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Physics-guided deep learning strategy for
2D structure reconstruction from
diffraction patterns

Check for updates
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Two-dimensional (2D)materials have garnered significant attention due to their tunable electronic and
optical properties and exceptional mechanical performance. Reconstructing 2D structures from
diffraction patternswithout prior assumptions or comprehensive knowledge is challenging, especially
for heterogeneous stacking and quantum 2D materials. Here, we introduce DD2D (diffraction pattern
deep-reconstruction 2D structures), a physics-guided deep learning method that predicts 2D
structures directly from diffraction patterns. DD2D employs a twin-tower framework, integrating a
crystallographic geometric encoder and a site texture encoder, and uses a self-attention mechanism
to identify intrinsic correlations in physical information and corresponding areas in the diffraction
pattern. The results demonstrate high anti-interference, robust recognition capabilities, reliable
interpretability, and prediction accuracy of up to 99.0%, highlighting its potential for future 2D
materials discoveries.

The success of graphene in fundamental studies and applications has
attracted much interest in exploring two-dimensional (2D) materials
over the past decade1,2. Various classes of 2D materials with a wide range
of elemental compositions, have been discovered, exhibiting rich internal
degrees of freedom and tunable physicochemical properties2,3. The
unique quantum effects and boundary conditions due to subnanoscale
thickness result in altered electronic and optical properties within the 2D
plane, as well as enhanced mechanical properties4–6. 2D-layered materials
are considered promising candidates for next-generation devices and
show potential in fields such as quantummaterials, sensors, catalysts, and
energy storage6–8.

Due to the lack of periodicity boundary condition in the out-off-plane
direction, determining stacked structures of 2D crystals is more complex
than that of bulk three-dimensional (3D) materials7–10. Comprehensive
methods, including diffraction techniques and structural models, are
required to unveil the full morphology of 2D components and structures.
Compared to 3D crystals, the diffraction peaks or spots captured fromnon-
periodic direction of 2D structures are relativelyweak and indistinguishable.
However, the diffraction patterns provide critical out-of-plane structural
alignment information necessary for reconstructing 2D structures11–13,
notably in heterogeneous stacking and complex quantum materials. Mod-
eling methods based on ab initio Monte Carlo simulation, molecular

dynamics simulation, and refinement techniques (like the Rietveldmethod)
have been proposed to support determining geometric structures of 2D
crystals14–16. However, initial structural guesses for above models are
required crucially, which would be costly, time-consuming, and dependent
on specialized knowledge17.

With the development of computational science, the interdisciplinary
integration of AI and materials science has opened new avenues for
developing functional materials18–23. Developing machine learning (ML)
program to assist in determining and reconstructing the unknown com-
ponents will advance the exploration and industrialization of 2Dmaterials.
ML based studies have been introduced into the 2D materials community
since 201824, while predicting structures from diffraction data remains
unexplored. The challenge lies in developing an efficient framework with
encoding algorithms that ensure the trained model deeply learns the
structural features and is grounded in physicochemical knowledge. Here we
propose a deep contrastive method called DD2D (diffraction pattern deep-
reconstruction 2D structures), which employs a self-attention mechanism
to autonomously learn the correlations between diffraction patterns and 2D
material structures. Thus, DD2D can infer 2D structures from spectra
without the need for initial hypotheses and relative knowledge, effectively
avoiding the introduction of manual errors. The results demonstrate the
potential for practical applications, as DD2D successfully recognizes
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underlying physical information and displays high predictive accuracy,
robust generalizability, and reliable interpretability.

