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Advancing plant leaf disease 
detection integrating machine 
learning and deep learning
R. Sujatha 1, Sushil Krishnan 2, Jyotir Moy Chatterjee 3 & Amir H. Gandomi 4,5,6*

Conventional techniques for identifying plant leaf diseases can be labor-intensive and complicated. 
This research uses artificial intelligence (AI) to propose an automated solution that improves plant 
disease detection accuracy to overcome the difficulty of the conventional methods. Our proposed 
method uses deep learning (DL) to extract features from photos of plant leaves and machine learning 
(ML) for further processing. To capture complex illness patterns, convolutional neural networks (CNNs) 
such as VGG19 and Inception v3 are utilized. Four distinct datasets—Banana Leaf, Custard Apple Leaf 
and Fruit, Fig Leaf, and Potato Leaf—were used in this investigation. The experimental results we 
received are as follows: for the Banana Leaf dataset, the combination of Inception v3 with SVM proved 
good with an Accuracy of 91.9%, Precision of 92.2%, Recall of 91.9%, F1 score of 91.6%, AUC of 99.6% 
and MCC of 90.4%, FFor the Custard Apple Leaf and Fruit dataset, the combination of VGG19 with 
kNN with an Accuracy of 99.1%, Precision of 99.1%, Recall of 99.1%, F1 score of 99.1%, AUC of 99.1%, 
and MCC of 99%, and for the Fig Leaf dataset with Accuracy of 86.5%, Precision of 86.5%, Recall 
of 86.5%, F1 score of 86.5%, AUC of 93.3%, and MCC of 72.2%. The Potato Leaf dataset displayed 
the best performance with Inception v3 + SVM by an Accuracy of 62.6%, Precision of 63%, Recall of 
62.6%, F1 score of 62.1%, AUC of 89%, and MCC of 54.2%. Our findings explored the versatility of the 
amalgamation of ML and DL techniques while providing valuable references for practitioners seeking 
tailored solutions for specific plant diseases.

Keywords Deep learning (DL), Machine learning (ML), Plant leaf disease detection, Convolutional neural 
networks (CNNs), Feature extraction, Classification, Pythagoras tree

Machine Learning (ML) and Deep Learning (DL) have appeared as significant tools in the areas of picture clas-
sification and analysis, influencing substantial improvements in plant pathology and agriculture. Recently the 
utilization of these advanced technologies has collected awareness for plant leaf disease detection, advancing 
innovative approaches to boost productivity and crop  health1. This paper centers on plant leaf disease detec-
tion, explicitly in fig, banana, custard apple, and potato, employing advanced techniques in DL and ML. The 
agriculture domain has reaped huge benefits from the synergy of ML and DL, especially in disease management 
and detection. Complex computational methods are used in this paradigm to interpret and evaluate complicated 
patterns and trends within plant disease images. It focuses on effectively employing the capabilities of DL and 
ML to detect and classify plant leaf images, it performs very effectively compared to conventional  approaches2. 
Plant diseases that impact quality, quantity, and sustainability constantly put the global food supply system under 
strain. It takes a long time and is laborious to identify diseases using the traditional technique, which involves 
specialists. When DL and ML are introduced, the area is altered because they provide data-driven and logical 
approaches to fighting  illnesses3. Because ML can recognize patterns, it is a useful technology that helps identify 
plant diseases automatically. Large datasets including images of plant leaves aid ML algorithms in identifying 
the subtle characteristics linked to different  illnesses4. Segregated knowledge could be applied to new images, 
making it a reliable and suitable platform to identify diseases across different plants. DL serves as a subset of ML 

OPEN

1School of Computer Science Engineering and Information Systems (SCORE), Vellore Institute of Technology, 
Vellore, India. 2School of Computer Science and Engineering (SCOPE), Vellore Institute of Technology, Vellore, 
India. 3Department of CSE, Graphic Era University, Dehradun, India. 4Faculty of Engineering and IT, University 
of Technology Sydney, Ultimo, NSW 2007, Australia. 5University Research and Innovation Center (EKIK), 
Óbuda University, Budapest 1034, Hungary. 6Department of Computer Science, Khazar University, Baku, 
Azerbaijan. *email: gandomi@uts.edu.au

