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A B S T R A C T

The soil–water characteristic curve (SWCC) is crucial for modelling the transport of water and hazardous ma-
terials in the vadose zone. However, measuring SWCC is often cumbersome and time-consuming. This paper
introduces indirect models that predict SWCC parameters in probabilistic distributions using easily measurable
quantities such as particle-size distributions and porosity. This paper starts with building a joint normal model
and the derived conditional probability from it serves as a predictive model. However, this model had extremely
high prediction uncertainty. To reduce such uncertainty, various machine-learning techniques were explored,
including introducing the dependence of variation scale on predictors, using artificial neural networks (ANN) to
model nonlinear dependence, incorporating additional predictive features, and generating a larger dataset. The
final machine-learning model successfully reduces prediction variability and has been rigorously tested on a
separate set of samples to prevent overfitting.

1. Introduction

Constitutive models are essential for predicting and designing
geotechnical structures (Dafalias and Taiebat, 2016; He, et al., 2020).
However, even with a “perfect” model, the effectiveness and accuracy of
numerical predictions depend largely on having reliable input parame-
ters for these models. For predicting water flow and the movement of
hazardous materials through the vadose zone, the soil–water charac-
teristic curve (SWCC) and its parameters are crucial (Fredlund and
Rahardjo, 1993; Zhou et al., 2012; Cai et al., 2020). Unfortunately, these
parameters are difficult to measure directly, and flow permeability can
vary by several orders of magnitude across the full range of saturation.
Numerous laboratory and field methods exist to measure unsaturated
soil hydraulic parameters, but these methods are often cumbersome and
time-consuming (Chen et al., 2024).

In practice, it is easier to conduct simpler tests and estimate these
SWCC parameters indirectly using empirical models. By treating pores
as “idealised” cylindrical pores, Laplace’s law (Fredlund and Rahardjo,
1993) can link pressure heads to pore sizes. The pore sizes of soils are
related to particle-size distributions (PSD), packing state (i.e., fabric,
primarily porosity), and organic matter content. Consequently, it is
sensible to build indirect models and estimate SWCC parameters from

measurements of these attributes (Sakaki et al., 2014; Zhai et al., 2020b;
Zhang et al., 2022b; Es-haghi et al., 2023; Satyanaga et al., 2024).

The most straightforward indirect models are deterministic empir-
ical equations. For instance, Sakaki et al. (2014) demonstrated the
relationship between the air entry value and characteristic particle sizes
such as d30 and d50, which represent the particle sizes at which the mass
cumulative percentages (MCP) are 30 % and 50 %, respectively. How-
ever, since predictors like particle-size distribution and porosity do not
encompass all the necessary information to fully determine the water
retention capability of soils, it is not expected to have a very accurate
prediction using these models. Instead, the prediction should carry a
high degree of uncertainty. Consequently, deterministic indirect models
are generally not very useful in practice.

Indirect models should aim to provide a probabilistic description of
the SWCC given predictors/inputs. Zhang et al. (2022a) developed
probabilistic indirect models using a large dataset, which they used as
priors for estimating SWCC parameters in conjunction with experi-
mental data and Bayesian updating. Their probabilistic indirect model
was essentially a linear regression. The objective of the present paper is
to construct probabilistic indirect models and attempt to reduce pre-
diction uncertainty using machine-learning techniques (He et al., 2021;
Zhang et al., 2021; He, Xu et al., 2022; Zhang et al., 2022a). With this
indirect model that reduces uncertainty in predicted SWCC parameters,
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unsaturated soil models are expected to be more widely adopted in
practical engineering, addressing the current challenges posed by the
unavailability of SWCC parameters in practice.

There are several models available in the literature for fitting SWCC.,
the mostly used is probably the van Genuchten equation (van Gen-
uchten, 1980):

θ = fVG(s; θs, θr,α, n) = θr +
θs − θr

(
1+

(
s
α

)n )1− 1n
(1)

Here, θ is the volumetric water content, s is the suction, whose unit is cm
in the present paper, measuring the rise of water columns. This choice of
this unit is to be consistent with the dataset used. θs is the saturated
water content, and θr is the residual water content. α is a parameter that
is related to the air entry value, and its unit is the same with suction. n
(n > 1) is a parameter measuring the pore-size distribution. The objec-
tive is therefore to provide a probabilistic indirect model for the SWCC
parameters (θs, θr, α and n). In the language of probability theory, this
involves determining the conditional probability of these parameters
given predictors like PSD and porosity, denoted as p(θs, θr, α, n|PSD,
Porosity). This study focuses on indirect models for parameters of the
van Genuchten Equation: But this framework is generic, and it could also
be applied to other SWCC models.

The models are built on the UNSODA dataset (Nemes et al., 2015),
which is a collection of data for 790 soil samples, including features such
as dry density, particle density, porosity, saturated water content,
organic matter content, PSD, and SWCC data measured in laboratory or
field. The data underwent rigorous quality control measures, including
cross-checks against other datasets and internal consistency checks.
Outliers and erroneous data points were identified and either corrected
or excluded from the final dataset. These procedures (Nemes et al.,
2015) ensure that UNSODA is a reliable resource, contributing to its
popularity and extensive usage in the literature. Since the UNSODA
database contains more data for the drying branch of SWCC compared to
the wetting branch, we thus concentrate on the parameters for the
drying curve in this study (Zhai et al., 2020a).

The structure of this paper is organised as follows: Section 2 explains
the estimation of SWCC parameters for all soil samples. Section 3 dis-
cusses the method used to process PSD data and how to select consistent
features to characterise the PSDs. Section 4 addresses how to choose an
appropriate value to measure porosity from multiple sources. The
building of models begins with a joint normal model with reduced
predictors, which is presented in Section 5. Sections 6 and 7 discuss
various techniques to extend the model, including introducing depen-
dence of variation scale on predictors, using artificial neural network
(ANN) to model the nonlinear dependence, incorporating more features
as predictors, and generating a larger training-validation set. Finally,

Section 8 provides a summary and some useful conclusion.

