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Abstract
A compliant structure under fluidic pressure can undergo relatively large shape change, but the design of such type of 
structure is challenging as the pressure distribution depends on detailed structural geometry. In this study, a novel mixed 
substructure-density (MSD) model is proposed for topology representation and update in the optimal design of nonlinear 
compliant structures under quasi-static fluidic pressure. An optimization algorithm is developed via implementing the 
present model by using super-elements in commercial finite element analysis (FEA) software. Numerical examples are 
presented to validate the present model, algorithm, and designs numerically via full linear and nonlinear FEAs. A planar 
cellular network with five cells arranged in parallel is then designed for representing a pressurized wing rib structure capable 
of modulating airfoil thickness variation. The test results of the single-cell and five-cell PCS specimens prototyped using 
polyurethane material show that the respective cell thickness can be reduced by 11.9 and 6.4% respectively under a cell 
pressure of 250 kPa.
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1 Introduction

Understanding and mimicking the biomimetic principles 
for designing and manufacturing innovative structure sys-
tems remains a significant challenge (Knippers and Speck 
2012; Lienhard et al. 2011; Schleicher et al. 2015). Internal 
pressure regulation is one of such biomimetic principles 
observed in nature for structural adaptation. Pressure-actu-
ated adaptation has been inspirational in the quest of search-
ing for compliant structure systems capable of achieving 
large and smooth shape variations. Such a compliant struc-
ture system generally has less part count, can be fabricated 
using additive manufacturing, and operates cost-effectively, 
as compared to a traditional mechanism with hinged links. 
To optimize compliant mechanisms subjected to pressure 
loadings, such as applied by adaptive pressure actuators, the 

modeling and formulation of fluid–structure interaction can 
be major difficulties.

In topology optimization for structures with fluid–struc-
ture interaction, the challenges are (Hammer and Olhoff 
2000; Chen and Kikuchi 2001; Du and Olhoff 2004; Sig-
mund and Clausen 2007; Zhang et al. 2008; Panganiban 
et al. 2010; Ibhadode et al. 2020): (1) the pressure load-
carrying boundary evolves iteratively with varying pres-
sure directions and magnitudes (termed design-dependent 
load); (2) the sensitivity of the equivalent force vector with 
respect to design variables is in general difficult to deter-
mine; and (3) nonlinear structural analysis is typically 
required due to large deformations in a compliant mecha-
nism. Additionally, when large deformations are included, 
the problem becomes more complicated due to the high 
impact of low density elements (Bendsoe and Sigmund 
2003). Thus, although topology optimization of compli-
ant mechanisms has been widely studied, there are a few 
works focusing on pressure-actuated compliant mecha-
nisms (Chen et al. 2001; Panganiban et al. 2010; Vasista 
and Tong 2012, 2013; Lu and Tong 2021; Kumar et al. 
2020; Kumar and Langelaar 2021, 2022; de Souza and 
Silva 2020), which consider the void phase as an incom-
pressible hydrostatic fluid that transfers a pressure load 
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from a fixed fluid region to structures. In these studies, 
incompressibility is considered using the mixed displace-
ment–pressure (u/p) coupling formulation (Sigmund and 
Clausen 2007) or nonconforming finite element, by which 
the interface boundaries are not identified and nonlinear 
effects are not modeled. Level-set method has been used 
to address this design-dependent problem via transferring 
topology to mechanical model by using material-fraction 
approach (e.g., ersatz material model (Xia et al. 2015)) 
or immersed boundary approaches (e.g., extended finite 
element method (XFEM) (Jenkins and Maute 2016)). 
Recently, approaches have been introduced for modeling 
design-dependent pressure using the work equivalent load-
ing approach based on finite element formulations (Lu and 
Tong 2021, 2024) and Darcy law to determine the flux of 
a fluid flow due to pressure difference in a porous medium 
(Kumar et al. 2020; Kumar and Langelaar 2021, 2022; 
Kumar 2023; Banh et al. 2024).

The substructure method, a common solution method 
applied in FEA for solving large-scale models, has also 
been employed in topology optimization to condense hier-
archical structure (Fu et al. 2019; Wu et al. 2019; Liu et al. 
2024, 2020), large-scale topology (Huang et al. 2023), or 
multi-domain (Ma et al. 2005). In this method, a structure 
or domain (such as an element or a periodic unit cell) is 
subdivided into subdomains as substructures, and the sub-
structures are condensed to a super-element with only the 
exterior (boundary) nodes. Although the major advantage 
of the substructure method is to save storage and computa-
tional cost, it has the potential to adequately capture both 
geometry and physics (i.e., associated equivalent stiffness 
matrices and pressure load vectors) of a pressure–struc-
ture interface, which is particularly difficult but crucial 
in nonlinear structures. Thus, in this work, we attempt to 
introduce the method to solve the problem of structural 
topology optimization involving design-dependent pres-
sure loading.

In this study, a novel mixed substructure topology repre-
sentation is proposed first for an element with and without 
a fluid–structure interface. An extended moving iso-surface 
threshold (MIST) algorithm is then developed based on the 
mixed topology representation for topology optimization of 
a structure considering geometric and material nonlineari-
ties and subjected to design-dependent pressure loading. In 
this algorithm, the mixed topology representation is imple-
mented via super-elements with equivalent stiffness matrices 
and equivalent load vectors and via robust model update 
and interface tracking schemes. The algorithm is validated 
via benchmark examples and numerical studies via linear 
and nonlinear FEA. The method is then used to design a 
pressurized unit cell and its associated pressurized cellular 
structure (PCS) for controlling airfoil thickness variation. 

The optimum designs of the unit cell and the PCS are fabri-
cated and tested under selected pressure.

2  Problem statement and mixed topology 
representation

2.1  Problem statement

Consider the topology optimization problem for a linear or 
nonlinear compliant mechanism subjected to design-depend-
ent loading, such as quasi-static distributed fluid pressure. 
The problem can be stated in general as: finding the opti-
mum topology Ω that maximizes selected output displace-
ment subject to satisfying equilibrium equations in Ω and a 
constraint on material volume of Ω , or formulated as: finding 
Ω such that

where uout denotes the output displacement(s) in specific 
degree(s) of freedom (DOF), u and K represent the global 
displacement vector and stiffness matrix where superscript 
refers to virtual (1) and real (2) load cases, Emed represents 
the mutual strain energy density.

