibrations, this study

develops the structural design of origami-inspired NES for the first time. This study proposes
a stacked Miura-origami (SMO)-NES model, and conducts the parameter design and vibration
reduction analysis for the SMO-NES. The results indicate that the proposed SMO-NES can
effectively suppress vertical vibrations. The main structure of the work is arranged as follows.
The mechanical model and the derivation of the dynamic equations are presented in Section 2.
Section 3 shows the parameter design principles of the SMO-NES. Section 4 performs a polyno-
mial fitting analysis for the nonlinear restoring force, and introduces the approximate analytical
solutions to the dynamic equations. Section 5 studies the vibration reduction of the SMO-NES.
Finally, the conclusions are summarized.

2 Mechanical model

The SMO configuration (see Fig. 1(a)) consists of two standard Miura-ori sheets, i.e., Sheet A
and Sheet B. First, both Miura-ori units are folded individually according to their crease pat-
terns (dashed lines represent valley folds, and solid lines represent mountain folds). Then, the
corresponding edges in the middle of the two folded units are connected to form the SMO.
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Fig. 1 Structure of the SMO: (a) configuration; (b) geometry (color online)

A standard Miura-ori unit can be defined by two adjacent crease lines, i.e., ai and bi, and
the angle γi between them (i = A,B). To ensure planar rigidity and compatibility during the
motion of the SMO structure, the geometric parameters must satisfy

cos γB

cos γA
=

aA

aB
, bA = bB = b, cos θB tan γB = cos θA tan γA, (1)

where θA and θB represent the fold angles of the two Miura-ori units concerning the horizontal
plane along the connecting edge.

The folding motion of the SMO structure can be described by the dihedral angles between
adjacent faces, and the relationship between these dihedral angles and the fold angles satisfies
the following conditions:





ρi1 = ρi3 = π− 2θi, ρi2 = 2 arcsin
( cos θi√

1− sin2 θi sin2 γi

)
,

ρi4 = 2π− ρi2, ρC = θB − θA,

(2)
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where ρi1, ρi2, ρi3, and ρi4 are the dihedral angles, and ρC is the dihedral angle corresponding
to the crease along the connecting edge.

The vertical height H can be expressed as follows:

H = aB sin θB sin γB − aA sin θA sin γA. (3)

In the SMO configuration, the dihedral angles ρAj (j = 1, 2, 3, 4) correspond to the crease
lines with a torsional stiffness KAj . The dihedral angles ρBj (j = 1, 2, 3, 4) correspond to
the crease lines with a torsional stiffness KBj . The dihedral angle ρC is related to a crease
line with a torsional stiffness KC. Furthermore, KA1 = KA3 = kAb, KA2 = KA4 = kAaA,
KB1 = KB3 = kBb, KB2 = KB4 = kBaB , and KC = kCb, where kA and kB are the torsional
stiffnesses per unit length of the creases in Sheet A and Sheet B, respectively, and kC is the
connecting crease torsional stiffness per unit length.

The total potential energy U of the SMO structure can be written as follows:

U =
1
2

( 4∑

j=1

KAj(∆ρAj)2 +
4∑

j=1

KBj(∆ρBj)2 + 4KC(∆ρC)2
)
. (4)

The initial height H0 of the SMO structure can be expressed as follows:

H0 = aB sin θB0 sin γB − aA sin θA0 sin γA, (5)

where θA0 and θB0 represent the angles of θA and θB in the initial state, respectively.
Therefore, the vertical displacement y of the SMO structure is given by

y = H0 −H. (6)

By differentiating the potential energy U with respect to the vertical displacement y, the
nonlinear restoring force of the SMO structure can be obtained as follows:

F (y) =
dU

dy
=

dU

dθA
·
( dy

dθA

)−1

. (7)

Figure 2 shows that the SMO-NES consists of a mass m2 and an SMO structure that provides
the nonlinear restoring force F (y). The SMO-NES is then coupled with a linear oscillator (LO)
in the vertical direction. m1, c1, and k1 represent the mass, damping, and stiffness of the LO,
respectively. A vertical force excitation F1 = F0 cos(ωt) is applied to the LO, where ω is the
excitation frequency, and F0 is the amplitude of the excitation force.

c1

F1=F0cos(ωt)

SMO

k1

m1

m2

y1

x

Fig. 2 Schematic diagram of the SMO-NES coupled LO (color online)

When the mass of the SMO-NES is m2, assume that y1 is the relative displacement between
the static equilibrium position of the SMO-NES and the LO. Then, according to Newton’s
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second law, the dynamic equations of the coupled system are given by




m1
d2x

dt2
+ c1

dx

dt
+ k1x− F (y1)− c2

dy1

dt
= F0 cos(ωt) + m1g,

m2

(d2y1

dt2
+

d2x

dt2

)
+ c2

dy1

dt
+ F (y1) = m2g.

