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Abstract
Dengue, a rapidly spreading mosquito-borne disease, poses a serious public health threat in tropical cities like Dhaka, 
Bangladesh—one of the world’s most densely populated megacities. In 2023 alone, Dhaka experienced its worst outbreak, 
recording 321,179 cases and 1,705 deaths. This study aims to assess dengue susceptibility across Dhaka using a geospatial 
Multi-Criteria Decision-Making (MCDM) approach. Fourteen environmental and demographic factors were selected, and 
thematic raster layers were developed and weighted using the Analytical Hierarchy Process (AHP). These layers were inte-
grated to generate spatial dengue susceptibility maps, highlighting risk zones across the city. Findings reveal that southern 
and southeastern Dhaka, particularly under the South City Corporation, are highly susceptible based on environmental factors. 
Demographic analysis shows moderate to very high susceptibility in central and southern wards, with population density and 
proximity to waterlogged areas identified as key drivers. The model was validated through field surveys with 80 stakeholders, 
with 67.5% agreeing with the susceptibility classifications. This study provides a scalable and transferable framework for 
dengue risk assessment and can inform targeted interventions in other endemic regions. The results offer critical guidance 
for urban health planning, vector control, and resource allocation to mitigate dengue and similar vector-borne diseases.

Keywords Analytical hierarchy process (AHP) · Dengue fever · Dhaka city · Geospatial analysis · Mosquito-borne 
diseases · Urban health

1 Introduction

Dengue fever is one of the most common vector- and mos-
quito-borne diseases in the tropics and subtropics [1–3]. 
Dengue transmission is reported from at least 128 countries 
worldwide, with over 3.97 billion people at risk of exposure 
to dengue fever each year [4, 5]. In 2023, the World Health 
Organization (WHO) mentioned dengue fever as one of 
the biggest health concerns after the COVID-19 pandemic, 
while in 2019, they listed dengue fever among the top ten 
global health hazards [6]. Over the last 50 years, global 
dengue incidences have increased more than 30-fold, with 
approximately 50 million cases increasing each year [7, 8]. 
Dengue is most common in urban and semi-urban areas, 
where the accumulation of clear and stagnant water—often 
due to drainage failures—creates ideal mosquito breed-
ing sites [9, 10]. However, nowadays, dengue cases are 
increasingly reported in peri-urban and rural areas due to 
human migration and elevated population mobility, as well 
as changes in local and regional climate patterns which are 
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favorable for dengue outbreaks and mosquito reproduction 
[11, 12].

The Indian subcontinent is highly vulnerable to mos-
quito-borne dengue virus due to its favorable climate [13]. 
Dengue is a major cause of casualties and hospitalization, 
particularly among children in this region [14]. Bangladesh, 
situated in the Indian subcontinent, is highly susceptible to 
dengue virus transmission due to its climate, high population 
density, and unplanned urbanization [12]. The first recorded 
cases of dengue in Bangladesh date back to the  1960 s, with 
sporadic outbreaks until the early  2000s, when the disease 
became endemic [9]. By 2000–2002, Dhaka reported a sig-
nificant rise in cases, marking the beginning of a persistent 
public health challenge. The severity of dengue in Dhaka 
increased dramatically after 2015, with outbreaks growing in 
frequency and scale. In 2019, the city accounted for 81% of 
Bangladesh’s dengue cases [15], and by 2023, it experienced 
its worst outbreak on record—321,179 cases and 1,705 fatal-
ities—surpassing the cumulative total of the past 22 years. 
This exponential growth aligns with rapid urbanization, cli-
mate variability, and inadequate vector control measures, 
creating ideal conditions for Aedes aegypti proliferation. The 
2023 outbreak underscored city’s status as a global hotspot 
for dengue, with the WHO ranking Bangladesh among the 
most affected countries worldwide [12]. While this study 
is focused on Dhaka city, the methodological framework 
developed here—integrating geospatial multi-criteria analy-
sis with environmental and demographic factors—is broadly 
applicable to other dengue-endemic regions worldwide. 
Many cities in tropical and subtropical areas, such as Bang-
kok, Jakarta, Manila, and Rio de Janeiro, face similar chal-
lenges related to urbanization, climate change, and vector-
borne disease outbreaks. Our approach provides a replicable 
model that public health authorities and researchers in other 
urban settings can adapt for spatial dengue susceptibility 
assessment, allowing for more effective resource allocation 
and vector control strategies.

Past dengue control strategies have primarily focused on 
vector surveillance, insecticide spraying, and public health 
awareness campaigns aimed at reducing mosquito breeding 
and disease transmission [16, 17]. While these approaches 
have played a vital role, they are often reactive, lack spa-
tial precision, and fail to consider the complex interactions 
between environmental and demographic risk factors, as dis-
cussed in Sect. 2.1. These limitations highlight the need for 
more proactive and spatially targeted methods. Geospatial 
techniques offer a valuable alternative by enabling the identi-
fication of high-risk zones through the integration of diverse 
spatial datasets. By combining environmental and demo-
graphic criteria, they support more efficient resource allo-
cation, early warning systems, and localized interventions 
[18]. This study builds on these needs by applying a multi-
criteria geospatial analysis to assess dengue susceptibility in 

Dhaka city—an area particularly vulnerable due to its rapid 
urbanization and high population density. As dengue risk is 
shaped by dynamic socio-environmental conditions [19, 20], 
spatial susceptibility assessments can guide more effective, 
evidence-based decision-making for dengue prevention and 
control [21, 22].