It should be noted that the compliant mechanism prob-
lem of maximizing the output displacement, as presented 
in Eq. 1, can be formulated based on the total mutual strain 
energy calculated from real (input) and virtual (output) load 
cases. As detailed in (Frecker et al. 1997), the output dis-
placement uout for the real load case (superscript (2)) can be 
expressed via considering a virtual load case F(1) compris-
ing only one unit load at the output DOF (zero at all other 
DOFs), by which uout = F

(1)T
u(2) = u(1)

T
�u(2) (where total 

mutual strain energy =  u(1)T�u(2)∕2).
In searching forΩ , the problem in Eq. (1) is usually solved 

iteratively until reaching convergence in conjunction with 
the finite element method (FEM). To enable this iterative 
solution process, it is important to develop a topology rep-
resentation and update model that can adequately capture 
both geometry and physics (or structural response) of anΩ . 
One approach of defining and updating Ω is to place Ω in 
a static background domain Ω0 with a fixed grid mesh, i.e., 
Ω ⊆ Ω0 and Ω0 =

⋃Ne

e=1
Ωe ( Ωe denotes the domain of the eth 

element;e = 1,2,… ,Ne ; Ne is the total number of elements). 
As an example, Fig. 1 schematically depicts an Ω in Ω0 with 
a fixed mesh of 6 × 6 rectangular elements, which can be 

(1a)Max ∶ uout = u
(1)T

�u
(2) = 2∫

Ω

EmeddΩ

(1b, c)s.t. ∶

{
Equilibrium equations

Material volume constraint
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classified into three types: solid, solid–void interface and 
void elements (as denoted by ① , ② and ③). As a void can 
be filled with pressurized fluid, the solid–void interface and 
void elements can be further grouped as: solid–void inter-
face elements filled partially with fluid and void elements 
fully filled with fluid (labeled as solid–fluid interface ele-
ment ④ and void–fluid element ⑤ in Fig. 1). As both pressure 

magnitude and direction can be dependent of the solid–fluid 
interface geometry, e.g., element ④, it is important to bet-
ter represent both geometry and physics of each solid–fluid 
interface element in every iteration for design-dependent 
topology optimization problems.

2.2  Mixed topology representation

A mixed substructure-density (MSD) model for topology 
representation and update is proposed in this section. In 
the MSD, all solid–fluid elements are modeled by using 
an interface boundary conforming substructure mesh with 
solid or void–fluid sub-elements, whereas all the remaining 
are solid, void or grey elements. As an example, Fig. 2a, d 
depicts a 4-node solid–fluid interface element with a dis-
tributed pressure, which is modeled with a simple or com-
plex interface-conforming substructure meshing in Fig. 2b, 
e, Ωe =

⋃Nsub

k=1
Ωek (where Ωek is the subdomain of the kth 

sub-element; Nsub denotes the total number of sub-elements) 
and then physically represented by a 4-node element with 
equivalent stiffness or tangential stiffness matrix 𝐊∗

e
 and 

equivalent nodal force vector 𝐅∗

e
 statically condensed as 

shown in Fig. 2c.
Figure 3 depicts an illustrative example of using the MSD 

mixed substructure topology representation on the structural 
level. In MSD, the crisp boundary of topology Ω can cap-
tured collectively by that of each interface element, and the 
associated physics can be represented by solving equilibrium 
Eq. (1b) in conjunction with super-elements with 𝐊∗

e
 and 𝐅∗

e
 

for linear and nonlinear cases.

Fig. 1  An illustrative mesh for the topology optimization problem 
under a pressure with Ω in Ω

0

Fig. 2  Schematics of sub-
structure representations of 
4-node solid–fluid interface 
element subjected to: a linearly 
distributed or d non-uniform 
pressure, with a simple (b) and 
complex e interface-conforming 
substructure meshing, and (c) 
their equivalent element
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2.2.1  Linear case

For a linear case, the material properties for all solid and 
void–fluid sub-elements in a solid–fluid element in MSD 
are given by:

where �0 represents the pristine material property matrix; 
xe ( xmin < xe < 1 ) denotes the area ratio of the solid por-
tion-to-entire element and p is a penalty factor as used in 
SIMP (Bendsoe and Sigmund 2003); xmin is a small number 
( = 10−3 ) to enable the inclusion of a void or void–fluid ele-
ment or sub-element in FEA without causing singularity. 
The material property for each of the non-solid–fluid ele-
ments is assumed to be

In this case, equilibrium Eq. (1b) becomes:

where

and e denotes the eth element and the operator ⊕ represents 
global matrix assemblage; Nse represents the total number 
of the solid–fluid interface elements; and �e , 𝐊∗

e
 , �e and 𝐅∗

e
 

(superscript ∗ refers to substructures, e.g., a super-element 
as depicted in Figs. 2c and 3b) are given by:

where B is the strain–displacement matrix, and Eq. (5) can 
be determined from δUe = δWe using Eqs. (6–7)

(2a)�solid = �0; �void = �fluid = x
p

min
�0

(2b)�g = xp
e
�0

(3a)�� = �

(3b)� =

Nse∑

e=1

�
∗
e
⊕

Ne∑

e=Nse+1

�e; � =

Nse∑

e=1

�
∗
e
⊕

Ne∑

e=Nse+1

�e

(4)�e = xp
e ∫
Ωe

�
�
�0�dΩe

(5)
�

∗
e
=
[
�oo

]
−
[
�oi

][
�ii

]−1[
�io

]
; �

∗
e
=
{
�o

}
−
[
�oi

][
�ii

]−1{
�i

}

where �oo , uo , and �o are the stiffness matrix, displacement, 
and force vectors for the exterior DOFs; �ii , ui , and �i are 
those for the interior DOFs;�oi(= �

T
oi
) is the coupling stiff-

ness;  Nsub is the total number of sub-elements; Γe denotes 
the interface boundary of the eth element Ωe ; and Γek is the 
boundary of the kth sub-element Ωek.

2.2.2  Nonlinear case

For the case of material nonlinearity, the properties of solid 
and void/void–fluid sub-elements in any solid–fluid element 
are assumed to be:

where �(�) denotes the prescribed stress–strain relationships 
of the solid material, which can be tabulated for data input 
in nonlinear finite element analysis (NFEA). The nonlinear 
material property for any non-solid–fluid interface element 
is assumed to be:

In NFEA, all external loads are usually applied incremen-
tally to a structure via M load steps: ��(� = 1,2,… ,M) . By 
using the total Lagrangian formulation, equilibrium Eq. (1b) 
at load step τ + 1 can be broadly expressed as (Bathe 1996; 
Luo and Tong 2016):

where

(6)�Ue = ∫
Ωe

��
T
�dΩe =

{
δ�T

o
δ�T

i

}
[
�oo �oi

�io �ii

]{
uo

ui

}

(7)

�We = ∫
Γe

�u
T
�pdΓe =

Nsub∑

k=1
∫
Γek

�u
T
�pdΓek =

{
δ�T

o
δ�T

i

}
{

�o

�i

}

(8)�solid = �(�); �void = �fluid = x
p

min
�(�)

(9)�e = xp
e
�(�)

(10)�
�Δ��+1 = �

�+1 (= 0, 1, 2,… ,M − 1)

