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A B S T R A C T

This paper focuses on the task of survival time analysis for lung cancer. Despite significant progress in recent
years, the performance of existing methods is still far from satisfactory. Traditional and some deep learning-
based approaches for lung cancer survival time analysis primarily rely on textual clinical information such
as staging, age, and histology, etc. Unlike these existing methods that predicting on the single modality,
we observe that human clinicians usually consider multimodal data, such as textual clinical parameters and
visual scans when estimating survival time. Motivated by this observation, we propose Lite-ProSENet, a smart
cross-modality network for survival analysis that simulates human decision-making. Specifically, Lite-ProSENet
adopts a two-tower architecture that takes the clinical parameters and the CT scans as inputs to produce
survival prediction. The textural tower is responsible for modeling the clinical parameters. We build a light
transformer using multi-head self-attention as our textural tower. The visual tower, ProSENet, is designed to
extract features from CT scans. The backbone of ProSENet is a 3D ResNet that works together with several
repeatable building blocks named 3D-SE Resblocks for compact feature extraction. Our 3D-SE Resblock is
composed of a 3D channel ‘‘Squeeze-and-Excitation’’ (SE) block and a temporal SE block. The purpose of
3D-SE Resblock is to adaptively select valuable features from CT scans. Besides, to further filter out the
redundant information in the CT scans, we developed a simple yet effective frame difference mechanism,
which boost the performance of our model to achieve new state- of-the-art results. Extensive experiments were
conducted using data from 422 NSCLC patients from The Cancer Imaging Archive (TCIA). The results show that
our Lite-ProSENet outperforms favorably against all comparison methods and achieves a new state-of-the-art
concordance score of 89.3%. Our code is available at: https://github.com/wangyxxjtu/Lite_ProTrans.
1. Introduction

Lung cancer is one of the most malicious diseases, the overall five-
year survival rate for lung cancer (LC) is even less than 20%. Most
lung cancers can be divided into two broad histological subtypes: non-
small cell lung cancer (NSCLC) and small cell lung cancer (SCLC).
Compared to SCLC, NSCLC accounts for the majority of diagnoses and
is less aggressive. NSCLC spreads and grows more slowly than SCLC
and causes few or no symptoms until it is advanced. As a result,
patients are usually not detected until it is at a later stage. And it

✩ This paper was completed by H. Wang in collaboration with Y.Wu during his doctoral studies.
∗ Corresponding author.
E-mail addresses: yujiao.wu@csiro.au (Y. Wu), wangyx@hfut.edu.cn (Y. Wang), huangxiaoshui@sjtu.edu.cn (X. Huang), wanghf@pcl.ac.cn (H. Wang),

yangfan@wpeony.com (F. Yang), 412416074@qq.com (W. Sun), Steve.Ling@uts.edu.au (S.H. Ling), suweidong@sdfmu.edu.cn, Steven.Su@uts.edu.au (S.W. Su).

has caused millions of deaths in both women and men [1–7]. Lung
cancer survival analysis, or prognostication, of lung cancer attempts to
model the time range for a given event of interest (biological death),
from the beginning of follow-up until the occurrence of the event.
The survival model is an estimate of how lung cancer will develop,
and it can reveal the relationship between prognostic factors and the
disease. Using the accurate prognostic models, doctors can determine
the most likely development(s) of the patient’s cancer [8,9]. To improve
predictive accuracy and automate the NSCLC survival analysis process,
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Fig. 1. The architecture comparison of existing methods and our proposed Lite-
roSENet.

as well as to assist medical experts develop precise treatment solutions,
we aim to explore a novel method for NSCLC survival analysis.

Traditional statistical methods for survival analysis leverage struc-
tured data from comprehensive medical examinations. These meth-
ods primarily include time-to-event modeling tools such as the Cox
proportional hazards (Cox- PH) model [10], the accelerated failure
ime (AFT) model [11], the Kaplan–Meier [12], etc. Besides, machine
earning-based approaches for survival analysis have gained popularity,
ncluding survival trees [13,14], Bayesian methods [15,16] and Support

Vector Regression [17,18] etc. These models assume a constant hazard
ratio between two subjects over time [19], estimating either a risk
score or the time-to-event distribution. However, when implemented
in clinical practice, the interaction between covariates can be complex,
and all these methods focus solely on structured data, overlooking
the enormous information within the image data such as CT scans.
Moreover, medical experts normally need to spend significant effort
eveloping hand-crafted features for these models. Recently, some
orks have utilized pathological images to demonstrate the effective-
ess of image-based features. However, obtaining pathological images

requires a lung biopsy, an invasive procedure associated with potential
health risks, including pneumothorax, bleeding, infection, systemic air
mbolism, and other side effects.

Artificial intelligence has made rapid strides over the past decade.
ith advancements in deep learning techniques, AI has accomplished

emarkable success in various fields of research, including natural lan-
uage processing, computer vision, etc. As a cutting-edge technology,
eep learning holds significant promise for medical diagnostics. Some
f the most innovative and novel deep learning methods have already
een successfully applied to lung cancer diagnosis using CT images,
ith performance levels that surpass even those of human experts [20–

23]. However, existing deep learning-based methods only consider
the structured or visual cues. In contrast, medical professionals often
onsider both clinical parameters and visual information, such as CT
mages together to make comprehensive decisions. Consequently, the

predictions generated by current methods lack sufficient reliability and
redibility. To address this limitation, we propose a novel multimodal

paradigm for lung cancer survival analysis inspired by the success of
deep learning, as shown in Fig. 1.