Results
The model training process, as illustrated in Fig. 1, introduces a contrastive
twin-tower framework for the DD2D, which includes two transformer-
based deep learning encoders. The crystallographic geometric encoder
(CGE) encodes the atomic structure information, including lattice con-
stants, atomic positions, and elemental composition, converting text
sequences into a fixed length embedding that encapsulates the semantic
features of 2D crystals. The input text is tokenized and encoded by the CGE,
with a multi-layer self-attention mechanism employed to capture semantic
dependencies among different tokens. On the other hand, the site texture
encoder (STE) encodes intensity and position information extracted from
diffraction patterns. Specifically, it recognizes relationships between various
patcheswithin the patterns through amulti-layer self-attentionmechanism,
mapping features via fully connected layers to output a fixed-length vector
representing the visual characteristics of the diffraction patterns. To reduce
the risk of overfitting to irrelevant regions or noise, specialized tokens target
specific regions in thediffractionpattern, enabling themodel to focus onkey
areas associatedwith structural information.Meanwhile, regularization and
an early-stopping mechanism were applied during training to further pre-
vent overfitting. As a result, this design bridges 2D atomic structures with
their corresponding diffraction patterns, enabling direct prediction from
experimental data to material structures.

The self-attention mechanism (see Eq. (3) in the Methods section)
enables themodel to autonomously analyze andweight substructures of the
crystals. The study of attention score visualization, as shown in Fig. 2,
revealed the correlation between physical information in layer 1 (the initial

transformer layer) and layer 4 (the final transformer layer) of the CGE,
alongside the corresponding 2D structural details and deeply encoded fea-
tures. Specifically, we sorted the lattice parameters of 2D structures, as
labeled in the figure. The geometric structure of a 2D material can be
considered a layered arrangement from a bulk crystal, where the c-axis
contributes negligibly to the diffraction pattern due to the absence of peri-
odic order in that direction. The length of the b-axis is generally strongly
correlated with the shorter a-axis, exhibiting robust isotropic scaling con-
strained by the symmetry. Meanwhile, the shortest a-axis is pivotal in the
diffraction pattern, providing essential information about the [100] surface
of 2D crystals. As depicted in Fig. 2a–d, layer 1 visualizes the distribution of
weights for crystal structure information autonomously learned across four
attention heads. Since the b-axis parameter garners attention from the first
to third heads, the fourth head consequently focus on a-axis parameter,
which is encoded in the first sequence position of the crystal. The results
clearly demonstrate that the mechanism of attention weight allocation
aligns with crystallographic principles and is highly sensitive to the geo-
metric structure of 2D materials, enabling the model to identify and learn
from the most informative portions.

Interpretability is a crucial property for a neural networkmodel, which
refers to the ability to explain how a model makes decisions based on input
data, ensuring that its high accuracy performance comes from extracting
discriminative physical features and provides insights into the physical
principles the model has learned, particularly in complex deep learning
studies. As mentioned above, the four attention heads in the initial trans-
former layer have independently learned distinct aspects of geometric
physical information, thereby collaboratively accomplishing the task of
investigating and encoding all physical information. By comparing the
weight distributions of layers 1 and 4, it was observed that the CGE

Fig. 1 | Overview of DD2Dworkflow.DD2Dmakes structure predictions based on
the given diffraction patterns of unknown 2D materials. The training process of
DD2D, as displayed in the dashed frame, includes the CGE and STE encoders, which
process the crystal structures and diffraction image information, respectively. The

feature matrix given by the two encoders shows the similarity matrix of the com-
parative twin-tower model, representing the attributes and positions of different
atoms. Gi is the crystallographic geometric representation (Gi) and Ti is the site
texture representation.
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effectively connects the informationbetween the initial structure embedding
sequence and the final deeply encoded sequence. As shown in Fig. 2e–h,
while considering all relevant information, the key parameter (a-axis)
simultaneously receives the maximum attention weight in the final trans-
former layer of the CGE, highlighting the interpretability of the model
framework.

