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A B S T R A C T

To enhance the safety and comfort of vehicle travel, detecting pavement cracks is a critical task in road man
agement. This article introduces an advanced single-stage target detection method utilizing the YOLOv5s algo
rithm to enhance real-time performance and accuracy. Initially, Squeeze-and-Excitation Networks are integrated 
into the model to facilitate self-learning for improved crack characterization. Subsequently, anchors computed 
through the K-means clustering algorithm are closely aligned with the fracture dataset, achieving an adaptation 
rate of 99.9 % and enhancing the recall rate of the model. Furthermore, the inclusion of the SimSPPF module 
from YOLOv6 diminishes memory usage and expedites detection speed. By replacing the original nearest up- 
sampling method with transposed convolution, optimization of up-sampling for crack datasets is achieved. 
Performance assessments reveal that the refined YOLOv5s algorithm attains an F1 score of 91 %, a mean Average 
Precision (mAP) of 93.6 %, and a 1.54 % increase in frames per second (fps) for pavement crack detection. This 
enhancement in detection technology signifies a substantial advancement in the maintenance and longevity of 
road infrastructure.

1. Introduction

Highway infrastructure is continually advancing; however, 
numerous roads still exhibit significant cracking due to inadequate load- 
bearing capacities [1,2]. Minor fissures compromise vehicular stability 
and diminish aesthetic appeal, while larger breaches present substantial 
safety risks. Consequently, the meticulous detection and subsequent 
repair of pavement cracks are of paramount importance.

Conventional detection methods, such as manual visual inspections, 
are not only laborious and time-intensive but also incur substantial costs 
[3–8]. The integration of automated pavement crack detection tech
niques, underpinned by advanced deep learning algorithms, not only 
mitigates these expenses but also markedly augments operational effi
ciency [9–14]. Utilizing sophisticated object detection methodologies 
such as deep learning target detection, instance segmentation, and se
mantic segmentation (which have been successfully applied in diverse 
sectors including agriculture, transportation, and healthcare), deep 

learning facilitates a more effective and precise identification of pave
ment anomalies. These techniques are categorized into two primary 
types: (a) two-stage target detection, which initially isolates the object 
region candidate frame employing a Convolutional Neural Network 
(CNN), subsequently undertaking CNN-based classification and recog
nition as exemplified by the Region-based Convolutional Neural 
Network (RCNN) series and Spatial Pyramid Pooling Network (SPPNet) 
[15,16]; and (b) single-stage target detection, which seamlessly extracts 
both the category and location of the target object using robust back
bone extraction networks like the YOLO series and Single Shot MultiBox 
Detector (SSD) without the necessity for region candidate frames 
[17–19]. Embracing deep learning methodologies for pavement crack 
detection not only elevates the precision and speed of the detection 
processes, but also underscores the transformative potential of inte
grating these advanced technologies into traditional road maintenance 
regimes.

In the domain of two-stage target detection, Faster-RCNN has been 
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widely adopted for pavement crack detection [20,21]. For instance, 
Sekar and Perumal [22] proposed replacing the backbone feature 
extraction networks in Faster-RCNN with VGG16, MobileNet-V2, and 
ResNet50 to better address the challenges of distinguishing cracks on 
complex asphalt backgrounds. An attention mechanism was also inte
grated into the ResNet50 network, enhancing detection accuracy to 
85.64 % and effectively highlighting subtle discrepancies in asphalt 
surfaces. Similarly, Hao et al. [23] focused on runway cracks, employing 
MobileNet-V2 as the backbone in a modified Faster-RCNN, which yiel
ded a 6.4 % increase in precision.

Conversely, the SSD has proven effective in a one-stage detection 
framework. Yan et al. [24] utilized SSD enhanced with variational 
convolution on the VGG16 backbone to detect highway pavement 
cracks, achieving a 3.1 % improvement in average precision mean on the 
Pascal VOC2007 dataset. Furthermore, Feng et al. [25] developed a 
fusion model combining SSD with U-Net for more efficient crack 
detection, exceeding an 85 % precision rate. Moreover, Han et al. [26]
and Ha et al. [27] integrated MobileNet into SSD, enhancing detection 
capabilities and showing increases in precision rates and average mean 
precision, respectively.

Despite these advancements, both one-stage and two-stage detection 
methods mentioned above exhibit limitations when applied to pavement 
crack detection, necessitating further research to optimize accuracy and 
efficiency in diverse environments. This continued innovation is critical 
for improving the maintenance and longevity of transportation infra
structure globally.

