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This paper presents a novel, explainable feature engineering framework for classifying EEG and ECG 
signals with high accuracy. The proposed method employs the Order Transition Pattern (OTPat) feature 
extractor. The presented OTPat feature extractor captures both channel/column-based patterns 
(spatial features) using all channels for each point and signal/row-based patterns (temporal features) 
by extracting features from individual channels using overlapping blocks. The extracted features are 
then refined using cumulative weighted iterative neighborhood component analysis (CWINCA) for 
feature selection and classified with a t-algorithm k-nearest neighbors (tkNN) classifier. Finally, two 
symbolic languages, Directed Lobish (DLob) and Cardioish, generate interpretable results in the form 
of cortical and cardiac connectome diagrams. The OTPat-based XFE model achieves over 95% accuracy 
on several EEG and ECG datasets and reaches 86.07% accuracy on an 8-class EEG artifact dataset. 
These results demonstrate high performance and clear interpretability, highlighting the model’s 
potential for robust biomedical signal classification.
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Biomedical signals such as EEG (electroencephalography) and ECG (electrocardiography) are crucial for 
understanding brain and heart functions, respectively1,2. These signals are widely used in medical diagnosis 
to detect various conditions, such as neurological disorders and heart diseases3. Despite their importance, it is 
difficult to analyze them accurately due to their complex structure and inter-individual variability4.

Recently, researchers have focused on developing advanced techniques to process and classify biomedical 
signals5–8. These efforts aim to increase the sensitivity of the analysis while ensuring that the results are 
interpretable and clinically meaningful3. Achieving high accuracy and interpretability of the developed system 
is important in healthcare9.

There is a growing need for methods that can process data from multiple sources, such as EEG and ECG, in 
a unified manner10. This can help to provide a more accurate diagnosis of complex medical conditions11. Hence, 
there is a need for an efficient and explainable approach12.

Although most of the presented automatic biomedical signal classification research reported high accuracies 
under controlled conditions, they have several limitations13. They require high computational power since most 
use deep learning models to achieve high classification performances. They lack subject-specific validation, offer 
limited interpretability and rely on a single modality. A detailed look at these issues shows that multimodal 
approaches are needed. Such approaches can improve generalizability and interpretability with lower 
computational complexity.
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In this work, our primary goal is to develop a general explainable feature engineering (XFE) model for 
biomedical signals. For this purpose, ECG and EEG signal datasets, which are frequently used in the literature, 
were utilized. A new method, Order Transition Pattern (OTPat), is proposed to automatically classify these 
signals. This method is designed to identify meaningful transitions between signal channels and within signals, 
focusing on meaningful feature extraction.

To achieve high classification performance, cumulative weighted iterative neighborhood component analysis 
(CWINCA)14 is used as a self-organized feature selector, along with t-algorithm k-nearest neighbors (tkNN)15 
as a self-organized classifier. Since EEG and ECG datasets are employed as test datasets in this study, explainable 
results are derived using the Directed Lobish (DLob)16 and Cardioish17 symbolic languages. Both symbolic 
languages are purpose-oriented explainable artificial intelligence (XAI) methods that create connectome 
diagrams based on the selected features.

Related works
There are various studies conducted across different disciplines18–21, focusing on diverse applications ranging 
from healthcare to cognitive sciences and neurotechnology22–24. Brain-Computer Interface (BCI) systems25–27 has 
gained significant attention due to its ability to decode neural activity and facilitate interaction between the brain 
and external devices28–31. Various machine learning-based approaches have been proposed for stress detection32, 
mental performance assessment33, and neurodegenerative disease classification34–36, including amyotrophic 
lateral sclerosis (ALS). These studies leverage electrophysiological signals, such as electroencephalography 
(EEG)37–39 and electromyography (EMG)40, to extract meaningful patterns associated with cognitive and motor 
impairments.

We have presented a few machine learning-based studies related to the detection of stress, mental performance 
and ALS in this section.

Mane and Shinde41 introduced a hybrid convolutional neural network (CNN)- long short-term memory 
(LSTM)-based model for EEG-based stress detection. They used SEED and DEAP datasets to detect stress 
levels, and their model yielded 97.8% classification accuracy with 10-fold cross-validation (CV) strategy. They 
did not employ the subject- or record-wise validation techniques and also did not employ explainable artificial 
intelligence (XAI) methods.

Badr et al.42 reviewed deep learning techniques, particularly CNN and LSTM models, for mental stress 
detection using EEG signals. They analyzed studies employing various data representations and showed that 
spectral and topographical inputs can obtain up to 88% accuracy. Their findings emphasized the potential of 
using advanced EEG input representations and hybrid models for stress detection with high accuracy and 
generalizability. However, they only focused on EEG signals. Moreover, they didn’t use any XAI methods to 
present interpretable results.

Malviya and Mal43 presented a CNN– Bidirectional LSTM hybrid model for stress detection using EEG 
signals with the Physionet dataset. Their model used discrete wavelet transform (DWT) for denoising and feature 
extraction, followed by CNN for feature selection and BLSTM for classification. Their approach achieved a high 
accuracy of 99.20%. They used only EEG signals and did not employ XAI results nor subject-wise validations.

Roy et al.44 proposed a hybrid deep learning approach combining CNN, LSTM, BiLSTM, and gated recurrent 
unit (GRU) layers for stress detection using the STEW EEG dataset. Their model used DWT for feature extraction 
and achieved an accuracy of 98.10%. However, they used only one EEG dataset.

Fernandez et al.45 investigated students’ stress detection using EEG signals recorded during stress-inducing 
activities with machine learning models. They used features such as mean and standard deviation from EEG 
channels and achieved an accuracy of 86.24% using the light gradient-boosting machine. XAI results or subject-
wise validations were not performed. Furthermore, the models were evaluated solely on EEG signals and 
combined three deep learning architectures, which increased the overall time complexity.

Patel et al.46 proposed a hybrid deep learning approach by combining 1D CNN with BiLSTM and BiGRU for 
mental stress detection using the DEAP dataset. They utilized sliding FFT (fast Fourier transform) for feature 
extraction across 14 EEG channels and classified stress states into four categories. The 1D CNN + BiLSTM model 
achieved the highest accuracy of 88.03%. However, they only focused on EEG signals.

Al-Saggaf et al.47 evaluated EEG-based stress detection approaches for wearable devices using a dataset 
recorded during stress-inducing tasks. Their method achieved the highest accuracy of 96% using the machine 
learning method and completed the process fast (0.32 s). They used only the EEG dataset and did not employ 
XAI methods.

