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This paper presents a comprehensive investigation into the application of deep learning models for predicting 
indoor environmental quality in smart buildings. Using data collected from a network of microclimate sensors 
deployed across a university campus in Sydney, we evaluated the performance of Convolutional Neural Network 
(CNN), Long Short-Term Memory (LSTM), and hybrid CNN-LSTM models. Our study encompassed various 
aspects of model development, including data preparation, architecture design, hyperparameter optimization, 
and model interpretability. Contrary to common assumptions in time series forecasting, our results demonstrate 
that CNN models consistently outperformed LSTM and hybrid models in predicting indoor temperature. We 
found that multivariate input configurations enhanced prediction accuracy across all model types, highlighting 
the importance of capturing complex interactions between environmental parameters. Through SHapley 
Additive exPlanations (SHAP) analysis, we identified temperature, humidity, and Heating, Ventilation, and 
Air Conditioning (HVAC) status as the most influential features for predictions. Our experiments also revealed 
optimal configurations for historical input length and prediction horizon, providing practical guidelines for model 
implementation. This research contributes valuable insights for the development of more efficient and accurate 
smart building management systems, potentially leading to improved energy efficiency and occupant comfort in 
built environments.
1. Introduction

Buildings account for over one-third of global energy consumption, 
making energy efficiency critical for reducing carbon emissions [21]. 
Enhancing HVAC systems through demand-driven control strategies, 
which adjust operations based on real-time occupancy and environ-
mental data, can significantly improve efficiency [25]. These strategies 
require comprehensive data on current and future conditions, typically 
gathered from advanced sensor networks.

The proliferation of ubiquitous sensing devices and the growing 
prevalence of crowdsourcing have paved the way for the collection of 
vast amounts of spatio-temporal data [7]; [45]. These data sources often 
exhibit intricate patterns, including cyclical variations due to seasonal 
effects and spontaneous changes arising from external factors. Accu-
rately forecasting such patterns holds immense practical value across nu-
merous domains, from urban planning to building and infrastructure en-
ergy management and efficiency enhancement. Modern HVAC systems 
leverage Internet of Things (IoT) devices and machine learning to pre-
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dict temperature, humidity, and other microclimate variables, enabling 
more responsive management. Various machine learning techniques, in-
cluding Artificial Neural Network (ANN), k-Nearest Neighbor (KNN), 
and Support Vector Machine (SVM), have shown promise in optimizing 
HVAC performance [36]; [4]. For example, neural network and particle 
swarm optimization algorithm showed that it is possible to reduce HVAC 
systems’ energy consumption by 7.8 percent without compromising in-
door environmental conditions [2]. In commercial buildings, machine 
learning-based occupancy predictions have resulted between 7 and 52 
percent energy savings as compared to the conventionally-scheduled 
cooling systems [34].

Other studies used ANN for predicting hourly indoor air temper-
ature and relative humidity in modern building in humid regions to 
good accuracy [29]. Considering breadth of micro-climate inputs in 
modeling algorithms, a comprehensive environmental sensing testbed at 
Carnegie Mellon University’s Intelligent Workplace integrates advanced 
IT systems and sensing technologies, including sensors for Carbon Diox-
ide (CO2), Carbon Monoxide (CO), Total Volatile Organic Compounds 
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(TVOC), Particulate Matter (PM), and acoustics, to achieve energy effi-
ciency and provide a productive environment [14]. Overall, there have 
been a wide array of experimental approaches that can contribute to 
model performance.

Although machine learning methods have proven widely applica-
ble in controlling buildings’ indoor environment, advanced deep learn-
ing models have not yet been investigated properly in this field [14]. 
Deep learning has demonstrated remarkable capabilities in extracting 
complex patterns from diverse data sources, including spatio-temporal 
datasets [45]. Deep learning models, such as CNN, LSTM, and their hy-
brid variants, have shown promising results in modeling and predicting 
a wide range of time series phenomena [26]; [18]. However, the perfor-
mance of these models can be significantly influenced by the choice of 
input features, model architecture, and the temporal characteristics of 
the target variables.

Existing research has explored the application of deep learning to 
time series forecasting, highlighting both the benefits and limitations 
of various model architectures and input configurations [8]; [20]. For 
instance, Benidis et al. [8] emphasizes the importance of appropriate 
normalization techniques to ensure the comparability of input features, 
while Faloutsos et al. [16] underscores the challenges of leveraging large 
and diverse data sources for building effective forecasting systems.