(11a)
�

� = �

0
�

L
+ �

0
�

NL
;Δ��+1 = �+1

� − �
�;��+1 = �+1

� − �

0
�
r

Fig. 3  Mixed topology repre-
sentation of a solid–fluid inter-
face with pressure loading (a) 
and its condensed FE model (b)
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and �� and �+1� represent the nodal displacement vector at 
load steps τ and � + 1 ; 0��L , 0�𝐊

∗

Le
 , 0��Le , 0��NL , 0�𝐊

∗

NLe
 

and 0��NLe are the global or element linear and nonlinear 
strain incremental stiffness matrices formulated for the non-
deformed whole structure, interface or non-interface ele-
ment at load step τ; �+1� , �+1𝐅∗

e
 and �+1�e are the global or 

element external load vectors applied to the non-deformed 
whole structure, interface or non-interface element at load 
step (τ + 1); 0��r , 0�𝐅

∗

re
 and 0��re denote the global or ele-

ment nodal stress resultant vector determined using the 
non-deformed structure, interface and non-interface element 
at load step τ (see Bathe 1996; Luo and Tong 2016) for 
details); the right superscript ∗ refers to the quantities stati-
cally condensed similar to Eqs. (5–7); and the left subscript 
0 refers to the non-deformed domain.

It should be noted that, similar to Eq.  (3b), 0�𝐊
∗

Le
 , 

0
�𝐊

∗

NLe
 , �+1𝐅∗

e
 and 0�𝐅

∗

re
 in Eq. (11b,c) are the equivalent 

matrices and vectors statically condensed for a solid–fluid 
interface element; and such element-based static conden-
sation for eliminating interior DOFs needs to be conducted 
in each of the M load steps. In addition, Eq. (10) for each 
load step is typically solved for a number of iterations 
depending on the choice of solver and its parameters.

3  Formulation and algorithm

In this work, an extended MIST algorithm is proposed to 
implement topology optimization under design-dependent 
pressure loading and considering geometric and material 
nonlinearities, based on the mixed topology representation 
and substructure method (see Sect. 2.2). In this section, 
the optimization problem as formulated in Eq. (1) is first 
re-formulated using the MIST method, and then numeri-
cally implemented.

3.1  Formulation

In the MIST method (Tong and Lin 2011; Vasista and 
Tong 2014), the objective function and constraint are 
expressed in the form of convolutional integrals. The prob-
lem in Eq. (1) can be formulated as: find Ω that

(11b)

𝜏

0
�

L
=

N
se∑

e=1

𝜏

0
�

∗
Le
⊕

N
e∑

e=N
se
+1

𝜏

0
�

Le
;
𝜏

0
�

NL
=

N
se∑

e=1

𝜏

0
�

∗
NLe

⊕

N
e∑

e=N
se
+1

𝜏

0
�

NLe

(11c)

𝜏+1
� =

Nse∑

e=1

𝜏+1
�
∗
e
⊕

Ne∑

e=Nse+1

𝜏+1
�
e
;
𝜏

0
�
r
=

Nse∑

e=1

𝜏

0
�
∗
re
⊕

Ne∑

e=Nse+1

𝜏

0
�
re

where Φ is the spatial function in Ω0 related to struc-
tural responses and solutions of Eq.  (12b); H(Φ − t) is 
the Heaviside function and t  is an iso-surface thresh-
old; superscript l  refers to virtual (l = 1) and real 
(l = 2) load; superscript � refers to the synchronized 
load step �(l)� = �Δ�(l) (where �Δ is a load factor and 
0 = 0Δ < 1Δ < 2Δ < … 𝜏Δ < ⋯ < M−1Δ < MΔ = 1 ); and 
Vf  and V0 denote the prescribed volume fraction and the total 
volume of Ω0 and uout denotes u(2)out for the linear case and the 
displacement at the full real load Mu(2)

out
 for nonlinear case. It 

is worth noting that Eq. (12b) can also be presented in the 
form of integrals over Ω0 (Bathe 1996).

3.1.1  Response function

In the MIST method, a physical response function is applied 
to update design variables and topologies. The objec-
tive function needs to be rewritten in an integral form as 
in Eq. (12a), and the response function should be derived 
based on the integrand. Thus, the response function indicates 
the relative nodal physical performances with respect to the 
objective function and serves as the sensitivity information 
for the topology updates, by which explicit sensitivity analy-
sis is not necessary.

For the compliant mechanism problem, by using the virtual 
work principle, the objective function (output displacement 
uout ) can be written as the total mutual strain energy. As in 
Eq. (1a), the mutual strain energy density is the integrand 
function of the integral and thus can be used as a response 
function or part of it. To circumvent discontinuity on the load-
carrying surface, one can also add strain energy density as 
part of the response function. Thus, based on the FE solution 
of the kth iteration, the response function Φ can be chosen as:

where

where � and kΦ are two user-defined coefficients ( 0 ≤ � ≤ 1 ; 
0 < kΦ ≤ 1 ; kΦ ≠ 1 and/or � ≠ 0 should be used to 

(12a)max ∶ uout = ∫
Ω0

ΦH(Φ − t)dΩ

(12b, c)

s.t. ∶

⎧
⎪
⎨
⎪
⎩

�(l)�(l) = �(l) or �(l)�Δ�(l)�+1 = �(l)�+1(l = 1, 2; = 0, 1, 2,… ,M − 1)

∫
Ω0

H(Φ − t)dΩ ≤ V
f
V0

(13a)Φk = Φ
k

, for k = 1

(13b)Φk =
(
1 − kΦ

)
Φ

k−1
+ kΦΦ

k
, for k ≥ 2

(14)Φ
k
= (1 − �)Ek

med
+ �Ek

sed
(k = 1, 2,…)



 Y. Lu et al.31 Page 6 of 19

circumvent discontinuity on the load-carrying surface); 
E
med

k and Ek
sed

 can be determined for the kth FE model as 
follows.

The mutual strain energy density Emed in Eq. (14) can be 
determined by using the principle of virtual work in con-
junction with the solutions of Eq. (12b) for an FE model. 
Let us denote: (i) �(l) , �(l) and �(l)(l = 1,2) as the linear dis-
placement, strain and stress; and (ii) ��(l) , ��(l) and ��(l) 
( � = 1,2,… ,M;l = 1,2 ) as the nonlinear displacement, 
Green–Lagrange strain and Piola–Kirchhoff stress at the � th 
synchronized load step �(l)� = �Δ�(l) . Let �(1) = � (1) for linear 
case or = f s� (1) for nonlinear case (where � (1) is a unit virtual 
load in relation to uout in Eq. (1a)), by using the principle of 
virtual work (see details for the nonlinear case in Appendix), 
one can determine Emed as follows:

Equation (16) formulates the nonlinear mutual strain energy 
density using trapezium area sums for all load steps. In prac-
tice, it could be approximated using the mutual strain energy 
at the final state only (Jung and Gea 2004; Bruns and Tor-
torelli 2001). In the present formulation, Eq. (16) can be fur-
ther approximated using only one segment from load step � = 
0 to M. In this case, Eq. (16) is approximated by using only the 
strain M�(2) and stress M�(1) at the final state in NFEA:

In addition, one can also calculate the strain energy density 
for the real load via

It is noted that the unit virtual force � (1) applied to the output 
port may be so high that the NFEA diverges or too low to have 
nonlinear effects. Thus, in the nonlinear case, the magnitude 
of the virtual force f s may not be unit one and needs to be 
carefully determined. In practice, it could be determined via 
a trial-and-error approach, in which the load is selected as a 
percentage (e.g., 90%) of the lowest load to diverge NFEA.