(8)

3 Parameter design

In this section, to obtain the SMO structures with load support capacity and QZS charac-
teristics, the effects of the initial angle θA0 and the connecting crease torsional stiffness per unit
length kC on the nonlinear restoring force, nonlinear stiffness, and equilibrium bifurcation are
studied. The geometric parameters of the SMO are listed in Table A1[44]. It should be noted
that, for a more concise representation of the relationship between radians and degrees, the
radian expressions in this study have not been simplified.

Figure 3 shows the variations of the nonlinear restoring force, nonlinear stiffness, and equi-
librium bifurcation diagram with the initial angle θA0 when kC = 0.863N/(rad ·m). When θA0

changes from −70π/180 to −30π/180, the stable state of the SMO-NES is transmitted from
bistable to monostable. When θA0 = −60π/180, there is one pitchfork (PF) bifurcation of the
equilibrium solution, and the PF bifurcation point satisfies the QZS condition. Figure 4 shows
the variations of the nonlinear restoring force, nonlinear stiffness, and equilibrium bifurcation
diagram with the connecting crease torsional stiffness per unit length kC when θA0 = −60π/180.
Similar to the influence of θA0, as kC increases, the stable state of the SMO-NES changes from
bistable to monostable. When kC = 0.863N/(rad ·m), there is one PF bifurcation. It is noted
that the value of the nonlinear restoring force corresponding to zero stiffness is defined as the
loading weight G of the SMO-NES.
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As shown in Fig. 5, in order to achieve the SMO-NES with QZS characteristic, as θA0 varies
from −70π/180 to −30π/180, kC gradually decreases, resulting in a corresponding reduction
in the loading weight G of the SMO-NES. Therefore, for the primary systems with different
masses, adjusting θA0 and kC allows for the tuning of the loading weight G of the SMO-NES,
thereby achieving effective vibration suppression.
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Fig. 5 The relationship of θA0, kC, and G under the QZS condition (color online)

4 Approximate analytical solution

The coordinate transformation relationship is shown in Fig. 6. Assume that y1 is the static
equilibrium position (the position where the stiffness is zero) of the SMO-NES. At this point,
the gravity of the SMO-NES mass m2 equals the loading weight G, i.e., G = m2g. For a
vertical vibration system, the static equilibrium positions xs and ys of the main system and the
SMO-NES under the action of gravity are defined by the following algebraic equations:

k1xs − F (ys) = m1g, F (ys) = G. (9)

The expressions for xs and ys are obtained as

xs = (m1g + G)/k1, ys = 0. (10)
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Fig. 6 Coordinate transformation relationship (color online)
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Introduce the relative displacements measured from the static equilibrium, i.e., x1 = x− xs

and Y1 = y1 − ys. Then, the dynamic equations of the coupled system about the gravitational
equilibrium are obtained as





m1
d2x1

dt2
+ c1

dx1

dt
+ k1x1 + G− F (y1)− c2

dy1

dt
= F0 cos(ωt),

m2

(d2y1

dt2
+

d2x1

dt2

)
+ c2

dy1

dt
+ F (y1)−G = 0.

(11)

4.1 Polynomial fitting
To obtain the approximate analytical solutions for the coupled system, the polynomial fitting

is applied to the nonlinear restoring force of the SMO-NES. Figure 7 presents the results of the
polynomial fitting, showing that as the order of the polynomial increases, the fitting accuracy
improves. Furthermore, it can be observed that the nonlinear restoring force of the SMO-NES
is distinctly asymmetric.
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Fig. 7 Polynomial fitting results: (a) nonlinear restoring force; (b) error ratio (color online)

To balance computational time and accuracy, a 7th-order polynomial fitting is selected in
this study. Thus, the nonlinear restoring force of the SMO-NES can be expressed as

F (y1) = G + B1y1 + B2y
2
1 + B3y

3
1 + B4y

4
1 + B5y

5
1 + B6y

6
1 + B7y

7
1 . (12)

Table A2 presents the polynomial coefficients for the nonlinear restoring force of the SMO-
NES when θA0 = −60π/180 and kC = 0.863N/(rad ·m).
4.2 Harmonic balance method (HBM)