Nevertheless, the YOLOv3 and YOLOv5 series have garnered signif
icant interest within the transportation sector for their robust perfor
mance in detecting pavement and infrastructure defects [28–34]. Wang 
et al. [35] advanced YOLOv3 by integrating data augmentation and 
altering the network structure to accurately assess pavement cracks. 
This adaptation included replacing the original DarkNet-53 backbone 
with ResNet101 and shifting from Distance Intersection over Union 
(DIoU) to Complete Intersection over Union (CIoU), achieving an 
average precision of 89.3 % and an F1 score of 86.5 % in crack detection. 
Similarly, Zhang et al. [36] utilized YOLOv3 to detect surface defects on 
concrete bridges, enhancing detection by incorporating SENet and SPP 
modules, which improved the average precision by 5.5 %. Further ex
plorations into YOLOv5 variants - YOLOv5s, YOLOv5m, YOLOv5l, and 
YOLOv5x - revealed that while YOLOv5s offered the fastest detection 
speeds, YOLOv5l provided the highest precision at 88.1 %, indicating 
nuanced performance differences within the series. Subsequent en
hancements, as developed by Hu et al. [37] and Yu et al. [38], which 
included integrating transformer technologies and optimizing module 
configurations, further demonstrated the adaptability and effectiveness 
of the YOLOv5 models in crack detection. Notably, Guo et al. [39] and 
Roy et al. [40] achieved substantial gains in precision and efficiency by 
tweaking YOLOv5s’s backbone and integrating advanced algorithms 
like DenseNet and Swin Transformer, underscoring the potential of these 
modifications in real-world applications. The utilization of the YOLOv5s 
algorithm, particularly its adaptations and enhancements, underscores 
the necessity for high precision and rapid processing in the challenging 
domain of pavement crack detection [41–44]. As demonstrated, the 
continual evolution and refinement of the YOLO series, especially 
YOLOv5s, cater effectively to the diverse and demanding requirements 
of modern road maintenance.

Renowned as the fastest training algorithm in the YOLO series, the 
YOLOv5s algorithm has garnered attention from several researchers 
[45–48] for its efficiency. This article explores the automation of 
pavement crack identification using an enhanced version of the 
YOLOv5s algorithm, emphasizing practical applications and techno
logical advancements. The article is structured as follows: first, the 
technological foundations relevant to this study, such as the YOLOv5s 
algorithm, attention mechanisms, K-means clustering, SimSPPF, and 
transposed convolution are discussed. Subsequently, the preparatory 
steps of the experiments are outlined, followed by the presentation of 

evaluation metrics, and discussion on the experimental outcomes. 
Finally, the concluding section synthesizes the findings, underscoring 
the contributions of this research. According to the structure of the 
above article, it can be seen that the improved YOLOv5 model has added 
an attention mechanism to the feature extraction part, improved the 
sampling method in the feature enhancement structure, enhanced the 
feature extraction ability, and adopted SimSPPF, which not only im
proves the accuracy of crack feature extraction but also reduces the 
training accuracy of the model. Indeed, the innovation of this study lies 
in its methodological enhancements and the integration of advanced 
processing techniques, which significantly improve the detection accu
racy and operational efficiency of pavement crack identification sys
tems. By refining the YOLOv5s framework and incorporating novel 
computational methods, this paper not only advances the technological 
landscape but also has the potential to influence future developments in 
infrastructure maintenance.

2. Principle of experimental method

2.1. YOLOv5 networks

The YOLOv5 series, including YOLOv5m, YOLOv5l, and YOLOv5x, 
comprises three structural components: Backbone, Neck, and YOLO
Head. The distinctions between these models are primarily defined by 
two parameters in the yolov5.yaml file: depth_multiple and width_
multiple, which control the number of submodules and convolutional 
kernels, respectively. In the YOLOv5 version 6.0, a 6 × 6 convolutional 
layer replaces the Focus network in the main structure, offering equiv
alent functionality but with enhanced efficiency on current GPU devices. 
Among these variants, YOLOv5x demonstrates the highest mean average 
precision (mAP) when trained on public datasets, whereas YOLOv5s is 
noted for its rapid training capability. To balance accuracy with training 
efficiency, we have opted for the YOLOv5s-v6.0 network.

2.1.1. Skeleton feature extraction structure CSPDarknet53
The backbone network of YOLOv5s-v6.0 consists of five Con

v_BN_SiLU layers, four CSPLayer modules, and one SPPF. Each Con
v_BN_SiLU layer incorporates three key processes: convolution, batch 
normalization, and activation function processing. The activation 
function used, SiLU (Sigmoid Linear Unit), represents an enhancement 
over traditional Sigmoid and ReLU functions. It operates by constraining 
the scale of the predicted offset between − 0.5 and 1.5, which ensures 
more accurate confinement of these values within the 0 to 1 range.

Fig. 1 illustrates the CSPLayer (C3) structure, which splits the orig
inal residual block into left and right segments. One segment allows the 
continuation of stacking original residual blocks, while the other con
nects directly to the end with minimal processing. This configuration 
enhances the layering of image features. SPPF, an acronym for Spatial 
Pyramid Pooling-Fast, accelerates the traditional Spatial Pyramid 
Pooling (SPP) method. SPP simultaneously applies three differently 
sized max-pooling layers to the input and merges the outcomes. This 
technique mitigates issues associated with multi-scale targets to some 
degree. Conversely, SPPF sequentially applies three 5 × 5 max-pooling 
layers and integrates the results successively. This procedure is depic
ted in Fig. 2.

2.1.2. Neck structure
In the YOLOv5s network, the Neck structure incorporates a Feature 

Pyramid Network (FPN) to augment feature extraction capabilities [49]. 
This system processes images of pavement cracks through the backbone 
feature extraction network, known as CSPDarknet53. After initial 
feature extraction, three distinct feature layers are derived from specific 
levels within the network: the middle, middle-lower, and final layers. 
For an image with dimensions 640 × 640 × 3, the corresponding shapes 
of these feature layers are designated as feat1= (80,80,256), feat2=
(40,40,512), and feat3=(20,20,1024).
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According to the Feature Pyramid Network design, the output from 
the last layer is refined through a 1 × 1 convolution for channel 
adjustment, producing P5. This layer, P5, is then upsampled and merged 
with the feat2 layer (40,40,512) for further processing. The combined 
features undergo feature extraction in the CSPLayer network, yielding 
P5_Upsampling=(40,40,512). This upsampled layer, P5_Upsampling, is 
subjected to another convolution for channel adjustment, resulting in 
P4. Subsequently, P4 is upsampled and integrated with the middle layer, 
feat1=(80,80,256). After additional processing through the CSPLayer 
network, the final output, P3_out=(80,80,256), is produced.