Opałka et al.48 developed a multi-channel CNN architecture for EEG-based mental task classification using 
the BCI Competition III Dataset V. Their model focused on frequency-domain sub-band analysis and employed 
a two-layer CNN structure to improve feature extraction. Their approach achieved a classification accuracy of 
nearly 70%. Their study showed lower classification accuracy, with no interpretable results.

Zhang et al.49 proposed a hybrid deep learning model, Recurrent 3D CNN, combining recurrent and 3D 
convolutional neural networks for cross-task mental workload assessment using EEG data from n-back and 
arithmetic tasks. Their method transformed EEG signals into spatial-spectral-temporal features and achieved 
an average classification accuracy of 88.9%. Their study focused on limited tasks (spatial n-back and arithmetic) 
with higher time complexity.

He et al.50 developed a CNN-based method for real-time acute cognitive stress detection using ECG signals. 
The study utilized a super-short 10-second window of ECG data from 20 participants under stress-inducing 
arithmetic tasks. Their proposed CNN model achieved a 17.3% error rate, outperforming conventional heart 
rate variability-based methods by at least 7.2%. The limitation of their study is the high computational load of 
the CNN model and their model has no multimodal biomedical signal classification option.
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Bergil et al.51 analyzed the performance of arithmetic and mental tasks using EEG and ECG signals from 
the PhysioNet database, including 36 participants. They extracted wavelet-based features and achieved a 
classification accuracy of 99% using a k-NN classifier using EEG and ECG features. The limitation of their study 
is the reliance on high-dimensional feature sets derived from wavelet transforms of EEG and ECG signals. They 
used both EEG and ECG signals, but they have no subject-wise and interpretable results.

Pirasteh et al.52 reviewed EEG-based brain-computer interface (BCI) methods developed for the rehabilitation 
of advanced ALS patients by enabling communication and environmental control. They discussed various feature 
extraction techniques, including common spatial patterns and wavelet packet decomposition, and classifiers like 
support vector machine (SVM) and neural networks, highlighting SVM’s robustness with high-dimensional 
data. Although accuracy rates varied across different approaches. Hybrid methods that combine EEG modalities 
showed potential for improved performance. Their study highlighted the benefits of BCIs for ALS patients. This 
is true despite challenges such as signal instability and device usability. Also, their review didn’t focus on XAI 
and subject-wise validation.

Literature gaps
Based on our literature review, we have identified the below gaps:

• Nowadays, deep learning techniques have been widely used in biomedical signal classification53,54, as deep 
learning models have achieved high classification performance55. However, these models have a high time 
burden56.

• Most of the works focused on either EEG or ECG signal classification57–59. Hence, multimodal signal classi-
fication is needed.

• In most signal classification models, researchers are motivated to achieve high classification performance60,61. 
There are limited explainable models. Most of the explainable models have used well-known explanation gen-
eration methods such as Grad-CAM (Gradient-weighted Class Activation Mapping), Lime (Local Interpreta-
ble Model-agnostic Explanations), and SHAP (Shapley Additive Explanation)62–64. The number of specialized 
(data-driven) explainable methods is limited.

Motivation and study outline
We have proposed a novel feature extraction function, OTPat, to address the literature gap. OTPat aims to extract 
meaningful features from both channels and signals using an ordering approach. The extraction of features from 
both channels and signals yields informative features. To demonstrate the classification ability of the presented 
OTPat, an XFE model has been developed. In this model, features were extracted using OTPat, and the most 
informative features were selected by the CWINCA14 feature selector and classification was performed using 
tkNN15. We introduced a highly accurate feature engineering model by combining these three stages.

We were inspired by self-organized machine learning models to propose this signal classification model. We 
integrated the self-organized feature selector (CWINCA) and classifier (tkNN) with the proposed OTPat. Due 
to this self-organized nature, we have developed a highly accurate model that can compete with the classification 
performance of deep learning models. Moreover, the presented OTPat-driven XFE model has linear time 
complexity.

To address the second gap, we used both EEG and ECG datasets to demonstrate the general classification 
ability of the introduced OTPat-driven XFE model.

To address the last gap, we used DLob16 and Cardioish17 XAI methods to obtain interpretable results. DLob is 
an EEG-related XAI method, while Cardioish is a symbolic language-based explainable results generator for ECG 
signals. By employing DLob and Cardioish, we bridged the third literature gap and obtained highly insightful 
XAI results. To generate interpretable results, we integrated the DLob/Cardioish symbolic languages into the 
recommended biomedical signal classification model. In this work, connectome diagrams were generated using 
the DLob/Cardioish symbol sequences. Additionally, the information entropy of these DLob/Cardioish strings 
was calculated, showcasing the complexity of psychosis-related criminal detection.

The presented OTPat-driven XFE model consists of four phases: (i) feature extraction based on OTPat, (ii) 
selection of the most informative features using the CWINCA feature selector, (iii) tkNN-based classification 
outcome generation, and (iv) interpretable results generation using DLob/Cardioish.

By deploying OTPat alone, we extracted features from channels and signals. To select the most informative 
features, the CWINCA feature selector was applied. This feature selector is self-organized as it automatically 
identifies the best-selected feature vector instead of preselected feature vectors. These selected features were 
used for both classification and XAI result generation. In the classification phase, tkNN was utilized to generate 
classification results. This classifier is both ensemble and iterative, generating multiple classification outputs 
and automatically selecting the most accurate outcome. In this respect, tkNN is a self-organized classifier. 
By employing self-organized feature selection and classification, we enhanced the classification ability of the 
introduced OTPat-based XFE framework.

Therefore, this model is highly accurate and serves as a competitive feature engineering alternative to deep 
learning models. In the final phase, the identities of the selected features were used to create DLob or Cardioish 
symbol sequences. Subsequently, connectome diagrams and information entropies were generated for the 
datasets used.
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Innovation and contributions
Innovation

• Proposed a new generation OTPat feature extraction function which used advanced ordering-based transfor-
mations to capture subtle channel-level (spatial) or single-channel (temporal) patterns. This approach com-
bined local and global signal characteristics with minimal computational overhead.

• Introduced a novel OTPat-based XFE pipeline for EEG and ECG classification. This pipeline is self-organized 
via CWINCA for feature selection and tkNN for classification. It yielded state-of-the-art accuracy across 
multiple datasets while maintaining linear time complexity.

• Used DLob and Cardioish symbolic languages in a single framework. This is the first approach to produce de-
tailed connectome diagrams for both EEG and ECG signals. It equips clinicians and researchers with clearer, 
more interpretable insights into underlying physiological processes.

Contributions

• The introduced OTPat-based XFE framework is scalable, as it has been tested on various EEG and ECG signal 
datasets. Moreover, the recommended model achieved over 95% classification accuracy on the biomedical 
signal datasets. Hence, the presented model contributes to the biomedical signal classification field, offering 
an alternative to deep learning models.