To obtain the approximate analytical solutions of the coupled system, the HBM is used in
this study. Therefore, the solution to Eq. (11) can be assumed as





x1(t) = c1,0 +
N∑

n=1

cos(nωt)a1,n +
N∑

n=1

sin(nωt)b1,n,

y1(t) = c2,0 +
N∑

n=1

cos(nωt)a2,n +
N∑

n=1

sin(nωt)b2,n,

(13)

where a1,n, b1,n, a2,n, and b2,n are the undetermined coefficients for the corresponding harmonic
terms, and n is the harmonic order. In view of the significant asymmetry observed in the
nonlinear restoring force of the SMO-NES, the constant terms c1,0 and c2,0 must be taken
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into account. N is the maximum harmonic order. By using the pseudo-arc-length extension
process, the singularity can be easily avoided, allowing the solution of the algebraic equations
to be obtained. By substituting the harmonic coefficients calculated from this process into
Eq. (13), the response of the coupled system can be obtained. Furthermore, the stability of the
computed solutions is determined by the Floquet stability theory[43].

5 Vibration reduction analysis

The vibration reduction efficiency of the SMO-NES is defined first. Then, the parameters
and schematic diagrams of five different initial angles θA0 corresponding to the connecting crease
torsional stiffness per unit length kC and loading weight G are given. Finally, the dynamics
and vibration reduction efficiency of the SMO-NES under five different initial angles θA0 are
studied in detail.

The vibration reduction efficiency ξ is defined as follows:

ξ =
|max(AW)−max(AWO)|

max(AWO)
× 100%, (14)

where AW and AWO are the amplitude-frequency responses of the LO coupled and uncoupled
with the SMO-NES, respectively. Since the unstable solutions of the HBM cannot reliably
predict the unstable solutions, the vibration reduction efficiency is calculated through numerical
methods. Furthermore, to assure the accuracy of the calculation results, the maximum harmonic
order of the HBM is N = 3, and the numerical solutions are obtained through the fourth-order
Runge-Kutta (RK) method.

Table 1 lists the crease torsional stiffness per unit length kC and loading weight G when θA0 =
−30π/180, −40π/180, −50π/180, −60π/180, and −70π/180. It can be seen that when θA0

decreases from −30π/180 to −70π/180, kC gradually increases, and G also gradually increases.

Table 1 Five different initial angles θA0 and the corresponding crease torsional stiffness kC and
loading weight G

θA0 −30π/180 −40π/180 −50π/180 −60π/180 −70π/180

kC/(N · rad−1 ·m−1) 0.122 0.296 0.538 0.863 1.378
G/N 0.515 1.366 2.932 5.556 10.21

Schematic
diagram

m2 m2 m2 m2 m2

The parameters of the LO are m1 = 20 kg, k1 = 14 870N · m−1, and c1 = 1.8N · s · m−1.
The damping of the SMO-NES is c2 = 0.9N · s ·m−1. The excitation amplitude is F0 = 2N.
The nonlinear stiffness and mass of the SMO-NES are determined from Table A1. Figure 8
shows the amplitude-frequency responses of the LO and the vibration reduction efficiency of
the SMO-NES for different θA0, kC, and G. Figure 9 shows the displacement of the LO, the
displacement of the SMO-NES, and the spectrum of the SMO-NES for different θA0, kC, and
G. First, it can be observed that the numerical solutions and approximate analytical solutions
are in good agreement with each other, indicating the correctness of the calculation results
obtained in this study. When θA0 = −30π/180, kC = 0.122N/(rad ·m), G = 0.514 5 N, and ε =
m2/m1 = 0.262 5%, the vibration reduction efficiency is the worst. The displacement responses
of the LO and SMO-NES are periodic. Due to the asymmetry of the nonlinear restoring force
of the SMO-NES, there is a significant zero drift phenomenon in the frequency spectrum of
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Fig. 8 The amplitude-frequency responses of the LO under different parameters: (a) θA0 =
−30π/180, kC = 0.122N/(rad ·m), F0 = 2 N, m1 = 20 kg, G = 0.514 5 N, and ε = 0.262 5%;
(b) θA0 = −40π/180, kC = 0.296 N/(rad ·m), F0 = 2 N, m1 = 20 kg, G = 1.366 N, and
ε = 0.696 9%; (c) θA0 = −70π/180, kC = 1.387 N/(rad ·m), F0 = 2 N, m1 = 20 kg,
G = 10.21N, and ε = 5.209 2%. (d) Vibration reduction efficiency with different initial
angles θA0 when m1 = 20 and F0 = 2 N(color online)