2. SWCC parameters by Bayesian inference

To construct the indirect models, our initial step involves estimating
the SWCC parameters for each soil sample. Typically, the traditional
procedure involves determining a single set of parameters that best fit
the measurement data for each soil sample. However, due to the scarcity
and noise often present in measurement data, coupled with the imper-
fect fit of some SWCCs to the van Genuchten model, this inverse problem
of parameter estimation becomes ill-posed – numerous parameter
combinations may yield similarly minimal errors. Hence, the estimation
of SWCC parameters is approached within a Bayesian framework.

For a given soil sample, with its SWCC parameters (θs,θr,α,n) and a
measurement point with suction as si, we can compute the predicted
water content as fVG(si; θs, θr,α, n). We postulate that the measured water
content θi follows a normal distribution with the predicted value as its
mean, denoted in probability theory as θi ∼ N

(
fVG(si; θs, θr,α, n), σ

)
.

Here, σ represents the standard deviation, encompassing the measure-
ment error of suction and/or water content, and accounts for the error
scale associated with utilising the possible imperfect van Genuchten
model to fit the measurement data. With this assumption, the likelihood
of each measurement point (si,θi) given all parameters can be calculated
and denoted as p(si,θi|θs,θr,α,n,σ). It’s important to note that the stan-
dard deviation is now in the parameter list to be estimated.

Suppose there are N measurement points for an SWCC, by assuming
independence between them, the total likelihood is
∏N

i=1p(si, θi|θs, θr, α, n, σ). Incorporating a prior, the parameters can then
be estimated within a Bayesian framework as p(θs, θr,α, n, σ|si=1:N,
θi=1:N)∝

∏N
i=1p(si, θi|θs, θr,α, n, σ)p(θs, θr,α,n, σ). Because we do not have

other sources of information regarding the parameters, we use non-
informative priors, i.e., p(θs,θr,α,n,σ) = constant.

Two methods are used to approximate the posteriors p(θs,
θr, α, n, σ|si=1:N, θi=1:N) − Hamiltonian Monte Carlo (HMC) and Varia-
tional Bayes (VB). HMC is an algorithm to draw random samples ac-
cording to a target probability distribution, particularly useful when
direct sampling proves challenging. Its convergent rate is often faster
than traditional Markov chain Monte Carlo methods such as the Met-
ropolis–Hastings algorithm. HMC performs optimally for unconstrained
random variables that closely resemble normal distributions. However,
the parameters to be estimated are bound by certain conditions (e.g.,
1 > θs > θr ≥ 0, α > 0, n > 1 and σ > 0). Consequently, transformations
with bijectors become necessary. The transformed variables are denoted
X1 = f − 1sg (θs), X2 = f − 1sg (θr/θs), X3 = ln(α), X4 = ln(n − 1) and X5 =

ln(σ). Here, f − 1sg denotes the inverse of the sigmoid function and ln the
natural logarithm. It’s straightforward to confirm that these transformed

Nomenclature

List of symbols
f − 1sg Inverse of the sigmoid function
f − 1sp (⋯) Inverse of the softplus function
fVG The van Genuchten equation
MCP2µm Mass cumulative percentages at the particle size of 2 µm
n SWCC parameter for the van Genuchten equation
p(⋯) Probability density functions
p(⋯|⋯) Conditional probability
α SWCC parameter for the van Genuchten equation
γ*, β**, λ*, ξ**, ϕ Indirect model parameters
θr Residual water content, SWCC parameter for the van

Genuchten equation

θs Saturated water content, SWCC parameter for the van
Genuchten equation

Acronym
ANN Artificial neural network
HMC Hamiltonian Monte Carlo
MCP Mass cumulative percentages
NLL Negative log likelihood
PDF Probability density functions
PSD Particle-size distributions
SWCC Soil-water characteristic curve
USDA United States Department of Agriculture
UNSODA UNsaturated SOil hydraulic DAtabase
VB Variational Bayes
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variables are all unconstrained, and there exists a bijection between
them and the original variables.

For each soil sample, we run 10 independent HMC chains to check
the convergence. The “burn-in” phase consists of 20,000 iterations to
allow the chains to reach stationary. During the first 70 % of this phase,
the step size is adjusted by a simple algorithm (Andrieu and Thoms,
2008) to reach an optimal 65 % acceptance rate. After the “burn-in”

phase, an additional 1,000 steps are run, resulting in a total of 10,000
samples. In Fig. 1, histograms represent the distributions of HMC-
estimated parameters (θs, θr and α), plotted alongside SWCC measure-
ments. It can be visually confirmed that the estimates are reasonable.

Variational Bayes is a method to find an analytical approximation to
a target probability distribution, achieved by selecting a family of
simpler surrogate distributions and finding the set of distribution pa-

Fig. 1. Bayesian estimation of SWCC parameters (black dots: SWCC measured in laboratory; blue dots: SWCC measured in field; histograms: distributions of θs – grey,
θr – blue, and α – red inferred by Hamiltonian Monte Carlo; Solid black lines: distributions of parameters inferred by Variational Bayes; Filled green area with dash
lines: 95% interval for SWCC predictions) (a) a sample for which both HMC and VB give convergent estimations; (b) a sample for which HMC cannot give convergent
estimations for some parameters; (c) a sample with two sets of SWCC measurements; (d) A sample for which the estimated θr is invalid; (e) a sample with erroneous
data; (f) a sample with insufficient data. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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rameters that minimise the difference between the surrogate and the
target distributions. For the SWCC parameters, we choose the multi-
variate normal distribution as surrogate for the transformed variables
X1 ∼ X5, and determine the distribution parameters (means and
covariance matrix) that minimise the Kullback–Leibler divergence. The
distributions of VB-estimated parameters are presented as solid lines in
Fig. 1.