3.1.2  Solution procedures

In MIST (Tong and Lin 2011; Vasista and Tong 2014), 
the problem in Eq. (12) can be solved iteratively via the 
following steps: (a) initialize/create FE model for (12b); 

(15)(i)Linear ∶ Emed =
1

2
�
(1)T

�
(2)

(16)

(ii)Nonlinear ∶ Emed =

M∑

�=1

1

2

(
��(1)T + �−1�(1)T

(
�Δ + �−1Δ

)
f s

)
(
�
�
(2) − �−1

�
(2)
)

(17)Emed =
M
�
(1)TM

�
(2)∕2f s

(18)Esed =

{
�(2)T�(2)∕2 for linear
M�(2)TM�(2)∕2f s for nonlinear

(b) solve Eq. (12b); (c) determine function Φ and generate 
new topology; (d) update FE model; and (e) repeat (b)–(d) 
until converged. Hence, it is necessary to elaborate on the 
determination of function Φ and update of FE model.

Topology Ωk and its area ratio 
(
xk
e

)
 can be obtained by 

using Φk via solving Eq. (12a,c) and finding tk . Combining 
xk
e
 with xk−1

e
 yields the following updated xk

e

where kmv (0 < kmv ≤ 1) is a move limit and x0
e
 is an initial 

design. Once xk
e
 is determined, one can update the FE model 

via Eqs. (2), (8) and (9). It is worth noting that some void 
and void-fluid elements can be removed from NFEA (Luo 
and Tong 2016) via:

where � is a small constant (typically chosen to be equal to 
xmin).

In the present MSD-based FE model update scheme, the 
modified algorithm goes: (i) calculate xk

e
 via Eq. (19) and 

store xk
e
 for all element Ωk

e
 ; (ii) for every solid–fluid inter-

face element Ωk
e
 , create a super-element in Ωk

e
 (to replace 

the element or super-element Ωk−1
e

 in the previous itera-
tion); and (iii) for all the remaining elements Ωk

e
 , use xk

e
 to 

update its material input via Eq. (2) (linear) or (8,9) (non-
linear). The second step is novel, and it enables enhanced 
modeling of the crisp and pressurized solid–fluid inter-
face boundary via the relevant equivalent element stiffness 
matrix and load vector.

The solid–fluid interface or elements in Ωk can be 
tracked by using a fluid flooding scheme (Chen and 
Kikuchi 2001; Picelli et al. 2019). In this scheme, fixed 
(non-design) fluid regions are pre-defined in initialization, 
and all elements that neighbor or overlap with either fluid 
or solid–fluid interface elements are classified as: (a) a 
fluid element if 

(
xk
e

) ≤ 20xmin ; (b) a solid–fluid interface 

element if 20xmin <

(
xk
e

)
< 0.98 ; and (c) a solid element if 

(
xk
e

) ≥ 0.98 . This classification propagates (like flooding) 
until no additional fluid or solid–fluid interface element 
can be identified. In the subsequent iteration, a reclassifi-
cation and identification will be initiated from the same 
pre-defined fluid region(s). It should be noted that the 
parameters for classifying fluid and solid elements are cho-
sen to be 20xmin and 0.98 instead of xmin and 1. These 
parameters was chosen to avoid very high aspect ratios of 
sub-elements in super-elements and to avoid duplicated 
nodes created by too small clearances in substructures.

(19a)
xk
e
= max

{(
xk−1
e

)
+ kmv

[(
xk
e

)
−
(
xk−1
e

)]
, xmin

} (
e = 1, 2,… ,Ne

)

(19b)xk
e
= 0 if xk

e
≤ �
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3.2  Algorithm

An extended MIST algorithm is developed to solve the 
problem in Eq. (12). It is important to note that a powerful 
nonlinear NFEA solver is crucial as Eq. (12b) can be highly 
nonlinear due to the presence of elements with extremely 
low stiffness or xmin (Yoon and Kim 2007; Bandi et al. 2011; 
Luo and Tong 2016). In this work, the MIST algorithm is 
coded in MATLAB and interfaced with NASTRAN as 
the NFEA solver. The FEA data file is generated through 
programming in MATLAB, solved in NASTRAN, and the 
FEA result files are processed using the textscan function in 
MATLAB to extract the necessary data. For the basic MIST 
algorithm and more details of interface with NASTRAN, 
please refer to (Tong and Lin 2011; Luo and Tong 2016). 
The main additional features of the present extended MIST 
consist of the use of MSD, solid–fluid interface tracking 
scheme, and MSD-based update scheme of FE model. The 
extended algorithm interfaced with Nastran goes as follows:

Step 1: Initialization.

• Input: � , kΦ , xmin , Vf  and kmv

• Initialize: x0
e
 (define non-design fluid and solid 

region, and x0
e
= Vf  for other elements, i.e., material 

evenly distributed), and FE model in Ω0

Step 2: FEA/NFEA solution.

Solve Eq. (12b) for the kth FE model. 

• Step 3: Determination of function Φk and topology Ωk

• Calculate nodal Φk via Eqs. (13, 14) and construct 
Φk function including filtering

• Solve Eq. (12c) and find the iso-surface level tk with 
respect to Vf  via bisection method

• Determine topology Ωk and its area ratio 
(
xk
e

)

• Identify solid–fluid elements Ωk
e
 and its interface Γk

e
 

using the fluid flooding method and 
(
xk
e

)

• Step 4: Update of FE model using MSD.

• Calculate and retain xk
e
 using Eq. (19)

• Update material input using Eq. (2) or (8,9) and xk
e
 

for all non-solid–fluid elements
• Construct super-elements using Ωk

e
 and Γk

e
 for all 

solid–fluid interface elements

• Step 5: Convergence check.

Calculate convergence parameter (Luo and Tong 2016):

where Φk(rn) is the Φ value at node rn and Nn is the total 
number of nodes;

If ΔΦk < 𝜀c ( �c is small constant) and/or the maximum 
iteration number is reached, terminate the iteration; other-
wise, go to Step 2 and repeat.

4  Numerical examples

In this section, benchmark examples, an internally pressur-
ized lid and a pressurized bending unit cell, are presented to 
validate the present algorithm. In addition, due to the pres-
ence of artificial springs, full FEAs are conducted for the 
optimized topologies to verify their deformation and shape-
changing performance.