To evaluate the accuracy and anti-interference capabilities of the
trained model, we developed a dataset of perturbed crystal structures using
Ab Initio Molecular Dynamics (AIMD) (see Methods section), effectively
simulating the noise caused by atomic thermal motion or data acquisition
processes. The unperturbed test case was randomly split into training and
testing datasets, ensuring the generalization ability of the trainedmodel and
preventing data leakage. Table 1 displays the accuracy performance of the
model, which was independently trained on unperturbed and perturbed
datasets, respectively. The compared results demonstrate that the model
maintains reasonable recognition capability even when trained on datasets
with reduced order, suggesting its adaptability and robustness in the face of
varying degrees of data perturbation. Additionally, it is notable that the
model achieved 99% accuracy when comparing the reference structure with
ten predicted candidates, demonstrating a powerful recognition
performance.

In addition to its high accuracy performance, we explored the unex-
pected predictive structures generated by the trained model to determine if
the model has truly learned the underlying correlations between physical
parameters (including planer symmetries and stacking orders). Briefly, the

capability of model in recognizing specific physical information can be
evaluated by comparing the similarity of variables among those mismatch
outputs. We analyzed the symmetry operationmatrices related to the point
groups within mismatched outputs for an identical diffraction pattern,
utilizing hierarchical clustering25 to evaluate their similarities, as depicted in
Fig. 3. The mismatched structures can be fundamentally categorized into
five distinct groups, each exhibiting varying degrees of successive correla-
tion, as illustrated in Fig. 3a. Furthermore, Fig. 3bdisplays thedistributionof
point groups among predicted structures, with candidate numbers ranging
from narrow to medium and wide. For example, when analyzing the pre-
diction task targeting themm2 point group, thenarrow range results suggest
the point groups includemm2 along with neighboring groups such as�1,
m, and2=m. If extending thepredictions to themediumrange, the result still
includes structures that feature the target group alongside congeneric group
4=mmm, or adjacent groups including �1, 2, 2=m, and m. When predic-
tions are expanded to a wide candidate number range, a subclass point
group (�6) emerges, yet the composition predominantly includes target
and neighboring groups. Additionally, this phenomenon is particularly
pronounced in the prediction task targeting the 2=m point group, where
results include the target along with congeneric groups, exhibiting the
accuracy of the predictions. As a result, within the designed contrastive
learning framework, the mismatched outputs exhibit a clear preference for
certain specific symmetry types, which indicates that the trained model can
recognize physical characteristics and has effectively learned the symme-
trical similarities of 2Dmaterial samples in the latent space through texture
analysis.

Furthermore, we tested a practical example of applying the DD2D to
directly reconstruct the 2D crystal structure from a diffraction pattern
[https://github.com/SuthPhy2Ai/DD2D], as presented in Fig. 4. The results
show the ten candidates generated by the model including the target 2D
crystal PrSe3. By comparing the atomic compositions of the mismatch
candidate structures, we found that their anions are composed of elements
from the VIA group (Se, O, S, Te), while their cations include rare earth
metals (Sm, La, Pr, Eu) as well as transition metals (Ag, Ti). The regular

Fig. 2 | Attention visualization in the crystallographic geometric encoder block.
a–dHeatmaps for geometry layer 1 present the inter-element attention scores within
the crystal structure sequences across various attention heads in the first self-
attention layer. The red dashed frames in patterns a to d represent the b-axis of lattice
parameters, atomic positions, element information, and the a-axis of lattice

parameters, respectively. e–hHeatmaps for geometry layer 4 highlight key points in
the heatmap of weights for different attention heads, associated with the two tokens
[CLS_star, CLS_end] extracted from the last self-attention layer. For the [CLS_star]
token at position 0 in each sequence, it is required to focus exclusively on the
sequence positions corresponding to the lattice constants.

Table 1 | Accuracy of the DD2D trained on unperturbed and
perturbed datasets

Attempts
Dataset types

1 3 5 10

Unperturbed 62.0% 92.0% 95.0% 99.0%

Perturbed 55.0% 83.0% 94.0% 99.0%
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phenomenon of element composition suggests that the self-attentional
encodingmode successfully recognized intrinsic physical properties such as
symmetry and elemental categories, which further demonstrates that the
DD2D has learned the deep correlations between various structural infor-
mation during the training process. Meanwhile, the model successfully
provided the complete morphology of the generated 2D crystal materials,
including the complex layered structures in an out-off-plane direction,
based on a two-dimensional diffraction pattern. In other words, the DD2D
can be applied not only to monolayer 2D materials but also to predicting
functional heterogeneous structures, such as van der Waals 2D materials.