Fig. 1a displays a soil sample (1014) where both HMC and VB
methods converge and showing similar results. HMC results should be
considered the true distributions, while VB results are approximations.
However, HMC does not always converge for all parameters or for all
samples – checked by R̂ < 1.1 as suggested by Gelman et al. (2014).
Taking Sample 1023 as an example as in Fig. 1b, HMC provides
convergent estimates for θs and α, but not for θr. In contrast, VB shows
easier convergence, indicated by continuously reduced and then pla-
teaued Kullback–Leibler divergence. The VB-estimated θr of Sample
1023 is shown as solid line Fig. 1b, which is a reasonable estimation. The
non-convergence of HMC often arises from either (1) flawed model as-
sumptions or (2) insufficient or erroneous data. For parameters where
VB converges but HMC does not, the non-convergence in HMC is likely
due to incorrect assumptions about the normal distribution of the
transformed parameters or the possibility that the SWCC cannot be
accurately modelled by the van Genuchten equation. With sufficient
data, VB can always provide an estimate because it seeks the distribution
closest to the true distribution; even if the two distributions (true and
assumed) differ, it can still produce a convergent estimate.

For some soil samples, both laboratory and field measurements are
available. We conduct Bayesian inference separately to these two sets of
measurements and assume that the final soil SWCC parameters are a
mixture of the parameters estimated from each set. Fig. 1c illustrates this
with Sample 1010, where field measurements suggest a lower θs
compared to laboratory measurements. The VB-estimated parameters,
as mixtures, exhibit bimodal patterns to reflect this.

Of the total 790 soil samples in UNSODA, VB provides convergent
estimations for most samples (708). Some samples do not converge
either due to (1) data errors as illustrated in Fig. 1e or (2) insufficient
data as illustrated in Fig. 1f. The problematic samples are listed in
Table 1. Fig. 2 shows the estimated 95 % intervals for θr, α and n for all
samples. θs is omitted because it is not a target in the indirect models
analysed in this study. There are very few samples (fewer than 3, circled
in Fig. 2) where HMC gives convergent estimations, but VB does not. For
samples with convergence from both HMC and VB, the results are
largely consistent.

An important observation is that for some samples, such as Sample
1092 shown in Fig. 1d, the VB-estimated θr is very close to zero with
extremely low variability (black intervals in Fig. 2, variability is so small
that they visually appear as black dots). This occurs because, although
there is enough data for a convergent estimation, the measured data are
primarily at lower suction levels, providing limited or no information
about the residual water content. Thus, these estimated θr is considered
invalid. Consequently, only 378 out of 790 samples have valid θr esti-
mations, while 708 out of 790 have valid estimations for α and n.

3. Particle-size distribution

Measuring particle-size distributions is a standard practice in
geotechnical projects due to its straightforward nature. These distribu-
tions bear a strong relationship with the SWCC, rendering them valuable
for indirect modelling purposes. However, a soil’s PSD forms a contin-
uous curve, we instead need discrete characteristic quantities for pre-
dictive purpose. Three options are available: (1) using mass cumulative
percentage (MCP) values at specific particle sizes; (2) using particle sizes
at specific MCP values; (3) fitting the PSD curve with an equation and
using the fitting parameters. Option 3 is disregarded due to the versatile
shapes of PSDs from natural soils, making it challenging to find a single
equation that adequately fits all PSDs. Options 1 and 2 are comparable,
but Option 1 holds an advantage. PSDs are typically measured using
standard sieves, the raw data already present MCP values at corre-
sponding sieve sizes, thus minimising the necessity for fitting or
interpolation.

One problem for the PSDs of UNSODA samples is that they are not all
compatible, i.e., measured across varying sieve sizes. Predominantly,
MCP readings are available as 610 values at 2 µm, 535 values at 50 µm,
and 601 values at 2000 µm. These specific particle sizes hold signifi-
cance as they aid in distinguishing clay, silt, sand, and gravel particles.
Denoted as MCP2µm, MCP50µm and MCP2000µm, respectively, these
readings serve as inputs for soil texture classification following the
USDA (United States Department of Agriculture) system. To maximise
data availability without resorting to interpolation, readings close to
these key sizes are also used, which is named as horizontal shift strategy
in this paper.For instance, if a sample lacks a reading at 2 µm, any
reading falling within the range of 1 µm to 3 µm is considered as
MCP2µm. This principle extends to MCP50µm for readings between 32µm
and 63µm, and to MCP2000µm for readings between 1000µm and
3350µm. Following this procedure, the MCP values are augmented to
include 655 values at 2 µm, 679 values at 50 µm, and 672 values at 2000
µm.

To better characterise the PSDs, additional MCP values across
various particle sizes are required. Additionally, having more MCP
values provides more information, which generally aids machine
learning in identifying better models. We aim to incorporate three
additional readings between 2 µm and 50 µm (e.g., 5 µm, 10 µm, 20 µm),
and three more readings between 50 µm and 2000 µm (e.g., 100 µm, 250
µm, 500 µm). However, the original dataset lacks sufficient values,
containing only 85, 94, 238, 157, 280, and 302 data points for them.
Hence, to expand the dataset, we resort to interpolation and the hori-
zontal shift strategy.