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-72197-2&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2025) 15:11552  | https://doi.org/10.1038/s41598-024-72197-2

www.nature.com/scientificreports/

that outperforms in image analysis tasks. CNN important part of DL, capable of getting the hierarchical attrib-
utes from the image that ensures the better identification of the leaf disease. Such DL capabilities also enable the 
models to recognize intricate patterns and relations between the patterns in leaf pictures, increasing classifica-
tion specificity. Despite the present potential, ML and DL applications in plant disease identification also have 
multiple limitations. These are the requirement for diverse and well-annotated tested samples, lack of attention 
to the interpretability of complex DL models, and complicated attempts to integrate these new technologies with 
the existing ones in agricultural practice. Still, the possibilities of increasing detection accuracy and reducing the 
necessity for manual inspection and crop health improvement outweigh the  disadvantages5. Key Challenges in 
detecting diseases in leaves are as follows:

• Leaf Morphological Variations
• Intraspecies Disease Variations
• Multiclass Classification
• Limited Annotated Data
• User-Friendly Implementation
• Timely Detection and Intervention
• Adaptability to New Pathogens
• Integration with Agricultural Practices

Overcoming such daunting challenges may necessitate the collaboration of researchers, agriculturists, and 
technology developers working in the agricultural domain. However, customizing solutions based on the unique 
needs and eccentricities of the potatoes & figs, bananas, and custard apples is vital for successfully deploying dis-
ease detection technologies in actual agricultural areas. By facilitating DL and ML adoption in plant leaf disease 
detection, the present investigation takes an innovative approach to some of the issues currently affecting agri-
culture. More specifically, this study analyses bananas, figs, potato crops, and custard apples due to the potential 
dangers associated with their identification, which has a devastating effect on crop growth and food security.

The goal of this work is to investigate and clarify the developments in ML and DL methods for diagnosing 
illnesses in plant leaf photos. Through exploring the methods, obstacles, and innovations in this area, the study 
aims to support the creation of reliable and expandable solutions that have the potential to completely transform 
agricultural disease control techniques. We will explore the nuances of ML and DL applications in the follow-
ing sections, offering an understanding of their revolutionary influence on plant pathology going forward. The 
remaining part of the manuscript is organized as: Sect “Literature review” presents the existing works in the 
areas of disease identification of plant leaves. Sect “Material and methods” presents the details of the methods 
and approaches followed in this paper. Sect “Results” presents the experimentation details, followed by Sect 
“Conclusion” offers the outcomes with a detailed argument, and Sect. 7 completes the manuscript with conceiv-
able future exertion.

Literature review
Ref3 explored plant ailment detection utilizing ML and DL methods. In the comparison, DL methods, particularly 
VGG-16, outperform ML methods, achieving the highest disease classification accuracy at 89.5%, showcasing the 
efficiency of DL in citrus plant illness  findings6 highlighted the significance of disease detection in agriculture, 
specifically focusing on banana plants. It proposes an automatic method using picture segmentation for catego-
rizing banana leaf diseases, aiming to reduce labor and detect symptoms early. Their study employs a hybrid 
fuzzy C-means technique for segmentation and classification, extracting color, shape, and texture characteristics. 
They have compared their method with existing DL approaches using quantitative metrics for diseases like black 
Sigatoka, yellow Sigatoka, dried/old leaves, banana bacterial wilt, and healthy  plants7. introduced advanced image 
processing algorithms for early disease identification in banana leaves. The proposed CRNN–RCNN classifier 
achieves a high accuracy of 98%, surpassing CNN, deep CNN (DCNN), k-nearest neighbor (kNN), and sup-
port vector machine (SVM) on a banana dataset. The precision, recall, and sensitivity scores are 97.7, 97.7, and 
98.69%, respectively.