• The integration of DLob and Cardioish provides medical insights from the datasets, which are XAI-driven 
findings. Hence, the proposed OTPat-driven XFE model contributes to medicine by generating explainable 
results based on feature engineering.

The used datasets
To develop the proposed OTPat-driven XFE model, we used two EEG and one ECG dataset. The details of these 
datasets are provided below. These datasets were used to demonstrate the general biomedical signal classification 
ability of the recommended OTPat-driven XFE framework.

EEG stress dataset
In this study, the EEG stress dataset was used65,66. This dataset consisted of 310 participants (150 stressed and 
160 controls) who were survivors (disaster victims) of the February 6 earthquake series in Turkey. The EEG 
signals were divided into 15-second segments. In this study, we used 3,667 EEG segments (1,785 stress and 1,882 
control), with participants’ ages ranging from 18 to 43 years.

EEG ALS dataset
The Amyotrophic Lateral Sclerosis (ALS) EEG detection dataset has two classes: (i) ALS and (ii) control67,68. 
This dataset is unbalanced, including 170 healthy participants and 6 ALS participants. The EEG signals were 
segmented into 10-second intervals. Consequently, 10,248 EEG segments were obtained from the healthy group 
and 2,631 EEG segments from the ALS group. To balance the EEG ALS dataset, we randomly selected 2,631 EEG 
segments from the healthy group. As a result, we created a balanced EEG ALS dataset containing 5,262 EEG 
segments. This dataset was collected using a brain cap with 32 channels inthe Emotiv Flex 32-channel brain cap.

ECG mental health dataset
The ECG mental health classification dataset consists of four classes: normal, bipolar, depression, and 
schizophrenia69. The dataset consists of 2926 ECG beats with 900 (normal), 197 (bipolar), 202 (depression), and 
1,607(schizophrenia) ECG beats collected using 12 channels. The ECG beats were collected from 198 participants 
with mental health disorders (119 with schizophrenia, 62 with bipolar disorder, and 17 with depression) aged 
between 18 and 80 years.

Proposed OTPat feature extractor
The primary objective of this feature extractor is to generate hidden patterns to get high classification 
performance. The main innovation of this work is the OTPat. This feature extractor extracts features from both 
single and multi-channel signals. The introduced OTPat captures relationships from signal values and channels. 
The general steps of the presented model are (i) spatial feature extraction, (ii) temporal feature extraction, and 
(iii) feature concatenation. Figure 1 presents the graphical representation of the OTPat feature extractor.

Figure 1 presents the graphical depiction of the recommended OTPat, and the steps of this feature extractor 
are outlined below.

Step 1: Define the transition table since the utilized OTPat is a transition table feature extraction-based 
method. 

 

ttq =




0 · · · 0
...

. . .
...

0 · · · 0


 , q ∈

{
1,2, . . . , ∁ + 1

}
 (1)

where tt: transition table and ∁ : the number of channels. Herein, each transition table has been defined as a 
counter.
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Step 2: Create a channel/column vector to extract spatial features. In the feature extraction process, ordering 
transformer and transition table feature extraction have been utilized together. In this step, channel vector 
creation has been defined as below. The column-based feature extraction has been defined in Step 3. 

 cvi = signal (i, :) , i ∈ {1,2, . . . , len} (2)

Herein, cv: channel vector, len: length of the signal.
Step 3: Generate spatial features using the ordering transformer, transition table extraction, and matrix-to-

vector transformation.
In this step, a channel vector from each time point is passed through the ordering transformer. The 

resulting transitions are recorded in a transition table, which is then flattened into a feature vector. This process 
encapsulates the inter-channel (column-based) relationships and prepares the data for subsequent feature 
selection and classification.

 id = argmax
(
−cvi

)
 (3)

 tt1 (id (h) , id (h + 1)) = tt1 (id (h) , id (h + 1)) + 1, h ∈ {1,2, . . . , len − 1}  (4)

 fvec1 (z) = tt1 (a, b) , z ∈
{
1,2, . . . , ∁ 2}

, a ∈
{
1,2, . . . , ∁

}
, b ∈

{
1,2, . . . , ∁

}
 (5)

where id: the qualified indices, and fvec: feature vector with a length of. In the spatial (channel-based) feature 
extraction, the first feature vector ( fvec1) has been created. The temporal (row-based) feature extraction mode 
of the presented OTPat has been explained in Step 4 and Step 5.

Step 4: Read each channel and create overlapping block with a length of number of channels. The generated 
overlapping blocks have been utilized as input of the ordering transformer.

 bli
c = signal (i + j − 1, c) , j ∈

{
1,2, . . . , ∁

}
, c ∈

{
1,2, . . . , ∁

}
 (6)

Herein, bl: overlapping block with a length of ∁ .
Step 5: Extract features deploying ordering feature generation approximation. 

Fig. 1. Graphical representation of proposed OTPat feature extractor.
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 id = argmax
(
−bli

c

)
 (7)

 ttc+1 (id (h) , id (h + 1)) = ttc+1 (id (h) , id (h + 1)) + 1,  (8)

 fvecc+1 (z) = ttc+1 (a, b) (9)

In the row-based feature extraction mode, ∁  feature vectors have been created. To obtain the final feature vector, 
these generated features have been merged and this process is defined in Step 6.

Step 6: Concatenate the extracted feature vectors and create the final feature vector. 

 feat
(
q + ∁ (z − 1)

)
= fvecq (z) (10)

where feat: the extracted final feature vector.
The OTPat feature extractor produces a final feature vector with a dimensionality of ∁ 3 + ∁ 2, extracting 

both spatial (channel-based) and temporal (signal-based) patterns from the physiological signals.
The presented OTPat is a transition table–based feature extraction method that extracts both spatial and 

temporal patterns from physiological signals. Initially, a transition table is defined as a counter matrix to record 
changes in the ordering of channel values. In the channel-based (spatial) mode, a channel vector is generated at 
each time point and processed using an ordering transformer; the resulting ordered indices update the transition 
table, which is then flattened into a feature vector representing inter-channel relationships.

In the signal-based (temporal) mode, overlapping blocks are created from each channel’s time-series data. 
Each block is processed similarly, using the ordering transformer to update a separate transition table converted 
into additional feature vectors. Finally, the channel-based and signal-based feature vectors are concatenated to 
form a final feature vector with the dimensionality of ∁ 3 + ∁ 2. This OTPat feature extraction method generates 
the spatial distribution across channels. It also captures the temporal dynamics within each channel. This dual 
extraction increases the model’s robustness for biomedical signal classification.