Nemes et al. (1999) conducted a comprehensive investigation into
the interpolation of particle-size distributions. Their findings under-
scored that fitting with spline functions significantly enhances accuracy
with an adequate number of measurements. Conversely, fitting with the
Gompertz equation exhibits less sensitivity to the availability of mea-
surement. This is corroborated in our study, as depicted in Fig. 3. For the
gap-graded Sample 1021 in Fig. 3a, the Gompertz equation
(f(x) = e− be− c(x− d) utilised in this study) fails to yield satisfactory results,
whereas a monotonic cubic spline with dense measurement points ap-
pears reasonable. Conversely, for a sample (1081) with limited mea-
surements, the monotonic cubic spline proves less effective, while the
Gompertz equation offers some viable insights.

To interpolate MCP values at the desired particle sizes, we adhere to
the following procedures with priority from highest to lowest: (1)
Firstly, we examine if any neighbouring measurement falls within a 5 %
error margin (log scale) and horizontally shift if available. (2) If there
are more than three measurements, and the particle size to be interpo-
lated falls between two measurements, the fitted value using a mono-
tonic cubic spline is used. (3) In all other scenarios, interpolation is
performed using the Gompertz equation. Following this protocol, 711
samples now possess MCP values at these particle sizes. The

Table 1
Samples whose SWCC estimations are not convergent with Variational Bayes.

laboratory measurements field measurements

Data errors 1114, 1460, 4284 1132, 3163, 3195

Insufficient
data

1320, 1461, 1462
2212, 2214, 2215,
2180–2181, 2213,
2216–2217, 2253, 2374,
2690
3050, 3175, 3225, 3330
4191–4204, 4211–4212,
4221–4224, 4550–4551,
4580–4583, 4720

1122–1123, 1134, 1330
2470–2472
3032–3033, 3102, 3113 3132,
3151, 3153, 3224–3225, 3240,
3242–3243, 3251–3253,
3260–3262, 3264, 3270, 3283,
3340–3341
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distributions of MCP values at different particle sizes for all samples are
illustrated in Fig. 4.

4. Porosity

The SWCC of soils depends on the packing of soil particles, of which
porosity being the most important factor. Porosity, defined as the vol-
ume of voids per bulk volume, can also be determined from dry density,
i.e., Porosity = 1 – (dry density/particle density), by assuming uniform

particle materials with a known particle density. Moreover, by defini-
tion, the saturated volumetric water content is equal to the porosity.
Thus, for the UNSODA samples, a measure of porosity can be derived
from four distinct sources: (1) measured porosity (370 data points); (2)
calculated from the provided dry density and particle density (395 data
points); (3) experimental water content of water-saturated samples (305
data points); and (4) inferred θs from SWCCs as outlined in Section 2.

In Fig. 5, data are presented when two types of porosity measure-
ment are available for the same samples. The inferred θs constitutes a

Fig. 2. Estimated SWCC parameters for all samples (red: 95% interval inferred with Variational Bayes; blue: 95% interval inferred with Hamiltonian Monte Carlo;
samples plotted with ascending VB-inferred median; circled samples: convergent with HMC but not convergent with VB). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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distribution and is depicted as 95 % intervals. Most data points align
closely with or fall upon the 1:1 line, while some discrepancies arise due
to measurement errors. In the indirect models, a single porosity is used
as predictors. To maximise porosity measurements, we choose the
porosity value for samples in the following order: (1) provided θs, (2)
calculated from dry density and particle density, (3) measured porosity,
and (4) median of inferred θs. The measured θs provided by UNSODA is
most preferred because it directly reflects the water retention capacity of
soils. The porosity calculated from dry density and particle density is the
next best option, as it involves minimal measurement error and is highly
reliable. The provided porosity value is less preferred than the previous
two, as some values are simply derived from dry density, and some are
clearly erroneous. The inferred θs is the least preferred due to the higher

uncertainty involved in the inference process. Following this procedure,
777 samples now possess a porosity measurement.

5. Joint normal model

Porosity is easy to measure and is an important predictor for indirect
models. Given that the saturated water content, θs, is inherently equiv-
alent to porosity, it is thus not targeted for prediction. As illustrated in
Fig. 4, MCP2000µm is 1 for nearly all UNSODA samples, offering limited or
no informative value and hence is disregarded as a predictor. Conse-
quently, our initial effort involves constructing a basic model incorpo-
rating only MCP2µm, MCP50µm, and porosity as inputs features to predict
the distribution of SWCC parameters, denoted as a conditional

Fig. 3. Interpolating the required mass cumulative percentage (MCP) values (red dots: experimental data; solid lines: monotonic cubic spline; dash lines: fitting with
Gompertz function; black dots: Interpolated MCP values at particle size of 2, 5, 10, 20, 50, 100, 250, 500, and 2000 μ m). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Distributions of mass cumulative percentage (MCP) values for all samples.
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probability p
(
θr, α, n

⃒
⃒MCP2μm, MCP50μm, Porosity

)
. Conditional proba-

bility can be derived from the joint probability of all features, including
predictors and targets. Thus, we commence by establishing a joint
normal model for all features.

To ensure an unbiased assessment of subsequent models, the 790
UNSODA samples are partitioned into a test set comprising 158 samples
and a training-validation set containing 632 samples. Given that the
estimated SWCC parameters are as distributions, we perform Nd/s = 10
iterations of sampling for each soil sample in the training-validation set
to generate a dataset of 6320 instances. It is important to note that some
rows of data may have missing values for certain features. These gaps
have minimal impact on constructing the joint normal model because its
parameters are estimated from marginal distributions and pairwise
correlations using a bootstrapping method. However, when building
machine-learning models, any row with missing values in the input or
output features will be simply excluded.