To successfully build such a multimodal network, the first challenge
s to encode the task-friendly features from different modalities. Al-
hough the format of the clinical parameters looks like some discrete
ymbols in a diagram, they are fundamentally highly correlated. To un-
over correlations between different factors, we propose a Light trans-

former network to process the textual clinical parameters. The core
building block of our model is the multi-head self-attention [24]. More-
over, self-attention mechanism is capable of correlating various disease
factors, enabling the capture of more comprehensive information.
2 
CT slices contain rich spatial and temporal information. In our
previous work [25], we adopted 3D ResNet as the backbone for feature
xtraction. However, we found that excessive redundant information

in both the spatial and temporal dimensions significantly hindered
the model’s ability to focus on the most important components of the
visual data. To alleviate this problem, we for the first time propose a
3D Channel SE block and a 3D Temporal SE block. Both blocks are
integrated into the original residual module, forming an architecture
specifically designed for NSCLC prognosis, which we term ProgSE-Net.
Additionally, we observe that the pixels in adjacent CT slices are similar
or identical in most cases. To further enhance ProgSE-Net, we propose a
frame difference mechanism. This mechanism generates two additional
CT slices by subtracting adjacent pixels in two directions, a strategy
that has proven effective in our practice.

In conclusion, considering the above, we have developed the first
multimodal network for NSCLC survival analysis, which takes Deep
Learning-based NSCLC survival analysis one step forward by simulta-
neously considering the textual clinical parameters and the visual CT
clues. As shown in Fig. 1, our network adopts a two-tower paradigm: a
clinical tower and a visual tower. The clinical tower is responsible for
encoding the clinical parameters, while the visual tower aims to extract
the visual representation from the CT images. Finally, the prediction
head fuses the cross-modal features to provide a time prediction.

In summary, the key contributions of Lite-ProSENet are as follows:

• The first application of a two-tower DNN for NSCLC survival time
analysis, utilizing both structured data and CT images simultane-
ously.

• The first application of transformer and 3DSE-Net block to multi-
modal clinical parameters for disease prognosis.

• Results from benchmark and real-world clinical datasets demon-
strate that Lite-ProSENet outperforms the state of the art (SOTA1)
methods by a substantial margin.

The remainder of this paper is organized as follows: Section 2
presents related work on NSCLC survival analysis, covering both tradi-
tional methods and deep learning-based approaches. Section 3 details
the proposed Lite-ProSENet. In Section 4, we discuss the experiments
and ablation studies. Section 5 explores various choices made when
uilding the network, including hyper-parameter tuning. Finally, Sec-

tion 6 concludes the paper and outlines future work. The details of each
ection are provided below.

2. Related work

In this section, we give an overview of the traditional statistical
ethods and deep convolutional neural networks, then highlight the

orrelation to our contributions.

2.1. Statistical methods

Conventional statistical methods for NSCLC survival analysis only
use the textual modality and involve modeling time to an event. They
can be divided into three types: non-parametric, semi-parametric and
parametric methods. Kaplan–Meier analysis (KM) [26] is a typical non-
parametric approach to survival outcomes. KM Analysis is suitable for
small data sets with a more accurate analysis cannot include multiple
variables. Life table [27] is a simple statistical method that appropriate
for large data sets and has been successfully applied to European
lung cancer patients [28]. The Nelson-Aalen estimator (NA) [29] is a
non-parametric estimator of the cumulative hazard function (CHF) for
censored data. NA estimator directly estimates the hazard probability.
As for semi-parametric method, the distribution of survival is not
equired. For example, the Cox regression model is used in [30], which

1 SOTA refers to the best results on benchmark datasets.
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discovered the critical factor that has a greater impact on survival
nalysis in lung cancer. The Cox proportional hazards model [27] is the

most commonly used model in survival analysis and the baseline hazard
function is not specified. Coxboost can be applied to high-dimensional
data to fit the sparse survival models. Better than the regular gradient
boosting approach (RGBA), coxboost can update each step with a
flexible set of candidate variables [31]. The parametric method is easy
to interpret and can provide a more efficient and accurate result when
the distribution of survival time follows a certain distribution. But
it leads to inconsistencies and can provide sub-optimal results if the
distribution is violated. The Tobit model [32], for example, is one of the
earliest attempts to extend linear regression with the Gaussian distribu-
tion for data analysis with censored observations. Buckley-James (BJ)
regression [33,34] uses least squares as an empirical loss function and
an be applied to high-dimensional survival data. BJ regression is an
ccelerated failure time model. Bayesian survival analysis [16,35,36]
ncodes the assumption via prior distribution.

2.2. DNN based methods

Image-based techniques for survival analysis of lung cancer nor-
mally adopt histopathological images. The work of [37] was the first
to use a deep learning approach to classify cell subtypes. Using ma-
chine learning methods, H. Wang et al., proposed a framework [38]
nd found a set of diagnostic image markers highly correlated with
SCLC subtype classification. The work of Kun-Hsing Yu et al. [39],

extracts 9879 quantitative image features and uses regularized machine
learning methods to distinguish short-term survivors from long-term
survivors. In the work of Xinliang Zhu et al. [40], a deep convo-
utional neural network for survival analysis (DeepConvSurv) with
athological images was proposed for the first time. The mentioned
ethods cannot learn discriminative patterns directly from Whole Slide
istopathological Images (WSIs) and some of them predict the survival

tatus of patients using hand-crafted features extracted from manually
abeled small discriminative patches. [41] introduced a novel multi-

modal learning framework that integrates WSIs and CT images for
survival prediction, demonstrating superior performance compared to
unimodal approaches. Despite the accurate patient information from
WSIs like pathology images, they often include invasive steps. With this
consideration, this paper solely focuses on the CT scans and clinical pa-
rameters from patient to conduct survival analysis, thereby remedying
the physical and psychological stress of invasive models. Considering
he scare and precious annotations for medical data, many researchers
xplored to build the computer-aided diagnosis system with imperfect
abels [42–44]. In the work of [42], an annotation-free method for

survival prediction based on whole slide histopathology images was
roposed for the first time. Liao et al. proposed a novel multi-view

‘divide-and-rule’’ model to predict the lunge Nodule Malignancy with
oisy labels [44]. In [43], Xie et al. utilized both the labeled and
nlabeled data to learn a lung nodule classification model. In contrast,
his paper solely focuses on survival analysis on a fully supervised

setting, analyzing with imperfect labels is a study-worthy topic and we
will explore it in our future works.