The feature layer P3_out is processed with a 3 × 3 convolution and 
then downsampled. Following this, it is combined with P4, and the 
merged layers undergo feature extraction in the CSPLayer network, 
resulting in P4_out=(40,40,512). Similarly, the feature layer P4_out is 

treated with a 3 × 3 convolution, downsampled, and then merged with 
P5. This combination is further processed through the CSPLayer 
network, producing P5_out=(20,20,1024). The layers P3_out, P4_out, 
and P5_out, derived from the Neck structure, represent feature layers 
that are fused across multiple iterations, enhancing the detection ca
pabilities for a wider array of pavement crack features.

2.1.3. The YOLOHead structure
The YOLOHead structure functions by processing three feature layers 

- namely P3_out, P4_out, and P5_out - that are outputted from the Neck 
structure. This structure primarily consists of a 3 × 3 convolution fol
lowed by a 1 × 1 convolution. The 3 × 3 convolution serves to integrate 
features from the output feature layers of the Neck structure, whereas 
the 1 × 1 convolution is utilized to refine the channel count of the input 
feature layers. After being processed through the YOLOHead structure, 
these feature layers collectively exhibit a channel count of 27. 

27 = (4+4+4) × 3 (1) 

The value 27 results from a configuration where each grid cell con
tains three anchor boxes for identification purposes. Each anchor box 
comprises four adjustment parameters, and one of these adjustments is 
specifically dedicated to identifying pavement cracks, covering four 
distinct types as outlined in the RDD2022 Pavement Cracks Dataset. 
Consequently, the dimensions of the prediction outputs are (80,80,27), 
(40,40,27), and (20,20,27). The detailed architecture of the YOLOv5s 
network is depicted in Fig. 3.

2.1.4. Decoding layer
The YOLOv5s network encodes and outputs predictions for three 

feature layers, characterized by the shapes (N,80,80,27), (N,40,40,27), 
and (N,20,20,27). These encoded shapes, however, do not directly 
correspond to the final positions of the predicted boxes on the images. 
Thus, a decoding process is required to accurately determine the ulti
mate positions of these predicted boxes. After decoding, the shapes are 
transformed to (N,80,80,3,9), (N,40,40,3,9), and (N,20,20,3,9). The 
numbers 80, 40, and 20 represent the division of the pavement cracks 
image into grids of 80 × 80, 40 × 40, and 20 × 20 feature points, 
respectively. At this resolution, if a specific feature point aligns with a 
target object’s corresponding box, it is utilized to predict the target 
pavement crack.

2.2. Improving the YOLOv5s network

This article introduces an advanced YOLOv5s network tailored for 
automated pavement crack detection. Enhancements to the network are 
detailed as follows:

Fig. 1. CSPlayer structure.

Fig. 2. SPP and SPPF structure.
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1) Anchor optimization: Initially, the YOLOv5s network employs a 
predefined anchor configuration, which achieves a 99.3 % fit for 
targeted cracks, potentially limiting the recall rate. To address this, 
the network recalculates anchors to ensure a 99.9 % fit, thus boosting 

the recall rate. The recalibrated anchors are [27, 48, 170, 31, 38, 
157], [120, 90, 82, 219, 53, 581], and [465, 73, 146, 459, 392, 311].

2) Integration of SENet modules: The network integrates SENet 
channel attention mechanisms following each CSPLayer and SPPF 

Fig. 3. YOLOv5s-6.0 network structure.
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layer within the backbone, enhancing the capacity of the network to 
autonomously learn crack features at the channel level. This addition 
increases the total layer count in the YOLOv5s architecture from 157 
to 191.

3) Efficiency in layer processing: To counterbalance the potential 
slowdown from increased layer count, the original SPPF layer is 
replaced with a SimSPPF layer, which aids in preserving training 
speed.

4) Neck structure modification: The Neck structure of the network is 
modified by replacing the nearest-neighbor interpolation method 
with transposed convolution for up-sampling. This change facilitates 
more effective learning of the optimal up-sampling technique for 
detecting target crack features.

These strategic enhancements are summarized in Table 1, outlining 
the specific improvements made to the YOLOv5s network’s structure.

2.3. Method and principle of improving YOLOv5s network

2.3.1. Channel attention mechanism
Squeeze-and-Excitation Networks (SENet) constitute a type of 

channel attention mechanism [50]. This method facilitates autonomous 
learning of target features within the feature channels, emphasizing 
essential features associated with the target to improve image recogni
tion accuracy. The functional principles of the SENet block are depicted 
in Fig. 4.

Here, (H), (W), and (C) denote the height, width, and number of 
channels of the input, respectively.