Geospatial techniques, which combine geographic infor-
mation systems (GIS) and remote sensing, are considered 
effective for managing health data, analyzing spatial dis-
tribution, anticipating trends, conducting monitoring, and 
managing epidemic diseases [16, 23]. Geospatial techniques 
have recently demonstrated their effectiveness in integrating 
criteria that influence dengue, mapping susceptible areas for 
the dengue virus, and identifying and detecting ideal breed-
ing grounds for dengue mosquitos [2, 24]. Weighting and 
rankings are necessary for processing and integrating multi-
ple criteria in spatial decision-making in dengue susceptibil-
ity assessment [5]. The analytical hierarchy process (AHP) 
is considered simple yet powerful tool that researchers and 
decision-makers widely use to integrate multiple criteria and 
make spatial decisions to produce susceptibility maps [17]. 
AHP, as part of the multi-criteria decision making process 
(MCDM), helps analyze spatial multi-criteria layers through 
pairwise comparisons based on expert opinions to derive a 
priority scale and determine the consistency or inconsistency 
in the decision-making process [25, 26].

Several studies have so far been conducted globally using 
geospatial techniques to map dengue virus susceptibility, 
assess the risk, and identify dengue infection sites [2, 7, 16, 
27, 28]. Ali and Ahmad [16] performed a study on dengue 
risk mapping using AHP with GIS in Kolkata Municipal 
Corporation, India considering influencing factors in the 
spread of the dengue virus, while, Ghosh et al. [27] mapped 
the dengue disease risk in Kharagpur city, India using 
various variables and multiple logistic regression analysis. 
Another study by Atique et al. [2] investigated the spatio-
temporal distribution and diffusion patterns of the dengue 
outbreak, focusing on the Swat area in Pakistan, applying 
space–time scan statistics. Akter et al. [7] identified spa-
tial and temporal patterns of dengue infections in Queens-
land, Australia using, geospatial techniques. Bangladesh, 
although, highly susceptible to the dengue virus, very few 
systematic study have so far been conducted in the coun-
try [10, 12]. Kayesh et al. [10] focused on reviewing severe 
dengue risk in Bangladesh. On the contrary, Kamal et al. 
[12] attempted to establish a relationship between urban 
environmental components and dengue prevalence in Dhaka 
city. While above studies have significantly contributed to 
understanding dengue risk and susceptibility, there are 
notable gaps that this research aims to address. First, most 
previous studies have focused on either environmental or 
demographic factors in isolation, without integrating both 
in a single framework. Second, the application of geospatial 
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techniques in Dhaka city has been limited, particularly in 
the context of dengue susceptibility mapping. Third, the use 
of the Analytical Hierarchy Process (AHP) for weighting 
and ranking criteria in dengue susceptibility studies is still 
underexplored, especially in densely populated urban areas 
like Dhaka. This study fills these gaps by developing a com-
prehensive spatial susceptibility model that integrates both 
environmental and demographic factors, applies AHP for 
criteria weighting, and focuses specifically on Dhaka city, 
which has been severely affected by dengue outbreaks in 
recent years.

The present study was designed to develop a novel spa-
tial dengue disease susceptibility mapping approach using 
multi-criteria integrated geospatial techniques and to assess 
the spatial pattern of dengue disease susceptibility in Dhaka 
city, Bangladesh. While previous studies have utilized geo-
spatial techniques for dengue risk mapping, this research 
distinguishes itself by integrating both environmental and 
demographic factors in a comprehensive multi-criteria deci-
sion analysis (MCDA) framework, specifically tailored for 
Dhaka city. Furthermore, this research employs the Analyti-
cal Hierarchy Process (AHP) to weight and rank the crite-
ria, which has not been extensively applied in the context 
of Dhaka city, particularly with such a detailed set of fac-
tors. The specific objectives were: (1) to develop a spatial 
dengue disease susceptibility mapping approach using geo-
spatial techniques incorporating multi-criteria; (2) to apply 
the developed approach for assessing the spatial pattern of 
dengue disease susceptibility in Dhaka city of Bangladesh; 
and (3) to validate the produced spatial dengue disease sus-
ceptibility results.

2  Material and methods

2.1  The study area

This study was conducted in Dhaka city, encompassing both 
Dhaka North City Corporation and Dhaka South City Cor-
poration. Geographically, study area is located at 23°43′0′′ 
north latitude and 90°24′0′′ east longitude (Fig. 1). The 
total area of Dhaka city is 276  km2. Dhaka experiences a 
predominantly tropical monsoon climate, characterized by 
hot, muggy summers and moderate winters [12]. The annual 
mean temperature in Dhaka city is recorded at 28 °C, fluc-
tuating across the months from 20 °C in January to 32 °C 
in May. From May to September, around 80% of the annual 
average rainfall, which amounts to 1854 mm, takes place 
[29]. Home to 21.7 million people, Dhaka city exhibits 
a 3.5% annual growth tendency [30, 31]. In this city, the 
average annual rate of urban expansion from 1991 to 2019 
reached up to 8%, and alarmingly, the periphery expanded 
by 43% during the same period. It is characterized by 

congested streets, close-knit neighborhoods, and excessive 
traffic, contributing to increased pollution and placing stress 
on the city's infrastructure. The congested condition is exac-
erbated by a lack of public parks and green areas. Dhaka also 
faces challenges in providing suitable housing and sanitary 
services, leading to numerous human health issues such as 
air and waterborne diseases. The warm and humid climate 
in Dhaka, compounded by the influence of climate change, 
fosters an environment favorable for the outbreak of vector-
borne illnesses such as dengue fever, malaria, and chikun-
gunya. These diseases rank among the most prevalent and 
widely spread in Dhaka [30–32].