Ref8 introduced the BananaLSD dataset, consisting of 937 original and 1600 augmented images of banana 
leaves affected by Sigatoka, Cordana, and Pestalotiopsis diseases. Utilized for creating the BananaSqueezeNet 
model, the dataset was captured using smartphone cameras in diverse real-world conditions. It holds potential 
for ML models facilitating early symptom identification by farmers & aids as a treasured reserve for investiga-
tors studying leaf spot  diseases9. proposed a novel DL technique, ACO-CNN, for plant leaf disease detection. 
Leveraging ant colony optimization (ACO) and a CNN classifier, it extracts color, texture & leaf procedure 
geometries from leaf images. The method outperforms existing techniques, as indicated by superior accuracy 
rates and effectiveness metrics. The disease detection process involves picture acquisition, image separation, 
noise removal, and  classification10. introduced a framework for plant disease recognition, leveraging DL and 
traditional features. The method used a deep feature signifier utilizing transfer learning and feature fusion to 
capture local texture data in plant leaf pictures. Center loss is combined to boost discriminatory features. The 
proposed approach achieves high classification accuracies of 99.79, 92.59 & 97.12% on three datasets (2 Apple 
Leaf and 1 Coffee Leaf), demonstrating its effectiveness in distinguishing plant leaf  diseases11. emphasized the 
need for timely recognition & categorizing of potato leaf illnesses in agronomy. Their proposed technique, using 
an improved DL algorithm, classifies potato leaves into five classes, addressing limitations in existing methods. 
The model achieves efficient classification, employing a pre-trained Efficient DenseNet with additional features. 
A reweighted cross-entropy loss function handled data imbalance, and dense connections by regularization 
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diminish overfitting. The algorithm, a novel approach, successfully perceives & categorizes four ailments in 
potato leaves, demonstrating an accuracy of 97.2%. Their experimental results indicated its superiority over 
existing models.

Ref12 discussed disease prevention in Indonesian potato production using the Swin Transformer, a highly 
efficient and accurate DL model.

Swin Transformer have shown promising results in detecting diseases in potato leaf with an accuracy of 
97.70% suggesting its possible breakthrough in agricultural research. Detecting leaf disease of crops was covered 
 in13 utilizing the DL architectures VGG-19, Inception v3, VGG-16, and DenseNet-121. DenseNet-121 outper-
formed other models with the highest accuracy of 91.75%, addressing the challenges in manual identification 
with CNN-based fruit disease  classification14. MobileNet v2, VGG-16, and DenseNet-121 have shown higher 
accuracy and recall in predicting the disease of papaya, guava, and citrus  respectively15. has observed that the 
VGG-16-based model produces a remarkable accuracy of 99.7% and AUC of 93.3% for classifying nine dif-
ferent tomato diseases of the PlantVillage  dataset16. devised a strategy for evaluating custard apple leaves for 
disease and NPK deficiency detection. The system was able to achieve an accuracy of 99.5% by employing super-
vised ML techniques like SVM and kNN. This system enables us to efficiently monitor plant health. In custard 
apple trees identification and treatment of diseases play a crucial role as if untreated it can lead to damage and 
decreased agricultural productivity. Expert systems trained to diagnose and suggest remedies can assist farmers 
in administering precise  treatment17.  Ref18 emphasized the pivotal role of image processing and ML in precise 
disease diagnosis for the custard apple plant, they have also focused on the analysis of leaf parameters.  Ref19 has 
culminated the issues faced and given a walkthrough of difficulties and solutions for data collection, segmenta-
tion, and  classification20. employed ultrasonic techniques and ML to detect defects in standing trees based on 
holes. The study has shown promising results in both lab and field study, with a one-dimensional CNN and fine 
Gaussian support vector machine working  effectively21. proposed an Internet of Things and DL-based irrigation 
system called DLiSA, to optimize water utilization across various climatic conditions. It outperforms existing 
models, highlighting its performance in experimental farming  scenarios22. developed a ML-based crop growth 
and disease monitor and provided real-time suggestions to the farmers. It utilized ensemble classification and 
pattern recognition. According to their study ensemble nonlinear SVM outperformed other ML methods.(Fig 1)

A tabular comparison is presented in Table 1.
The literature evaluation concludes that the use of DL models, including VGG-19 and Inception v3, in con-

junction with ML approaches greatly improves the precision and efficacy of plant disease identification. AI has the 
potential to completely transform agricultural disease control, as seen by various automated approaches’ superior 

Fig.1.  PRISMA flow diagram for systematic literature review.
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performance over labor-intensive traditional techniques. The adaptability and robustness of the combined ML 
and DL methodology are highlighted by the models’ high performance and versatility across a variety of datasets, 
such as potato, banana, custard apple, and fig leaves. These insights can be used to develop customized solutions 
for particular plant diseases.

Material and methods
Figure 2 presents the detailed work of the proposed approach.