Recent research has highlighted the complex interplay of factors af-
fecting indoor environmental quality, energy efficiency, and occupant 
comfort in buildings. Ma et al. [28] conducted a comprehensive review 
of variables and models for thermal comfort and indoor air quality, em-
phasizing the importance of considering a wide range of parameters 
beyond just temperature and humidity. Their study identified key fac-
tors such as air velocity, mean radiant temperature, and personal factors 
(e.g., clothing insulation and metabolic rate) as crucial for accurate ther-
mal comfort predictions. Additionally, they highlighted the significance 
of indoor air pollutants, including particulate matter, Volatile Organic 
Compound (VOC), and CO2, in determining overall indoor environmen-
tal quality. Ganesh et al. [19] further investigated the factors affecting 
human comfort in indoor environments, stressing the need for a broad 
approach that considers thermal, visual, and acoustic comfort alongside 
indoor air quality. Their critical review emphasized the importance of 
integrating these diverse factors into building management systems to 
optimize occupant well-being and productivity. Yang et al. [51] demon-
strated the potential of combining machine learning techniques with 
model predictive control to optimize both building energy efficiency and 
comfort. Their adaptive approach showed significant improvements in 
energy savings while maintaining or enhancing occupant comfort lev-
els. In the context of energy efficiency and comfort optimization, Brandi 
et al. [10] explored the application of deep reinforcement learning for 
indoor temperature control and heating energy consumption. Their re-
search showcased the potential of advanced AI techniques in balancing 
the often conflicting goals of energy conservation and occupant comfort. 
Furthermore, Dimitroulopoulou et al. [12] provided a comprehensive 
appraisal of indoor air quality guidelines from around the world, con-
sidering their implications for energy saving, health, productivity, and 
comfort. Their work underscores the importance of addressing indoor 
environmental quality comprehensively, taking into account regional 
variations and evolving standards. These studies collectively highlight 
the multifaceted nature of indoor environmental quality and the need 
for sophisticated modeling approaches that can capture the complex 
interactions between various environmental parameters, occupant be-
havior, and building systems. By incorporating insights from this body of 
research, our study aims to develop more accurate and comprehensive 
predictive models for indoor temperature and environmental quality, 
ultimately contributing to the advancement of smart building manage-
ment systems.

This paper contributes to the field of smart building management 
by systematically exploring the application of deep learning techniques 
to predict indoor environmental quality. Our work distinguishes itself 
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through a comprehensive comparative analysis of multiple deep learn-
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ing models (CNN, LSTM, and hybrid CNN-LSTM) for temperature pre-
diction, addressing a gap in existing literature where such extensive 
comparisons are often lacking. We evaluate various input configura-
tions and conduct a thorough parametric analysis, offering insights into 
optimal model implementations for real-world scenarios [40,38]. Un-
like many previous studies that relied on limited datasets, our analysis 
leverages diverse data from a university campus, encompassing different 
room sizes, usage patterns, and environmental conditions, ensuring ro-
bust and generalizable findings [55]. Furthermore, we emphasize model 
interpretability through SHAP analysis, providing valuable insights into 
feature importance [27]. By addressing these aspects collectively, our 
research provides a more holistic understanding of deep learning appli-
cations in indoor environmental quality prediction, potentially leading 
to improved energy efficiency and occupant comfort in built environ-
ments [37]; [23].

Our focus on accurate temperature prediction serves as a crucial step-
ping stone towards the development of fully integrated smart building 
management systems. By establishing a robust foundation for environ-
mental forecasting, we enable the creation of more sophisticated control 
algorithms that can simultaneously optimize energy efficiency and occu-
pant comfort [23]. Accurate temperature predictions allow building sys-
tems to anticipate thermal needs, proactively adjust HVAC operations, 
and maintain optimal comfort levels while minimizing energy consump-
tion [1]. This predictive capability is essential for the next generation of 
intelligent building systems that can adapt in real-time to changing en-
vironmental conditions and occupant requirements [11]. Moreover, the 
insights gained from our comparative analysis of deep learning models 
and input configurations provide valuable guidelines for researchers and 
practitioners working towards integral building management solutions 
that integrate multiple environmental parameters beyond temperature 
[46]. By demonstrating the effectiveness and interpretability of deep 
learning approaches in this critical aspect of building management, our 
work contributes to the ongoing transition towards more sustainable, 
efficient, and comfortable built environments.

2. Methodology

2.1. Data collection

In this study, a comprehensive data collection setup was established 
using Hibou portable microclimate sensors within a city-based univer-
sity campus in Sydney, Australia, from September 2022 to July 2023. 
The deployment included ten indoor sensors in classrooms, computer 
labs and lecture theaters to monitor air quality parameters. The floor 
layout and the spaces equipped with sensors are displayed in Fig. 1. 
The building has a central air duct system that uses ductwork to circu-
late cooled or heated air from a central air conditioning unit or fur-
nace throughout the building, utilizing an Air Handling Unit (AHU) 
system for temperature control. The system operates on a fixed sched-
ule, running from 6 am to 6 pm on weekdays and remaining off during 
weekends. The set point temperature is maintained between 22 and 23 
degrees Celsius during operational hours. These spaces were occupied 
during regular university operational hours, and there were no signifi-
cant interfering activities like cooking or smoking.