In summary, traditional statistical methods tend to use textual data
with limited information. In recent years, with the development of
deep learning, more work has begun to explore methods that use
histopathology images. However, it is invasive to obtain the images.
There is a work that uses CT images but with hand-crafted features that
require instructions from medical experts. Moreover, all these methods
only use single modality and ignore the complementary information
that comes from multimodality. Therefore, to capture the underlying
complex relationships between multimodality medical testing results
and NSCLC survival time, we propose a non-invasive, fully automated
DNN method to improve the prediction accuracy of NSCLC prognosis.
 t

3 
3. Methodology

The proposed method is a two-tower architectural model. In this
section, we describe details within the model for NSCLC prognosis.

3.1. The architecture of Lite-ProSENet

Clinical parameters and visual CT images both contain rich infor-
mation but lie in different spaces, as a result, the information from
ifferent modalities cannot be integrated directly to give a compre-
ensive representation. To perform an effective feature fusion and
lignment, we devise our model as a two-tower architecture, whose
ffectiveness has been well validated in the cross-modality learning
ield [45–48] . Fig. 2 gives the overall illustration of our framework, the
roposed Lite-ProSENet contains two towers, i.e., Lite-Transformer and

ProSENet. Given a piece of data 𝑑, which is composed by the clinical
arameters 𝑐, the CT images 𝐼 and survival time 𝑡, i.e., 𝑑 = {(𝑐 , 𝐼), 𝑡}.
he clinical parameters 𝑐 is first fed into an embedding layer to obtain
he dense representation, and then pass through the light transformer
o get the effective features.

CT images 𝐼 are first fed into the ProSENet for the feature extrac-
tion. The following prediction module fuses the features from different
modalities and give the survival prediction 𝑡 based on the multi-
modality feature. Finally, the parameters of two towers are jointly
optimized by minimizing the distance between the survival time pre-
diction 𝑡 and annotated one 𝑡. In the following, we will illustrate the
etails of each component of our network.

3.2. Light transformer

Light transformer in our Lite-ProSENet is a simple ‘‘lightweight
transformer’’ comprising limited number of attention layers, aiming to
efficiently process the clinical parameters.2 As shown in Fig. 3, the raw
items in clinical parameters are first fed into an embedding layer to get
 dense representation, then, the dense representations are fed into the
ulti-head self-attention layers to get the clinical features.

Clinical Embedding. A piece of clinical parameters usually contains
several items, 𝑐𝑖(𝑖 = 1, 2,… , 𝑚.), where 𝑐𝑖 is a kind of clinical item. To
better represent the raw clinical embedding, we assign each clinical
item a dense feature using the popular embedding technique. We first
give the initial item representation by the one-hot encoding, and then
a matrix is introduced to project the initial representation to a dense
feature:

𝑐𝑖 = one_hot(𝑐𝑖) ×𝑊 (1)

where one_hot(⋅) is the function that project the item to a one hot vec-
tor, 𝑊 ∈ 𝑅𝑉 ×𝑑 is the learnable map weight, 𝑉 is the item vocabulary
size, and the 𝑑 is the dimension of dense representation. For the sake
of symbol simplicity, we still use 𝑐𝑖 to denote the dense vector of item
𝑐𝑖.
Multi-Head Self Attention. We adopt multi-head self attention in
our model, which allows the model to jointly attend to information
from different representation subspaces at different positions. Multi-
head attention is an extension of self-attention, but repeat the attention
mechanism several times.

Each time, the transformer uses three different representations: the
Queries, Keys and Values generate from the fully-connected layers.
Fig. 4 illustrates the whole process of self-attention mechanism. Let

∈ 𝑅𝑚×𝑑 be the matrix formed by the item embeddings of clinical
arameters 𝑐, mathematically, the outputs 𝑆 by the computation of
elf-attention can be expressed as: where 𝑊𝑞 , 𝑊𝑘, 𝑊𝑣 ∈ 𝑅𝑑×ℎ are the

2 Our light transformer is not a special efficient variants of transformer like
informer [49], Performer [50], and Reformer [51], developing an efficient
ransformer is not the focus of this paper.
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Fig. 2. A two-tower DNN model for learning similarity between textual clinical parameters and CT image representations.
learnable parameters, ℎ is the embedding dimension. Taking the self-
attention (SA) as the basic block, the multi-head self-attention (MSA)
is given by repeating the SA several times, and the outputs from
different heads are concatenated together. Finally, the architecture of
our lite-transformer is given as follows:

𝐴𝑘 = 𝑀 𝑆 𝐴(𝐿𝑁(𝐴𝑘−1)) + 𝐴𝑘−1, 𝑘 = 1, 2, ..𝐾 (2)

𝐴′
𝑘 = 𝑀 𝐿𝑃 (𝐿𝑁(𝐴𝑘)) + 𝐴𝑘, 𝑘 = 1, 2,… , 𝐾 (3)

𝑇 = 𝐿𝑁(𝐴′
𝐾 ) (4)

where 𝐴0 = 𝐶, 𝐿𝑁(⋅) is the layer normalization, 𝑇 indicates the final
clinical features, 𝐾 is the total MHA layers.