Dataset
In the present work, we have used 4  datasets23–26.  Ref23 includes 408 original banana images from real fields of 
Dhaka, Bangladesh. The dataset is distributed in 7 classes namely: Black Sigatoka—67 images, Bract Mosaic Virus 
– 50 images, Healthy Leaf – 86 images, Insect Pest – 86 images, Moko – 55 images, Panama – 41 images, Yellow 
Sigatoka – 23 images respectively.  Ref24 compiled a dataset comprising 8226 pictures showcasing various diseases 
affecting Sugar Apples/Custard Apples from Pune, India, encompassing Anthracnose, Blank Canker, Diplodia 
Rot, Leaf Spot on fruit, Leaf Spot on leaf, and Mealy Bug. The dataset is distributed in 6 classes namely: Anthrac-
nose – 1075 images, Blank Canker – 1780 images, Diplodia Rot – 1645 images, Leaf spot on leaves – 1255, Leaf 
spot on fruit—867 images, Mealy Bug – 1604 images  respectively25 provides a dataset comprising 2321 images 
of Fig leaves, distinguishing between 1350 infected with the fig leafworm and 971 healthy ones from different 
regions of Iraq. The dataset is intended for research on the impact of fig leafworm infestation on production. 

Table 1.  Comparative analysis.

Sl. No Reference Dataset used Algorithms Disease detection/identification Description/outcome

1 16 Custard Apple Leaf diseases kNN and SVM Leaf parameter analysis, detection of 
N, P, K deficiencies, and leaf diseases Accuracy-99.5%

2 3 Citrus Leaf Disease SVM, SGD, RF, Inceptionv3, VGG16, 
VGG19

Canker, Blackspot, Greening, Mela-
nose, Healthy

Classification Accuracy of RF-76.8%, 
SGD-86.5%, SVM-87%, VGG19-
87.4%, Inceptionv3-89%, VGG16-
89.5%

3 17 Custard Apple disease Expert System
Anthracnose, Leaf spot, Diplodia rot, 
Black canker, Spiral nematode, and 
Stunt nematode, IPM for Custard 
Apple

Expert System Developed

4 10 2 Apple Leaf and 1 Coffee Leaf DL A general framework for recognizing 
plant diseases

The proposed method achieves 
99.79%, 92.59%, and 97.12% classifica-
tion accuracies on the three datasets

5 6 Alliance of Bioversity International 
and CIAT Banana Image Library

Total generalized variation fuzzy C 
means, CNN Disease Classification Sesitivity-89.04%, Specificity-96.38%, 

and Accuracy- 93.45%

6 7 Banana Plant Leaf Disease

Histogram pixel localization, 
region-based edge normaliza-
tion, Gabor-based binary patterns, 
convolution RNN, Convolutional 
Recurrent Neural Network–Region-
Based Convolutional Neural Network 
(CRNN–RCNN)

Disease Classification Precision-97.7%, recall-97.7%, sensi-
tivity-98.69%, accuracy-98%

7 15 PlantVillage VGG16-based model Disease Classification into 9 major 
types

Accuracy-99.7% and area under the 
curve (AUC)-93.3%

8 9 Citrus fruits and leaves dataset
Ant Colony Optimization with 
Convolution Neural Network (ACO-
CNN)

Classification of leaves Accuracy-99.98%

9 12 Potato Leaf Disease Swin Transformer DL Classification of healthy and 
unhealthy leaves Accuracy(training)-99.70%

10 11 PlantVillage Modified DenseNet-201
Potato Late Blight (PLB), Potato Early 
Blight (PEB), Potato Leaf Roll (PLR), 
Potato Verticillium_wilt (PVw) and 
Potato Healthy (PH) class

Accuracy-97.2%

11 14
Papaya Fruit Diseases, Guava Leaves 
and Fruits Dataset, Citrus Fruits and 
Leaves Dataset

MobileNet-v2, VGG16, DenseNet121 Detect disease in fruits via images

MobileNetv2 model, the disease 
prediction accuracy for papaya, 
guava, and citrus was 99.4%, 98.8%, 
and 95.8% and the recall values were 
99.4%, 98.8%, and 93.8%, respec-
tively.VGG16, the disease prediction 
accuracy for papaya, guava, and citrus 
was 97.7%, 99.6%, and 94.2% and the 
recall values were 96.5%, 99.6%, and 
89.2%, respectively.DenseNet121, 
the disease prediction accuracy for 
papaya, guava, and citrus was 99.4%, 
97.6%, and 99.2%, and the recall 
values were 98.8%, 97.6%, and 99.2%, 
respectively

12 13 – VGG-16, VGG-19, InceptionV3, and 
DenseNet-121 Leaf Disease Identification Accuracy-91.75% on DenseNet-121



5

Vol.:(0123456789)

Scientific Reports |        (2025) 15:11552  | https://doi.org/10.1038/s41598-024-72197-2

www.nature.com/scientificreports/

The dataset is distributed in 2 classes namely: Healthy – 971 images and Infected – 1350 images  respectively26. 
provides a dataset with 3076 images of 1500 × 1500 pixels representing different classes of potato leaf diseases 
caused by fungi, viruses, pests, bacteria, Phytophthora, nematodes, as well as healthy leaves from Central Java, 
Indonesia. The dataset is distributed in 7 classes namely: Bacteria – 569 images, Fungi – 748 images, Healthy – 201 
images, Nematode – 68 images, Pest – 611 images, Phytophthora – 347 images, Virus – 532 images respectively.