Discussion
We have conducted a comprehensive investigation of the DD2D, which is
based on a contrastive learning dual-tower framework with CGE and STE
encoders. The results demonstrate that the weight learning of various
structural information by the self-attention mechanism aligns well with
physical principles, and the generated candidate structures exhibit similarity
in terms of symmetry and element composition. TheDD2Dhas learned the
underlying correlations of various physical information and demonstrated
reliable interpretability, ensuring that the output reference structures are
grounded in physical knowledge rather than merely algorithmic numerical

Fig. 3 | Analysis of predictions point groups. a, Dendrogram that represents the
hierarchical clustering of point groups, showing how they merge based on their
similarity. Squares of different colors identify distinct subgroups of similar point
groups. b, Comparison of point group predictions across different ranges is shown in

the charts (left-side annotations indicate target point group symbols mm2 and 2/m).
The charts use different colors to represent the point group symbols of 2D crystal
structures, and the narrow-range, medium-range, and wide-range predictions cor-
respond to attempts 1, 3, and 5, respectively.
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fitting. Consequently, the high accuracy (up to 99.0%) and anti-interference
performances presented by the model are reliable and trustworthy. The
principle ofmost AImodels is a ‘black box,’which relies on statistical fitting
and regression of large amounts of input data, often leading to uncertain
predictions outside the training set. Thus, interpretable models rooted in
physical information instill reliability in predictions and reveal unexpected
correlations that may provide scientific insights into materials science.

Furthermore, it is important tohighlight the long-standing challenge in
the interdisciplinary integration of machine learning and materials science,
specifically the diversity of large datasets and its impact on the general-
izability of models, particularly when predicting unknown 2D material
structures. In the DD2D, the largest publicly available datasets from
simulation libraries are utilized, and its algorithm is designed to be dataset-
agnostic and robust. However, it is essential to continually monitor the
development of experimental datasets for 2Dmaterials26, as they are crucial
for the future testing and fine-tuning of the DD2D, enabling it to adapt to a
broader range of practical environments.

We hope this model can be applied in high-throughput analysis or
screening systems to provide candidate structures in real-time, significantly
accelerating the exploration of 2D materials. Furthermore, although the
DD2D focuses on 2D structural reconstruction, such a physically sensitive
model could pave the way for reverse design of deep learningmodels across
broader materials fields.

Methods
Dataset preparation
The datasets used in this study were obtained from the C2DB database16,
and thermodynamic perturbations for Ab Initio Molecular Dynamics
(AIMD) were performed using the Vienna Ab-initio Simulation Package
(VASP)27,28. With a total of 7951 samples for training, the dataset was

divided into training, validation, and test subsets in a ratio of 8:1:1,
resulting in 796 samples in the test set. During testing, the model
recognizes the diffraction patterns and the corresponding crystal struc-
tures. It is noted that the original and perturbed datasets were inde-
pendently trained.

A beam incident upon a structure containing N atoms is considered,
where the coherent scattering intensity Ihk is defined by Eq. (1):

Ihk ¼ I0
AP

sin 2θ
AFFðqhkÞ
�� ��2SðqhkÞ ð1Þ

Where the A is Debye-Waller unction, the P is Lorentz polarization
function, and the AFFðqhkÞ is atomic form factor29. The structure factor
SðqhkÞ is expressed as follows:

SðqhkÞ ¼
1
N

XN
j¼1

XN
i¼1

e�iqhk Ri�Rjð Þ ð2Þ

where Rj is the atomic fraction coordinate of the j-th atom in the structure,
andq is the scattering vector. In the realistic calculation,weonly consider the
results of the coherent signal to draw the SðqhkÞ pattern11.