3.3. ProSE-Net

ProSE-Net is the model that learns unstructured data representation
through a 3DResnet based network with several repeatable 3DSE-
ResBlocks. 3DSE-ResBlocks composes a residual block, followed by a
Channel SE-block and a Temporal SE-block. Such a design can ef-
fectively improve the representational power of ProSENet. The key
contributions of our ProSENet lie in the 3D channel SE block and
temporal SE block, hereinafter, we will elaborate the details of these
two modules.
Channel SE-block. Channel SE-block targets to produce a compact
feature via a squeeze-and-excitation operation along the channel di-
mension. Let 𝐹 ∈ 𝑅𝑓×𝑐×ℎ×𝑤 be an arbitrary feature map, channel
SE-block first performs ‘‘Squeeze’’ operation:

𝑝 = 1
𝑓 ℎ𝑤

𝑓
∑

𝑖=1

ℎ
∑

𝑗=1

𝑤
∑

𝑘=1
𝐹𝑖,∶,𝑗 ,𝑘 (5)

where 𝑝 ∈ 𝑅𝑐 .
Excitation operation first introduces two full-connected layers to

perform a interaction between different channels, and a sigmoid is
introduced to produce a information filter:

𝑔 = sigmoid(𝑊1ReLU(𝑊2 × 𝑝)), (6)

where 𝑊1 ∈ R𝑐× 𝑐
𝑟 , 𝑊2 ∈ R

𝑐
𝑟 ×𝑐 . 𝑔 ∈ 𝑅𝑐 would serve as the gate to

perform information selection and the channel feature in 𝐹 would be
updated as follow:

𝐹 𝑐 = [𝐹∶,1,∶,∶ × 𝑔1,… , 𝐹∶,𝑐 ,∶,∶ × 𝑔𝑐 ] (7)
4 
Fig. 3. The Light Transformer - model architecture.

The common SE block only maintain the channel information and
squeeze other dimensions, consequently, the important temporal in-
formation of 3D slices is also missed. To address this weakness, we
augment the naïve SE block with a temporal excitation. First, the
temporal dimension is remained when pooling the feature:

𝑝𝑡 = 1
ℎ𝑤

ℎ
∑

𝑗=1

𝑤
∑

𝑘=1
𝐹𝑗 ,𝑘, (8)

𝑝𝑡 ∈ 𝑅𝑓×𝑐 , we next produce a channel gate for each frame 𝑔𝑡 ∈ 𝑅𝑓×𝑐 ,
where the channel gate for 𝑖th frame is computed by Eq. (6):

𝑔𝑡𝑖,∶ = sigmoid(𝑊1ReLU(𝑊2𝑝
𝑡
𝑖,∶)). (9)

we share the weights 𝑊1 and 𝑊2 when producing gates in each channel
SE block. The goals for the weight sharing stems from two aspects, the
first is to propagate the information inside different views, building
a lighter network with fewer paramters is the second reason. In our
practice, sharing parameters can also promote the performance.

Finally, we fuse two types of gates and develop our full channel SE
block as follows:

𝐹 𝑐 = [𝐹1,1,∶,∶ × 𝐺11, 𝐹1,2,∶,∶ × 𝐺12,… , 𝐹𝑓 ,𝑐 ,∶,∶ × 𝐺𝑓 𝑐 ] (10)

𝐺𝑖𝑗 = 𝑔𝑡𝑖𝑗 × 𝑔𝑗 (11)

where 𝐺 is the final gate filter, which is a combination of local view 𝑔𝑡

and global 𝑔 to perform a more reliable information filtering.
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Fig. 4. The process of applying self-attention layer to the Query, Value and Key
matrices.

Fig. 5. Two types of Squeeze-and-Excitation blocks in our ProSENet.

𝑞 = 𝐶 𝑊𝑞 , 𝑘 = 𝐶 𝑊𝑘, 𝑣 = 𝐶 𝑊𝑣,

𝑆 = softmax( 𝑞 𝑘
𝑇

√

ℎ
), 𝐴 = 𝑆 𝑣. (12)

Temporal SE-block Similar with Channel SE-block, temporal SE-block
also targets to filter out the redundant information but focuses on the
temporal dimension. As shown in Fig. 5(b), the computation procedure
is analogous with the channel SE-block. The pooling is down along
the channel-spatial dimension and spatial dimension, which provide
the global and local frame information, respectively. Then, two types
of gates are similarly produced following Eqs. (6) and (9), which are
then fused via Eq. (11) and give the joint gate 𝐺′. Finally, the temporal
SE-block is formulated as:

𝐹 𝑡 = [𝐹 𝑐
1,1,∶,∶ × 𝐺′

11, 𝐹 𝑐
1,2,∶,∶ × 𝐺′

12,… , 𝐹 𝑡
𝑓 ,𝑐 ,∶,∶ × 𝐺′

𝑓 𝑐 ]. (13)

In our 3D SE block, the channel SE and temporal SE are stacked
to achieve the information filtering along the channel and temporal
dimensions, which forms our entire 3D SE-Resblock with the well-
known 3D Resblock. The CT slices are first fed into the ProSENet to
extract multi-dimension features and then pass through a 3D global
average pooling to get the final feature 𝐹𝐼 .