OTPat-based explainable feature engineering model
A new OTPat-based explainable feature engineering (XFE) model has been introduced to evaluate the 
classification capability of the proposed OTPat. The introduced OTPat-based XFE framework comprises four 
main phases:

• Feature extraction using the recommended OTPat,
• CWINCA-based feature selection,
• Classification using tkNN,
• Explainable artificial intelligence (XAI) results generation using symbolic languages (DLob and Cardioish).

Figure 2 shows the schematic diagram of the introduced OTPat-based XFE framework.
Figure 2 illustrates that the features are generated using the OTPat feature extraction method. This method 

extracts both spatial (channel-based) and temporal (signal-based) features. To improve the classification ability 
of the OTPat-centric XFE model, we have used CWINCA for feature selection and tkNN for classification. 
The reasons for selecting these methods are as follows: - NCA and kNN are distance-based. They measure 
the distances between data points, which help to achieve high classification performance when used together. 
CWINCA and tkNN are advanced versions of NCA70 and kNN71. They are self-organized and iterative models. 
CWINCA chooses the most important features using cumulative weights. tkNN classifies the selected features 
through iterative majority voting. These improvements make the models more robust and effective. To enhance 
classification abilities, we have combined OTPat, CWINCA, and tkNN. To generate interpretable results, we 
used symbolic language-based XAI generation methods. In this work, we used DLob and Cardioish symbolic 
languages for XAI, and the resulting interpretable information related to the brain and heart was computed.

Figure 2 shows that features are generated by the OTPat feature extraction method. This method extracts 
both spatial features (channel-based) and temporal features (signal-based). We used CWINCA as the feature 
selector and tkNN as the classifier to improve accuracy.

NCA and kNN are distance-based methods. They work by measuring distances between data points. This 
helps them achieve high classification performance when used together.

CWINCA and tkNN are advanced versions of NCA and kNN. They are self-organized and iterative. CWINCA 
selects the most important features using cumulative weights. tkNN classifies the selected features using iterative 
majority voting. These improvements make the models more robust and effective.

We combined OTPat, CWINCA, and tkNN to improve the classification performance.
For interpretability, we use a symbolic language-based XAI method. In this study, we used DLob and 

Cardioish as XAI methods. The interpretable results for the brain and heart are computed using these symbolic 
languages.

The details of these phases are given below.
Phase 1: Extract features from each signal using the OTPat feature extractor. 

 X (d, :) = OT P at (signal) , d ∈ {1,2, . . . , Dim} (11)

where, OT P at(.): OTPat feature extraction function, Dim : number of biomedical signals and X : feature 
matrix.
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Phase 2: Choose the most informative features deploying the CWINCA feature selector. CWINCA is a self-
organized feature selection method that combines the flexibility of an iterative approach with the importance 
weights of features14,16. First, it normalizes the extracted features using min–max scaling/normalization. Then, 
NCA is applied to assign a weight to each feature, reflecting its relevance to the classification task. These weights 
are then sorted to produce an ordered list of features. CWINCA uses cumulative weight thresholds (0.75 and 
0.99) to determine a range of possible feature subset sizes. Within that range, each subset is tested using a kNN 

Fig. 2. Overview of the introduced OTPat-based XFE framework.

 

Scientific Reports |        (2025) 15:15278 7| https://doi.org/10.1038/s41598-025-00071-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


classifier, and its classification accuracy is computed. CWINCA automatically selects the subset that achieves the 
highest accuracy, finalizing the best feature vector for subsequent classification and explainable result generation. 

 sX = ψ (X, y) (12)

Herein, sX : selected feature matrix, ψ (.): CWINCA feature selection function and y: actual/real outputs. The 
working of the CWINCA feature selector is given below.

Algorithm 1. CWINCA feature selection procedure14,16.
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CWINCA begins by applying a min-max normalization to each feature in the dataset. It then uses a 
neighborhood component analysis method to assign a weight to each feature. The next step sorts the features 
based on these weights from highest to lowest. After sorting, the method determines two threshold points at 0.75 
and 0.99 for the cumulative weight. It marks the lower threshold as the start value and the upper threshold as the 
stop value. It then loops through different feature subset sizes in the range between the start and stop values. For 
each subset size, it selects the most important features and evaluates them using a kNN classifier. It records the 
classification accuracy for every tested subset. Finally, it picks the feature subset with the highest accuracy and 
designates it as the final selected set of features.

Algorithm 1 demonstrates that the employed CWINCA feature selector is a self-organized feature selection 
function. It generates multiple selected features and automatically identifies the best features from the chosen 
ones. The feature selection phase feeds into the classification (Phase 3) and XAI (Phase 4) phases.

Phase 3: Classify the selected features by using the self-organized tkNN classifier. 

 out = t(sX, y) (13)

where, out: the generated classification outcome and t(.): tkNN classifier.
The procedure of the tkNN classifier has been demonstrated in Algorithm 2.
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Algorithm 2. The procedure of the tkNN classifier15.

Algorithm 2 showcases that the used tkNN is a self-organized classifier.
Phase 4: Generate explainable results by deploying the identities of the selected features. The index to symbol 

conversion has been given below.

 idk
1 = [x (k) − 1]

(
mod ∁

)
+ 1, k ∈ {1,2, . . . , nos} (14)
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idk

2 =
⌊

x (k) − 1
∁

⌋ (
mod ∁

)
+ 1 (15)

Herein, id: index of the look-up-table and nos: number of selected features. By utilizing these computed 
indexes, DLob or Cardioish symbol sequences have been generated as below.

 Seq (1 + 2 (k − 1)) = LUT
(
idk

1
)

 (16)

 Seq (2k) = LUT
(
idk

1
)

 (17)

Herein, Seq: the created symbolic language string, LUT : look-up-table.
The histogram of these symbols and the information entropy of the created string were then computed. 

Additionally, connectome diagrams were produced by calculating the transition table of the generated symbolic 
language string.

In this work, we used DLob and Cardioish, and the meanings of the symbols in these symbolic languages are 
provided in Table 1.

Table 1 presents 16 and 12 symbols in the DLob and Cardioish symbolic languages, respectively. The number 
of symbols can be reduced depending on the specific ECG device or brain cap.

The four phases defined above constitute the recommended OTPat-driven model.

Experimental results
The explainable and classification results obtained using our developed OTPat-driven XFE model on the EEG 
and ECG datasets are presented in this section.

We implemented the presented OTPat-driven XFE model in the MATLAB (version 2024a) programming 
environment on a computer with a 2.8 GHz CPU and 32 GB of RAM running Windows 11. The parameters used 
in this model are as follows:

Symbols Meaning

DLob

FL: Decision making, planning and logical reasoning.

FR: Problem-solving, emotional regulation and creative thinking.

Fz: Cognitive control and focus.