System components
Deep feature extraction
Pre-trained models help in effective feature extraction and, in turn, provide perfect classification. Plant leaf 
datasets from the benchmarked repository are cumulated and efficiently handled to build disease detection. 
Performance measures of various combinations of deep and ML algorithms utilized.

Inception v3. The Inception v3 model was developed based on the inceptionv1, and it is enhanced and out-
performing its precursor. Multiple strategies were incorporated in Inception v3 to optimize the model’s network 
for better adaptability and higher efficiency. It is faster and computationally less expensive than its predecessors 
inceptionv1 and Inception v3, though it has a larger network compared with them. Auxiliary Classifiers are 
being used as regularizers. The pivotal changes implemented in Inception v3 are making convolutional fac-
torizations into smaller convolutions, making asymmetric convolutions from spatial factorization, employing 
auxiliary classifiers, and reducing the grid size to a considerable  extent27.

VGG19. VGG19 is named for its 19 weighted layers, comprising 16 convolutional layers, five Max Pooling lay-
ers, and three Dense layers, totaling 21 layers. However, only sixteen of these layers are weight layers or learnable 
parameters layers. The input tensor size for VGG19 is 224 by 224, with three RGB channels. Notably, VGG19 is 
characterized by its emphasis on 3 × 3 filter convolution layers with a stride of 1, prioritizing simplicity over an 
abundance of hyper-parameters. The architecture consistently employs the same padding and a max pool layer 
with a 2 × 2 filter and stride 2. The arrangement of convolution and max pool layers is uniform throughout the 
entire architecture. The Conv-1 Layer has 64 filters, Conv-2 has 128 filters, Conv-3 has 256 filters, and Conv-4 
and Conv-5 each have 512 filters. Following the stack of convolutional layers are three fully connected (FC) lay-
ers, with the third performing a 1000-way ILSVRC classification with 1000 channels. Each of the first 2 FC layers 
has 4096 channels. The last soft-max layer is configured to the class of the plant  dataset28.

Machine learning (ML)
The evolution of the decision-making process without coding is a breakthrough in the data handling domain. 
Based on the huge data, recognizing the pattern, and forecasting the results are accomplished with the help of 
ML algorithms. Separate codes are not required due to the advancement in the ML area that in turn helps in 
making vital decisions. The usage of ML in analyzing and interpreting is embedded in all the applications from 
small to big in all the domains from physical science to health science to disclose the patterns that exhibit certain 
 illnesses29.

Fig.2.  Fusion of DL and ML for Plant Leaf Disease Detection.
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Active ML work is carried out persistently by professionals and researchers to improve the efficiency of recog-
nizing the ailments of a budding sage, forecasting the same to make better decisions on providing the matching 
treatment. In illness detection, a prompt strategy to make precise diagnosing and enhancing will be achieved 
by employing the ML process.

AdaBoost. It falls under the ensemble learning (EL) approach, where repeatedly cumulates the weak learners, 
give the misclassified cases a bigger weight. On the whole, the model puts a high level of importance on the phase 
of accurate classification and nurtures the methodology to upsurge the accuracy. Precisely, the weighted sum of 
these learners. It shows its brilliance in the case of binary  classification30.

k-nearest neighbors (k-NN). Normally provides great support both in the case of regression and classifica-
tion problems in the ML domain. Various types of distance metrics help in labeling the instances based on the 
arrangement of the data in the feature space and the closest will be mapped. In the case of the huge dataset, 
the cost involved in the computation is high and acts as a challenge to proceed even though it is easy and non-
parametric. To get maximum efficiency, the selection of the correct K value is highly important and  crucial31.

Random forest (RF). It is a popular EL approach that utilizes randomized attributes and data subsets to pro-
duce many DTs. The process of voting in classification or averaging in regression and integrating tree predic-
tions, reduces the overfitting and optimizes the generalization. It is honored for performing well in a range of 
situations in exhibiting nice precision and  flexibility3.