Soil classification has long been used by engineers to aid in under-
standing soil and estimating parameters. With MCP2µm andMCP50µm, we
can readily classify the soils according to the USDA system, Fig. 6 il-
lustrates the distribution of SWCC parameters across different types of
soils, revealing that sands typically exhibit lower residual water content
θr and higher n values compared to clays. Regarding α, the distribution
of sands appears narrower in contrast to clays. These findings align with
empirical knowledge, validating the effectiveness of the preceding data
processing procedure and instilling our confidence in constructing in-
direct models utilising these features.

The distributions of the features are illustrated in Fig. 7, revealing a
substantial deviation from normality. To address this, we adopt a similar
procedure outlined by Ching et al. (2014), by firstly identifying

transformed variables with a normal marginal distribution, followed by
constructing a joint normal distribution for these transformed variables.
Considering that MCP2µm, MCP50µm, porosity and θr all lie within the
range of (0,1), it is a common technique in statistical modelling to bring
them onto the real number line with an inverse sigmoid transformation.
Then, normality is check for the transformed variables. Similarly, α and
n, with lower bounds, can be transformed onto the real number line
using the logarithmic function or the softplus function. Denoting the
transformed variables with a superscript ‘t’, we have

MCPt
2μm = f − 1sg

(
MCP2μm

)

MCPt50μm = f − 1sg
(
MCP50μm

)

Porosityt = f − 1sg (Porosity)

θt
r = f − 1sg (θr)

αt = ln(α)
nt = ln(n − 1)

(2)

In the diagonal of Fig. 8, histograms depict the marginal distributions of
transformed variables (using logarithmic function for α and n), all
visually resembling normal distributions. Additionally, we conducted
Anderson–Darling test, Jarque–Bera test, and quantile–quantile plots, all
confirming the normality of marginal distributions. However, normality
of marginal distributions does not guarantee a joint normal distribution.
The Henze-Zirkler test for multivariate normality resulted in rejection,
with a p-value of zero (<0.05). Despite this, we proceed to construct a
joint normal model and evaluate its performance.

The upper triangular portion of Fig. 8 displays correlations among
the transformed variables. Positive correlations are observed among

Fig. 5. Relationship between measurement of porosity from different sources.

Fig. 6. Distribution of SWCC parameters for different types of soils (red: clay, sandy clay, or silty clay; blue: sand or loamy sand). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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MCP2µm, MCP50µm and porosity, which is consistent with our knowledge
– larger MCP50µm values often correspond to larger MCP2µm values,
which are generally from fine-grained soils that tend to have higher
porosity. The residual water content shows a positive correlation with
these predictors because fine-grained soils typically exhibit larger θr
values, as similarly demonstrated in Fig. 6. Consistent with findings in
Fig. 6, n displays a negative correlation with these predictors, but α
shows no strong correlation with any of these features.

If the inverse sigmoid transformation of a variable is normally
distributed, it follows a Johnson SB distribution, which is fully deter-
mined by four parameters. Similarly, if a variable follows a Johnson SL
distribution with three parameters, its logarithmic transformation is
normally distributed. The solid lines in Fig. 7 represent the probability
density functions (PDFs) of the Johnson SB or SL distributions, demon-
strating a good fit for the original variables.

To estimate the Pearson correlations among transformed variables,
we utilised the bootstrapping method suggested by Ching et al. (2014).
With the estimated means μi standard deviations σi and the Pearson
correlation matrix ρij (i or j = θtr, αt , nt, MCPt2μm, MCPt50μm and
Porosityt), the joint normal model for these transformed variables is
fully determined.With such joint probability, we can make predictions
using conditional probability. For a multivariate normal distribution,
the conditional probability is still multivariate normal. In our case, the
transformed SWCC parameters follow amultivariate normal distribution
as
⎡

⎢
⎢
⎣

θt
r

αt

nt

⎤

⎥
⎥
⎦ ∼ N (μ,Σ)

μ =

⎡

⎣
γϑ

γα

γn

⎤

⎦+

⎡

⎢
⎢
⎣

βϑ
2 βϑ

50 βϑ
p

βα
2 βα

50 βα
p

βn
2 βn

50 βn
p

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

MCPt
2μm

MCPt
50μm

Porosityt

⎤

⎥
⎥
⎥
⎦

Σ =

⎡

⎣
σϑ σϑα σϑn

σϑα σα σαn

σϑn σαn σn

⎤

⎦ (3)

where the means are linear functions of the predictors, and the scale of
variation is constant. γ*, β** and σ** are models constants. They can be
simply calculated from μi, σi and ρij and are listed in Table 2.

The prediction performance is illustrated in the first sub-figures of
Figs. 9–11. The blue vertical lines represent the 95 % intervals of the VB
estimations, while the red lines indicate the model’s predictions. For all
three SWCC parameters, the prediction uncertainty is substantial. For
instance, for many samples, the predicted θr has a 95% probability in (0,
>0.3), providing minimal useful information. Similarly, for almost all
samples, the predicted α has a 95 % probability in range between ~ 4 cm
and~ 400 cm, which is extremely broad. Thus, the aim of this study is to
reduce such prediction uncertainty.

Another naïve model involves ignoring the predictors and using the
distribution of the targets estimated from all data to make predictions.
Based on the dataset, the 95 % intervals for θr, α, and n are (0.018,
0.399), (4.59 cm, 319.1 cm), and (1.025, 8.05), respectively. These in-
tervals are marked as horizontal dashed lines in Figs. 9–11. Visually, this
naïve model appears to perform comparably to the joint model.