The sensors measured and recorded localized temperature, humid-
ity, lighting, ambient pressure and particulate matters. They recorded 
data at two-minute intervals, continuously transmitting it to a cloud-
based database via a secure WiFi connection, facilitated by a separate 
DeviceNet protocol. Table 1 presents the specifications of the Hibou in-
door and outdoor sensors used in this study. Additionally, occupancy 
was measured using people counting sensors (XOVIS 3D PC) installed at 
room entrances, employing computer vision technology. The manufac-
turer reports a minimum 98% accuracy. These sensors recorded data at 
half-hourly intervals, which was then resampled to hourly frequency to 

align with other environmental measurement granularity.
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Fig. 1. Building floor layout. Rooms equipped with sensors are marked in 
blue. Two specific rooms are highlighted with red borders: room 03.017 is po-
sitioned in the northern section, with room 03.019 situated immediately to its 
south. These rooms flank a shared common space (marked in green) which con-
tains two environmental sensors (indicated by yellow markings). The north most 
sensor of the communal space is positioned at the back of the common space, 
while the southern sensor is located near the entrance point of this area. Sen-
sors throughout the building are placed to ensure comprehensive environmental 
data collection. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

Table 1

The specifications for Hibou indoor sensors (https://www .hibouair .com/).

Parameter Resolution/Output

Particulate Matter 
(PM2.5)

resolution 0.3 μg/m3. Max Error ±10%

Humidity range 0...100% R.H. Accuracy: ±3% R.H.
Temperature range 0...50 °C. Accuracy: ±1 °C
Pressure range 300...1100 hPa. Accuracy ±0.6 hPa
Ambient light resolution 100mLux as U.V. Index (WHO standard)
Volatile Organic Air Quality
Compounds Index

2.2. Data preparation

Data integrity was maintained through live data uploads to the Hibou 
web interface, with sensor registration on DeviceNet ensuring secure 
and consistent data exchange. For data retrieval, researchers accessed 
the sensor data through an Application Programming Interface (API). 
To address instances of missing data, a KNN Imputer technique was 
employed, leveraging correlated sensor behaviors to estimate missing 
values effectively. The initial phase of our methodology focuses on the 
preparation and splitting of the dataset. This ensures that the data is 
properly scaled, sequenced, and divided into training, validation, and 
test sets.

2.2.1. Enhancing temperature measurement precision

While each Hibou sensor has a manufacturer-stated accuracy of 
3

±1 ◦C, we leverage high-frequency sampling at 2-minute intervals, and 
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hourly data aggregation to substantially improve measurement preci-
sion. This method allows us to capture fine-grained temperature fluctu-
ations and minimize the impact of individual measurement errors (see 
Section 3.1).

2.2.2. Normalization

Both the features and the target variable are normalized to a range 
between 0 and 1 using MinMax scaling. This normalization is crucial for 
improving model convergence during training.

2.2.3. Sequence preparation

Sequences of data are created by sliding a window of a specified 
history length over the normalized dataset, capturing temporal depen-
dencies. Each sequence’s target is the value at a specified prediction 
length following the history window. In our experiments, the historical 
length and prediction length both range from 1 to 12 time steps with 
hourly granularity.

The historical length includes all time points in that range, while the 
prediction length is a point forecast of that specific time point and does 
not include all previous time points.

Input-output pairs are generated by iterating over the dataset, where 
each input sequence consists of time steps of features, and the corre-
sponding output is the target value. The dataset is divided into training, 
validation, and test sets based on predefined ratios (60% training, 20% 
validation, 20% testing). This split ensures that the model can be trained 
and validated effectively while reserving an unbiased test set for final 
evaluation.

2.3. Parameter selection

Based on the comprehensive literature review and considering the 
complex interplay of factors affecting indoor environmental quality, 
energy efficiency, and occupant comfort [28,19,51,10,12], we have se-
lected the following parameters for our machine learning model:

• Temperature: This is the target variable for our prediction model. 
Temperature is the main driver of thermal comfort, with optimal 
indoor comfort generally being achieved between 20-25 °C [5]. As 
highlighted by Yang et al. [51], accurate temperature prediction is 
crucial for both energy efficiency and occupant comfort.

• Humidity: Humidity significantly affects perceived temperature by 
influencing the body’s ability to cool itself through evaporation. Ma 
et al. [28] identified humidity as a key factor in thermal comfort 
models. The ideal range for comfort is typically between 30-60% 
[17,44].

• Air Pressure: While not directly impacting comfort, changes in at-
mospheric pressure can affect indoor air circulation, which may 
influence temperature stability and HVAC performance [5]. Ganesh 
et al. [19] noted the importance of considering such indirect factors 
in holistic indoor environment quality assessments.