The computational formulas for each symbol in the SENet block are 
as follows: 

Ftr : X→U (2) 

where Ftr is a standard convolution operator and U is calculated by 
inputting X. besides, there is X∊Rwʹ×Hʹ×Cʹ and U∊Rw×H×C as well as some 
subsequent calculation steps as follows: 

U = [u1, u2,⋯, uC] (3) 

vC = [v1
C, v

2
C,⋯, vC

C] (4) 

V = [v1, v2,⋯, vC] (5) 

uC = vC × X =
∑Cʹ

s=1
vs

C × xs (6) 

where Equation (5) is the set of filters, and the filter is a three- 
dimensional matrix composed of multiple convolution kernels vs

C. 
Moreover, the extra dimension is channel C, and * in Equation (6) rep
resents convolution.

In Fig. 4, the SENet calculation block consists of Global Average 
Pooling (GAP) as well as activation function Fex and Fscale. 

zC = Fsq(uC) =
1

H × W
∑H

i=1

∑W

j=1
uC(i, j) (7) 

sigmoid = Fex(z,W) = σ(g(z,W) ) = σ(W2σ(W1z)) (8) 

X̃C = Fscale(uC, sC) = sCuC (9) 

X̃ = [x̃1, x̃2,⋯, x̃C] (10) 

where σ is ReLU function calculation and W1 ∈ R
C
r × c, W1 ∈ RC× C

r .
The operational mechanism of SENet, based on the aforementioned 

computational formulations, is delineated as follows: Initially, two- 
dimensional features H×W from each channel’s output are 

Table 1 
The structure of improved YOLOv5s network.

No. From1 n2 Params3 Module4 Arguments5

0 − 1 1 3520 models.common. 
Conv

[3,32,6,2,2]

1 − 1 1 18560 models.common. 
Conv

[32, 64, 3, 2]

2 − 1 1 18816 models.common. 
C3

[64, 64, 1]

3 − 1 1 512 models.common. 
SE

[64, 64]

4 − 1 1 73984 models.common. 
Conv

[64, 128, 3, 2]

5 − 1 2 115712 models.common. 
C3

[128, 128, 2]

6 − 1 1 2048 models.common. 
SE

[128, 128]

7 − 1 1 295424 models.common. 
Conv

[128, 256, 3, 2]

8 − 1 3 625152 models.common. 
C3

[256, 256, 3]

9 − 1 1 8192 models.common. 
SE

[256, 256]

10 − 1 1 1180672 models.common. 
Conv

[256, 512, 3, 2]

11 − 1 1 1182720 models.common. 
C3

[512, 512, 1]

12 − 1 1 32768 models.common. 
SE

[512, 512]

13 − 1 1 656896 models.common. 
SimSPPF

[512, 512, 5]

14 − 1 1 32768 models.common. 
SE

[512, 512]

15 − 1 1 131584 models.common. 
Conv

[512, 256, 1, 1]

16 − 1 1 4352 torch.nn.modules. 
conv. 
ConvTranspose2d

[256, 256, 4, 2, 1, 0, 
256]

17 [-1,8] 1 0 models.common. 
Concat

[1]

18 − 1 1 361984 models.common. 
C3

[512, 256, 1, False]

19 − 1 1 33024 models.common. 
Conv

[256, 128, 1, 1]

20 − 1 1 2176 torch.nn.modules. 
conv. 
ConvTranspose2d

[128, 128, 4, 2, 1, 0, 
128]

21 [-1,6] 1 0 models.common. 
Concat

[1]

22 − 1 1 90880 models.common. 
C3

[256, 128, 1, False]

23 − 1 1 147712 models.common. 
Conv

[128, 128, 3, 2]

24 [-1,19] 1 0 models.common. 
Concat

[1]

25 − 1 1 296448 models.common. 
C3

[256, 256, 1, False]

26 − 1 1 590336 models.common. 
Conv

[256, 256, 3, 2]

27 [-1,15] 1 0 models.common. 
Concat

[1]

28 − 1 1 1182720 models.common. 
C3

[512, 512, 1, False]

29 [22,25,28] 1 24273 models.yolo. 
Detect

[4, [[27, 48, 170, 31, 
38, 157], [120, 90, 
82, 219, 53, 581], 
[465, 73, 146, 459, 
392, 311]], [128, 
256, 512]]

Note: From1 denotes the origin layer and − 1 indicates the preceding layer. n2 

corresponds to the repetition count of the module, and typically set to 1. Params3 

represents the quantity of parameters, while Module4 denotes the module’s 
name. Arguments5 indicates the input and output channel quantity, convolu
tional kernel, and stride.
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compressed into a real number through the application of algorithm Fsq, 
resulting in the compression of the feature map from H×W×C to 1 × 1 ×
C. In the second step, a sequence of operations, including Fully Con
nected layers (FC), ReLU activation functions, and another set of FC 
layers, is systematically employed to acquire a set of weights. These 
weights are subsequently allocated to individual channels, and the 
resulting values, constrained within the range of 0 to 1 by a sigmoid 
function, contribute to the algorithmically derived output 1 × 1 × C, 
which is further processed through operation Fex to yield 1 × 1 × C. The 
final step involves adding the normalized weights 1 × 1 × C obtained 
from the previous two steps to the feature maps of each channel 
H×W×C. The algorithm employed for this addition is matrix multipli
cation, denoted as [H,W,C]*[1,1,C], resulting in the output X̃ = [H,W,

C].