To quantify the performance of models, we need a metric. For
probabilistic predictions, a natural one is likelihood. For example, when
predicting α, the prediction is a conditional probability p(α|X), which is a
function of both α and the predictors X. By inserting the measured values
p
(
α = αtrue

i
⃒
⃒X = xi

)
, we obtain the likelihood value. In this study, for a

given soil sample i, we do not have the true value αtrue
i , but rather a

Fig. 7. Distribution of predictors (MCP value at particle size of 2 µm and 50 µm and porosity) and targets (θr , α and n) for all samples.
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distribution, ptruei (α). We can then calculate a mean likelihood for each
soil sample as Li =

∫
p(α|X = xi)ptruei (α)dα, where the integration is

evaluated by 10,000 samples of ptruei (α).
For a set of N soil samples, the mean negative log likelihood is given

by NLL = − 1
N
∑N

k=1ln(Lk). NLL measures how well the evidence (e.g.,
data) supports the model, with smaller NLL indicating better models.

Using the joint model to predict θr, the NLL for the training-validation
set and testing set is 1.041 and 1.047, respectively. For the naïve
model, the NLL is 1.284 and 1.269, respectively. This indicates that the
joint model performs better according to this metric. Similarly, the joint
model also performs better in predicting n, but is only comparable in
predicting α as shown in Table 3. Additionally, the comparable NLL

Fig. 8. Marginal distribution of transformed variables and corelations among them (diagonal: distributions with histogram from data and solid lines from fitted
normal; upper triangular: corelations from data; lower triangular: corelations from model simulations).

Table 2
Parameters of linear models.

γ* β** σ**

Joint normal model − 1.334 0.375 − 0.054 0.593 0.601 − 0.0047 0.314
3.170 − 0.314 0.298 − 0.376 − 0.0047 1.114 0.441
− 1.637 − 0.482 − 0.207 0.043 0.314 0.441 1.175

Linear-mean constant-scale fixed-parameter − 1.279 0.439 − 0.039 0.194 0.777  
2.728 − 0.388 0.386 − 0.463  1.333 
− 1.816 − 0.486 − 0.163 − 0.038   0.944

Linear-mean constant-scale uncertain-parameter − 1.320 0.368 − 0.073 0.110 0.755
− 1.141 0.453 − 0.010 0.289 0.799
2.638 − 0.487 0.369 − 0.503  1.306
2.854 − 0.383 0.434 − 0.287  1.360
− 1.866 − 0.541 − 0.181 − 0.119 0.925
− 1.712 − 0.468 − 0.134 0.038 0.964
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Fig. 9. Prediction of residual water content by various models (blue: 95% interval of VB estimations; red: 95% interval of model predictions; dash lines: predicted
95% interval of the naïve model; left part: training-validation set; right part: testing set; samples ordered in ascending VB-estimated median. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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values between the training-validation set and testing set suggest that
neither the joint model nor the naïve model overfits.

6. Linear models

The prediction from the joint model results in a joint distribution for
all three targets. We can also make prediction for each individual target
by ignoring their corelations, which is expressed as a model as:

y* ∼ N (μ*,σ*) y*is either θt
r, αt or nt

μ* = γ* + β*2MCPt
2μm+β*50MCPt

50μm+β*pPorosity
t

σ* = constant
(4)

This is a model for which the prediction mean is linearly related to all
predictors, and the scale of variation σ* is constant. Because of this
constant scale, minimising the NLL for a given dataset is equivalent to
reducing the mean square error between the prediction mean μ* and the
true target values. Consequently, finding the coefficients (γ* and β**) is
the same as performing ordinary linear regression. Once we have the
estimated γ* and β** from linear regression, the scale σ* can be estimated
from the difference between the predicted means and the target values.
The determined parameters for this linear-mean constant-scale model
are in Table 2 and are very close to those of the joint model. Its per-
formance is also like the joint model, as shown in Table 3.

Writing the predictors as X = (MCPt2μm,MCPt50μm,Porosityt
)
and the

parameters as ϕ* = (γ*, β*2, β*50, β*p, σ*), the model of Eq. 4 defines the
likelihood of y* given predictors X and parameters ϕ*, i.e. p( y*|ϕ*,X).
Therefore, we can adopt a Bayesian framework to estimate the posterior
of parameters through p(ϑ*|X, y*)∝p(y*|ϕ*, X)p(ϕ*). Using non-

informative priors (p(ϕ*) = constant), the posterior of parameters is
estimated with MCMC and is presented in Table 2 as 95 % intervals.
Even though these parameters are determined as distributions, their
variability is very low and remain very close to those from the joint
model or linear regression. This type of model, which accounts for
parameter uncertainty, is also called a model with epistemic uncertainty
in the literature. For each sample of the model parameters ϕ*, we can
insert them into the model and evaluate the NLL for the data, thus
making the NLL a distribution as well. For this linear-mean constant-
scale uncertain-parameter model, the NLLs are shown in Table 3 as 95 %
intervals. Like the joint model and linear regression, this model does not
improve performance.

So far, the prediction of α has been poor (Table 3), performing no
better than the naïve model that predicts the same 95 % range (4.59 cm
to 319.1 cm) for all samples. This is contradictory to our empirical
knowledge that different soils have different air entry values and α is
related to the air entry value. The primary issue is that we assumed a
constant scale of variation for all predictions. As shown in Fig. 6, the
median α values for sands and clays are comparable, but the variation
for clays is much higher, which cannot be captured by a model with a
constant scale of variation.