• Ambient Light: As discussed by Ganesh et al. [19], visual comfort 
is an integral part of overall indoor environmental quality. Ambient 
light, especially natural sunlight, contributes to heat gain within in-
door spaces and can significantly impact both energy consumption 
and occupant comfort [43].

• Volatile Organic Compounds (VOC): VOC are crucial indicators 
of indoor air quality, as emphasized by Ma et al. [28] and Dim-
itroulopoulou et al. [12]. Poor air quality can degrade comfort and 
indirectly affect temperature by reflecting the efficiency of ventila-
tion systems [47].

• Particulate Matter (PM1, PM2.5, PM10): Dimitroulopoulou et al. 
[12] highlighted the importance of considering particulate matter 
in indoor air quality assessments. Airborne particulates can impact 
HVAC system efficiency and lead to uneven temperature distribu-

tion [48].

https://www.hibouair.com/
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• CO2 Levels: Ma et al. [28] identified CO2 as a key factor in indoor 
air quality models. High CO2 levels often indicate poor ventilation, 
which can trap heat inside a building and decrease comfort [39].

• Booking Status: To account for scheduled use of spaces, which can 
help predict occupancy patterns and their impact on indoor envi-
ronment.

• People Count: Direct measurement of occupancy, which Yang 
et al. [51] demonstrated as significant for both energy efficiency 
and comfort optimization.

• HVAC Status: A binary input indicating active system operation. 
Brandi et al. [10] showed the importance of considering HVAC op-
eration in models for optimizing indoor temperature control and 
energy consumption.

By incorporating this diverse set of variables, our models aim to 
capture the complex interplay of factors affecting indoor temperature, 
energy efficiency, and occupant comfort, as emphasized in recent lit-
erature [28,19,51,10,12]. This comprehensive approach allows us to 
develop more accurate and robust predictive models, potentially lead-
ing to improved smart building management systems that can balance 
energy efficiency with occupant comfort and well-being.

2.4. HVAC status representation in the model

In our approach to modeling building energy consumption, we have 
introduced a simplified representation of the HVAC system’s operational 
state, referred to as ‘HVAC status’. This section elucidates the rationale 
behind this representation and its implications for the model’s perfor-
mance.

The ‘HVAC status’ in our model is defined as a binary input variable 
that indicates whether the building’s HVAC system is actively operating 
or not during each hour. Specifically:

• A value of 1 indicates that the HVAC system is active and maintain-
ing the indoor environment at the setpoint temperature.

• A value of 0 indicates that the HVAC system is inactive, allowing 
the indoor temperature to fluctuate more naturally.

The adoption of a binary representation for HVAC system status in 
our model is underpinned by several key considerations, despite the in-
herent complexity of HVAC systems. This approach offers a balance of 
simplicity and effectiveness, providing our model with critical informa-
tion about active indoor environment control periods versus times of 
natural temperature fluctuation, without introducing unnecessary input 
parameter complexity. The binary input significantly enhances the mod-
el’s capacity to differentiate between active temperature control periods 
and more passive conditions, thereby improving predictions of energy 
consumption patterns. Furthermore, this method maintains computa-
tional efficiency by avoiding the inclusion of multiple detailed HVAC 
parameters, striking a balance between model complexity and process-
ing requirements. Importantly, for the building in our study, detailed 
HVAC operational data beyond its active/inactive state was neither 
readily available nor essential for achieving our modeling objectives. 
It is worth noting that the temperature predictions in our study refer to 
room temperature measured by our independent sensor network, which 
is separate from the sensors implemented in the HVAC system itself. This 
distinction is crucial as it allows our model to capture the actual expe-
rienced room temperature, which may differ from the HVAC system’s 
set points or internal measurements due to factors such as sensor place-
ment, local temperature variations within the room, and the dynamic 
response of the space to HVAC operations.

It is noteworthy that our model does not explicitly incorporate set-
point temperature as a distinct feature. This decision was informed by 
the specific characteristics of the building under investigation. The struc-
ture in question operates with a fixed setpoint temperature rather than 
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a dynamic one. In this context, the HVAC status effectively serves as an 
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indicator of the periods during which the system is actively maintain-
ing this constant setpoint temperature. By utilizing the HVAC status as 
a proxy, we indirectly account for the influence of the setpoint temper-
ature on both the system’s operation and energy consumption patterns. 
This approach allows us to capture the essential thermal management 
dynamics without the need for additional setpoint-specific variables.

2.5. Model architecture

We investigated prediction models using both univariate and mul-
tivariate inputs to compare their capabilities in capturing complex 
spatio-temporal dependencies. Univariate refers to a prediction model 
developed using only the target variable as input - in this case tem-
perature - whereas multivariate incorporates all other environmental 
measurements collected through sensors, as well as data from the build-
ing information platforms discussed in the paper. Additionally, we in-
troduced Shapley value analysis to provide novel insights into model 
interpretability, elucidating the contribution of individual features to 
prediction accuracy. Our investigation encompasses three distinct deep 
learning model architectures: CNN, LSTM, and hybrid CNN-LSTM mod-
els. Each architecture is tailored to leverage specific strengths in han-
dling spatio-temporal data.