2.3.2. K-means clustering algorithm
In the YOLOv5s network, the computation of anchors is achieved 

through the implementation of the K-means clustering algorithm, which 
falls within the domain of unsupervised learning. Tailored to the specific 
input target dataset, an initial set of K cluster centers is randomly 
selected. Utilizing the Euclidean distance, the distances from these 
initial cluster centers Ci (i ≤ 1 ≤ K) to other data objects Ci are computed. 
The cluster center Ci closest to a given data object is identified, and the 
data object is subsequently assigned to the corresponding cluster (where 
similar objects are grouped together). Following this, the average of the 
data objects within each cluster is computed and designated as the new 
cluster center. This iterative process continues until the calculated 
cluster centers cease to change or reach the maximum iteration limit. 
The Euclidean distance is computed using the following formula: 

d(X,Ci) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

j=1
(Xj − Cij)

2

√
√
√
√ (11) 

where X represents the data object, Ci is denoting the i-th cluster center 
and m is the dimension of the data object.

2.3.3. SimSPPF
SimSPPF, utilized in YOLOv6, represents a Simplified Spatial Pyra

mid Pooling – Fast adaptation of the traditional SPPF. This streamlined 
version integrates into the core feature extraction network and sim
plifies the original structure by replacing the SiLU activation function 
with ReLU. This substitution enhances the processing speed, making 
Conv_BN_ReLU operations faster than their Conv_BN_SiLU counterparts. 
The architecture of SimSPPF is depicted in Fig. 5.

2.3.4. Transposed convolution
The Neck structure employs up-sampling to restore the image to its 

original size, facilitating the transition from lower to higher resolutions 
and subsequently extracting features, as illustrated in Fig. 6. Common 
up-sampling techniques include nearest neighbor interpolation, bilinear 
interpolation, and transposed convolution. In this study, the original 
nearest neighbor interpolation method in the YOLOv5s network is 
replaced with transposed convolution. This form of convolution, distinct 
from predetermined up-sampling methods, enables the network to 
autonomously learn the characteristics of data objects and select the 
most effective up-sampling technique. Transposed convolution 

essentially inverts the relationship between input and output. In ordi
nary convolution, if an input feature layer is H×W=4 × 4 with a 3 × 3 
convolution kernel, no padding, and a stride of 1, the resulting output 
feature layer will be H×W=2 × 2. Conversely, with transposed convo
lution - using the same 3 × 3 kernel, zero padding, and a stride of 1 - but 
applied to an input feature layer of H×W=2 × 2, the output feature layer 
expands to H×W=4 × 4.

3. Research on road crack detection based on improved 
YOLOv5s

In this paper, the enhanced YOLOv5s network is utilized for auto
matic road crack detection. The operational steps of the network are as 
follows: First, the prepared crack dataset is fed into the CSPDarknet53 
structure, where features of crack images are extracted using 

Fig. 4. SENet Block.

Fig. 5. SimSPPF structure.

Fig. 6. Sample Up-sampling.
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convolution, CSPLayer, the SENet channel attention mechanism, and 
SimSPPF, resulting in three feature layers: feat1, feat2, and feat3. The 
second step involves processing these layers within the Neck structure, 
which employs the Feature Pyramid Network concept. Here, features are 
augmented by up-sampling usingthe CSPLayer from bottom to top, then 
refined by down-sampling from top to bottom to produce three output 
layers: P3_out, P4_out, and P5_out. These layers are subsequently pro
cessed in the YOLOHead structure, where they undergo a 3 × 3 
convolution and a 1 × 1 convolution to finalize the detection process. 
The detailed workflow of the improved YOLOv5s network is depicted in 
Fig. 7.

4. Experimental preparations

4.1. Data acquisition

Target detection requires a substantial dataset of road crack images. 
This study utilizes the public RDD2022 dataset [51], which comprises 
over 40,000 images depicting road conditions from China, the Czech 
Republic, India, Japan, Norway, and the United States. Images are 
initially categorized into eight types using labelImg: longitudinal cracks 
(D00), transverse cracks (D10), alligator cracks (D20), potholes cracks 
(D40), and four additional unspecified types. Given that the prevalent 
road issues are longitudinal cracks, transverse cracks, alligator cracks 
and potholes, the dataset is refined by removing the labels for the lesser- 
relevant categories, retaining only D00, D10, D20, and D40. Addition
ally, the data format is converted from XML to TXT for processing effi
ciency. For the purposes of this research, the dataset from China is 
specifically selected for training. The dataset of road cracks within the 
China region was compiled by mounting a camera on a motorcycle 
traveling at a speed of 30 km/h, capturing a total of approximately 2,500 
images, each with a resolution of 512 × 512. For the purposes of this 
study, the dataset is divided into subsets: 500 images constitute the test 
set, and over 1,900 images are allocated between the training and 
validation sets, maintaining a training-to-validation ratio of 8:2, as 
detailed in Table 2. Some samples of the data set are shown in Fig. 8.

4.2. Equipment and software preparation

The specifications of computer hardware equipment used to realize 
the functions of building a preliminary improved YOLOv5s network 
algorithm, data set processing algorithm, training model, evaluation 
model and prediction results are shown in Table 3.

The experiment uses Python language, the deep learning framework 
is Pytorch, the environment needed for training is configured in 
Anaconda, Python programs are written with VSCode editor, and the 
network is trained in Anaconda software. The software versions and 
languages used this time are shown in Table 4.