To address this, we could extend the model to have a linear depen-
dence of the scale on predictors as:

y* ∼ N (μ*,σ*) y*is either θt
r, αt or nt

μ* = γ* + β*2 MCPt
2μm+β*50 MCPt

50μm+β*pPorosity
t

f − 1sp (σ*
)= λ* + ξ*2MCPt

2μm+ξ*50MCPt
50μm+ξ*pPorosity

t (5)

where f − 1sp is the inverse of the softplus function. The point estimates of

Fig. 10. Prediction of α by various models (blue: 95% interval of VB estimations; red: 95% interval of model predictions; dash lines: predicted 95% interval of the
naïve model; left part: training-validation set; right part: testing set; samples ordered in ascending VB-estimated median. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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the model parameters (γ*, β**, λ*, and ξ**) is obtained by minimising the
NLL. For this model, we could not conduct ordinary linear regression
anymore, but have to resort to optimisation – the Adam stochastic
gradient descent algorithm in this study. The learning rate determines
the size of corrective steps in optimisation. A high learning rate shortens

the training time but may result into to a local minimum instead of the
desired global minimum, whereas a lower learning rate results in a
longer training process. After several experiments (with learning rate as
0.0001, 0.001, 0.01, 0.1 or 1), a learning rate of 0.01 was found to be
suitable for this study. In training, 80 % of the data from the training-

Fig. 11. Prediction of n by various models (blue: 95% interval of VB estimations; red: 95% interval of model predictions; dash lines: predicted 95% interval of the
naïve model; left part: training-validation set; right part: testing set; samples ordered in ascending VB-estimated median. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Table 3
Negative log likelihood of models.

θr α n

No. of samples in brackets − > Training-validation
(234)

Testing
(60)

Training-validation
(462)

Testing
(119)

Training-validation
(462)

Testing
(119)

Naïve model 1.283 1.269 1.754 1.396 1.685 1.647
Joint model 1.041 1.047 1.705 1.361 1.334 1.326
Linear-mean constant-scale fixed-parameter 1.032 1.028 1.672 1.453 1.328 1.333
Linear-mean constant-scale uncertain-parameter 0.991 0.999 1.667 1.446 1.325 1.326

1.021 1.029 1.673 1.470 1.331 1.337

Linear-mean linear-scale fixed-parameter 0.965 1.003 1.568 1.374 1.294 1.320
Linear-mean linear-scale uncertain-parameter 0.958 0.996 1.561 1.361 1.291 1.314

0.989 1.022 1.571 1.385 1.301 1.322

Nonlinear fixed-parameter X is 4 among 1, 2, 3, 4, 5, 10, 50, and
100.

X is 100 among 5, 10, 50, 100, 500 and
1000.

X is 10 among 2,5,10, 50, 100, and
500.

0.981 1.096 1.321 1.325 1.204 1.266

Nonlinear uncertain-parameter X is 10 among 5,10, 50, 100, and 500. X is 5 among 5,10, 50, 100, and 500. X is 10 among 5,10, 50, 100, and 500.
0.964 0.997 1.560 1.351 1.293 1.310
1.033 1.060 1.576 1.402 1.317 1.330

Nonlinear fixed-parameter using more predictors X is 2 among 1, 2, 3, 5,10, and 50. X is 30 among 5, 20, 30, 40, 50, and
100.

X is 5 among 2, 3, 4, 5,10, 50, and 100.

0.971 1.063 1.155 1.181 1.167 1.203

Nonlinear fixed-parameter by generating more
training data

X is 2 among 1, 2, 3, 5,10, and 50. X is 30 among 5, 20, 30, 40, 50, and
100.

X is 5 among 2, 3, 4, 5,10, 50, and 100.

0.980 1.078 1.159 1.238 1.172 1.238

***X=Optimal number of hidden neurons.
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validation samples are used for training and the rest 20 % for validation.
Once the parameters are determined, we check the model performance
on the training-validation set and the testing set, yielding NLL of 1.568
and 1.374, respectively. These scores are lower than those of previous
models, indicating that incorporating a linear dependence of scale on
predictors improves performance and reduces prediction uncertainty.
Applying the same model to n also improves prediction, but no
improvement is observed for θr, as shown in Table 3 (the row linear-
mean linear-scale fixed-parameter).

Since the model outputs a distribution, we can similarly estimate the
model parameters using a Bayesian framework. All following uncertain-
parameter models have many model parameters, so we use VB to esti-
mate the parameters to achieve efficiency. We use independent normal
distributions as the surrogates for them. For complex models, using non-
informative priors may lead to non-convergence. Therefore, we use
diffusive priors in all following inference: γ*, β**, λ*, and ξ** are all in-
dependent and follow a ’spike-and-slab’ distribution, which is a mixture
of N (0, 10) and N (0,100). The estimated parameters are close to that of
the fixed-parameter model with very low level of variation. The distri-
butions of NLL are also like that of the fixed-parameter model, listed as
linear-mean linear-scale uncertain-parameter model in Table 3.

7. Nonlinear models

Until now, the dependence on predictors has been confined to linear
relationships. To capture more complex interactions, we test several
nonlinear models, specifically artificial neural networks (ANNs),
expressed as follows:

y* ∼ N (μ*,σ*) y*is either θt
r, αt or nt

(
μ*, f − 1sp

(
σ
*))

=fANN
(
MCPt

2μm,MCPt
50μm,Porosity

t
,⋯;ϕ

)
(5)

The outputs of the ANNs are the mean μ* and the transformed scale
f − 1sp (σ*). These outputs are then used to create a distribution as the final
prediction. Given the limited number of features (<10), a fully con-
nected neural network with a single hidden layer is sufficient (He et al.,
2021; He et al., 2022). The sigmoid activation function is used for its
smoothness. We denote all the trainable parameters in the ANN as ϕ. A
point estimate of these parameters can be obtained by minimising the
LNN through optimisation, resulting in fixed-parameter models.