2.5.1. CNN model

The CNN model employs multiple convolutional layers to capture 
local temporal patterns in the data [24]. Each convolutional layer is 
followed by max-pooling layers to reduce dimensionality and compu-
tational complexity. The final layers are fully connected (dense) layers 
that map the extracted features to the target variable.

2.5.2. LSTM model

The LSTM model is designed to capture long-term dependencies in 
the time series data [22]. It consists of multiple LSTM layers, each con-
figured to either return sequences or output only the final state based on 
the specified layer depth. The model concludes with dense layers that 
transform the LSTM outputs into the final prediction.

2.5.3. CNN-LSTM hybrid model

This model processes the data through time-distributed convolu-
tional and max-pooling layers, treating each timestep as a separate in-
stance to extract spatial features. The extracted features are then fed 
into LSTM layers to capture temporal dependencies. Finally, dense lay-
ers produce the output prediction (Fig. 2).

2.6. Model training and evaluation

2.6.1. Training configuration

The models are trained and tested using various configurations. A 
Bayesian optimization approach is utilized to efficiently navigate the 
hyperparameter search space. The search space includes:

• LSTM units: {1, 2, 4, 8, 16, 32, 64, 128}
• Learning rate: [1 × 10−5, 0.1]
• Batch size: {16, 32, 64}
• Filters: {32, 64, 128}
• Kernel size: {3, 5, 7}
• CNN kernel size: {1, 2, 3}
• CNN layers: {1, 2, 3, 4, 5}
• LSTM layers: {1, 2, 3, 4, 5}
• Dense units: {64, 128, 256}
• Optimizer: {adam, sgd, adadelta, lion, ftrl, nadam, adamax, ada-

grad, rmsprop}
• Activation: {elu, selu, gelu, leaky_relu, relu, tanh}
• Dilation rate: {1, 2, 4}

Mean Squared Error (MSE) is used as the loss function, and differ-

ent optimizers (e.g., Adaptive Moment Estimation (Adam), Stochastic 
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Fig. 2. Methodology workflow for predictive modeling. This figure outlines our study’s methodology, which consists of three main stages. The initial stage, data 
pre-processing, involves imputation of missing data, normalization of features, and splitting the dataset into train, validation, and test sets. Following this, the model 
training stage implements and trains CNN, LSTM, and hybrid models, optimizing their parameters using the training set and validating performance on the validation 
set (A, B). The final stage encompasses our experimental approach and analysis (C). Here, we explore various historical input lengths and prediction horizons, test 
the optimized models on the held-out test set, and apply SHAP analysis for model interpretability. The workflow illustrates an iterative process between the model 
training and experimental stages, indicating continuous refinement of the models based on experimental results.
Gradient Descent (SGD)) are employed based on the configuration to 
minimize this loss.

The model is compiled with the selected optimizer and loss func-
tion to begin the training process. The model is trained for 50 epochs 
using the training data, with validation data provided to monitor perfor-
mance and prevent over-fitting. The training process includes callbacks 
for logging metrics and saving the best model based on validation loss. 
Model training metrics and experiments were logged and tracked using 
Weights & Biases for comprehensive experiment monitoring [9].

2.6.2. Naive predictions

For comparison, naive predictions were created using mean aggre-
gates based on hour-of-day and day-of-week. The data used for these 
naive predictions was drawn from the validation set - a period prior to 
the test set, ensuring an unbiased baseline for performance evaluation.

2.7. Model evaluation and analysis

Post-training, the models are evaluated on the test set using metrics 
such as Root Mean Squared Error (RMSE), Mean Absolute Percentage Er-
ror (MAPE), and Symmetric Mean Absolute Percentage Error (SMAPE). 
These metrics provide a comprehensive assessment of the model’s pre-
dictive accuracy and robustness.

The RMSE is calculated as follows:

RMSE =

√√√√1
𝑛

𝑛∑
𝑖=1

(𝑦𝑖 − �̂�𝑖)2 (1)

where 𝑦𝑖 is the actual value, �̂�𝑖 is the predicted value, and 𝑛 is the num-
ber of observations.

The MAPE is calculated as:

MAPE = 100%
𝑛

𝑛∑
𝑖=1

||||
𝑦𝑖 − �̂�𝑖

𝑦𝑖

|||| (2)

where 𝑦𝑖 is the actual value, �̂�𝑖 is the predicted value, and 𝑛 is the num-
ber of observations.