4.3. Experimental parameter setting

For this experiment, due to the use of animation frames when la
beling cracks, the network is trained to identify the most suitable label 
frame for cracks during prediction. Before commencing the experiment, 
it is essential to specify several parameters: the input image size (imgsz), 
the number of crack images per training batch (batch_size), and the 
number of epochs for a single training cycle. Additionally, the Inter
section over Union (IoU) training threshold (IoU_t) for Non-Maximum 
Suppression (NMS) must be set. The deep learning framework employs 
the SGD optimizer, for which the initial learning rate (lr0), momentum, 
and the optimizer’s weight decay (weight_decay) are specified. Proper 
calibration of these hyperparameters is crucial to align the training 
outcomes closely with the actual labels. Table 5 details the specific 
values for these hyperparameters.

5. Evaluation indicators, results, and discussion

5.1. Evaluation indicators

To demonstrate the robustness of the enhanced YOLOv5s network in 
pavement crack detection, three key performance metrics are employed: 
the comprehensive F1 score, mAP, and fps. These indicators are used to 
assess and validate the effectiveness of the proposed method.

5.1.1. Comprehensive evaluation index F1
The comprehensive F1 score is utilized to balance precision and 

recall, addressing the challenges of a binary classification model. 
Additionally, the Confusion Matrix is employed to further define these 
metrics. ‘Positive/Negative’ refers to the predicted outcome being either 
positive or negative, while ‘True/False’ indicates whether the prediction 
was accurate or not. Thus, ‘TP’ denotes a true positive case, ‘FP’ rep
resents a false positive, and so forth.

Precision is calculated as the ratio of TP to the total number of 
samples classified as positive by the classifier. This total includes both 
TP and FP. Thus, the formula for precision is: 

Precision =
TP

TP + FP
(12) 

Recall is calculated as the ratio of TP to the total number of actual 
positive samples. This total includes both TP and FN. Therefore, the 
formula for recall is: 

Recall =
TP

TP + FN
(13) 

F value is the harmonic average value between accuracy rate and recall 
rate, which is expressed by Fβ - score, and the formula is: 

Fβ - score =

(
1 + β2) ∗ P ∗ R

β2 ∗ P + R
(14) 

where β is used to balance the weights of Precision and Recall in the 
calculation of Fβ - score, and there are three values as follows:

(1) When β < 1, the Precision is more important in the training 
results,

(2) When β > 1, the Recall is more important in the training results,
(3) When β = 1, both Precision and Recall should be paid attention 

to in the training results, and F1 - score is the common compre
hensive evaluation index F1, calculated as follows:

F1 - score =
2 ∗ P ∗ R

P + R
(15) 

5.1.2. Mean average precision (mAP)
The mAP is defined as the mean value of Average Precision (AP) 

scores across different categories. AP quantifies the area beneath the 
Precision-Recall curve, representing the relationship between precision 
and recall for various thresholds. Consequently, mAP is the average of 
these AP values, encompassing all Precision-Recall curves. A higher 
mAP value indicates superior training results. Typically, mAP is evalu
ated by comparing AP scores at an Intersection over Union (IoU) 
threshold of 0.5 during training. In Fig. 9, IoU is calculated as the ratio of 
the intersection of the actual and predicted boundaries of the target to 
the union of these boundaries.

5.1.3. Frames per second (fps)
The fps measures the refresh rate of images during model training, 

indicating the number of frames processed each second. This metric is 
critical for evaluating the model’s efficiency during live detection sce
narios, ensuring that the system can operate in real-time applications 
without lag. It is calculated as follows: 
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Fig. 7. Improved YOLOv5s network flowchart.

S. Zhou et al.                                                                                                                                                                                                                                    Measurement 240 (2025) 115603 

8 



fps =
1000ms

(preprocess + inference + NMS)ms
(16) 

5.2. Results and discussion

The enhanced YOLOv5s network, alongside other YOLO variants and 
models like YOLOv3, YOLOv7, and YOLOv8, underwent rigorous 
comparative testing to determine the most effective model for fracture 
training. These models were evaluated for their ability to detect various 
types of pavement cracks under different conditions.

5.2.1. Results of model train
Initially, the original YOLOv5s model was employed to train the 

fracture dataset. Subsequent to the initial training, optimal hyper
parameters were selected based on the results, enabling the model to 
achieve an approximate recognition accuracy of 90 %. Table 6 illustrates 
the training outcomes for the original YOLOv5s network. Analysis of 
these results indicates that the detection of linear cracks is less effective 
compared to other crack types and potholes. Given the challenges in 
identifying minute features in linear cracks and various orientations of 
cracks, repeated training is essential to refine the network’s ability to 
recognize these features accurately. To enhance the detection of linear 
cracks specifically, four enhanced versions of the YOLOv5s network 
have been developed, building upon the original network structure.

The modification to the YOLOv5s_1 model involves incorporating the 
Convolutional Block Attention Module (CBAM) into the C3 structure of 

the original YOLOv5s backbone feature extraction network and adding 
the channel attention mechanism SENet between the ninth and tenth 
layers. This integration facilitates autonomous learning of target fea
tures in both channel and spatial dimensions. However, the mere addi
tion of convolution and channel attention mechanisms has not enhanced 

Table 2 
Dataset division.

Dataset Quantity

Training 1547
Validation 387
Testing 500

Fig. 8. Partial RDD2022 Dataset Samples.