3.4. Multimodal feature fusion and prediction

Given the clinical features 𝑇 from lite transformer and CT image
feature 𝐹𝐼 from ProSENet, the next task is to fuse the multi-modality
features and give the prediction of survival time 𝑡. Thanks to the
powerful features from our Lite transformer and ProSENet, we can
simply concatenate the cross-modal features and predict the survival
time using a MLP, and a encouraging performance can be harvested in
our practice:
𝑡 = 𝑀 𝐿𝑃 (𝑐 𝑜𝑛𝑐 𝑎𝑡([𝑇 , 𝐹𝐼 ])), (14)

5 
where the 𝑀 𝐿𝑃 (⋅) is a two-layer full-connected layers, 𝑐 𝑜𝑛𝑐 𝑎𝑡𝑒(⋅, ⋅)
performs concatenation for the input two vectors.
Enhance Prediction via Frame Difference. We observe that although
the CT images contain rich information, there are so many duplicated
pixels between the CT slices, hindering the ProSENet to perceive the
key information among the CT slices. To remedy this issue, we propose
a simple yet effective mechanism, i.e., frame difference. The proposed
frame difference performs a subtraction between two consecutive slices,
such that the duplicated pixel could be ignored in the resulted slice.
Following this idea, we perform the frame difference along two direc-
tions: forward and backward, the produced CT images are marked as
𝐼𝑓 , 𝐼𝑏, respectively. Given this, our visual information are contain three
types, i.e., the raw data 𝐼 , frame difference along forward and backward
direction 𝐼𝑓 and 𝐼𝑏. We then feed each of the visual information and
the clinical parameters into our Lite-ProSENet, consequently, three time
prediction could be given. Finally, we integrate the three predictions to
produce the final result:

𝑡 = 𝜔𝑡 + (1 − 𝜔)
𝑡𝑓 + 𝑡𝑏

2
(15)

where 𝑡𝑓 and 𝑡𝑏 are the survival prediction from the (𝐼𝑓 , 𝑐) and (𝐼𝑏, 𝑐),
respectively, 𝜔 is the trade-off weight, and 𝑡 is the final prediction of
survival time.

3.5. Network optimization

With the final prediction 𝑡 and the annotated survival time 𝑡, the
network parameters are learned by minimizing the distance between
the prediction and the annotation:

 = 1
𝑏

𝑏
∑

𝑖=1
(𝑡 − 𝑡)2 + 𝜆‖‖2, (16)

where 𝑏 is the batch size during training, ‖ ⋅ ‖2 is the 𝑙2 normalization,
the second penalty is the parameter normalization, which is introduced
to avoid overfitting, 𝑊 is all of the network parameters, and 𝜆 is the
trade-off hyper-parameter.

4. Experiments

We conduct extensive experiments based on NSCLC patients from
TCIA to validate the performance of our proposed method with several
state-of-the-art methods in terms of the prediction accuracy for the
survival time for each patient. Besides, we also evaluate the prediction
result by concordance. Afterward, we perform several ablation exper-
iments regarding different network structures to determine the best
structure.

4.1. Dataset

In this work, we considered 422 NSCLC patients from TCIA to assess
the proposed framework. For these patients pretreatment CT scans,
manual delineation by a radiation oncologist of the 3D volume of
the gross tumor volume and clinical outcome data are available [52].
The corresponding clinical parameters are also available in the same
collection. The patients who had neither survival time nor event status
were excluded from this work.

4.2. Data preprocessing

For CT images, we resize the raw data which is the 3D volume of the
primary gross tumor volume into 96 × 96 × 8. After that, we transform
the range linearity into [0,1]. Then, to prevent overfitting, we perform
data argumentation which includes three methods: rotate, swap, and
flip. Then we get 422 × 8 = 3376 samples, among which there are
373 × 8 = 2984 uncensored samples and 49 × 8 = 392 censored samples.

Clinical parameters contain categorical data and non-categorical
data. The detailed distribution and description of the data used is
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Table 1
Clinical parameters description.

Histology TNM stage grouping Clinical T stage Clinical M stage Clinical N stage

Categories Squamous cell
carcinoma
Large cell
Not otherwise
specified(Nos)
Adenocarcinoma

Stage I
Stage II
Stage IIIa
Stage IIIb

T1
T2
T3
T4
T5

M0
M1
M3

N0
N1
N2
N3
N4

Details Including the major
histological subtypes
of NSCLC.
Histology in the
context of NSCLC
refers to the
microscopic
examination of
tissue to determine
the specific subtype
of the cancer. This
information is
crucial for guiding
treatment decisions
and prognosis.

The TNM staging
system is a method
used to classify the
extent of cancer
spread in an
individual’s body,
based on three key
components

T(Tumor): Refers to
the size and extent
of the primary
tumor.
For example: T0
means no evidence
of primary tumor,
while T4 indicates a
very large tumor or
one that has
invaded certain
critical structures.

M(Metastasis):
Specifies whether
the cancer has
metastasized to
distant sites in the
body.
For example: N0
means no regional
lymph node
involvement,
whereas N3
indicates extensive
lymph node
involvement.

N(Node): Indicates
whether the cancer
has spread to
nearby lymph
nodes.
For example: M0
means no distant
metastases, and M1
indicates distant
metastasis.
Fig. 6. The clinical parameters distribution.

shown in Fig. 6 and Table 1. Firstly, missing value is a common
problem in medical data and may pose difficulties for data analyzing
and modeling. Specifically, in our dataset, the ‘age’ category contains
a few missing values. After observing the data, we find that the age
of patients in the dataset is close to each other. Thus, we impute the
mean value and fill it into the missing value. Afterward, in order to fit
into our model, we use the one-hot encoder to encode categorical data
into numbers, which allows the representation of categorical data to be
more expressive.