The SMAPE is calculated as:

100%
𝑛∑ |𝑦𝑖 − �̂�𝑖|
5

sMAPE =
𝑛

𝑖=1 (|𝑦𝑖|+ |�̂�𝑖|)∕2 (3)
Table 2

Temperature measurement statistics by sensor.

Sensor ID Average SEM 
(◦C)

Minimum Temperature 
(◦C)

Maximum Temperature 
(◦C)

01D997 0.020 18.68 27.91
01E60A 0.019 17.64 27.51
052E9D 0.026 18.56 28.24
05500B 0.016 18.41 27.36
0589C3 0.012 18.01 26.78
43344A 0.019 17.81 28.69
0565F6 0.012 18.18 25.00
4336AB 0.022 17.58 28.55
432541 0.015 16.58 31.90
4350B8 0.021 16.13 28.46

where 𝑦𝑖 is the actual value, �̂�𝑖 is the predicted value, and 𝑛 is the num-
ber of observations.

3. Results

This section presents a comprehensive analysis of the sensors’ data 
and the development of predictive models for temperature forecasting. 
We begin by examining the diurnal patterns and correlations between 
various environmental parameters and occupancy. We then progress 
through the optimization of machine learning models, comparing their 
performance, and finally delve into the interpretability of our best-
performing model. This structured approach allows us to build a holistic 
understanding of the complex interactions within indoor environments 
and the effectiveness of our predictive modeling techniques.

3.1. Temperature precision and range of measurements

The effectiveness of our approach of sampling and aggregation meth-
ods of the Hibou sensors is evidenced by the low Standard Error of Mean 
(SEM) values achieved across all monitored rooms. Table 2 presents a 
comprehensive overview of the average SEM, minimum temperature, 
and maximum temperature for each room in our study.

The average SEM values range from ±0.012 ◦C to ±0.026 ◦C, which 
is significantly lower than the ±1 ◦C accuracy of individual sensors. Fur-

thermore, the data reveals a wide temperature range across all rooms, 
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Fig. 3. Diurnal patterns of micro-climate parameters and occupancy in the 
building. Hourly aggregates of Temperature, PM10, Pressure, and Occupancy 
count across 10 datasets over a 24-hour period. Data points represent means 
with 95% confidence intervals. The x-axis shows the hour of the day in 24-hour 
format, while y-axes depict the respective units for each parameter. Aggregates 
are derived from sensor measurements and collected building occupancy data.

spanning from a minimum of 16.13 ◦C to a maximum of 31.90 ◦C. This 
extensive range underscores the system’s capability to detect and record 
significant temperature variations, further validating the reliability of 
our measurements.

3.2. Data analysis

Data investigation begins with an in-depth exploration of the tem-
poral patterns and interrelationships of key environmental parameters. 
This analysis sets the foundation for understanding the dynamic nature 
of indoor environments and informs our subsequent modeling efforts.

3.2.1. Hourly aggregates

Fig. 3 examines the diurnal patterns of micro-climate parameters and 
occupancy. This analysis reveals the daily rhythms of indoor environ-
ments, highlighting the interplay between human activity and environ-
mental conditions. Below, the distinct diurnal patterns of micro-climate 
parameters and occupancy are discussed separately for each parameter.

Temperature: Mean indoor temperature shows a clear diurnal cycle, 
ranging from approximately 23 °C to 24 °C. The lowest temperatures are 
observed in the early morning (around 07:00), followed by a steady 
increase throughout the day. Peak temperatures occur in the evening 
(between 21:00-03:00), after which they gradually decline. This pattern 
aligns with the HVAC operating hours. The narrow confidence intervals 
suggest consistent temperature control across the sampled building.

PM10: Particulate matter concentrations (PM10) show subtle variations 
throughout the day. Levels are highest during the early morning hours 
(00:00-06:00), likely due to reduced activity within the rooms. A slight 
decrease is observed during typical working hours (08:00-18:00), asso-
ciated with active hours HVAC system. The wider confidence intervals 
during daytime hours suggest greater variability in PM10 levels across 
6

building spaces during periods of occupancy.
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Fig. 4. Micro-climate correlation chart for university room 03.017. Correla-
tion matrix including all environmental parameters. Color intensity represents 
the strength of correlation, with blue indicating negative correlations and red 
indicating positive correlations. Room volume is 219.94m3.

Pressure: Atmospheric pressure within the buildings demonstrates mi-
nor fluctuations, ranging from approximately 1012 hPa to 1018 hPa. A 
slight diurnal pattern is discernible, with lower pressures observed in 
the afternoon hours and late evening. This pattern may be influenced 
by outdoor atmospheric conditions. The narrow confidence intervals in-
dicate consistent pressure readings across the sampled sensors.