2.2  The approach

This study used an AHP-based geospatial multi-criteria 
assessment approach to incorporate several environmental 
and demographic parameters for determining dengue suscep-
tibility. The AHP has a significant potential for effectively 
integrating and aggregating multi-criteria and appropriately 
expressing outcomes [33]. The literature study yielded eight 
environmental and six demographic factors for determining 
environmental and demographic susceptibilities.

The procedural flowchart utilized in this study is depicted 
in Fig. 2.

2.3  Data set and sources

To carry out this study, various secondary sources of social 
and demographic data were used. Satellite images from Sen-
tinel-2 and Landsat 8 were obtained from the Copernicus 
open access hub and the United States Geological Survey 
(USGS) Earth explorer websites, respectively. Digital eleva-
tion model (DEM) data were gathered from the Survey of 
Bangladesh (SOB). Rainfall and humidity data were col-
lected from the Bangladesh Meteorological Department 
(BMD). Demographic information was gathered from the 
corresponding information authorities, including the Bang-
ladesh Bureau of Statistics (BBS) and the Directorate Gen-
eral of Health Services (DGHS). Data type, sources, period 
and mapping output are detailed in the following Table 1.

2.4  Mapping, susceptibility evaluation criteria, 
and alternatives

Spatial thematic layers were created by mapping alterna-
tives of each criterion. ArcGIS software (version 10.4) and 
ERDAS Imagine (version 15) were used for all geospatial 
tasks, and 15 m resolution was determined for each raster 
layer in this study.

For this study, 14 environmental and demographic crite-
ria and their alternatives were chosen through an extensive 
literature and data review, justifying their direct and indirect 
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influence on suitable breeding environments and dengue 
transmission. The criteria and mapping methodologies are 
elaborated upon in subsequent sections.

2.4.1  Factors for environmental susceptibility mapping

Environmental susceptibility is closely interlinked to the 
physical and environmental conditions surrounding a given 
area. To operationalize this construct, this study has selected 
eight key indicators, including land use land cover (LULC), 
normalized difference moisture index (NDMI), normal-
ized difference vegetation index (NDVI), and land surface 
temperature (LST), alongside variables such as distance to 
waterlogged areas, elevation, rainfall, and humidity.

2.4.1.1 Land use land cover (LULC) LULC was used to 
investigate the entire land of Dhaka city, which is used for 
diverse purposes such as vegetation cover, waterbodies, bar-
ren land, and built-up areas. The incidence of vector-borne 

diseases such as dengue, malaria, and chikungunya in tropi-
cal regions is mostly associated to low-lying areas and bod-
ies of water, and is caused by rapid changes in the landscape 
[34]. Shifts in natural land use, including impoundments, 
dams, and irrigation trigger dengue transmission by creating 
an ideal setting for vector reproduction [35]. Dengue-carry-
ing mosquitoes are generated in urban environment due to 
inappropriate land use, and they spread to nearby rural areas 
[36]. It was essential to produce an LULC map to classify 
the different land uses and identify areas susceptible to den-
gue disease. The Sentinel 2, 10 m resolution satellite image 
was used to produce the Land use land cover map of study 
area using a supervised classification approach. Thus, the 
LULC classification categorized Dhaka into five land use 
categories: waterbody, bare land, vegetation cover, roads, 
and built-up area (Fig. 3a).

2.4.1.2 Normalized difference vegetation index (NDVI) The 
Normalized Difference Vegetation Index (NDVI) was used 

Fig. 1  Study area, Dhaka city of Bangladesh
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to calculate vegetation greenness in order to understand 
vegetation density and assess changes in plant health. The 

largest concentration of vector-borne illnesses was found in 
areas with low land and limited forest cover, according to 

Fig. 2  The methodological flowchart illustrating the susceptibility assessment approach adopted in this study

Table 1  Data type and sources used for susceptibility analysis of Dengue diseases

Data type Source Period Mapping output

Sentinel-2 (10 m resolution) Copernicus Open Access Hub March, 2021 Land cover, NDVI, NDMI, Distance to 
waterlogged

Landsat-8 (30 m resolution) United States Geological Survey 
(USGS) Earth explorer

March, 2021 LST

Digital Elevation Model (DEM) 
at 20 m spatial resolution

Survey of Bangladesh (SOB) 2014 Elevation

Rainfall and humidity Bangladesh Meteorological Department 
(BMD)

1980–2021 Rainfall, humidity

Population data Bangladesh Bureau of Statistics (BBS) Population Census 2011 Population density, dependent population, 
household numbers, literacy rate

Number of dengue affected case Directorate General of Health Services 
(DGHS)

2014–2021 Affected case

Number of hospitals Directorate General of Health Services 
(DGHS)

Up to 2021 Health facilities
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Sheela et al. [34]. NDVI and Dengue transition were shown 
to be inversely connected, as forest cover loss was associ-
ated with increased risk of DF [16, 37]. The ratio between 
the red and near-infrared (NIR) bands in the Sentinel-2, 
10-m resolution image was used to calculate the NDVI and 
extract the vegetation index (Fig. 3b). NDVI was quantified 
using the following formula:

2.4.1.3 Normalized difference moisture index (NDMI) The 
normalized Difference Moisture Index (NDMI) influences 
dengue outbreaks, with areas exhibiting high NDMI having 
a higher chance of dengue outbreaks [16, 37]. To quantify 
vegetation moisture content, the NDMI was carried out. 
The ratio between the NIR and SWIR values of the Senti-
nel-2 (10 m resolution) image was used for its calculation 

(1)NDVI =
NIR − RED

NIR + RED

(Fig. 3c). It is a reliable indicator of water stress in plants 
and can identify water stress at an early stage, before the 
issue becomes unmanageable. The short-wave infrared 
(SWIR) spectral band is highly sensitive for detecting meso-
phyll structure of leaves and the water content available in 
vegetation; while the near-infrared (NIR) band is responsi-
ble for deriving the dry matter content in the interior of the 
leaf. NDMI was calculated following this equation:

The NDMI scale runs from −1 to + 1, where the lowest 
values (in red) correlate to low water content in the vegeta-
tion and the highest ones (in blue) to high water content.