4.1  Internally pressurized lid

Figure 4a depicts the design domain, material properties, 
and dimensions of this minimum compliance problem 
subjected to pressure loading, which is a representative 

(20)ΔΦk =
1

VfNn

[
Nn∑

rn=1

|
|
|
Φk

(
rn
)
− Φk−1

(
rn
)|
|
|

]

Fig. 4  An internally pressurized 
lid a design domain, material 
properties and dimensions of 
an internally pressurized lid 
where pressure p = 1; b topol-
ogy and load-carrying surface at 
iteration 5 (k = 5) in the present 
computation for the results of 
column 1 in Fig. 5
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example of design-dependent loading problems and has 
been investigated by many researchers (Chen and Kikuchi 
2001; Du and Olhoff 2004; Sigmund and Clausen 2007; 
Zhang et al. 2008; Panganiban et al. 2010; Picelli et al. 
2015; Jiang and Zhao 2020). Figure 4b illustrates an exam-
ple of the load-carrying surface in an iteration of the pre-
sent algorithm. To compare with those available results, 
only the linear problem is considered. For the minimum 
compliance problem, we choose Φ = Esed (defined in 
Eq. (18)) and � = 1 in Eq. (14) to adapt the problem for-
mulation in Eq. (12).

Figure 5 depicts the material distributions at iterations 1 
(initialization), 10, 50 and 100, and the optimized topolo-
gies (k = 100) for Vf = 0.5 with different material initializa-
tions and different kΦ . The objective function and topology 
converge after 70 iterations for all cases, although slightly 
better numerical stability can be achieved by using a com-
bined response function with kΦ ≠ 1 . However, this may 
not be necessary as the topologies in Fig. 5 are almost 
the same for different values of kΦ including kΦ = 1 in the 
minimum compliance problem.

The optimized topologies in Fig. 5 correlate well with 
those presented in (Chen and Kikuchi 2001; Du and Olhoff 
2004; Sigmund and Clausen 2007; Zhang et al. 2008; Pan-
ganiban et al. 2010; Picelli et al. 2015; Jiang and Zhao 
2020). The converged strain energy in the present study 
is Ese = 3.48–3.87 for Vf = 0.5, which is comparable to 
the compliance numerically integrated along the load-
ing surface in the literature, i.e. Ese = 4.7–5.6 (Sigmund 
and Clausen 2007); Ese = 6.1 (Zhang et  al. 2008); and 
Ese = 4.57–4.71 (Panganiban et al. 2010). The discrepan-
cies could be due to the differences in calculating strain 
energy and compliance, and in the load-carrying surface, 

e.g., the present height h in Fig. 5 is slightly larger. In 
addition, all the void elements are kept (xe =  10–3) in (Sig-
mund and Clausen 2007; Zhang et al. 2008; Panganiban 
et al. 2010), but they are removed in the present study. Evi-
dently, the present optimum topologies and the objective 
functions correlate fairly well with those in the literature, 
which validates the present algorithm.

4.2  Pressurized bending unit cell

Figure 6a depicts the computational model for a half of the 
unit cell with dimensions, load, and boundary conditions and 
solid and fluid non-design regions. The objective is to gener-
ate bending deformation along the right side via maximizing 
uout1 − uout2 . This problem is investigated with two design 
cases being considered: 1) case I with real load p = 1 and 
virtual load �(1) consisting of two unit dummy load Fout1 = 1 
and Fout2 = −1 , which is taken from the literature (Vasista 
and Tong 2012) for validation and benchmark purposes, 
using the linear MSD; and case II with real load p = 0.01 
and virtual load �(1) consisting of two loads Fout1 = 2 and 
Fout2 = −2 for the linear and nonlinear MSD. As the virtual 
and real unit loads from the literature (case I) are either too 
high that the NFEA diverges or too low to have nonlinear 
effects, those loads, as well as the coupled artificial spring 
stiffness, are reconsidered and selected for the geometrical 
nonlinear designs as case II via a trial-and-error approach. 
For example, if the virtual load �(1) is two unit dummy loads, 
the resulting displacements are too small to exhibit nonlin-
ear effects; when �(1) is Fout1 = 2.25 and Fout2 = −2.25 , the 
NFEA diverged; and 90% × �(1) ( Fout1 = 2 and Fout2 = −2 ) 
is then tested and yields converged results, which is therefore 
selected.

Fig. 5  Material distributions 
and optimized topologies of an 
internally pressurized lid in lin-
ear analysis for different volume 
fractions and initializations
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The material properties, E = 1 and � = 0.3 , are equivalent 
to the shear and bulk modulus used in (Vasista and Tong 
2012). The spring stiffness kout1 = kout2 = 0.5 from (Vasista 
and Tong 2012) are used. In the present computation, k0

mv
 

= 0.3 is initialized and halved when oscillation occurs until 
reaching k0

mv
∕24 for the linear cases and k0

mv
∕26 for the non-

linear cases; filter radius rmin = 3 (3 times of element size); 
and kΦ = 0.5 and � = 0.3 . The material penalty should have 
been selected as p = 3 by using the SIMP scheme. How-
ever, p = 3 will cause the low density elements to exhibit 
extremely large deformations at the early iterations, which 
may diverge the NFEA or result in discontinuities and 
islands on the pressure-structure interfaces. Thus, the mate-
rial penalty is initialized as 1 and increases to 3 by a rela-
tively fast 0.05 increment per iteration, ensuring sufficient 
time/iterations for the topologies to converge for p = 3. For 
nonlinear topology optimization problems, it is common 
to use a continuation method to control the penalty param-
eter p. In the literature, two methods have been considered: 
(1) allow the problem to converge for each increased p until 
p = 3 is reached (Buhl et al. 2000); and (2) use an iteratively 
incrementing penalty parameter p until p = 3 (Bruns and Tor-
torelli 2001). In this work, method (2) is chosen to prevent 

premature convergence of the pressure–structure interface 
for design-dependent loading problems.

Parameter kΦ is used to avoid large fluctuation of the Φ 
function and α is to circumvent discontinuities on load-car-
rying surfaces. � should be as small as possible to achieve 
the optimal compliant mechanism designs and sufficiently 
large to prevent discontinuities on interface boundaries. 
When 0.05 , the load-carrying surface is separated in itera-
tion even if  k is very small ( k < 0.05). Thus, � = 0.3  and 
k = 0.5 are selected in this study.