Support vector machine (SVM). The task concentrates on finding the best hyperplane to optimize the margins 
among the support vectors in the process of segregating across the classes. For non-linear patterns, the kernel 
approach is recommended. It performs well in the high-dimensional areas even though it has high sensitivity 
in case of outliers. The C parameters balance the perfect categorization and even boundary decision. SVM is 
highly prescribed for its adaptability and efficiency both in the case of regression and classification problems of 
supervised  ML32.

Decision tree (DT). The ML algorithm is suited more for regression and classification problems. It hierarchi-
cally arranges the information into a tree and at each node, decisions will be taken based on its properties. It suits 
the ensemble technique too and is prone to highly interpretable and overfitting nature. The main pros are their 
malleability and simple  structure33.

Results
Stratified 10-Fold cross validation
It’s a unique approach in the process of evaluation in the ML models. In this process, the entire dataset is sub-
divided into 10 subgroups, ensuring the class spreading of the original data is sustained in each subgroup. Over 
the model, 10 iterations of training and testing are performed. In each iteration, the distinct testing subset is 
maintained. It serves more perfectly in the case of unequal distribution of the class in the  data3.

Confusion matrix (CM)
In the case of any class situation, CM measures are used often to estimate and take appropriate measures to 
curtail classification problems. The CM illustrates the matrix between predicted and actual values. True Nega-
tive precisely named TN, represents the perfectly predicted negative classes. Similarly True Positive stands for 
TP, and references perfectly predicted positive classes. False Positive or FP, denotes the real negative instances 
erroneously mapped as positive. Conversely, “FN” (False Negative) refers to instances in which true positive 
examples were mistakenly labeled as  negative32.

Accuracy
Every match, which contrasts the actual and predicted classes of every data point, indicates one accurate predic-
tion in terms of accuracy. Next, the number of correct predictions divided by the total number of forecasts is 
used to determine  accuracy14. The equation is:

Precision
Precision is defined as the ratio of correctly categorized positive samples (True Positive) to the total number of 
positively classified samples (it can be either correct or erroneous)14. The equation is:

Recall
The fraction of Positive samples that were correctly anticipated to be Positive to all Positive samples is how the 
recall is calculated. The recall measures the model’s ability to recognize positive samples. The recall increases 
with the number of positive samples  found14. The equation is:

(1)Accuracy = TP + TN / (TP + TN + FP + FN)

(2)Precision = TP /TP + FP
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F1-score
The F1-score combines evaluations of a model’s recall and accuracy. The accuracy statistic counts the number of 
times a model correctly predicted a given dataset. Overall performance is good for a classification model with 
a high F1 score. It demonstrates how the model can effectively detect positive situations while minimizing FP 
and  FN34.

Area under curve (AUC)
This metric is used to assess how well a classification model predicts binary outcomes. It is often used in ML 
and data analytics. The True Positive Rate (TPR) vs False Positive Rate (FPR) at different thresholds are plotted, 
and the area under the resultant curve is calculated to find the AUC 14.

Matthew’s correlation coefficient (MCC)
The best single-value classification metric for condensing an error or confusion matrix is  MCC35. Moreover, MCC 
also varies between + 1 and −1 to accommodate the majority of correlation coefficients as:

• The best agreement between the actual and anticipated values is + 1.
• 0 denotes no consensus. That is, based on the facts, predictions are arbitrary.

Pythagorean tree (PT)
PT answers questions about the class succinctly. The number of training cases covered by the size of the squares 
on nodes in Pythagorean  trees36. The corresponding new squares form a right triangle on top of the parent square 
once the data is divided into two  subsets37.

Discussion
The accuracy of the classifiers in predicting disease categories from the plant dataset was examined in this work. 
The outcomes of these analyses are displayed. To gauge the accuracy of the integration of deep and ML in the 
identification of plant disease processes, several performance measures were employed. Table 2 provides insight 
into performance measures in the case of banana plants. The blend of Inception v3 and SVM shows higher values 
in all performance measures and has a higher accuracy of 91.9%. The disease detection will be reliable in the 
case of Inception v3 along with SVM.

Figure 3PT via the Inception v3 approach along with DT illustrates the various classes based on the feature 
distribution. It is evident in the case of the banana leaf, which holds 7 classes, and 408 records are classified into 
different combinations.