2.4.1.4 Land surface temperature (LST) The growth of 
mosquito larvae and the feeding habits of mosquitoes are 
significantly influenced by air and ground temperature [38], 

(2)NDMI =
NIR − SWIR

NIR + SWIR

Fig. 3  Environmental susceptibility mapping factor layers: a Land cover, b NDVI, c NDMI d LST, e Distance to waterlogged, f Elevation, g 
Rainfall, and h Humidity
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with research identifying that mosquitoes’ life expectancy is 
very low at extreme temperatures and optimal when the sur-
face temperature is between 28 and 32 degrees Celsius [12, 
37]. Temperature and humidity provide suitable conditions 
for the genetic development and maturation of the Dengue 
Virus (DENV) inside mosquitoes [12, 38].

Geometrically corrected Landsat-8, 30-m resolution 
images were used to obtain LST (Fig. 3d). To derive LST, 
the following methods and equations were used:

i. Radiance conversion from DN values:
Thermal Infrared Digital Numbers can be converted to 

top-of-atmosphere (TOA) spectral radiance by applying the 
radiance rescaling factor.

Top of Atmosphere (TOA) spectral Radiance:

where: Lλ = TOA spectral radiance (Watts/(m2 * sr * μm)), 
ML = Radiance multiplicative Band (No.), AL = Radiance 
Add Band (No.), Qcal = Quantized and calibrated standard 
product pixel values (DN).

ii. Top of Atmosphere (TOA) Brightness Temperature:
Spectral radiance data can be transformed into top-of-

atmosphere brightness temperature by utilizing the thermal 
constant values provided in the metadata file.

where: BT = Top of atmosphere brightness temperature (°C), 
Lλ = TOA spectral radiance (Watts/(m2 * sr * μm)), K1 = K1 
Constant Band (No.), K2 = K2 Constant Band (No.).

iii. Land Surface Emissivity (LSE):
Land surface emissivity (LSE) represents the mean emis-

sivity of a surface element on Earth, derived from NDVI 
values

where: E = Land Surface Emissivity, PV = Proportion of 
Vegetation.

iv. Land Surface Temperature (LST):
The radiative temperature known as the land surface tem-

perature (LST) is determined by measuring the brightness 
temperature at the top of the atmosphere, the wavelength of 
the radiance emitted, and the land surface emissivity.

where: BT = Top of atmosphere brightness temperature 
(°C), W = Wavelength of emitted radiance, E = Land Sur-
face Emissivity.

2.4.1.5 Distance to  waterlogged The presence of water 
bodies is considered the most significant factor in dengue 
outbreaks [8]. This is due to the fact that these types of 
bodies of water offer female Aedes mosquitoes—who like 

(3)Lλ = ML ∗ Qcal + AL

(4)BT = K2∕ ln (K1∕Lλ + 1) − 272.15

(5)E = 0.004 ∗ PV + 0.986

(6)LST = (BT∕1) +W ∗ (BT∕14380) ∗ ln(E)

reproducing in fresh, stagnant water—the perfect breed-
ing habitat. Only 100–200 m is the restricted flight range 
of these insects. Residential locations near waterlogged 
regions, as defined by a 200-m buffer zone, are therefore 
more likely to transmit dengue than those farther away. It 
has been shown that residing in flooded regions increases 
the danger of spreading dengue [39]. Dengue transmission 
is more likely in areas with waterlogged or poor drainage 
systems [40]. Following a study performed in Saudi Arabia 
by Khormi and Kumar [41], the risk of dengue transmis-
sion decreased with increasing distance from locations sub-
merged in water. Waterlogged areas were extracted from the 
Sentinel 2, 10 resolution images using supervised classifica-
tion techniques. The distance to waterlogged raster layer was 
calculated using the Euclidean distance approach (Fig. 3e). 
The shortest straight-line distance between each cell and 
the closest source point is calculated using the Euclidean 
distance functions. In addition to identifying cell allocation, 
this function can also be employed to estimate the distance 
and direction to the closest source.

2.4.1.6 Elevation Elevation is an essential factor that influ-
ences the dengue outbreak. There is a correlation between 
elevation and dengue transmission, with lower-elevation 
locations (such as coastal plains) experiencing higher trans-
mission rates than higher-elevation areas [42]. We used the 
2014 DEM at a 20 m spatial resolution to obtain land eleva-
tion. The 2014 DEM data were acquired from SOB (Fig. 3f).

2.4.1.7 Rainfall The propagation of the dengue virus is sig-
nificantly aided by rainfall [2]. Aedes mosquitoes, the main 
vector for dengue infection, can thrive in stagnant water that 
accumulates in various places, including flower pots, tire 
waste bins, and blocked drainage systems by rainfall. Sev-
eral studies stated that rainfall and the incidence of dengue 
fever are positively correlated [43]. Heavy rainfall can lead 
to the accumulation of standing water, providing an ideal 
breeding ground for Aedes mosquitoes, the primary vector 
for dengue transmission [44]. Dengue cases increase with 
increasing rainfall intensity, while declining rainfall causes 
a gradual decrease [45]. In this study, we used the daily pre-
cipitation data (1950—2021) acquired from BMD for map-
ping precipitation intensity. Firstly, we made kriging inter-
polation with the average annual precipitation data from all 
weather stations in Bangladesh, and then we clipped the 
study area (Fig. 3g).