the SMO-NES, and there also exist some harmonic components. When θA0 = −40π/180,
kC = 0.296 N/(rad · m), G = 1.366N, and ε = 0.696 9%, as the mass ratio increases, the
vibration reduction efficiency is significantly improved. From the amplitude-frequency response
of the LO, it can be observed that there is a wide range of unstable frequencies in the resonance
region. The displacement responses of both the LO and SMO-NES exhibit significant strong
modulation responses. When θA0 = −70π/180, kC = 1.387 N/(rad · m), G = 10.21N, and
ε = 5.209 2%, it can be seen from the amplitude-frequency response of the LO that the unstable
region in the resonance zone narrows, and the vibration reduction efficiency decreases. The
displacement responses of both the LO and SMO-NES also show that the strong modulation
response weakens. As θA0 changes from −30π/180 to −70π/180, the loading weight G of
the SMO-NES gradually increases, the mass ratio ε increases accordingly, and the vibration
reduction efficiency first increases and then decreases. The highest vibration reduction efficiency
occurs when θA0 = −40π/180 and ε = 0.696 9%.

The mass of the LO, m1, is changed to investigate the wideband vibration reduction per-
formance of the SMO-NES. The LO mass is set to m1 = 10 kg and m1 = 30 kg, with the
initial angle θA0 varying from −70π/180 to −30π/180. The excitation amplitude is F0 = 2 N.
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Fig. 9 Displacement of the LO (left), displacement of the SMO-NES (middle), and spectrum of the
SMO-NES (right) for (a)–(c) θA0 = −30π/180, kC = 0.122 N/(rad ·m), G = 0.514 5 N; (d)–(f)
θA0 = −40π/180, kC = 0.296N/(rad ·m), G = 1.366 N, F0 = 2 N, and ω = 27.27 rad/s; (g)–(i)
θA0 = −70π/180, kC = 1.387N/(rad ·m), G = 10.21 N, F0 = 2 N, and ω = 27.31 rad/s (color
online)

Figure 10 shows that when m1 = 10 kg, the highest vibration reduction efficiency is achieved
at θA0 = −30π/180, where the loading weight of the SMO-NES is G = 0.515N, and the mass
ratio ε is 0.525%. When m1 = 30 kg, the highest vibration reduction efficiency occurs when
θA0 = −50π/180, with the loading weight of the SMO-NES G of 2.932 N and the mass ratio
of 0.997%. From Figs. 9 and 10, it can be observed that adjusting the initial angle and the
connecting crease torsional stiffness allows for obtaining the SMO-NES with different loading
weights, enabling effective vibration control for primary systems of varying masses. Addition-
ally, the larger the mass of the LO, the greater the loading weight required for the corresponding
initial angle and connecting crease torsional stiffness.

Next, the influence of the excitation amplitude on the dynamics and vibration reduction
efficiency of the SMO-NES is investigated. The parameters of the LO are m1 = 20 kg,
k1 = 14 870 N·m−1, and c1 = 1.8N·s·m−1. The damping of the SMO-NES is c2 = 0.9N·s·m−1.
The excitation amplitude is changed to F0 = 2.5N. Figure 11 shows the amplitude-frequency
responses of the LO and the vibration reduction efficiency of the SMO-NES with different
θA0, kC, and G. Figure 12 shows the displacement of LO, the displacement of SMO-NES,
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Fig. 12 Displacement of the LO (left), displacement of the SMO-NES (middle), and spectrum of
the SMO-NES (right) for (a)–(c) θA0 = −30π/180, kC = 0.122 N/(rad ·m), G = 0.514 5 N,
F0 = 2.5N, and ω = 27.22 rad/s; (d)–(f) θA0 = −40π/180, kC = 0.296 N/(rad · m), G =
1.366N, F0 = 2.5N, and ω = 27.06 rad/s; (g)–(i) θA0 = −50π/180, kC = 0.538 N/(rad ·m),
G = 2.932N, F0 = 2.5N, and ω = 27.27 rad/s (color online)