Figure 4 indicates the diagonal values are correctly classified records and either side of the diagonals represents 
misclassified records. In the case of black Sigatoka 58 images are correctly predicted out of 67, bract mosaic virus 
47 images are correctly predicted out of 50, healthy leaf 85 are correctly predicted out of 86, insect pest 82 are 
correctly predicted out of 86, moko 55 are predicted correctly on whole, Panama 36 predicted perfectly out of 
41 and yellow Sigatoka 12 out of 23 are predicted perfectly.

Table 3 provides insight into performance measures in the case of the custard apple. The blend of VGG19 and 
kNN shows higher values in all performance measures and has a higher accuracy of 99.1%. The disease detection 
will be reliable in the case of VGG19 along with kNN.

(3)Recall = TP/TP + FN

(4)MCC = (TN x TP− FN x FP) / SQRT((TP + FP) (TP + FN) (TN + FP) (TN + FN))

Table 2.  Banana plant leaf- performance measures. Significant values are in bold.

DL Approach ML Methods Accuracy Precision Recall F1 AUC MCC

Inception v3

AdaBoost 0.598 0.606 0.598 0.601 0.761 0.522

kNN 0.88 0.878 0.88 0.878 0.983 0.857

RF 0.762 0.762 0.762 0.756 0.947 0.715

SVM 0.919 0.922 0.919 0.916 0.996 0.904

DT 0.654 0.666 0.654 0.658 0.803 0.59

VGG19

AdaBoost 0.706 0.7 0.706 0.705 0.825 0.649

kNN 0.841 0.846 0.841 0.836 0.967 0.811

RF 0.806 0.804 0.806 0.8 0.963 0.769

SVM 0.892 0.895 0.892 0.89 0.987 0.872

DT 0.721 0.72 0.721 0.719 0.841 0.666
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Figure 5 PT via the VGG19 approach along with DT illustrates the various classes based on the feature dis-
tribution. It is evident in the case of the custard apple leaf and fruit, 6 classes, and shows that 8226 instances are 
classified over different combinations.

Figure 6 indicates the diagonal values are correctly classified records and either side of the diagonals represents 
misclassified records. In the case of black anthracnose, 1062 images are correctly predicted out of 1075, blank 
canker 1761 images are correctly predicted out of 1780, diplodia rot 1639 are correctly predicted out of 1645, 
leaf spot on leaves 1252 are correctly predicted out of 1255, leaf spot on fruit 850 are predicted correctly out of 
876 and mealy bug 1591 predicted perfectly out of 1604.

Table 4 provides insight into performance measures in the case of Fig plant. The blend of VGG19 and kNN 
shows higher values in all performance measures and has a higher accuracy of 86.5%. The disease detection will 
be reliable in the case of VGG19 and kNN.

Figure 7 PT via the VGG19 approach along with DT illustrates the various classes based on the feature dis-
tribution. It is evident in the case of the custard apple tree, 2 classes, and shows that 2321 instances are classified 
over different combinations.

Figure 8 indicates the diagonal values are correctly classified records, and either side of the diagonals repre-
sents misclassified records. In the case of healthy 816 images are correctly predicted out of 971, and in infected 
1191 images are correctly predicted out of 1350.

Fig.3.  PT – Inception v3 + DT.

Fig.4.  CM– Inception v3 + SVM.
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Table 3.  Custard Apple Leaf and Fruit- Performance Measures. Significant values are in bold.

DL Approach ML Methods Accuracy Precision Recall F1 AUC MCC

Inception v3

AdaBoost 0.745 0.745 0.745 0.745 0.845 0.69

kNN 0.986 0.986 0.986 0.986 0.999 0.982

RF 0.874 0.874 0.874 0.873 0.979 0.847

SVM 0.858 0.865 0.858 0.856 0.981 0.83

DT 0.756 0.756 0.756 0.756 0.835 0.704

VGG19

AdaBoost 0.761 0.761 0.761 0.761 0.854 0.709

kNN 0.991 0.991 0.991 0.991 0.999 0.99

RF 0.903 0.904 0.903 0.903 0.987 0.883

SVM 0.953 0.954 0.953 0.953 0.997 0.943

DT 0.765 0.765 0.765 0.765 0.852 0.715

Fig.5.  PT – VGG19 + DT.

Fig.6.  CM– VGG19 + kNN.
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Table 5 provides insight into performance measures in the case of potato plants. The blend of Inception v3 
and SVM shows higher values in all performance measures and has a higher accuracy of 62.6%. The disease 
detection will be reliable in the case of Inception v3 and SVM.