2.4.1.8 Humidity It is commonly known that humidity con-
tributes to the transmission of the dengue virus and that it 
plays a major role in its spread. High humidity enhances the 
survival and reproduction of mosquitoes, thereby increasing 
the overall risk of dengue transmission [1]. Relative humid-
ity exhibits a strong correlation with dengue transmission; 
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higher humidity provides an ideal environment for mosquito 
breeding, while lower humidity reduces mosquito transmis-
sion [45]. In this research, we used the daily humidity data 
(1950—2021) acquired from BMD for mapping humidity 
(Fig. 3h).

2.4.2  Factors for demographic susceptibility mapping

The assessment and zonation of vector-borne diseases are 
closely related to demographic factors such as population 
density, household characteristics, and education level. This 
is because humans are known to have a high potential for 
transmitting such diseases. This study identified six causa-
tive indicators as demographic parameters: population den-
sity, dependent population, affected case, number of house-
holds, health facilities, and literacy rate.

2.4.2.1 Population density Densely inhabited areas are 
more prone to a range of environmental problems, such as 
poor sanitation, inadequate sewage systems, and localized 
waste dumping, which are suspected to have a substantial 
influence on the development of dengue [15]. Cities with 
large population densities and unfavorable environmental 
conditions, like Dhaka city Corporation, may foster breed-
ing conditions for Aedes mosquitoes that raise the risk of 
dengue transmission. The population data were collected 
from the BBS. In a GIS platform, the area of each ward of 
the Dhaka city was digitized and calculated. The population 
density was then determined using the ratio of total people 
to total area in  km2 using a field calculator. The spatial dis-
tribution of an element's density is depicted by a choropleth, 
which is a quantitative area map. For this study, the cho-
ropleth technique was employed to generate the population 
density map (Fig. 4a).

2.4.2.2 Dependent population Dependent groups, includ-
ing children, the elderly, people with disabilities, and those 
with long-term health concerns, may be more vulnerable to 
dengue outbreaks for a variety of reasons, including a low 
immune system, substandard living conditions, and limited 
access to medical care, among others. The risk of devel-
oping severe dengue sickness has been found to be higher 
in children and elderly people, who are often members of 
dependent communities [46]. Mortality rates in these age 
categories range from 1–20%. (WHO, 2021). The dependent 
population layer was created using word based data from the 
Bangladesh Bureau of Statistics in a GIS platform (Fig. 4b).

2.4.2.3 Affected case Affected cases have a strong associa-
tion with dengue transmission, indicating that areas with a 
greater dengue outbreak are likely to face a greater number 
of dengue cases [9]. In areas where dengue is endemic, indi-
viduals are more likely to be exposed to the virus, resulting 

in a rise in the number of infections. It is impossible for the 
dengue virus to transfer directly from one person to another, 
but Aedes mosquitos transmit it from someone infected and 
previously suffering from Dengue Fever [9]. An increase in 
dengue cases implies a more significant presence of infected 
individuals, which supports the Aedes mosquitoes in acquir-
ing the Dengue virus, often heightening the susceptibility of 
the surroundings to Dengue infection. The dengue-affected 
case spatial layer was prepared using dengue case data from 
2014 to 2021 (Fig.  4c). These data were collected from 
DGHS.

2.4.2.4 Number of  households For a number of reasons, 
there is a correlation between higher household densities and 
a higher risk of dengue transmission [47]. Firstly, crowded 
living situations might serve as perfect breeding grounds for 
Aedes mosquitoes, which are the virus carriers. Small water 
containers, such as flower pots, used tires, and open water 
containers, can be found in and around residences where 
these mosquitoes prefer to nest. These sorts of breeding 
sites are usually crowded, with many of people gathered in 
small areas. This might lead to a rise in mosquito popula-
tions and the risk of dengue transmission. Building types, 
household density, and the surrounding built environment 
have all contributed significantly to our understanding of 
the epidemiology and possible dangers of dengue fever [48]. 
High population density, seemingly, the results of a higher 
concentration of households, shows close proximity as the 
greatest vulnerability to dengue diseases [21]. The house-
hold spatial layer was prepared using word-based number of 
household data in an ArcGIS environment (Fig. 4d). These 
data were collected from BBS.

2.4.2.5 Health facilities Healthcare facilities are crucial for 
preventing and managing dengue outbreaks. They can con-
tribute to reducing the impact of dengue fever and enhanc-
ing patient outcomes by facilitating access to healthcare, 
identifying and treating cases, and participating in surveil-
lance and reporting efforts. Patients who receive timely 
and appropriate care for their symptoms are less likely to 
experience severe forms of the disease and are more likely 
to recover quickly [49]. Early and appropriate treatment 
of dengue fever can significantly reduce the risk of death. 
The locations of several health facilities were collected 
from DGHS, and a spatial layer was created using ArcGIS 
(Fig. 4e).

2.4.2.6 Literacy rate Those who are literate may know more 
knowledgeable of dengue fever's symptoms, transmission, 
and prevention [50]. They can use this information to take 
the right actions to safeguard their communities and them-
selves against the disease. Additionally, literate people are 
more likely to have access to information about government 
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programs, public health campaigns, and scientific studies on 
dengue fever that can assist them in making well-informed 
choices about how to prevent and treat the illness. On the 
other hand, low literacy rates can aid in the spread of dengue 
disease since they can result in inadequate sanitation and 
hygiene practices. Those who lack literacy may also have 
less access to medical care and other services, which might 
result in diseases being treated too slowly or not at all. The 

literacy layer was created using word-based data from BBS 
in a GIS platform (Fig. 4f).