Then, we use the min–max feature scaling method and standard
score method to perform data normalization, such as age and survival
time. For input 𝑥, the min–max feature scaling method’s output is:
𝑥′ =

𝑥 − 𝑥𝑚𝑖𝑛
𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

(17)

and the standard score method’s output is:
𝑥′ =

𝑥 − 𝑚𝑒𝑎𝑛(𝑥)
𝑠𝑡𝑑(𝑥)

(18)

where 𝑠𝑡𝑑 is the standard deviation.
For a single patient with multiple tumors, we select the primary

gross tumor volume (‘GTV-1’) to be processed in our work, while other
tumors such as secondary tumor volumes denoted as ‘GTV2’, ‘GTV3’ to
name just a few, which were occasionally present, were not considered
in our work.
6 
4.3. Experiment setup

We train and evaluate the framework on the NSCLC-Radiomic
dataset following 5-fold cross-validation with the patient-level split. We
divide the dataset into training, validation, and testing data into 6:2:2
respectively. Specifically, the overall dataset was split into five parts,
each part contains 20% of the dataset, and 3 of 5 splits are for training,
validation and test both use 1 split.

In Lite-transformer, the number of head in MHA is set as 3, and the
total layers 𝐾 is configured as 5, more layers and heads bring limited
performance gain but large parameters in our practice. In ProSENet,
the ratio of channel and temporal SE are both set as 2, i.e., 𝑟 = 2.
For hyperparameters tuning such as the penalty coefficient, we use the
validation dataset to fine-tune and get the optimized hyperparameters.
The configuration of 𝜔 in Eq. (15) and the 𝜆 in Eq. (16) is set to 0.4
and 0.001 respectively, to balance the contributions of different terms.
In the training process, we use 800 epochs in total with Adam as the
optimizer. The batch size parameter is set as 64. The initial learning
rate is set as 0.001, then the learning rate is decayed by 0.5 in every
40 epochs.

Since we use survival time as the label, not cumulative hazard.
In the training and validation process, we only use the uncensored
data for precise survival time and objective function calculation, and
in the testing process, we use all data for concordance evaluation and
uncensored data for MAE evaluation.

We include several SOTA survival analysis methods as baselines
to compare with our work, including Cox-time [53], DeepHit [54],
CoxCC [53], PC-Hazard [19] and the regular cox regression.

4.4. Quantitative results

In this subsection, we make a thorough comparison with both
traditional and recent deep learning-based methods. The quantitative
results of C-index and MAE are compared in Table 2. Noted the results
reported here are directly derived from the original paper respectively.

As shown in Table 2, all the comparison methods except our pre-
vious work DeepMMSA only use the clinical parameters or the CT
slices for prediction. For example, by building a survival function, Cox-
regression can provide the probability that a certain event (e.g. death)
occurs at a certain time 𝑡, the C-index of Cox- regression is only 0.601.
In contrast, many experiments based on Deep Learning only use the
visual information from CT scans. Although deep convolutional neural
networks (DCNNs) are very powerful in feature extraction, the visual
information alone is not reliable enough to accurately predict survival
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Table 2
C-index and MAE comparison between Lite-ProSENet and comparison methods.
Methods Invasive DNN-based Modality Performance

Textual Visual C-index↑ MAE↓

Cox-time [53] – – ✓ – 0.6152 0.183
Cox-regression [27] – – ✓ – 0.6009 0.204
CoxCC [53] – – ✓ – 0.6120 0.183
PC-Hazard [19] – – ✓ – 0.191 0.6094
DeepHit [54] – – ✓ – 0.6133 0.183
DeepMMSA [25] – ✓ ✓ ✓ 0.6580 0.162
LASSO-Cox [55] – – ✓ – 0.6698 NA
Cox + SuperPC [56] ✓ – – ✓ 0.556 NA
Log–logistic [57] – – ✓ – 0.5924 NA
BJ-EN [58] – – ✓ – 0.6646 NA
RSF [59] – – ✓ – 0.595 NA
MTLSA.V2 [60] – – ✓ – 0.680 NA
BoostCI [61] – – ✓ – 0.6497 NA
WSISA [42] ✓ ✓ – ✓ 0.703 NA
DeepSurv [62] – – ✓ – 0.602 NA
DeepConvSurv [63] ✓ ✓ – ✓ 0.629 NA
DFS [64] – ✓ – ✓ 0.673 0.166
FMCIB [65] – ✓ – ✓ 0.673 0.166

Lite-ProSENet ✓ ✓ ✓ 0.893 0.043
m

m
a

e

n

b

time. For example, the best C-index of deep learning-based methods
nly use visual CT is 0.703 [42]. Our previous work, DeepMMSA [25]
akes the first attempts to fuse the multimodal data using a two-tower

ramework. Although we found that multimodal inputs could boost the
erformance, the final results do not surpass the deep learning based
ethods using only visual information such as WSISA [42]. This ob-

servation indicates that the straightforward network cannot work well
or multimodal fusion. Consequently, we developed our Lite-ProSENet
o build an effective multimodal network for survival analysis. Our
ite-ProSENet was able to achieve a C-index of 0.893, outperforming
ll comparative methods, which well validate the superiority of our
ethod.

4.5. Ablation study

To build an effective cross-modal survival model, we design our Lite
ransformer for clinical parameters and propose the 3D- SE Resblock to
ffectively model the visual CT slices. Furthermore, we propose a frame
ifference mechanism to promote our performance to the new state-of-
he-art. In this subsection, we will verify the effectiveness of the above
odules to support our claims through extensive experiments.

The results are reported in Table 3, where we systematically exam-
ne the contribution of each component, including the Lite-Transformer,
he 3D- SE Resblock in ProSENet, and the mechanism of frame dif-
erence. In the baseline method (no modules are equipped), the Lite-
ransformer is replaced by several MLP layers to form a similar
arameters. As is shown in Table 3, the C-index of the baseline method

is only 0.796, and the C-index improves when each module is equipped.
For example, the baseline with Lite-Transformer could achieve a C-
index of 0.824, and the 3D-SE Resblock helps the baseline to improve
the C-index from 0.796 to 0.841. Applying any two modules simul-
taneously could improve the performance even further. If we apply
D-SE Resblock and frame difference, we could attain the C-index of
.873, which is a significant improvement. When all of three modules

are configured, we harvest the best performance, whose C-index could
reach the new state-of-the-art 0.893. The observation on MAE shows a
consistent tendency.