Figure9 PT via the Inception v3 approach along with DT illustrates the various classes based on the feature 
distribution. It is evident in the case of the potato leaf, 7 classes, and shows that 3076 instances are classified 
over different combinations.

Table 4.  Fig Leaf – Performace Measures. Significant values are in bold.

DL Approach ML Methods Accuracy Precision Recall F1 AUC MCC

Inception v3

AdaBoost 0.772 0.772 0.772 0.772 0.767 0.532

kNN 0.863 0.863 0.863 0.862 0.935 0.717

RF 0.822 0.822 0.822 0.822 0.912 0.634

SVM 0.848 0.848 0.848 0.847 0.922 0.686

DT 0.79 0.789 0.79 0.79 0.723 0.567

VGG19

AdaBoost 0.776 0.776 0.776 0.776 0.77 0.54

kNN 0.865 0.865 0.865 0.865 0.933 0.722

RF 0.826 0.826 0.826 0.826 0.91 0.642

SVM 0.76 0.759 0.76 0.759 0.841 0.503

DT 0.781 0.78 0.781 0.78 0.732 0.547

Fig. 7.  PT – VGG19 + DT.

Fig.8.  CM– VGG19 + kNN.
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Figure 10 indicates the diagonal values are correctly classified records and either side of the diagonals repre-
sents misclassified records. In the case of bacteria, 505 images are correctly predicted out of 569, fungi 469 images 
are correctly predicted out of 748, 104 are correctly predicted out of 201, nematode 16 are correctly predicted 
out of 68, pests 257 are predicted correctly out of 611, phytophthora 208 predicted perfectly out of 347 and virus 
367 out of 532 are predicted nicely.

Table 6 presents the comparison of the proposed work with other existing works.

Conclusion
In conclusion, this study presents a pioneering investigation into the synergistic fusion of DL & ML techniques 
for the accurate detection of plant leaf diseases, focusing on banana, fig, potato, and custard apple plants. The 
integration of DL for feature extraction and ML for classification proved to be a powerful approach, addressing 
challenges related to leaf morphological variations, disease diversity, and environmental influences. The results 
underscore the effectiveness of the proposed synergistic fusion approach, showcasing superior performance 
compared to standalone methodologies.

The proposed approach has the potential to revolutionize automated plant disease diagnostics, support sus-
tainable farming methods, and improve crop health.

Table 5.  Potato Leaf- Performance Measures. Significant values are in bold.

DL Approach ML Methods Accuracy Precision Recall F1 AUC MCC

Inception v3

AdaBoost 0.569 0.589 0.569 0.556 0.843 0.476

kNN 0.589 0.599 0.589 0.586 0.839 0.495

RF 0.502 0.495 0.502 0.489 0.785 0.384

SVM 0.626 0.63 0.626 0.621 0.89 0.542

DT 0.425 0.426 0.425 0.425 0.651 0.298

VGG19

AdaBoost 0.607 0.623 0.607 0.599 0.86 0.515

kNN 0.608 0.607 0.608 0.6 0.849 0.521

RF 0.532 0.533 0.532 0.523 0.805 0.422

SVM 0.618 0.617 0.618 0.611 0.891 0.532

DT 0.425 0.423 0.425 0.424 0.644 0.298

Fig.9.  PT – Inception v3 + DT.
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Researchers, agricultural specialists, and tech developers may learn a lot from the study’s thorough analysis of 
issues, previous efforts, and experimental outcomes. The broad application of these technologies in agriculture 
depends on their capacity to handle problems like insufficient annotated data, adaptation to novel diseases, and 
user-friendly implementation. These challenges may be effectively addressed by combining ML and DL in disease 
diagnosis. Future research and development initiatives in plant pathology should continue to tackle issues unique 
to various crops and geographical areas. Through customization of solutions to suit the particular requirements of 
custard apple, potato, banana, and fig crops, we can guarantee the smooth assimilation of cutting-edge technol-
ogy into current farming methods. This work establishes the foundation for future efforts to use computational 
techniques to protect the world’s food supply and strengthen the resilience of agricultural systems.

In future work, we plan to validate our model with real-time leaves collected from crop fields and tabulate 
the accuracy results with the real-time dataset. We will also conduct field studies and consult with agricultural 
scientists and farmers to assess the model’s efficiency. These consultations will provide valuable insights into the 
practical challenges and possibilities for real-time system deployment, which we will include in our future reports.
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