2.5  Alternative ranking and normalization 
of criteria layers

Alternative ranking and normalized criteria layers are used 
to evaluate multiple criteria and rank them based on all the 

Fig. 4  Demographic susceptibility mapping factor layers: a Population density, b Dependent population, c Affected case d Number of house-
holds, e Health facilities, and f Literacy rate
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alternatives. Alternatives were ranked according to the con-
tribution of susceptibility and AHP criteria. The suscepti-
bility levels (1–5) were determined by ranking the mapped 
options of each spatial criterion layer (Table 2). Extremely 
low and extremely high vulnerabilities are indicated by ranks 
1 and 5, respectively. All spatial layers were transformed to a 
30 m pixel raster in order to allow the raster-based weighted 
overlay procedure and to aid in the multi-criteria decision-
making process utilizing the AHP. The ranking values of 
each geographic criterion layer's options were then normal-
ized to create a common scale ranging from 0 to 1. Equa-
tion (7) for the linear scale transformation was used to obtain 
normalized values.

where, p denotes the standardized score, min and max 
denote the minimum and maximum values of each dataset, 
and x denotes the cell value.

2.6  Weighting the criteria using AHP

This study evaluated the physical and social susceptibil-
ity factors using the AHP technique. Pairwise comparison 
matrices were created using qualitative feedback from five 
experts and a user, and these matrices were then utilized to 
weight the criteria. Experts were chosen at the national level 
based on their individual research expertise and extensive 
knowledge. The users and specialists were from government, 
academic, and research organizations. Physical and social 
susceptibilities added up to one.

The consistency ratio (CR) was computed in order to 
evaluate the consistency of comparisons in the pairwise 

(7)p = x −min∕max −min)

comparison matrix. When the value is at or below 0.1, the 
CR is deemed appropriate [33]. Otherwise, a new weight 
computation and evaluation of the given qualitative decision 
are necessary.

The following equation was used to compute the CR:

where random index (RI) signifies the randomly produced 
average consistency index and consistency index (CI) is 
defined as follows:

where, max is the biggest eigenvalue of the matrix and n is 
the order of the matrix.

Table 3 shows the criterion weights and comparison CR 
values derived from the pairwise comparison matrices.

2.7  Susceptibility assessment

This study used the weighted overly technique to generate 
susceptibility indices based on environmental and demo-
graphic factors. In this process, weights derived through 
AHP for each criterion of demographic and environmen-
tal were employed with their respective thematic layers for 
identifying the susceptible areas to dengue diseases in Dhaka 
city. The procedure generated susceptibility indices based on 
demographic and environmental factors with the values in 
the common scale 0 to 1. The produced indices values were 
then categorized into five levels named very low, low, mod-
erate, high and very high for creating dengue susceptibility 
maps in terms of demographic and environmental factors.

(8)CR = Consistency Index∕Random Index

(9)CI = (max − n)∕(n − 1)

Table 2  Ranking of factors alternatives following the contribution to dengue diseases susceptibility

Susceptibility Factors Ranking (Based on susceptibility)

Very Low (1) Low (2) Moderate (3) High (4) Very High (5)

Environmental factors Land cover Road Bare land Vegetation cover Waterbodies Built-up
NDVI 0.41–0.69 0.21–0.4 0.08–0.2 −0.01–0.07 −0.15–0.02
NDMI −0.6 to −0.1 −0.09 to −0.03 −0.02–0.05 0.06–0.18 0.19–0.5
LST (˚) 24.3–27.2 27.3–28.5 28.6–29.4 29.5–30.5 30.6–34.6
Distance to waterlogged  > 400 m 301–400 m 201–300 m 101–200 m  < 100 m
Elevation  > 7.3 6–7.2 4.8–5.9 3.5–4.5  < 3.4
Rainfall (mm) 2040–2049 2050–2053 2054–2058 2059–2062 2063–2070
Humidity (%) 75.4–75.9 76–76.2 76.3–76.6 76.7–76.9 77–77.4

Demographic factors Population density (sq. km) 18,211–25,000 25,001–50000 500,001–75000 75,001–100000 100,001–157672
Dependent population (%) 15.9–27.1 27.2–29 29.1–30.3 30.4–32.7 32.8–37.3
Affected case (%) 0.54–1 1–1.38 1.39–2.03 2.04–4.08 4.09–24.33
Number of households 2952–8680 8681–13,797 13,798–19,599 19,600–31186 31,187–47,268
Health facilities (000) 8–14 6–7 4–5 2–3  < 1
Literacy rate (%) 85.2–98.2 78–85.1 72.3–77.9 63.7–72.2 52.5–63.6
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2.8  Validation

The technique of mapping spatial susceptibility is not sup-
ported by any established validation mechanism. Never-
theless, a qualitative validation approach was employed 
to assess the spatial susceptibility maps. A field visit was 
undertaken in the last month of 2021 in order to evaluate 
the precision of our susceptibility maps produced by soft-
ware. During the field tour, over 60 people—locals, experts, 
and policymakers—were interviewed in-depth regarding the 
validity of the geographical maps of Dengue illness suscep-
tibility that had been developed. Through personal obser-
vation, the genuine vulnerability to Dengue sickness was 
confirmed by visiting certain vulnerable regions that were 
identified from the produced maps.

3  Results and discussion

3.1  Susceptibility based on environmental factors

Figure 5 illustrates the spatial variation in dengue suscep-
tibility across Dhaka city Corporation, highlighting its 
relationship with environmental and physiographic char-
acteristics. The map categorizes dengue susceptibility into 
five levels, each represented by distinct colors: very low 
(blue), low (light green), moderate (yellow), high (reddish-
yellow), and very high (red). Susceptibility varied spatially, 
with higher vulnerability observed in eastern zones com-
pared to western areas. The eastern region is predominantly 
covered by areas of high to very high susceptibility, while 

the western region is largely dominated by low to very low 
susceptibility.