Figure 6b, c, d depict the optimum topologies for linear 
design case I obtained respectively by using the u/p formu-
lation in (Vasista and Tong 2012), the work equivalent lng 
method in (Lu and Tong 2021), and the present linear MSD. 
As shown in Fig. 6b, d, the optimum topology obtained using 
the present linear MSD and the u/p formulation in (Vasista 
and Tong 2012) are comparable and similar, with a main 
difference in the upper half of the unit cell. The optimized 
objective function obj = uout1 − uout2 predicted by the present 
linear MSD is 51.39, which is 33.6% larger than that (38.46) 
obtained in (Vasista and Tong 2012). Moreover, the opti-
mized topology using the present linear MSD is also very 
similar to that obtained via the equivalent loading method 

Fig. 6  Bending unit cell 
design: a design domain; the 
optimum topologies for case I 
by using b the u/p formulation 
in (Vasista and Tong 2012), c 
the equivalent loading method 
in (Lu and Tong 2021), and d 
the present linear MSD; the 
optimum topologies for case II 
by using the present e linear and 
f nonlinear MSD. g and h differ-
ent material penalty schemes of 
case II linear (e)
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in (Lu and Tong 2021) (see Fig. 6c, d), while the objective 
function is 9.67% larger compared to the equivalent load-
ing method (46.86). However, it is worth noting that these 
significant increases in the output displacements come at a 
cost because the output displacements are obtained via ~ 100 
iterations using the present MSD method, ~ 80 iterations 
using the work equivalent loading method, and ~ 30 itera-
tions using the u/p method.

Figure 6f depicts the optimum topologies for design case 
II obtained by using the present nonlinear MSD to illustrate 
the influence of geometrical nonlinearity, while the lin-
ear MSD with identical settings is studied as comparisons 
(Fig. 6e). The topologies in Fig. 6c–e appear to resemble 
each other although there exist differences in size and shape 
details. Figure 7 shows the associated convergence histories 
of the objective function for the present linear and nonlinear 
MSD for design case II, respectively. Since the load-carrying 
boundary evolves during iterations, which is reflected by 
an element switching between fluid (a homogeneous ersatz 
material) and solid–fluid (a condensed super-element) in the 
present MSD topology representation, some oscillations can 
be observed during iterations for both linear and nonlinear 
cases, even though kΦ is employed. It is observed that the 
nonlinear case (red curve) is less stable than the linear case 
(black curve) due to the inherent nature of nonlinear prob-
lems. Numerical instabilities in nonlinear problems include: 
the divergence of the NFEA may be caused by the low den-
sity elements (as the tangent stiffness matrix can become 
indefinite or negative definite as a result of large displace-
ments); divergence or non-convergence of the optimiza-
tion algorithm; premature convergence of the optimization 
algorithm, etc. Correspondingly, low density elements are 
removed; a significantly smaller move limit kmv is selected in 
the nonlinear case compared to the linear case; a relatively 
fast 0.05 increment is applied to control the penalty param-
eter p. However, the oscillation amplitude remains relatively 

larger than the linear case. The converged objective function 
obj = uout1 − uout2 is 1.22 for the nonlinear case, which is 
slightly larger than 1.18 for the linear case.

In addition, the effects of material penalty schemes are 
also studied. Figure 6g, h shows the topologies for case II 
with linear MSD and material penalties of p = p + 0.067 
(reaching p = 3 faster than in Fig. 6e) and p = p + 0.04 (reach-
ing p = 3 slower). In Fig. 6g, the rapid increase in p results in 
weak stability and failure to achieve convergence, although 
the objective function value at iteration 100 obj = 1.39 is 
higher than that of the recommended penalty scheme in 
Fig. 6e. By contrast, the slower increase in Fig. 6h ensures 
stability, but the objective function value of 1.15 is lower 
than that in Fig. 6e. Therefore, the increment of the material 
penalty should be selected within a certain range, avoiding 
both too fast and too slow increases. In addition, an alterna-
tive scheme to control the material penalty is also consid-
ered, where the penalty p is increased by 0.05 every 5 itera-
tions until p = 3, allowing the problem to converge for each 
increased p. The optimized objective function, obj = 1.20, 
is lower than the result obtained with the selected setting 
obj = 1.22. The possible cause could be premature conver-
gence of the pressure–structure interface.

Full linear FEAs are conducted for the three optimized 
linear designs in Fig. 6b, c, d from case I, and geometri-
cally nonlinear FEAs are performed for the optimal linear 
and nonlinear designs in Fig. 6e, f from case II, with the 
same boundary conditions as in Fig. 6a but excluding 
the two artificial springs. The parameters used are cho-
sen from those used in the experiment in (Vasista and 
Tong 2012), and they are E = 49.5 MPa and ν = 0.292, 
thickness of 19 mm and p = 25 kPa. Figure 8 depicts the 
linear and geometrically nonlinear bending-type defor-
mations with the associated von Mises stress contours 
for the three topologies in Fig. 6b, d, f (the wireframes 
indicate the un-deformed topological contour). Table 1 

Fig. 7  Objective function convergence history of the unit cell case for 
both linear and geometrically nonlinear design cases

Fig. 8  Schematics of the deformations and the von Mises stress distri-
butions for the optimum topologies in: a Fig. 6b using linear FEA; b 
Fig. 6d using linear FEA; and c Fig. 6f with geometrical NFEA
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lists the objective functions and the maximum von Mises 
stresses of the three topologies in case I obtained via the 
full linear FEAs, and Table 2 presents those for the opti-
mized topologies in case II obtained via the nonlinear 
FEAs. A comparison among the MSD, equivalent loading 
and u/p results reveals that the objective functions for the 
topology in Fig. 6d obtained using the present MSD is 
213.4 and 120.0% of those for the topologies in Fig. 6b 
(u/p) and Fig. 6c (equivalent loading). A further com-
parison between the linear and nonlinear MSD topology 
results indicates that: (a) the objective function increases 
by 21.2% (nonlinear 8.59 mm vs linear 7.09 mm); and 
(b) by contrast, the maximum von Mises stress decreases 
by 25% (nonlinear 8.94 MPa vs linear 11.92 MPa). It is 
observed that the topologies optimized via the present 
MSD method maintain a relatively low stress level com-
pared to their large deformations; one contributing factor 
is believed to be the addition of the strain energy den-
sity to the response function ( 𝛼 > 0 ) in Eq. (14). Mean-
while, the addition of the strain energy density term in 
the response function in Eq. (14) can decrease the output 
displacement of the compliant mechanisms defined as the 
objective function in Eqs. (1) or (12). By reducing the 
weighting of the strain energy density component (or the 
value of parameter � ) in Eq. (14), the output displacement 
can be further increased with an increased likelihood of 
overall structural discontinuity simultaneously. However, 
the output displacement obtained by the present method is 
significantly higher than that obtained by the u/P method, 
for example, for the case of using � = 0.3 in the MSD 
method compared to the case of  � = 0 in the u/P method.

These results show that the present linear MSD model 
is capable of creating topologies with larger objective 
functions than the u/p and equivalent loading formulation 
while maintaining similar maximum von Mises stress, 
and the nonlinear MSD can further enhance the objec-
tive function.