TL: Language comprehension and auditory memory.

TR: Social cues, non-verbal memory and emotional memory.

PL: Language interpretation, spatial reasoning and sensory processing.

PR: Attention and sensory integration (touch and body awareness).

Pz: Sensory integration and central processing of spatial awareness.

OL: Color, pattern and shapes visual processing.

OR: Visual recognition and spatial processing.

Oz: Primary visual integration and focus.

CL: Transition of sensory to cognitive processes in the left hemisphere.

CR: Transition of sensory to cognitive processes in the right hemisphere.

Cz: Interhemispheric integration.

AL: Auditory processing behind the left ear.

AR: Auditory processing behind the right ear.

Cardioish

Ld1 (Lead I): Monitors the effects of sympathetic activation on the heart. It represents the left atrium and left ventricle.

Ld2 (Lead II): Overall heart rhythm and P-wave activity.

Ld3 (Lead III): It defines the inferior wall of the hearth.

AVR: The base of the heart and right ventricle.

AVL: Left ventricle and upper lateral wall.

AVF: Left ventricle and inferior wall.

V1S (Lead V1): Septum and right ventricle activation.

V2S (Lead V2): Anterior septal region activation.

V3A (Lead V3): Anterior wall.

V4A (Lead V4): Left ventricle and the mitral valve region.

V5L (Lead V5): It is used in lateral ischemia or hypertrophy analysis.

V6L (Lead V6): It analyzes the impact of chronic conditions (e.g., diabetes, hypertension) on the left ventricle.

Table 1. Meaning of the DLob and cardioish symbols17.
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OTPat
In this feature extraction function, there are two feature extraction modes: spatial (column-based, using all 
channels to extract features) and temporal (using individual channel signals). In the channel/column-based 
mode, an ordering transformer is applied to the channel vector of each point, resulting in a transformed signal. 
In the row-based mode, overlapping blocks are created, and an ordering transformation is applied to each block 
to generate transformed signals. In the transformer phase, + 1 transformed signals are created. To generate 
features from each transformed signal, a transition table feature extractor is used which produces ∁ 3 + ∁ 2 
features for each EEG signal.

CWINCA
CWINCA is a self-organized, iterative feature selection function14. The range of the loop for iterative feature 
selection is determined by a cumulative weight computation, using threshold values of 0.75 and 0.99 to identify 
start and stop points. In this iterative selection, a kNN classifier with 10-fold cross-validation is used to compute 
classification accuracy for each subset of features. The best feature subset is chosen based on these accuracies 
obtained.

tkNN
This classifier generates parametric and voted outcomes15. To produce parametric outcomes, a parameter 
iteration is run with 3 distances, 3 weights, and 10 k-values, yielding 90 parameter-based outcomes. Using iterative 
majority voting (IMV), 88 voted outcomes are generated, totaling 178 (= 90 + 88) outcomes. The classification 
accuracy of each is computed, and the outcome with the highest accuracy is selected using a greedy algorithm.

XAI method
This method applies channel-to-DLob/Cardioish symbol transformation because OTPat-generated features 
include channel/lead information16,17. The identities of the selected features are extracted and used to construct 
the DLob/Cardioish symbols. The histogram and transition table of these symbols are then created, and 
information entropy is computed using the histogram. The transition table forms a connectome diagram, in 
which each DLob/Cardioish symbol represents a specific cortical or cardiac region, thereby offering interpretable 
insights. This research, 14 DLob symbols were used for the EEG ALS dataset, 8 for the other EEG datasets, and 
12 Cardioish symbols for the ECG dataset (matching the 12 ECG leads).

The following parameters affect the classification performance of the recommended OTPat-centric XFE 
framework:

• OTPat: The choice between spatial (column-based) and temporal (row-based) extraction influences the type 
of features generated. For the temporal approach, the size and overlap of blocks can impact the performance.

• CWINCA: Threshold points and the classifier’s parameters can affect classification performance.
• tkNN: In the utilized kNN, 90 parametric outcomes have been generated. Increasing the number of parame-

ters can lead to higher classification performance. Additionally, parameter tuning can be applied to the tkNN 
classifier.

First, we analyzed the computational complexity of the model in different phases.
In the feature extraction phase, OTPat is applied to each signal. This results in a complexity of O(D · L · C)

. Here, D is the number of signals, L represents the length of each signal and C  is the number of channels.
In the feature selection phase, the CWINCA selector works with a complexity of 

O(N · D + R · K · D + L · D). In this case, N  represents the complexity of the NCA algorithm, R is 
the number of iterations and K  is the complexity of the kNN classifier.

In the classification phase, the tkNN classifier generates parameter-based outcomes. It also performs iterative 
majority voting (IMV), which has a complexity of O(P · K + I). Here, P  is the number of parameters and 
I  defines the computational cost of IMV.

In the interpretable results generation phase, the complexity is O (S), where S is the number 
of selected features. - Overall, the theoretical time complexity of the OTPat-based XFE model is 
O(D · L · C + N · D + R · K · D + L · D + P · K + I + S). While this analysis suggests that 
computational effort increases linearly with these dimensions, the total complexity depends on implementation 
details and dataset size.

We have used these functions (i) main, (ii) OTPat, (iii) CWINCA, (iv) tkNN, and (v) explainable results 
generation to develop our proposed model. These functions are stored as .m files and CPU mode was used to 
execute the OTPat-driven XFE model. The explainable results generation function was configured to ensure 
accurate results for various datasets.

To evaluate this lightweight model, we used classification accuracy, F1-score, recall, precision, and geometric 
mean as performance metrics. Figure 3 presents the confusion matrices obtained using our introduced OTPat-
based XFE framework.

By utilizing these confusion matrices, the error analyses of these datasets are:
EEG Stress dataset:

• Figure 3a shows 22 (1.23% error rate) stressed segments were wrongly predicted as control.
• 12 control (0.64% error rate) segments were incorrectly predicted as stress.
• There were 34 errors out of 3,667 segments (0.93% error rate).
• One error source may be the subtle overlap in EEG patterns between stressed and non-stressed states. Anoth-

er error source is explained as follows. This dataset was labeled using participants’ declarations.
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• Another factor is the natural variability in participants’ emotional responses.

EEG ALS dataset:

• Figure 3b indicates 82 (3.11% error rate) ALS segments were predicted as control.
• 142 (5.40% error rate) control segments were predicted as ALS.
• This results in 224 errors out of 5,262 segments (4.26% error rate).
• Some ALS participants may have mild or unusual EEG patterns that confuse the model.
• Control group signals may sometimes resemble ALS due to occasional anomalies, noise, or the model’s ina-

bility to discriminate certain specific patterns.