Occupancy: The occupancy data reveals a strong correlation with typ-
ical working hours. Near-zero occupancy is observed from midnight to 
early morning (00:00-06:00). A sharp increase occurs between 07:00 
and 09:00, corresponding to the arrival of building occupants. Peak oc-
cupancy is maintained during standard working hours (09:00-17:00), 
followed by a gradual decline in the evening. The wider confidence in-
tervals during peak hours suggest variability in maximum occupancy 
levels across different rooms or days.

These findings provide insights into the dynamic interplay between 
building occupancy patterns and micro-climate parameters, highlight-
ing the potential influence of human activity on indoor environmental 
conditions. The data underscores the importance of considering tempo-
ral variations in building management strategies for optimizing energy 
efficiency and occupant comfort.

3.3. Correlation analysis

This section explores the correlations between indoor environmen-
tal parameters, occupancy, and building HVAC system status across two 
university spaces (Figs. 4, 5). The analysis reveals complex interactions 
between various Indoor Environmental Quality (IEQ) parameters, pro-
viding insights into building performance and occupant-environment 
interactions [32].

3.3.1. Particulate matter dynamics

Analysis of PM correlations reveals moderate to strong interconnec-
tions between different particle size fractions. The correlations between 
PM1, PM2.5, and PM10 (r = 0.66 to 0.80 in 03.017 and r = 0.41 to 
0.82 in 03.019) align with established indoor aerosol behavior theo-
ries [30]. The observed correlation patterns suggest common sources 
and removal mechanisms affecting different particle size fractions. The 
relationship between PM levels and temperature shows moderate corre-

lation in 03.017 (r = 0.41 to 0.46) and weak correlation in 03.019 (r 



R. Minassian, A.-S. Mihăiţă and A. Shirazi

Fig. 5. Micro-climate correlation chart for university room 03.019. Correla-
tion matrix including all environmental parameters. Color intensity represents 
the strength of correlation, with blue indicating negative correlations and red 
indicating positive correlations. Room volume is 297.35m3.

= 0.19 to 0.29), suggesting that temperature may have some influence 
on particle behavior, though other factors likely play important roles.

3.3.2. Occupancy-related environmental dynamics

The strong positive correlations between occupancy and booking 
status (r = 0.92 for 03.017 and r = 0.94 for 03.019) demonstrate ro-
bust space utilization monitoring. CO2 concentrations show moderate 
positive correlations with occupancy in both spaces (r = 0.45 and r 
= 0.52, respectively), consistent with established metabolic CO2 gen-
eration rates in indoor environments [35]. The moderate correlations 
between occupancy and PM10 levels (r = 0.34 to 0.44) reflect the im-
pact of human activity on particle resuspension, a phenomenon widely 
documented in indoor air quality research [50]; [52].

3.3.3. Thermal-humidity interactions

The correlation analysis reveals minimal to no relationship between 
temperature and humidity across the spaces (r = 0.05 in 03.017, r = 
0.14 in 03.019). These near-zero correlations suggest that temperature 
and humidity levels vary independently, indicating effective decoupling 
of temperature and humidity control in the HVAC systems [13]. Simi-
larly, the pressure-temperature correlations (r = -0.23 and r = 0.09) 
show negligible relationships, suggesting that pressure variations occur 
largely independently of temperature changes in these spaces.

3.3.4. VOC and Co2 behavior

The analysis of VOC distributions reveals distinct patterns across 
three monitored spaces (Fig. 6). Room 03.017 exhibits the highest prob-
ability density peak (approximately 0.08) for VOC concentrations be-
tween 100 and 101 ppm. Similarly, room 03.019 shows a comparable 
distribution pattern but with a slightly lower density peak (approxi-
mately 0.07). In contrast, the communal space with sensors placed in the 
front and rear of the room demonstrates markedly different behavior, 
with a significantly lower density peak (approximately 0.002) and a rel-
atively narrow and uniform distribution at 103 ppm. These distribution 
patterns, when considered alongside the correlation analysis, provide 
deeper insights into indoor air quality dynamics. In 03.017, VOC levels 
show moderate correlations with PM levels (r = 0.48 to 0.52), suggest-
ing possible common sources or transport mechanisms. 03.019 shows 
different relationships, with a strong negative correlation between VOC 
and humidity (r = -0.85) and a moderate negative correlation with tem-
7

perature (r = -0.36). Given the proximity to the common space with its 
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Fig. 6. Probability Density Functions across A) classroom 03.017, B) class-

room 03.019, C) northern sensor in university communal space (rear area), 
and D) southern sensor in university communal space (near entrance).

The figure presents VOC concentration distributions using probability density 
functions plotted on a symmetrical logarithmic scale. Measurements were taken 
from two rooms (03.017 and 03.019) and their adjacent communal space, with 
vertical axes showing density values and the horizontal axes displaying VOC 
concentrations in parts per million (ppm).

higher VOC levels, these contrasting correlations might reflect different 
air exchange patterns between the classroom and the adjacent commu-
nal area.