Firstly, fixed-parameter models are built to predict the residual water
content θr. The dashed lines in Fig. 12a show how the number of neurons
in the hidden layer affects model performance on the training-validation
set (blue) and the testing set (red). More neurons mean more powerful
models with the ability to capture more complex relationships. As the
number increases, the NLL on the training-validation set decreases

continuously. However, the NLL on the testing set also increases. When
the number is larger than 2, the NLL on the testing set becomes larger
than that on the training-validation set, indicating overfitting, where the
model corresponds too closely to the training data and fails to generalise
to new data. Fig. 9b illustrates the predictions of an overfitting model for
all samples. The model performs exceptionally well on the training-
validation set, displaying reduced prediction uncertainty compared to
both the joint model (Fig. 9a) and the final machine-learning model
(Fig. 9c). However, this overconfidence results in poor performance on
the testing set. Therefore, 2 neurons in the hidden layer are optimal.

The solid lines in Fig. 12a represent models with dropout (rate =

0.3), a technique often used in ANNs to prevent overfitting (He et al.,
2021). The model does not show clear signs of overfitting with 10
neurons, but overfitting still occurs with a larger number of neurons.
Compared to models without dropout, dropout does help prevent
overfitting to some extent and is therefore used in all subsequent models.
The leftmost point represents the performance of the linear model and
even the optimal nonlinear models perform only comparably, indicating
that using a nonlinear ANN does not improve the prediction of θr.

The performance of nonlinear fixed-parameter models for α are
shown in Fig. 12b, suggesting that an optimal number of neurons in the
hidden layer is 100. Similarly, the leftmost point represents the linear
model, so using nonlinear ANN improves the performance in predicting
α. Similar improvement is also observed for n (Table 3).

We can similarly estimate the trainable parameters ϕ within a
Bayesian framework, resulting in nonlinear uncertain-parameter
models. Fig. 12c illustrates the impact of the number of neurons on
model performance, using the prediction of θr as an example. The ver-
tical lines represent the 95 % interval. As the number of neurons in-
creases, the NLL median remains relatively stable, with only a slight
increase in variability. Beyond a critical point (10–50 neurons), model
performance declines sharply, accompanied by increasing variability.
The leftmost point still indicates the linear model. Thus, using a
nonlinear model with epistemic uncertainty does not offer an
improvement over a linear model. This is observed across all targets
(Table 3) and in all cases, even when more predictors are included later.
Therefore, nonlinear uncertain-parameter models are not considered
further in this paper.

The previous models utilised only three features as predictors and
characterised the PSD with just two features. As mentioned in Section 3,
we were able to interpolate the MCP values at various particle sizes for
most samples. By incorporating all these PSD-characterising features
along with porosity to construct nonlinear fixed-parameter models, we
achieved improved predictions: 1.063, 1.181, and 1.203 for θr, α, and n,
respectively on the testing set as shown in Table 3 and Fig. 13. This is the
best model till now. This improvement is anticipated, as more features
provide more information about each sample, thereby reducing
uncertainty.

Fig. 12. Relationship between model performance and complexity for nonlinear models (blue = training-validation; red = testing) (a) Fixed-parameter model for θr ;
solid lines= with dropout; dash lines= without dropout; (b) Fixed-parameter model for α with dropout; (c) Uncertain-parameter model for θr ; vertical lines represent
95 % intervals. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Another common technique for enhancing the performance of
machine-learning models is collecting more data. The more diverse and
high-quality data we have, the better our models can learn and gener-
alise. In our previous models, the 6,320-row dataset was generated by
performing Nd/s = 10 iterations of sampling for each soil sample in the
training-validation set. We experimented with performing Nd/s = 100
iterations of sampling, resulting in a larger dataset of 63,200 rows. Using
the same nonlinear fixed-parameter model and full set of predictors, the
model’s performance was similar to that of the model trained on the
smaller dataset. This indicates that the smaller dataset likely already
covered the full range of input/output interactions the model is expected
to handle, and additional data may not be beneficial unless it includes
new and interesting cases.

8. Conclusion

The SWCC is crucial for modelling the transport of water and haz-
ardous materials in the vadose zone. However, measuring SWCC in the
laboratory or field is often cumbersome and time-consuming. This paper
introduces a framework to develop indirect models that predict SWCC
parameters in probabilistic distributions using easily measurable quan-
tities such as particle-size distributions and porosity. The primary focus
is on reducing prediction uncertainty by employing multiple machine-
learning techniques. The models are built on the UNSODA dataset,
which is a collection of data for 790 soil samples.

This paper started with building convectional statistical joint models
with only three predictors. The conditional probability of this joint
model constitutes a predictive model. However, the prediction uncer-
tainty is extremely large, not significantly better than a naïve model that
ignores all the predictors and predict the same distribution for all sam-
ples. It was found that that this conditional probability from the joint
model is equivalent to a linear regression. Subsequently, various tech-
niques in machine learning were explored to improve prediction.

First, introducing the dependence of variation scale on predictors
enhanced performance, as a constant scale could not account for ob-
servations that different types of soils had similar medians for α but
varied scales of variation. Replacing linear dependence with ANN also
improved model performance by capturing complex interactions be-
tween inputs and outputs. Additionally, incorporating more features to
characterise the PSD of soils could provide more information, which
helped better determine the possible distribution of SWCC parameters.
Generating a larger dataset from training-validation samples yielded
little gain, likely because the smaller dataset already covered the full
range of input/output interactions.

The best model was a nonlinear fixed-parameter model trained on
the complete set of predictors. This model significantly reduced pre-
diction variability. Specifically, for predicting α and n, the NLL was
reduced to 1.181 and 1.203 from 1.361 and 1.326 in the joint normal
models, thereby achieving our initial goal. The final machine-learning
model for predicting residual water content performed comparably to
the joint model (1.063 vs. 1.047), indicating that a linear regression is
sufficient for this parameter.
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