Table 3 
The specification of the computer.

Indicator Value

GPU NVIDIA GeForce RTX 2080 Ti
CPU Intel(R) Xeon(R) Platinum 8260
CUDA 12.0
Cudnn 8.2.2

Table 4 
Software and language settings.

Indicator Value

Anacond 2019.10
VSCode 2017
Python 3.8.5
Torch 1.8.0

Table 5 
Hyperparameter value settings.

Hyperparameter Value

Imgsz 640 × 640
Batch_size 16
IoU_t 0.20
Optimizer SGD
lr0 0.01
Momentum 0.937
Weight_decay 0.0005
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the recognition of linear cracks. The training outcomes for the 
YOLOv5s_1 model are provided in Table 7.

On the basis of YOLOv5s_1 model, YOLOv5s_2 model replaces the up- 
sampling mode in Neck structure with transposed convolution to realize 
feature enhancement extraction. The training results for the YOLOv5s_2 
model are listed in Table 8.

The F1 value of YOLOv5s_2 model in identifying all cracks has 
increased, but it is still lacking in identifying linear cracks. Therefore, 
based on YOLOv5s_2 network structure, the channel attention mecha
nism SENet is added, and the SPPF layer is modified to SimSPPF, which 
is YOLOv5s_3. After the channel attention mechanism was added to each 
layer of the modified C3CBAM, the network training time became longer 
due to the addition of four layers of SENet modules, and finally the SPPF 
layer was modified to SimSPPF. The training results are shown in 
Table 9.

After evaluating the training outcomes of the four models, modifi
cations were made to the original YOLOv5s network. Initially, the 
channel attention mechanism SENet was integrated exclusively 
following the C3 structure within each layer of the backbone feature 
extraction network. Subsequently, the C3 structure itself remained un
altered, while the SPPF and Neck structures were replaced with SimSPPF 
and transposed convolution, respectively. Post-training evaluations 
revealed that the overall recognition performance of this revised model 
surpasses that of other models in the YOLO series, particularly in 
detecting linear fractures. Consequently, this model was ultimately 
chosen for training fracture datasets. The results are presented in 
Table 10.

5.2.2. Model comparison
The YOLO series was utilized to train models for crack detection, 

comparing the performance of YOLOv3, YOLOv5s, four enhanced ver
sions of YOLOv5s, YOLOv7, and YOLOv8. Fig. 10 illustrates the per
formance comparison results across these models. Although the YOLOv8 
network achieves the highest mean Average Precision (mAP) of 0.5, its 
combination of low precision and high recall leads to a relatively high 
number of false positives. The model ultimately selected offers higher F1 
scores and mAP values than the other models. Despite YOLOv8′s 
marginally superior mAP values, its precision, recall, and F1 scores are 
comparatively lower. Therefore, the enhanced YOLOv5s model exhibits 
the best overall performance.

The model is not only compared from the recognition effect, but also 
evaluated from the training speed. YOLOv3 and YOLOv7 networks is not 
discussed due to their poor and the training speed. The fps calculation 
results of various models are shown in Fig. 11. The improved YOLOv5s 
network has the largest fps value, that is, the fastest training speed such 

Fig. 9. Schematic diagram of IoU calculation.

Table 6 
The training results for YOLOv5s model.

Evaluation Precision Recall F1 mAP (0.5)

all 0.909 0.888 0.898 0.932
D00 0.886 0.824 0.867 0.887
D10 0.882 0.847 0.864 0.919
D20 0.917 0.902 0.909 0.936
D40 0.952 0.980 0.966 0.986

Table 7 
The training results for YOLOv5s_1 model.

Evaluation Precision Recall F1 mAP (0.5)

all 0.905 0.879 0.892 0.921
D00 0.878 0.814 0.845 0.878
D10 0.876 0.823 0.849 0.882
D20 0.907 0.898 0.902 0.933
D40 0.959 0.980 0.970 0.990

Table 8 
The training results for YOLOv5s_2 model.

Evaluation Precision Recall F1 mAP (0.5)

all 0.903 0.909 0.906 0.932
D00 0.851 0.856 0.853 0.879
D10 0.887 0.879 0.883 0.925
D20 0.895 0.918 0.906 0.941
D40 0.980 0.981 0.980 0.985

Table 9 
The training results for YOLOv5s_3 model.

Evaluation Precision Recall F1 mAP (0.5)

all 0.912 0.899 0.905 0.930
D00 0.856 0.833 0.844 0.880
D10 0.918 0.884 0.901 0.926
D20 0.921 0.918 0.919 0.946
D40 0.954 0.961 0.984 0.969

Table 10 
The training results for the proposed model.

Evaluation Precision Recall F1 mAP (0.5)

all 0.905 0.916 0.910 0.936
D00 0.864 0.856 0.860 0.885
D10 0.887 0.902 0.894 0.931
D20 0.919 0.946 0.932 0.946
D40 0.951 0.961 0.956 0.981

Fig. 10. Models evaluation comparison.
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as it takes about two and a half hours to train 500epoch.