4.3  On the validity and accuracy of MSD

Additional computations are conducted for case II (linear 
and nonlinear) in benchmark example 4.2 with an alterna-
tive topology representation, in which conforming mesh 
is employed instead of substructures via super-elements 
for the solid–fluid interface elements. For comparison 
purposes, the solid–fluid interface elements are subdi-
vided using the strategy shown in Fig. 2b, but conforming 
meshes are constructed for interface elements instead of 
substructures via super-elements.

Numerical results show that the NFEA with conform-
ing mesh may diverge and/or terminate prematurely in the 
iterative optimization processes, where the large deforma-
tions of the small triangular fluid elements in the conform-
ing mesh are believed to be the main contributing factor 
to this observation. Hence, the optimized topologies are 
taken from case II in Example 4.2 instead, and are re-
meshed via the alternative topology representation and 
solved with the identical linear or nonlinear FEA solution 
settings. For the linear case (Fig. 6e), the objective func-
tion ( obj = uout1 − uout2 ) calculated using the conforming 
mesh is 1.15, which is only 2.38% less than the present 
MSD scheme ( obj = 1.18 ). For the nonlinear case (Fig. 6f), 
the objective function predicted using the conforming 
mesh is 1.28, which is 4.92% larger than the present MSD 
scheme ( obj = 1.22 ). The results in this example serve as 
an evidence to verify the accuracy and effectiveness of the 
present MSD method.

5  Pressure‑actuated PCS

This example presents a practical application of the present 
topology optimization method, including both numerical 
and experimental investigations. In this example, the thick-
ness variation of a planar PCS is to be controlled and driven 
by fluid pressure loads. We formulate the design problems 
using the proposed MIST method, numerically study the 
example, and prototype and experimentally test the optimal 
structures.

Table 1  Linear FEA results of the optimum topologies for case I

Topology and model Objective function 
(mm)

Max von 
Mises stress 
(MPa)

Figure 6b— u/p 4.56 8.75
Figure 6c—equivalent load 8.11 7.97
Figure 6d—linear MSD 9.73 12.41

Table 2  Nonlinear FEA results of the optimum topologies for case II

Topology and model Objective function 
(mm)

Max von 
Mises stress 
(MPa)

Figure 6e—linear MSD 7.09 11.92
Figure 6f—nonlinear MSD 8.59 8.94
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5.1  Design of the pressure‑actuated PCS

Let us consider the thickness modulation of a planar struc-
ture such as a wing rib achieved via pressure actuating. 
Figure 9a depicts the concept of a chord-wisely intercon-
nected pressurized cellular structure (PCS) consisting of 
multiple unit cells as in Fig. 9b for changing the thickness 
of an individual rib from airfoil NACA 0012 (solid lines) to 
NACA 0010 (dashed lines). In this section, the PCS design 
is accomplished through designing separately individual 
pressurized unit cell and the inter-cellular links.

5.1.1  Design of the unit cell

The design of an individual unit cell can be formulated for 
a pressurized compliant mechanism problem as in Eq. (12). 
Figure 10 depicts the design domain, the simplified com-
putational model, and the nonlinear material properties 

(Polyurethane (ET90ACMOCA) as in (Vasista and Tong 
2012; Luo and Tong 2013)). As demonstrated in Fig. 10a, 
b, the unit cell is internally pressurized at the center, and 
the output port is located at the midpoint of the top/bot-
tom edge. Thus, the thickness (or height) of the cell can be 
varied and controlled by internal pressure actuation. In the 
unit cell design, the objective function is chosen as − uout, 
and the problem parameters are: the stiffness of the artifi-
cial spring attached to the output port kout = 10 N/mm; the 
virtual force for the nonlinear case Fout = 50 N; the volume 
fraction Vf = 0.3 and the applied pressure p = 0.5 MPa. The 
remaining solution parameters are the same as those in the 
example detailed in Sect. 4.2, except for the filter radius rmin 
being chosen as 4 times of element size.

The unit cell design problem was solved for three cases: 
(a) linear case with linear material properties and small dis-
placements, (b) geometrical nonlinear case with linear mate-
rial properties and large displacements, and (c) geometrical 

Fig. 9  Schematics of the initial 
and morphed shapes of a an air-
foil and b a unit cell, where the 
solid and dashed lines indicate 
the original and deformed shape

Fig. 10  Unit cell problem: a 
design domain, b computational 
model (with a 25 × 50 mesh), 
and c material properties for 
the design of the pressurized 
unit cell
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nonlinear case with nonlinear material properties and large 
displacements. The optimal topologies of case (a) and (b) are 
presented in Fig. 11a and b, respectively, while the results 
for case (c) is illustrated in Fig. 12. Figure 12 depicts the 
convergence history of the objective function (− uout) and the 
selected topologies for one quarter of a unit cell at iteration 
30, 50 100 and 200, respectively. It is worth noting that the 
pressure surface area for case (c) is much larger than those 
for cases (a) and (b), according to Figs. 11 and 12. The unit 
cell constructed from the converged quarter cell topology 
in Fig. 12 can then be used to generate pressurized cellular 
network for potential applications, such as the airfoil rib as 
in Fig. 9.

5.1.2  Design of the link

The design of cellular links is accomplished via solving a 
typical single–input–single–output compliant mechanism 
problem, in which a horizontal displacement at an input port 
is transferred to a vertical displacement at an output port. 
To formulate such a problem, a full NFEA of the whole 
optimum unit cell was conducted to understand its overall 
deformation and von Mises stress distribution as shown in 
Fig. 13a (under a pressure of 0.576 MPa). Figure 13b shows 
the variation of the horizontal displacement (ux) along the 
right edge with x = 50 and 0 ≤ y ≤ 40 (with reference to the 
dimensions in Fig. 10a). In light of the horizontal displace-
ment distribution in Fig. 13b, four cellular links attached to 
the unit cell at x =  ± 50 and y =  ± 15 are chosen with each 
having a rectangular design domain 30 × 15 . Figure 13c 
depicts the quarter computational model of 15 × 7.5 for 
the cellular link in the first quadrant simplified with a fur-
ther assumption of local symmetry. As no pressure load 
is involved in the link design, the strain energy and the Φ 
function in previous iteration will not be included in the 
objective function (i.e. � = 0 , k = 1 ). Figure 13d depicts 
the optimized topology of the link computed by the present 
algorithm considering material and geometrical nonlineari-
ties. In this computation, Vf = 0.3; Fin = 20 N; Fout = 10 N; 
kin = 5 N/mm; kout = 10 N/mm.