and the spectrum of the SMO-NES with different θA0, kC, and G. When θA0 = −30π/180,
kC = 0.122N/(rad · m), G = 0.514 5 N, and ε = 0.262 5%, the vibration reduction efficiency
is the worst. The displacement responses of the LO and SMO-NES are periodic. When
θA0 = −40π/180, kC = 0.296N/(rad · m), G = 1.366N, and ε = 0.696 9%, a detached res-
onance curve appears in the amplitude-frequency response of the LO, which shows no im-
provement in the vibration reduction efficiency of the SMO-NES. When θA0 = −50π/180,
kC = 0.538N/(rad·m), G = 2.932N, and ε = 1.495 9%, as the mass ratio ε continues to increase,
the vibration reduction efficiency is significantly improved. From the amplitude-frequency re-
sponse of the LO, it can be observed that there is a wide range of unstable frequencies in the
resonance region. The displacement responses of both the LO and SMO-NES exhibit significant
strong modulation responses. As the initial angle changes from −70π/180 to −30π/180, the
loading weight of the SMO-NES gradually decreases, and the mass ratio decreases accordingly.
The vibration reduction efficiency first increases, and then decreases. The highest vibration
reduction efficiency occurs when θA0 = −50π/180, where the mass ratio ε is 1.495 9%.

Similarly, by varying the excitation amplitude, the vibration reduction efficiency of the SMO-
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NES is investigated under different θA0 and kC. Figure 13(a) shows that when the excitation
amplitude F0 = 4.5N, the highest vibration reduction efficiency is achieved at the initial angle
θA0 of −60π/180, where G = 5.556N and ε = 1.304%. As depicted in Fig. 13(b), when the
excitation amplitude increases to F0 = 7 N, the highest vibration reduction efficiency occurs at
the initial angle θA0 of −70π/180, the SMO-NES loading weight reaches 10.21N, and the mass
ratio is 5.209%. Combining the observations from Figs. 11 and 13, it is evident that by adjust-
ing the initial angle and connecting crease torsional stiffness per unit length, the SMO-NES
units with different load support capacities can be obtained, thereby effectively suppressing the
vibrations of varying excitation intensities. Furthermore, the greater the excitation amplitude,
the larger the required loading weight of the SMO-NES.

m2

m2

m2
m2

m2m2m2

m2

m2

m2

ε
/%

6

4

2

0

ε
/%

6

4

2

0

ξ/
%

100

80

60

40

20

0

ξ/
%

100

80

60

40

20

0

θA0

(a)

θA0

(b)

−
60π
/180

−
70π
/180

−
50π
/180

−
40π
/180

−
30π
/180

−
60π
/180

−
70π
/180

−
50π
/180

−
40π
/180

−
30π
/180

−
20π
/180

Fig. 13 Mass ratio and vibration reduction efficiency of the SMO-NES with different θA0 and fixed
F0: (a) F0 = 4.5N, (b) F0 = 7N (color online)

6 Conclusions

In this study, an SMO-NES is proposed, for the first time, to effectively suppress verti-
cal vibrations. The SMO structure consists of two standard Miura-ori sheets. The dynamic
equations of the coupled system are derived in the vertical direction. The approximate analyt-
ical solutions are obtained, and the solutions are verified numerically. The main findings are
summarized as follows.

(i) By adjusting the initial angle and the connecting crease torsional stiffness of the SMO
structure, the QZS and load-bearing capacity can be customized to match the corresponding
mass.

(ii) The proposed SMO-NES has the ability of wide-frequency vibration reduction, and can
effectively suppress vertical vibrations.

(iii) The larger the mass of the primary system, the greater the loading weight of the SMO-
NES required. The greater the excitation amplitude, the greater the required loading weight of
the SMO-NES.

In short, the proposed SMO-NES in this study provides a new solution for improving the
broadband vibration reduction performance of traditional NESs in vertical systems. In the
future, origami configuration and NES design will be further combined, and the advantages of
the SMO-NES will be explored through theory, experiment, and application.
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Appendix A

Table A1 Geometric parameters of the SMO[44]

Parameter Value Unit

aA 38 mm
aB 73.4 mm
b 38 mm

γA π/3 rad
γB 5π/12 rad
kA 0.03 N · rad−1 ·m−1

kB 1 N · rad−1 ·m−1

kC 0.865 N · rad−1 ·m−1

Table A2 Results of the polynomial fitting for the nonlinear restoring force coefficients

Symbol Value Unit

G 5.556 N
B1 3.727 N ·m−1

B2 −61.650 N ·m−2

B3 3.392× 104 N ·m−3

B4 1.218× 106 N ·m−4

B5 6.599× 108 N ·m−5

B6 3.370× 1010 N ·m−6

B7 5.297× 1011 N ·m−7