As one of our main motivations for the Lite-ProSENet design, verify-
ing the effectiveness of multi-modality modeling is also a critical aspect.
We also investigate the benefits of multi-modality learning from this
aspect. The results are also reported in Table 3, where Lite-ProSENet𝑉
nd Lite-ProSENet𝑇 refer to the Lite-ProSENet with visual tower and
extural tower, respectively. We can observe that the network with
ny tower alone could not achieve satisfactory performance, the vi-
ual tower only achieves a C-index of 0.712. Although the 3D- SE
 S

7 
block boosts the performance to 0.739, it is still not satisfactory. The
observations of Lite-ProSENet𝑇 are also conclusive. The model with

ulti-modality learning could achieve a C-index of 0.796, which well
demonstrates the importance of fusing the clinical parameters and the
visual CT images for the survival time analysis.

5. Discussion

In this section, we will give several discussions about the many
choices when building our network, including the effect of the joint
gate in our 3D SEResblock, the order of two SE blocks, the impact
of the bi-directional frame difference. Besides the choices of several

echanisms, the hyper-parameters, 𝜔 in Eq. (15) and 𝜆 in Eq. (16),
re also presented in this section.

5.1. Validate the joint gate in 3D SEResblock.

In the 3D SEReslock, we augment the channel SE and the temporal
SE with the joint gate to perform the information filtering, more details
can be found in Section 3.3. In this subsection, we would validate the
ffectiveness of our proposed joint gate.

The results are reported in Table 4, we set the baseline as the
etwork where visual tower is the naïve 3D Resnet, ‘global SE‘ refers to

the gate is only built by the naïve SE block. For channel SE, the output
of global SE is produced by the Eq. (7).3 ‘local SE’ indicates the gate is
only build by the channel-wise or frame-wise information, for channel
SE, the output of global SE is produced by replacing the 𝑔 in Eq. (7)
with 𝑔𝑡 defined in Eq. (9). Joint gate uses both the global and local SE
lock, i.e., our 3D SEResblock. As we can observed from Table 4, SE

block is an effective module, the system benefits from both types of SE
block. For channel SE block, when equipping the global SE block, the
C-index is improved from 0.826 to 0.842, and the local SE block also
boosts the perform from 0.826 to 0.867. When the joint gate is applied,
the performance gets a significantly improvement, from 0.826 to 0.893.
The observation of temporal SE block is also conclusive, which well
validates the effectiveness of 3D-SE Resblock.

3 When studying the channel SE (temporal SE), we equip the full temporal
E block (channel SE).
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Table 3
Discuss the effectiveness of slices from frame difference, ‘✓’ and ‘–’ means applying and not applying the corresponding modules.

Lite-transformer 3D-SE resblock Frame difference C-index↑ MAE↓

Lite-ProSENet

– – – 0.796 0.121
✓ – – 0.824 0.108
– ✓ – 0.841 0.092
– – ✓ 0.837 0.103

✓ ✓ – 0.859 0.086
– ✓ ✓ 0.873 0.063
✓ – ✓ 0.862 0.071

✓ ✓ ✓ 0.893 0.043

Lite-ProSENet𝑉
– – – 0.712 0.223
– ✓ – 0.743 0.187

Lite-ProSENet𝑇
– – – 0.739 0.181
✓ – – 0.761 0.149
f
s
f
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Table 4
Discuss the importance of the global and local SE module in our ProSENet, ‘✓’ and ‘–’

eans applying and not applying the corresponding modules.
SE blocks Global SE Local SE C-index↑ MAE↓

baseline

Channel SE

– – 0.826 0.058
✓ – 0.842 0.051
– ✓ 0.867 0.047
✓ ✓ 0.893 0.043

Temporal SE

– – 0.819 0.061
✓ – 0.839 0.053
– ✓ 0.862 0.049
✓ ✓ 0.893 0.043

Table 5
The performance comparison of different stacking orders of channel SE and temporal SE
s presented, where I and II indicate ranking in the first and second places, respectively.
he symbols ‘✓’ and ‘–’ carry the same meanings as in Table 4.

Channel SE Temporal SE C-index↑ MAE↓

Lite-ProSENet

✓ – 0.871 0.058
– ✓ 0.879 0.055
II I 0.881 0.049
I II 0.893 0.043

Table 6
Discuss the effectiveness of slices from frame difference, ‘✓’ and ‘–’ means applying
nd not applying the corresponding modules.

Forward Backward C-index↑ MAE↓

Lite-ProSENet

– – 0.854 0.058
✓ – 0.881 0.046
– ✓ 0.879 0.045
✓ ✓ 0.893 0.043

5.2. Study the stacking order of two SE blocks.

In our 3D-SE Resblock, the channel SE is applied first, and the
temporal acts on the output of the channel SE block, as shown in
Eqs. (11) and (13). In this subsection, we study the difference in
performance between two SE blocks in different stacking order.

The performance comparison is given in Table 5, we study two types
f stacking order, i.e., channel SE first and then temporal SE second, and
emporal SE first and then channel SE second. As shown in Table 5, the

strategy of the channel SE first and the temporal SE second performs
better. The C-index of channel SE first could reach 0.893, while the
temporal SE first is worse, whose c-index is 0.881. Consequently, we
first apply the channel SE in our network to achieve a better C-index.
In addition to stacking order, in this subsection, we also investigate the
importance of two SE blocks. As shown in Table 5, using the channel SE
or the temporal SE performs alone performs worse than using two SE
blocks simultaneously with arbitrary stacking order, which validating
the effectiveness of our channel and the temporal SE blocks.
 t

8 
5.3. The effectiveness of the bi-directional frame difference.