ECG Mental Health:

• Figure 3c shows complete accuracy across all four classes (normal, bipolar, depression, and schizophrenia).
• There were no errors under the tested conditions. Since this dataset contains ECG beats.
• This perfect classification might result from strong class separation in the ECG signals.
• It might also be due to having enough training data for each category.
• Future work should test the model on more varied cardiac patterns to ensure robust generalization.

Table 2 represents the performances (%) obtained using the confusion matrices shown in Fig. 3.
The results illustrate that the introduced OTPat-based XFE framework achieved over 95% classification 

accuracies, F1-scores, and geometric means across all three datasets used. Furthermore, the introduced OTPat-
based XFE framework attained 100% classification performance for the ECG mental health dataset. These results 
were obtained using 10-fold cross-validation.

Fig. 3. Confusion matrices obtained using our introduced OTPat-based XFE framework.
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Also, the class-wise accuracies of these datasets are shown in Fig. 4.
The second set of results pertains to XAI outcomes. To generate these results, DLob was used for XAI analysis 

of the EEG datasets, and Cardioish was used to obtain interpretable results from the ECG dataset. The obtained 
interpretable results are illustrated in Fig. 5.

As shown in Fig. 5, interpretable results were extracted using DLob and Cardioish. According to these results:
Frontal activations are the most frequent in earthquake-based stress detection.
For ALS detection, frontal and parietal activations are more prominent than other regions.
ECG-based mental health detection is the most complex process, as the distribution of the Cardioish symbols 

resembles a uniform distribution. In this classification process, the most frequently used Cardioish symbol is 
Ld2 (Lead 2).

Table 3 shows the entropies extracted from the symbolic language strings.
Table 3 demonstrates that the EEG stress string is the most predictable, with a complexity ratio of 83.91%. 

The most complex extracted string belongs to the ECG mental health detection dataset, with a complexity ratio 
of 99.49%. In the EEG datasets, ALS detection is more complicated than stress detection, as ALS is a complex 
disorder.

Discussions
We evaluated our presented a new OTPat-driven XFE model using time complexity, classification performance, 
and explainable results.

Our proposed XFE model has linear time complexity and is more efficient than deep learning models, which 
typically have exponential time complexities.

We used two EEG datasets and one ECG dataset to demonstrate the general classification ability of the 
proposed OTPat-driven model. Our model achieved classification accuracies of 99.07%, 95.74%, and 100% 
on the EEG stress, EEG ALS, and ECG mental health datasets, respectively. These results demonstrate the 
effectiveness of the proposed model in achieving high classification performance. Hence, this proposed model is 
an alternative to deep learning models and maintains linear time complexity.

Fig. 4. Class-wise accuracies obtained using the presented OTPat-driven XFE model.

 

Metric EEG stress EEG ALS ECG mental health

Classification accuracy 99.07 95.74 100

Recall 98.77 94.60 100

Precision 99.32 94.72 100

F1-score 99.04 95.79 100

Geometric mean 99.06 95.73 100

Table 2. Results (%) obtained for the proposed model using different datasets.
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To validate the introduced OTPat-centric XFE framework’s high classification performance, we applied 
statistical tests to the datasets. For the EEG Stress dataset, the z-value is 11.31 and the p-value is about 10− 28. For 
the EEG ALS dataset, the z-value is 2.47 and the p-value is 0.013. For the ECG Mental Health dataset, the z-value 
is 13.44 and the p-value is about 10− 40.

A connectome diagram was generated for each dataset. Additionally, strings were created for these datasets, 
and the complexity of the generated strings was analyzed using Shannon entropy.

Table 4 shows the comparison of our results with the state-of-the-art techniques.

Fig. 5. Computed explainable results.
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Table 4 demonstrates high classification performance and provides explainable results using our proposed 
model.

In the LOSO CV strategy, each participant’s data is used only once as the test set. It introduces more within-
subject variability than a k-fold CV with random splits. Various participants have different physiological patterns, 
signal amplitudes, and noise features. These variations make it hard for the model to generalize while training 
subjects using the unseen subject. As a result, classification accuracy may decrease because the model is exposed 
to fewer unique subject-specific features.

But, during the 10-fold CV, the same participant’s EEG/ECG signals can be used in both training and testing 
sets. This overlap improves performance of the model.

We used DLob and Cardioish symbolic languages to obtain explainable results. The explanations of Cardioish 
and DLob substrings are displayed below.

The DLob string for stress detection is discussed below:
FLFLFLFLFLFRFLFLOLOR: This substring begins with FL dominance, reflecting logical reasoning and 

planning activities. The transition to FR indicates involvement in emotional regulation and creative thinking. 
OL and OR suggest visual processing, which is likely related to evaluating external stimuli during stress. This 
pattern represents heightened cognitive engagement and sensory input evaluation.

FRFRFRFRORPRFRFRTRPR: The repeated FR indicates a focus on emotional responses and creative 
problem-solving. OR and PR signify sensory and visual processing, while TR reflects auditory and emotional 
input. This substring likely corresponds to stress-induced emotional responses and situational assessment.

FLFLFLFLTLFLPRORFLFL: The presence of FL and TL highlights logical thinking and memory retrieval, 
possibly tied to analyzing the source of stress. PR and OR indicate sensory integration and visual processing. 
This sequence suggests the brain’s effort to process and evaluate the stressor logically.

FRFRFLFLFRFRFRFLFRTRPL: The dominant usage of the FL and FR highlights logical reasoning. TR and 
PL add auditory processing.

TLFRFRFLORFRFROROLFR: This pattern defines attempts to link sensory input with emotional evaluation 
under stress.

FRTLPLTLFLFLFLFRFRPL: The presence of TL and PL indicates the integration of auditory and sensory 
input, while FL and FR suggest logical-emotional coordination. This pattern defines an active mental processing 
with stress.

ORFLFLOLFLTRORFRFRFLFL: During the data collection phase, videos were shown to participants. This 
pattern explains the interpretation of visual inputs.

TLFLFLFLFLTLOLPLFRFRFR: This pattern corresponds to efforts to maintain control and process external 
stress-inducing stimuli.