In geometric configuration, the c-axis is oriented perpendicular to the
plane of the 2D crystal. Thus, the lattice parameters ða; b; cÞ and their
corresponding angles ðα; β; γÞ are specified as the initial six parameters.
The atomic positions are arranged by atomic number, followed by sorting
the Cartesian coordinates by the L2 norm. After fully populating all coor-
dinate information, the corresponding elemental data is embedded at the
end. The sequence encoding concludes with the arrangement of elemental
information corresponding to each site. Comprehensive information about

Fig. 4 | Practical test of DD2D prediction capability. A simulated diffraction
pattern is recognized and learned by DD2D (left), and ten prediction attempts are
provided by DD2D. For the specific case of the diffraction pattern of PrSe3, the

predicted structures contain the same groups of anions and are listed on the right.
They include PrSe3, TiS, BiIO, and SmSe.

https://doi.org/10.1038/s42005-025-02152-8 Article

Communications Physics |           (2025) 8:221 5

www.nature.com/commsphys


the 2Dmaterials is obtained by combining this with lattice parameters and
site information.Diffraction spectra generally contain numerous point data,
with their distribution and intensity indicating the atomic arrangement of
materials. To preserve the local texture information, a point cloud data
structure is employed to retain the characteristics of diffraction spectra as
much as possible.

Training details
TheDD2Dcontains two transformer-baseddeep learningencoders30–33, and
theCGEsection receives a segment encodedcrystal as input.Corresponding
[CLS_star, CLS_end] tokens are strategically placed at the beginning and
end of the sequence to supervise the representation learning of the lattice
and atomic components31. After processing through the transformer layers,
all information is concatenated and subjected to normalization. In the STE
section, specific sites and intensity values from the point cloud data are
separated and concatenated, and then the intensity values are logarith-
mically transformed. In the dual-tower framework, the sequence data
received at both ends is fed into the transformer layers, where self-attention
calculations are performed via Eq. (3), as:

AttentionðQ;K;VÞ ¼ softmax
QKTffiffiffiffiffi
dk

p
 !

V ð3Þ

where the query (Q), key (K) and value (V) are obtained by performing a
fully connected layer transformation on the input, with dk being the
dimension of embedding. After encoding through the dual-tower
model34, for a given sample pair of structure vs. diffraction pattern, we
obtain two normalized embeddings: the Crystallographic Geometric
Representation (Gi) and the Site Texture Representation (Ti)

32. Given a
batch of N structure vs. diffraction pattern sample pairs, our model is
trained to predict which of the N ×N possible structure vs. diffraction
pattern sample pairings across a batch actually occurred. The objective of
the model is to maximize the cosine similarity between the Gi and the Ti
of the N real pairs in the batch, while minimizing the cosine similarity of
the embeddings of the N2 � N incorrect pairings31. Thus, we optimize a
symmetric cross entropy loss L over these similarity scores, formulated
as follows Eq. (4):

L ¼ � 1
2N

XN
i¼1

log
exp Ti�Gi

� �
P

k2 1;N½ � exp Ti�Gk

� �
 !

� 1
2N

XN
i¼1

log
exp Ti�Gi

� �
P

k2 1;N½ � exp Tk�Gi

� �
 ! ð4Þ

Furthermore, the ablation experiment examined the impact of key
parameters in DD2D’s Transformer backbone, including the number of
attention heads and the number of Transformer layers. The detailed test
results of different prediction attempt range (Attempts 1, 3, 5 and 10) were
listed in Supplementary Table 1.

Data availability
Source data is archived under Zenodo35. The dataset used to train the deep
learning model is available at a GitHub repository [https://github.com/
SuthPhy2Ai/DD2D] and archived under Zenodo36.

Code availability
The complete code of this study is openly accessible via GitHub repository
[https://github.com/SuthPhy2Ai/DD2D] along with a description, which
includes instructions on how to run the code, required dependencies, and
explanations of the main modules.
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