In terms of administrative division, the southern part of 
Dhaka South City Corporation (DSCC) shows higher dengue 
susceptibility than the northern part of Dhaka North City 
Corporation (DNCC). Several areas within DSCC exhibit 
a significant concentration of higher susceptibility, includ-
ing Dania, Postogola, Sadarghat, Mirhazirbagh, Bangshal, 
Ganderia, Wari, Tikatuli, Shahbagh, Kamalapur, Saidabad, 
Nuton Bazar, Khilgaon, Meradia, Southern Basabo, and 
Dhalpur. Meanwhile, Ward 3 in the western DSCC, encom-
passing Kamrangirchar, Baghalpur, and Borhanpur, shows 
lower susceptibility. Moderate susceptibility is sparse and 
scattered, represented by yellow on the map.

Similarly, the western side of DNCC exhibits low sus-
ceptibility, but with a notable difference: the eastern part of 
DNCC is dominated by higher susceptibility. Ward 9, as well 
as parts of Wards 8 and 10 (including Bashundhara Residen-
tial Area, Kurmitola, Bhatara, Gulshan, Banani, Nakhalpara, 
Old Airport, Rampura, Vasantek, and Badda), show high to 
very high susceptibility. In contrast, areas such as Basila, 
Mohammadpur, Shyamoli, Agargaon, Diabari, Mirpur-1, 
Ahmednagar, Pirerbagh, Shewrapara, Pallabi, and Mirpur 
DOHS in the western DNCC exhibit predominantly low to 

Table 3  Criteria weights and consistence ratios calculated from the 
pairwise comparison matrices

Susceptibility Factor Weight

Environmental susceptibility Land cover 0.04
NDVI 0.15
NDMI 0.21
LST 0.15
Distance to waterlogged 0.24
Elevation 0.07
Rainfall 0.07
Humidity 0.06

Consistency ratio: 0.01
Demographic susceptibility Population density 0.27

Dependent population 0.13
Affected case 0.25
Number of households 0.09
Health facilities 0.19
Literacy rate 0.06

Consistency ratio: 0.03

Fig. 5  Map of environmental susceptibility to dengue of the study 
area
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very low susceptibility. Moderate susceptibility is minimal 
and scattered across the region.

Overall, the eastern part of Dhaka city exhibits higher 
susceptibility to dengue due to environmental conditions, 
while the western part is relatively less prone. Among the 
two city corporations, DSCC stands out for its significant 
prevalence of high susceptibility, whereas DNCC is more 
associated with low susceptibility.

The analysis identified significant geographic heterogene-
ity in dengue susceptibility. As shown in Table 4, the study 
area is primarily characterized by high-to-very-high suscep-
tibility, covering 42.1% of the total land area. Low-to-very-
low susceptibility covers 30.2%, while moderate suscepti-
bility accounts for 27.6%. Notably, Southern and eastern 
regions exhibited the highest susceptibility levels, whereas 
the western and northwestern regions show predominantly 
low susceptibility due to environmental factors.

3.2  Susceptibility based on demographic factors.

Figure 6 illustrates dengue susceptibility across Dhaka City 
Corporation (DCC), with a focus on its demographic charac-
teristics. The map categorizes susceptibility into five levels, 
each represented by a distinct color: very low (blue), low 
(light green), moderate (yellow), high (reddish-yellow), and 
very high (red). The map clearly indicates that dengue fever 
is more prevalent in Dhaka South City Corporation (DSCC) 
compared to Dhaka North City Corporation (DNCC), where 
lower susceptibility levels are more common. In DSCC, 
areas with high susceptibility are overwhelmingly domi-
nant, covering 100% of regions such as Dania, Dholaipar, 
Mir Hazirbag, Mugdapara, Kadamtala, Maddhya Basabo, 
Khilgaon, Malibagh, Railway Officers Colony, AGB Colony, 
T&T Colony, Paribagh, Dhaka University, Shahidnagar, 
Sadarghat, Babu Bazar, Begum Bazar, Bangshal, Malitola, 
Nawabpur, Tikatuli, Gopibag, Dayaganj, Narinda, Farash-
ganj, and Faridabad. Conversely, Ward 3 in the western part 
of Dhaka South City Corporation (DSCC), encompassing 
areas such as Northern Kamrangirchar, Shankar, Burhanpur, 

Bhagalpur, Katabon, Pilkhana, Azimpur, Purana Platan, 
and Shantinagar, exhibits moderate susceptibility. Only two 
wards in the western areas (Baddanagar, Hazaribagh, Jhi-
gatola, Kalabagan, Shukrabad) exhibit low susceptibility, 
marked by light green on the map.

In contrast, Dhaka North City Corporation (DNCC) pre-
dominantly exhibits low dengue susceptibility. The eastern 
and western borders of DNCC show reduced susceptibility, 
while central areas display moderate susceptibility. Notably, 
regions such as Tejgaon Industrial Area, Mohakhali, Banani, 
Gulshan, Badda, Vatara, Kuril, Kurmitola, and Bashundhara 
Residential Area, along with western parts including North 
Basila, Dhaka Uddan, Bangladesh National Zoo, Botanical 
Garden, Agargaon, and Vashantek, are characterized by low 
susceptibility. Moderate susceptibility is more widespread, 
encompassing areas like Ibrahimpur, Old Airport, Kafrul, 
Shaheenbagh, West Nakhalpara, Pallabi, Mirpur DOHS, 
Adabar, Middle Paikpara, Mirpur 1, 2, and 14, as well as 
Rampura and Baridhara. However, certain locations such as 
Tejkunipara, Farmgate, Chandrima Uddan, Agargaon, Mir-
pur 10, and Palash Nagar are identified as higher-risk zones.