Model Year Method Accuracy (%) XAI

EEG Stress dataset

 Cambay et al. 65 2024 QuadTPat + CWNCA + tkNN 10-fold CV: 92.94
LOSO CV: 73.63 DLob-based XAI generation

 Bektas et al. 66 2024 ChMinMaxPat + CWNCA + tkNN + IMV 10-fold CV: 92.86
LOSO CV: 73.30 DLob-based XAI generation

 Our model OTPat + CWINCA + tkNN 10-fold CV: 99.07
LOSO CV: 76.87 DLob-based XAI generation

EEG ALS dataset

 Samanta et al. 72 2023 3D CNN 20:3:3: 80.20 -

 Our model OTPat + CWINCA + tkNN 10-fold CV:
95.74 DLob-based XAI generation

ECG Mental Health Dataset

 Tuncer et al. 17 2024 Transition table feature extraction + INCA feature selector + kNN classifier 10-fold CV: 99.62 Cardioish-based XAI generation

 Tasci et al. 69 2024 MDWT and ternary pattern feature extraction + IChi2 feature selection + ANN classifier + IMV 10-fold CV: 96.25 -

 Our model OTPat + CWINCA + tkNN 10-fold CV: 100 Cardioish-based XAI generation

Table 4. Comparative results. **ChMinMaxPat: Channel-based minimum and maximum pattern, CWNCA: 
Cumulative Weighted Minimum and Maximum Pattern, IMV: Iterative Majority Voting, QuadTPat: 
Quadruple Transition Pattern, INCA: Iterative Neighborhood Component Analysis, MDWT: Multilevel 
Discrete Wavelet Transform, IChi2: Iterative Chi2 feature selector, ANN: Artificial Neural Network.

 

Dataset Entropy Number of symbols Maximum entropy Ratio

EEG stress dataset 2.5173 8 3 0.8391

EEG ALS dataset 3.5238 14 3.8074 0.9255

ECG mental health detection dataset 3.5667 12 3.5850 0.9949

Table 3. Summary of various entropies computed for different datasets.
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These findings highlight strong activations in frontal (FL, FR), parietal (PL, PR), temporal (TL, TR), and 
occipital (OL, OR) regions. The frequent involvement of FR and FL underscores the brain’s efforts to balance 
emotional responses with logical decision-making under stress. Sensory integration using parietal and occipital 
regions indicates active environmental monitoring.

For EEG ALS detection, the generated sample substrings are explained below:
TLFzFRTROLPRORFRFzFLFLPL: This substring/pattern begins with TL and Fz, indicating memory 

processing, attention control, and higher cognitive functions. FR reflects emotional involvement, while TR 
suggests auditory and emotional cues. PL showcases sensory input integration, particularly tactile or spatial 
awareness. In ALS, this combination may correspond to the brain’s effort to compensate for declining motor 
functions with heightened cognitive and sensory awareness.

OLFRPRORFRPRFLFRCRPRFRTRCR: The presence of OL and FR highlights visual input processing and 
emotional engagement, possibly due to the data collection environment. PR indicates sensory integration. 
Repeated transitions between CR and FR suggest disrupted motor actions and emotional regulation, often 
affected in ALS due to corticospinal tract degeneration.

PRCzFRPzCRPRPRORFLPLPLFRTRFzPL: These activities may represent the brain’s struggle to coordinate 
declining motor functions while engaging cognitive regions for compensation.

OLFRPRFzCRPRFLTLORFRTRPRORCz: This pattern suggests disrupted motor planning and coordination, 
a hallmark of ALS progression.

FLTLTRFLOLPRPRFRCRFzPRPRPRFRPL: In ALS, this pattern defines the brain’s effort to manage motor 
impairments while maintaining emotional and cognitive processing.

These patterns highlight the neurological adaptations and impairments associated with ALS.
For ECG mental health classification, the generated Cardioish substrings are as follows:
V2SAVFLd2AVLAVLAVRLd3Ld2AVFLd1: This sequence is associated with normal cardiac activity. The 

recurring and balanced transitions between AVF and AVL indicate regular electrical activity.
Ld3AVRAVRAVFV2SLd3AVLAVRLd1V5SV2S: This segment exhibits repeated transitions between AVR 

and AVF, along with mismatches between septal and lateral leads, suggesting bipolar disorder.
AVFV2SAVFV2SV2SAVLLd3V6SV5SV2SAVFAVLV1SLd2AVR: This sequence shows a suppressed and 

repetitive pattern. The loop involving AVL, V2S, and AVF aligns with depression, characterized by lower 
variability and steadiness rather than irregularity.

V3SV4SV3SV1SLd3AVFV3SV1SV6SLd1V1SAVLAVLLd2V2SAVFV1SAVLLd2: High repetition, chaotic 
transitions, and mismatched electrical signals point toward schizophrenia. The frequent transitions between 
various leads and the elevated entropy level are characteristic of this class.

V6SV5SV6SV3SAVFAVLV3SV1SAVFAVLV2SAVLV1SAVRLd3Ld2V2SV2SV3SV5SV6S: Repeated and 
orderly transitions are observed. The overall structure appears balanced, reflecting normal cardiac activity.

These Cardioish substrings highlight how cardiac patterns mirror mental states, underscoring the potential 
for non-invasive mental health assessment through advanced cardiac signal analysis.

Test of the additional dataset
The EEG signal dataset used in this study has two classes. To demonstrate the classification ability of the proposed 
OTPat-driven XFE model on a diverse dataset, we used an EEG artifact classification dataset16, which contains 
eight classes. These classes include one control class and seven artifact classes. The proposed OTPat-driven XFE 
model was applied to this EEG artifact dataset, and the computed confusion matrix and the explainable results, 
are presented in Fig. 6.

The findings from these results are as follows:

• For artifact classification, the dominant symbols are FL and FR.
• The information entropy of the generated DLob string for artifact detection is calculated as 2.7394. Here, 8 

DLob symbols have been used. Consequently, the maximum entropy is computed as 3 (= log28). Therefore, 
the complexity ratio of the generated DLob string is 91.31%.

• The proposed OTPat-driven XFE model achieved a classification accuracy of 86.07% and a geometric mean 
of 75.26%.

To showcase the high classification performance of the OTPat-based model, comparative results are provided 
in Table 5.

Table  5 shows that the recommended OTPat-driven XFE model achieved approximately 8.5% higher 
classification accuracy and a 15% higher geometric mean than the TTPat-based XFE model. These results and 
comparative results have highlighted the high classification ability of the introduced OTPat feature extractor.

Highlights
The salient features of the proposed OTPat-driven XFE model are given below.

• Presents a new model for classifying biomedical signals (EEG and ECG) with high performance.
• The proposed XFE model employed symbolic languages to obtain interpretable results.
• Innovative part of the model is the OTPat feature extractor, which captures important features from both 

signal channels and the signals themselves using ordering coding and transition table extraction methods.
• The model selects the best features using the CWINCA feature selector.
• The tkNN, a self-organized and improved version of the kNN classifier, is used for classification.
• The model includes XAI techniques using two symbolic languages: DLob for EEG and Cardioish for ECG.
• These symbolic languages help generate interpretable results, called connectome diagrams.
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• Proposed OTPat-based model achieved over 95% accuracy on the three datasets.
• Introduced OTPat-driven XFE model is efficient because it has linear time complexity, making it faster than 

many deep learning models.
• Addresses gaps in the current research by being multimodal (working with different types of signals) and 

provides interpretable results.
• OTPat-driven XFE model is an alternative to deep learning models, requiring less computational power. 