5.2  Experimental verification

5.2.1  Sample fabrication

The optimized unit cell designs, as shown in Fig. 12, were 
fabricated using polyurethane (ET90A + MOCA). The speci-
mens were cut from a polyurethane plate of 19 mm thick by 

Fig. 11  Optimized topologies and output displacements of a unit cell: 
a linear analysis; b geometrically nonlinear analysis

Fig. 12  The convergence his-
tory of the objective function 
for the design considering 
both material and geometrical 
nonlinearity and the selected 
topologies for one quarter of a 
unit cell at iterations 30, 50, 100 
and 200 (from left to right)
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Fig. 13  Deformation of the 
unit cell at p = 0.576 MPa and 
link design a deformation and 
nonlinear von Mises stress 
distribution; b displacement u

x
 

of the right edge along y axis; c 
model for optimal design of the 
link (mesh: 50 × 25); and d the 
optimized topology

Fig. 14  Designs of pressurized cellular structure (PCS) a the optimized design of the unit cell; b the PCS design with 5 parallel cells; c speci-
men of the unit cell; d the PCS with the embedded bladders
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using a water-jet technology, as shown in Fig. 14c and d. 
Air pressures are applied to the unit cells by air bladders, 
as in Fig. 14d.

5.2.2  Test of the unit cell

Figure 15 depicts the experimental setup with the used 
equipment and instruments, e.g., the miniature electronic 

Fig. 15  Experimental set-up: 
(1) computer system; (2) anti-
vibration table; (3) pressure 
controllers; (4) displacement 
sensors; (5) specimen; (6) data 
logger; (7) signal controller (8) 
DC power supply

Fig. 16  The deformations of 
the unit cell specimen results a 
the un-deformed specimen; b 
the deformed specimen under 
p = 0.25 MPa; c the deformed 
cell under p = 0.25 MPa pre-
dicted by NFEA; d a compari-
son of the measured and NFEA 
predicted displacement–pres-
sure curves for the unit cell 
specimen
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pressure controller controls output pressures of three chan-
nels, the data logger records displacements and input air 
pressures, the signal controller controls air pressure output, 
and displacement sensors measure displacements. Similar 
to the experiment in (Vasista and Tong 2012), pneumatic 
pressure was applied to the inner rubber bladders. LabVIEW 
software was used to program and conduct all the tests by 
controlling the pressure channel and measuring the in situ 
pressures and displacements.

Figure 16a, b depicts the test results of the unit cell 
specimen and its comparison with the NFEA results when 

subjected to a pressure of 0.25 MPa. Figure 16b and c indi-
cate a good agreement between the measured and predicted 
deformations, and both cases show that large deformation 
can be generated. Figure 16d depicts a comparison between 
the measured and NFEA predicted displacement–pressure 
curves. At the pressure of 0.25 MPa, the measured displace-
ment of the top surface of the unit cell specimen is 23.8 mm, 
and the NFEA predicted one is 20.4 mm. The relative dif-
ference between the NFEA and measured displacements is 
14.3%. It is believed that one major contributing factor to 
this difference is related to the pressure application method 

Table 3  Air pressures (MPa) in 
cells 1–5 of 3 loading case

Cases Video Cell 1 Cell 2 Cell 3 Cell 4 Cell 5

1 1 0.2 0.15 0.2 0.15 0.1
2 2 0.2 0.15 0.1 0.15 0.2
3 3 0.1 0.2 0.15 0.2 0.15

Fig. 17  a the PCS specimen 
without pressure loading; b the 
deformation profile of the PCS 
specimen and c a comparison 
between the measured and 
NFEA predicted thickness vari-
ations under the pressure load 
case 3 for the five cells (from 
left to right)
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using inner rubber bladders, which probably applies small 
or minimum pressure to the four corners, as marked with 
circles in Fig. 16c. The contraction ratio (displacement/total 
thickness) of the experimental results is 11.9%.

5.2.3  Test of the PCS

The five-cell PCS specimen was tested to illustrate its thick-
ness changing capability. Videos 1–3 illustrate the move-
ments of the PCS for the 3 loading cases in Table 3. Pres-
sures linearly increase from 0 to the specified values and 
then linearly decrease to zero.

Figure 17a depicts the PCS specimen with no pressure 
applied. Figure 17b depicts the deformation of case 3 when 
cells 1 to 5 (counted from left to right) are respectively sub-
jected to different pressures simultaneously. As the lower 
sheet of the PCS specimen is fixed, the height contraction 
is used to demonstrate the thickness change. Figure 17c 
depicts a comparison between the measured and NFEA 
predicted height reductions of the PCS specimen along 
the horizontal direction originated from the center of cell 
3. Figure 17c indicates that there exists a good correlation 
between the measured height variations and the NFEA pre-
dictions, in particular at the middle lines of the five cells, i.e. 
x = 0, ± 130, ± 260. A small discrepancy in the free cantilever 
section of the upper sheet at the right end of cell 5 exists, 
and this could be due to an improper deformation of cell 5 
caused by the non-uniform pressure. As shown in Fig. 17b, 
c, a non-uniform height variation of up to 6.4% of the maxi-
mum thickness (200 mm) can be achieved for the pressure 
load case. This example illustrates that the current PCS 
design is capable of changing the airfoil as shown in Fig. 9 
through application of different pressures to all unit cells.

6  Conclusion

This study presents a novel mixed substructure-density 
model for topology representation and update in opti-
mum design of pressurized compliant structures taking 
into account of geometrical and material nonlinearity. The 
present model is capable of capturing key geometrical and 
structural features, such as solid–fluid interfaces and equiv-
alent stiffness matrices and load vectors. An algorithm is 
developed by implementing this model via super-elements 
and a combined update scheme based on a moving iso-
surface threshold method, in which the response function 
is constructed using both current and previous iterations. 
Numerical examples and experiments are presented to verify 
the present model and algorithm. Those results show that 
the proposed model and algorithm can generate topologi-
cal designs of compliant mechanisms with larger objective 

functions (output displacements) and deformations com-
pared to those in the literature for linear analysis, and can 
further improve output displacements when nonlinearities 
are taken into consideration. The experimental results for 
the unit cell and the PCS specimens illustrate the feasibility 
of achieving possible airfoil thickness changes via applying 
differential cell pressures.

Appendix: Derivation of nonlinear strain 
energies

By assuming that loads (1) and (2) be virtual and real, 
respectively, and using the principle of virtual work at the 
τth load step, one can obtain:

Subtracting the external virtual work and internal virtual 
energy at the τth load step from those at the τ − 1th load 
step yields:

By using the trapezium formula to evaluate the integrals, 
Eq. (A2) can be approximated as:

Noting �F(l) = �ΔF(l) , Eq. (A3) can be rewritten as

where the load stepτ = 1, 2, …, M.
Summing all the M equations in Eq. (A4) for all τ from 1 

to M yields:

where the load case l = 1, 2.
Let us assume: 0�(2) = 0�(2) = 0�(2) = 0 , Eq. (A5) 

becomes:

As demonstrated in Eq. (A6), the nonlinear strain and 
mutual strain energy can be expressed using trapezium 
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area sums for all load steps. In this work, it is further 
approximated using only one segment from load step � = 0 
to M as:
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