Overall, the southern part of Dhaka, particularly DSCC, 
exhibits a higher susceptibility to dengue fever, while the 
northern part, represented by DNCC, shows relatively lower 
vulnerability. DSCC stands out for its high prevalence of 

Table 4  Area coverage of susceptibility mapping (based on envi-
ronmental and demographic factors) classes and share of the events 
according to the defined classes

Susceptibility Susceptibility based of 
environmental factors

Susceptibility based of 
demographic factors

Area(km2) Area (%) Area  (km2) Area (%)

Very low 12.0 9.8 18.9 15.4
Low 25.0 20.4 30.0 24.5
Moderate 33.8 27.6 27.2 22.3
High 35.8 29.3 24.1 19.7
Very high 15.7 12.8 22.2 18.1

Fig. 6  Map of demographic susceptibility to dengue of the study area
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dengue susceptibility, whereas DNCC benefits from a more 
even distribution of low to moderate susceptibility.

According to the analysis in Table 4, low to very-low sus-
ceptibility is the dominant category, covering approximately 
40% of the total land area. High to very-high susceptibility 
accounts for 37.8%, while moderate susceptibility covers 
22.3%. It is also evident that the southern and southeastern 
parts of Dhaka, particularly lower-middle regions, exhibit 
the highest susceptibility. In contrast, the northern regions, 
especially upper-middle areas, demonstrate lower suscepti-
bility, with most of these areas falling into the low to very-
low category, followed by moderate susceptibility in the 
majority of northern Dhaka.

3.3  Validation

We adopted a qualitative approach based on household 
responses regarding susceptibility, including in-depth per-
sonal observations and opinions of local people, experts, 
and policymakers, to validate the spatial distribution of 
dengue disease susceptibility assessed from the weight of 
AHP based on environmental and Demographic factors in 
Dhaka City Corporation (Table 5). The chosen qualitative 
methodology was able to deliver accurate data for analyzing 
the outcomes of our spatial susceptibility assessment. Out 
of 80 respondents, 54 (67.5%) were highly satisfied with the 
results, 16 (20%) were satisfied, and 10 (12.5%) expressed 
dissatisfaction. Additionally, the susceptibility map revealed 
that the southern and eastern regions fall within high-to-
very-high susceptibility zones in terms of environmen-
tal and demographic factors. In contrast, the western and 
northern parts of Dhaka are largely characterized by low-to-
extremely-low susceptibility, while the central and southern 
areas are predominantly in moderate to high-to-very-high 
susceptibility zones. Field observations by the authors fur-
ther supported these findings.

4  Conclusion

This study employed geospatial techniques and a Multi-
Criteria Decision-Making (MCDM) approach to analyze 
dengue susceptibility across Dhaka city. By categorizing 
14 key factors into environmental and demographic groups 

and applying the Analytical Hierarchy Process (AHP), the 
study generated spatial maps to identify highly vulnerable 
areas. The findings revealed that the southern and south-
eastern parts of Dhaka, particularly within the South City 
Corporation, exhibit the highest susceptibility to dengue. 
In contrast, the northern and northwestern areas under 
the North City Corporation showed relatively lower risk. 
Among the analyzed variables, proximity to waterlogged 
areas and population density were identified as the most 
influential contributors to dengue vulnerability.

Validation through field surveys reinforced the model’s 
reliability, with 67% of respondents expressing high satis-
faction with the classification results. Although the study 
was focused on Dhaka, the geospatial MCDM framework 
developed here offers a scalable and transferable method-
ology that can be applied to other dengue-endemic urban 
areas, particularly in low- and middle-income countries 
facing similar environmental and socio-demographic chal-
lenges. Additionally, the model can be adapted for other 
vector-borne diseases such as malaria or chikungunya by 
modifying the selected criteria.

Despite its contributions, the study faced certain limi-
tations. The reliance on older demographic data from the 
2011 census may not fully reflect current urban dynamics, 
and the unavailability of recent high-resolution datasets 
for all indicators may have influenced the accuracy of the 
susceptibility assessment. Moreover, logistical constraints 
limited the extent of field validation. Nonetheless, the 
results provide critical insights for public health officials 
and urban planners to implement targeted interventions—
such as improving drainage systems, regulating informal 
settlements, and optimizing healthcare resource allocation.

Looking ahead, future research should consider inte-
grating long-term climatological data to account for sea-
sonal variations in dengue transmission. Incorporating 
updated and more detailed socio-economic indicators—
such as income level, employment, and housing quality—
will help capture local disparities in disease vulnerability. 
In addition, machine learning approaches like Random 
Forest or Support Vector Machines can enhance model 
precision and reduce the subjectivity of traditional weight-
ing methods. Real-time epidemiological data integration 
could also further improve the timeliness and accuracy of 
dengue risk assessments.

Table 5  A brief summary 
of feedback of various 
categories people on social and 
infrastructural vulnerability to 
tropical cyclones results during 
the field visit

Category of people Total number of 
respondents

Highly satisfied Satisfied Not satisfied

General people 65 44 14 8
Policymakers 10 5 3 2
Experts 05 5 5 0
Total 80(100%) 54(67.5%) 16(20%) 10(12.5%)
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In conclusion, this study not only advances the use of 
geospatial intelligence for public health planning in Dhaka 
but also provides a flexible framework for broader appli-
cation. By embedding susceptibility mapping into urban 
governance strategies, cities can take a proactive approach 
to mitigate vector-borne disease risks and build long-term 
urban resilience.
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