Moreover, this model achieved high classification accuracy due to its self-organized nature.

Fig. 6. Results of the OTPat-driven XFE for artifact classification dataset.
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• The presented model attained satisfactory classification performance in comparison to other methods.
• The explainable results provide medical insights, aiding in a better understanding of the signals.

Findings of the explainable results are discussed below:

• The interpretable results demonstrate the effectiveness of the OTPat-driven XFE model in capturing mean-
ingful patterns from biomedical signals.

• Symbolic representation (using DLob and Cardioish) of complex data facilitates easier interpretation and 
supports medical decision-making.

• The introduced OTPat-driven XFE model presents a promising approach for the noninvasive detection and 
analysis of neurological and mental health conditions.

• The patterns show strong activations across multiple brain regions, indicating that stress induces a compre-
hensive neurological response involving cognitive, emotional, and sensory processing.

• Frequent transitions between frontal regions suggest efforts to manage stress through reasoning and emo-
tional regulation.

• ALS affects multiple neural pathways, resulting in complex activation patterns.
• The symbolic sequences reveal neurological adaptations, with increased engagement of cognitive and sensory 

regions to mitigate motor impairments in ALS.
• Two custom generative pretrained transformers (GPTs) have been developed for DLob ( h t t p s :  / / c h a t  g p t . c o  m / 

g / g -  E 3 G v i  j u r s - l  o b i s h -  e e g - i n  t e r p r e t e r) and Cardioish ( h t t p s :  / / c h a t  g p t . c o  m / g / g -  A 0 7 G 0  S K 6 l - c  a r d i o i  s h - s e m  b o 
l i k - k a r d i y o l o j i - d i l i).

• Cardiac activity varies significantly across different mental health conditions.
• The complex and unique patterns in Cardioish sequences highlight the potential for ECG-based non-invasive 

mental health assessments.

Limitations

• Obtained the lower classification accuracy of 76.87% using LOSO CV.
• Generated XAI results using DLob and Cardioish symbolic languages. However, it is challenging to translate 

these results.

Future directions

• New generation models can be developed to improve the classification ability of the presented OTPat-driven 
XFE model using LOSO CV. One solution is to collect more data from a broader range of participants. A larg-
er and more diverse dataset can reduce overfitting to a small group. Data augmentation techniques can help 
mimic differences between subjects. Techniques such as synthetic signal generation, random clipping, and 
adding realistic noise are helpful. Domain adaptation methods can align feature distributions from different 
subjects. Subject-specific fine-tuning is another option. In this method, a small portion of each test subject’s 
data is used to adapt the model. This helps the model account for individual physiological differences while 
keeping a general framework. Finally, regularization strategies like dropout or L2 penalty can improve model 
robustness and reduce overfitting to any subject73.

• A new graphical user interface (GUI) can be created to simplify translating generated Cardioish and DLob 
sentences. This approach will make it easier to interpret ECG and EEG data. The GUI can also support the 
development of educational applications.

• We plan to create a comprehensive DLob and Cardioish dictionaries to detect conditions, with unique pat-
terns showcased in these dictionaries.

• New-generation OTPat-driven deep learning models can be developed. OTPat and similar methods can be 
utilized as operators in deep learning architectures instead of the convolution operator.

• Personalized healthcare applications can be developed using our model. These applications will provide tai-
lored diagnostic and monitoring solutions.

Potential implications

• The OTPat-driven XFE framework developed using EEG/ECG signals can be integrated into clinical work-
stations.

• Our proposed approach can help healthcare providers detect stress or neurological conditions faster and 
accurately.

• The explainable results of the model can assist the clinicians in understanding complex EEG and ECG pat-
terns.

Model Year Method Results (%) XAI

Tuncer et al. 16 2024 TTPat + CWNCA + tkNN Accuracy: 77.58
Geometric mean: 60.09 DLob-based XAI generation

Our model OTPat + CWINCA + tkNN Accuracy: 86.07
Geometric mean: 75.26 DLob-based XAI generation

Table 5. Comparative results for EEG artifact detection.
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• Symbolic languages (DLob and Cardioish) can provide superior diagnostic confidence by providing inter-
pretable visualizations. These visual interpretable outputs (connectome diagrams) can help make accurate 
diagnoses and in early interventions and treatments. 

• This system can assist in telemedicine services in providing faster and accurate remote patient monitoring.
• The developed OTPat-based model can be employed in hospitals and research centers to improve the analysis 

of stress-related EEG data. Moreover, this model can be utilized to extract more meaningful features from 
ECG signals.

• The introduced model is suitable for real-time applications as it has the linear time complexity.
• This model can be used in other personalized healthcare platforms to adaptively learn and increase individual 

patient outcomes.

Conclusions
A novel OTPat-driven XFE model has been proposed for biomedical signal classification and the generation of 
explainable results. The presented OTPat-driven XFE model achieved more than 95% classification accuracy 
across all three datasets. We achieved an accuracy of 99.07%, 95.74%, and 100% for the EEG stress dataset, EEG 
ALS dataset, and ECG mental health datasets, respectively, with a 10-fold cross-validation strategy. Furthermore, 
the OTPat-driven XFE model achieved 86.07% accuracy on the EEG artifact detection dataset, which consists 
of 8 classes.

The interpretable results generated using the DLob and Cardioish symbolic languages provided insights 
into neurological and cardiac activity patterns. For example, frequent transitions were observed in the frontal 
regions during stress detection, indicating efforts to manage stress through reasoning and emotional regulation. 
Symbolic sequences for ALS detection demonstrated neurological adaptations, including increased activation of 
cognitive and sensory regions to compensate for motor impairments. In mental health classification, Cardioish 
sequences demonstrated changes in cardiac activity across different conditions, including bipolar disorder, 
depression, and schizophrenia.

The model’s linear time complexity ensures computational efficiency compared to deep learning approaches. 
Additionally, the combined use of DLob and Cardioish symbolic languages highlights their utility as XAI 
methods, demonstrating how such symbolic approaches contribute to explainable artificial intelligence.

The results indicate that the OTPat-driven XFE model can be a practical tool for the non-invasive analysis of 
neurological and mental health conditions. Its high classification accuracy, combined with interpretable outputs, 
positions the model as a reliable tool for medical implementations.

Data availability
No new datasets were generated during the current study. Consequently, the authors do not hold the rights to 
share the datasets used. For data access inquiries, contact the corresponding author.
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