5.2.3. Ablation experiment
To demonstrate the benefits of the newly added optimization module 

in the YOLOv5s algorithm, seven ablation experiments were performed, 
as detailed in Table 11. The mean mAP, GFLOPs, and parameters of the 
original YOLOv5s algorithm are 93.2 %, 15.8, and 7,020,913, respec
tively. In the enhanced model, the mAP increased from 93.2 % to 93.6 
%; likewise, GFLOPs and the number of layers were also augmented, 
although the parameters remained relatively consistent with the original 
model. This enhancement in the model has improved both accuracy and 
training speed, aligning well with the operational demands of daily 
pavement crack detection.

5.2.4. Prediction results of pavement cracks
The enhanced model has been rigorously tested in a variety of 

environmental conditions to detect pavement cracks, consistently 
proving its robustness and reliability. The results from these extensive 
field tests, vividly illustrated in Fig. 12, validate the model’s exceptional 
ability to accurately identify and classify different types of pavement 
cracks. Notably, the figure demonstrates the model’s precision in dis
tinguishing longitudinal cracks (D00), transverse cracks (D10), and 
alligator cracks (D20), each marked with high confidence scores that 
attest to the model’s accuracy. Moreover, the effectiveness of the model 
is further highlighted by its performance under varying lighting condi
tions and on different pavement materials, showcasing its adaptability 
and precision. The detailed annotations in the figure capture the 
nuanced differences between the crack types, with clear demarcations 
that facilitate easy identification and assessment. This capability is 
crucial for the timely and effective maintenance of road infrastructure, 
potentially reducing repair costs and increasing road safety.

Furthermore, the model not only identifies the type of crack but also 
estimates the severity and dimensions, which are critical for mainte
nance prioritization and planning. Such comprehensive analysis 

capabilities of the model ensure that road maintenance professionals can 
efficiently plan interventions and allocate resources effectively. This 
combination of high accuracy, reliability, and detailed analytical output 
makes the enhanced model an indispensable tool in the domain of 
pavement maintenance, underscoring its importance in contemporary 
road condition assessment strategies.

6. Conclusions

To enhance pavement crack detection, a novel neural network al
gorithm is presented in this article to automate crack identification. In 
the proposed technique, the Squeeze-and-Excitation Networks are in
tegrated behind the C3 structure of the trunk feature extraction network, 
the SPPF layer is replaced with SimSPPF, and the up-sampling method in 
the Neck structure is upgraded to transposed convolution. The perfor
mance of the proposed model is compared with other models, including 
YOLOv3-tiny, YOLOv5s, YOLOv5s_1, YOLOv5s_2, YOLOv5s_3, and 
YOLOv7, in terms of speed and accuracy in crack identification, using 
comprehensive evaluation metrics such as F1 and mAP (0.5). The 
following conclusions can be drawn from this study.

1) The integration of an attention mechanism into the YOLOv5s model 
has markedly enhanced training efficiency. Previously, achieving 
500 epochs with the original model required more time, but with the 
revised attention-enhanced model, this can now be accomplished in 
just 2.4 h. This improvement underscores the significant increase in 
processing speed, which is crucial for practical applications requiring 
rapid model training and deployment.

2) The proposed model has demonstrated high accuracy in detecting 
pavement cracks, achieving a detection accuracy of 90.5 %. More
over, the model exhibits a recall rate of 91.6 %, an F1 score of 91 %, 
and a mAP of 93.6 %. These metrics are indicative of the model’s 
reliability and precision in identifying and classifying various crack 
types in pavement, which are essential for effective maintenance and 
repair operations.

3) When compared to the original YOLOv5s network, the proposed 
model shows a noticeable improvement across several performance 
metrics. There is an increase of 0.7 % in the F1 score, 0.2 % in mAP, 
and 1.54 % in fps. These enhancements reflect the model’s refined 
ability to process images more quickly and accurately, which is vital 
for real-time applications.

4) Looking ahead, the focus will be on further enhancing the YOLO 
series network. The goals include reducing memory usage and model 
weight, which are crucial for improving computational efficiency. 
Additionally, efforts will be made to accelerate detection speeds and 
ensure the model can be easily installed on small mobile devices. 
This development is aimed at enabling real-time detection capabil
ities, which are increasingly demanded in modern technological 
applications. In the future, a detection window that can automati
cally detect and identify road cracks will be designed, which can be 
embedded into mobile devices such as drones, mobile phones, and 
inspection vehicles at any time. This can solve the current problem of 
timeliness in managing and repairing road cracks.

Overall, this study provides an in-depth analysis of the experimental 

Fig. 11. Time comparison.

Table 11 
Ablation experiment.

Groups Preprocess K-means C3CBAM SENet SimSPPF TC GFLOPs Parameters mAP(0.5)

1(yolov3-tiny) × × × × × × 12.9 8673622 0.832
2(yolov5s) √ × × × × × 15.8 7020913 0.932
3(yolov5s_1) √ √ √ √ × × 15.8 7069855 0.921
4(yolov5s_2) √ √ √ × × √ 15.9 7076383 0.932
5(yolov5s_3) √ √ √ √ √ √ 15.9 7120671 0.926
6(yolov7) √ √ × × × × — — 0.863
7(Proposed) √ √ × √ √ √ 15.9 7104497 0.936
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outcomes and highlights significant advancements made to the 
YOLOv5s model. These improvements have notably enhanced the 
model’s accuracy and processing speed, met the critical requirements of 
contemporary pavement maintenance practices and contributing to 
safer driving conditions. The progress documented here not only sets the 
stage for future innovations but also demonstrates the potential for 
further advancements in automated pavement monitoring systems.
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