When predicting the final survival time, we introduce frame dif-
erence to filter out the redundant information between different CT
lices. To further boost the performance, we perform bidirectional
rame difference among CT images. In this subsection, we discuss the
ffectiveness of our bidirectional frame difference.

To thoroughly validate the effectiveness of the proposed frame
difference, we study three cases, i.e., only the frame difference along
forward direction and backward direction, and the bi-directional frame
difference. The results can be found in Table 6, where the ‘forward’
and ‘backward’ mean the normal direction and the reverse direction,
respectively. From Table 6, we can observe that both the ‘forward’
and ‘backward’ frame difference can promote the performance. When
introducing the forward frame difference, the C-index gets improved
from 0.854 to 0.881, and the backward frame difference can boost the

-index from 0.854 to 0.879. When we integrate the frame difference
simultaneously in the forward and backward directions, we get the best
C-index of 0.893. These observations reveal that our proposed frame
difference is an effective mechanism.

5.4. Discussion about hyper-parameter 𝜔

We introduce a trade-off parameter when integrating the prediction
of normal CT slices and the bi-directional frame difference, as shown
in Eq. (15). The 𝜔 is set as 0.4 by default. In this subsection, we would
study the performance change when the hyper-parameter 𝜔 varied.

Fig. 7(a) shows the performance of our network when 𝜔 varied from
 to 1 with step 0.2. We can observe from Fig. 7(a) that the c-index
nd MSE loss show consistent trendency. When 𝜔 = 0, this means we
nly predict by the slices of frame difference and ignore the normal
T slice, this case does not achieve a satisfactory performance whose
-index is only 0.841, the reason for this observation may stem from
oo much information missed when completely abandoning the original
T slice. This guess is validated by the cases of 𝜔 ≠ 0. The case of
= 1 means we does not apply the frame difference, this case also

ails to achieve the best performance, revealing that the slices of frame
ifference are necessary for our network. The case of 𝜔 = 0.4 achieves
he best performance, this means that slices from frame difference play
n important role in the survival time prediction. Further enlarging
he weight of frame difference does not promote the performance.
herefore, we fix 𝜔 as 0.4 in our network.

5.5. Discussion about hyper-parameter 𝜆.

When training the network, we employ the popular parameter
normalization strategy to avoid overfitting, i.e., the second term in
Eq. (16), and introduce a hyperparameter 𝜆 to balance the main loss
nd the parameter normalization. By default, we set 𝜆 to 0.001. In
his section, we will study the impact of the hyper-parameter 𝜆 on the
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Fig. 7. Discussion about the hyper-parameters 𝜔 in Eq. (15) and 𝜆 in Eq. (16).

performance.
The changes of c-index and MSE loss are shown in Fig. 7(b), where

he 𝑦-axis represents performance and the 𝑥-axis represents 𝜆. We study
the performance under 𝜆 = {0, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05,
0.1}. From Fig. 7(b), we can observe a clear trend. When 𝜆 = 0, which
means that we dispense with parameter normalization, the network
oes not achieve good performance. Then, when we increase 𝜆, the

performance starts to increase. When 𝜆 = 0.001, we were able to achieve
he best c-index 0.893. If we increase 𝜆 further, we cannot obtain more
erformance gains. In the case of 𝜆 = 0.4, a good trade-off between the
ain loss and the parameter normalization is achieved.

6. Conclusion and future work

This work contributes a powerful multimodal network for more
accurate prediction of NSCLC survival, aimed at assisting clinicians in
developing timely treatment plans and improving patients’ quality of
ife. Our method achieves a new state-of-the-art result with an 89.3%
n the C-index. To effectively model cross-modal data, we develop a
wo-tower network: the textual tower processes clinical parameters,

and the visual tower handles CT slices. Inspired by the success of
he transformer in the NLP field, we propose a lightweight trans-
ormer leveraging the core of self-attention mechanisms. For the visual
ower, we design a ProSENet based on the 3D-SE Resblock, where

channel Squeeze-and-excitation and temporal Squeeze-and-excitation
are proposed to suppress the redundant information among the CT
slices. Besides, we further introduce a frame difference mechanism to
help promote our network up to the new state-of-the-art in terms of
both C-index and MAE. In experiments, we conduct comprehensive
comparisons, ablation studies, and discussions, all of which verify the
9 
superiority of our Lite-ProSENet. The practice of this work bolster our
confidence in deep learning-based survival analysis. We believe that
he deep learning-based method holds significant potential for survival
ime analysis. In the future, we will further investigate this problem
rom the following two aspects:

• Effective fusion of cross-modal features. In this work, the
fusion of multimodal features is straightforward; we simply con-
catenate the features from Lite-transformer and ProSENet. In the
future, we aim to explore more advanced and effective fusion
strategies.

• Leveraging information from large-scale pretrained models.
Large-scale pretrained cross-modal models have shown great po-
tential in various tasks, such as Visual question answering, images
captioning, and cross-media retrieval, et al. After training with
millions of data, the large-scale models contain powerful knowl-
edge, how to adapt these knowledge to survival time analysis is
a promising direction. We plan to explore this direction in the
future.

• Survival analysis with noisy labels. In the future, we also plan
to explore survival analysis with noisy labels [43,44]. This direc-
tion is motivated by the challenge of acquiring accurate labels,
which are often difficult and costly to obtain. Developing robust
methods that can effectively handle label noise will enhance
the applicability and efficiency of survival analysis in real-world
scenarios where label acquisition is limited.
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