The contrasting VOC correlations between 03.017 and 03.019 (r = 
0.48–0.52 with PM versus r = -0.85 with humidity, respectively) may 
be attributed to several room-specific dynamics. In 03.017, the posi-
tive correlation with PM levels could indicate shared indoor sources, 
such as human activities that simultaneously generate both particles 
and VOC (e.g., use of personal care products, cleaning activities, or 
movement stirring up settled particles). The moderate strength of this 
correlation suggests that while these sources exist, other factors also in-
fluence VOC concentrations independently of PM. In contrast, 03.019’s 
strong negative correlation between VOC and humidity points to poten-
tially different ventilation patterns or room usage characteristics. This 
inverse relationship might be explained by room orientation and prox-

imity to building exhaust points, local air exchange patterns influenced 
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by door opening frequencies, and distinct usage patterns that affect both 
VOC sources and humidity levels differently from 03.017. The moder-
ate negative correlation with temperature in 03.019 (r = -0.36) further 
supports the possibility of ventilation-driven differences, as tempera-
ture gradients can influence air movement patterns between spaces. This 
could be particularly relevant given the room’s interaction with the com-
munal space’s higher VOC concentrations.

The spatial distribution of VOC in the communal space, as indicated 
by the different concentrations between the entrance (C) and rear (D) 
sensors, suggests the presence of a concentration gradient. This gradient 
could differentially affect rooms 03.017 and 03.019 based on their po-
sition relative to the communal space and local air flow patterns. Such 
concentration gradients can create different diffusion pressures and mix-
ing patterns when doors are opened, potentially contributing to the 
observed differences in VOC correlations between the two classrooms. 
This phenomenon has been documented in several studies examining 
indoor pollutant transport patterns in connected spaces [33]; [35].

CO2 shows weak correlations with temperature across spaces (r = 
0.18 to 0.30), suggesting that CO2 levels vary largely independently of 
temperature. While both CO2 and VOC show distinct distribution pat-
terns in these spaces, their weak correlations with temperature indicate 
that other factors, such as occupancy patterns and source characteris-
tics, may be more important in determining their concentrations.

This correlation analysis provides valuable insights into the com-
plex interactions governing indoor environmental quality in university 
buildings. The observed variations in parameter relationships demon-
strate the importance of understanding local building physics, HVAC 
operation, and indoor air quality dynamics [42]. The findings suggest 
that effective indoor environment management requires comprehensive 
consideration of ventilation effectiveness, mechanical system perfor-
mance, building envelope characteristics, and occupant behavior pat-
terns. These results contribute to the growing body of knowledge on 
indoor environmental quality in educational facilities and underscore 
the importance of integrated approaches to building systems analysis 
and control.

3.4. Bayesian optimization for LSTM model configurations

With insights from our data analysis, we proceed to develop predic-
tive models. We employ Bayesian optimization to fine-tune the hyperpa-
rameters of our LSTM models, systematically exploring the model con-
figuration space to identify optimal settings for temperature prediction. 
Due to its efficiency in exploring high-dimensional spaces and capacity 
to balance exploration and exploitation, this optimization method leads 
to more effective model performance with fewer iterations compared to 
traditional grid or random search methods.

Fig. 7 presents parallel coordinates plots for hyperparameter tuning 
of an LSTM-based model, with purple lines indicating better-performing 
configurations (lower validation loss). The plots reveal several key 
trends in the optimal hyperparameter settings.

The activation function analysis showed that high-performing mod-
els predominantly use Rectified Linear Unit (ReLU) and Gaussian Error 
Linear Unit (GELU) activation functions. While some successful mod-
els use Hyperbolic Tangent Function (Tanh), it appears less frequently 
among the top performers. Regarding batch size, a value of 32 is most 
common among the best-performing models, with some successful con-
figurations also using a batch size of 64. The smaller batch size of 16 is 
rarely associated with top performance.

Learning rate optimization revealed that the most effective models 
cluster around values of 0.001 to 0.01. Very low (0.0001) or high (0.1, 
1.0) learning rates are generally absent from the best-performing config-
urations. In terms of LSTM layers, top-performing models tend to have 
2 or 3 layers. Deeper networks with 4 or 5 layers appear less frequently 
among the best configurations, suggesting that moderate depth is pre-
8

ferred for this particular task.
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The number of LSTM units also played a crucial role, with high-
performing models showing a preference for larger numbers. Many suc-
cessful configurations use 64 or 128 units, while fewer top performers 
use 32 units or less, indicating that increased model capacity is benefi-
cial. Optimizer choice proved to be significant, with Adam and Nesterov-
accelerated Adaptive Moment Estimation (Nadam) optimizers strongly 
associated with the best-performing models. Root Mean Square Prop-
agation (RMSprop) also appears among some top configurations, but 
less frequently than Adam variants. Other optimizers like SGD, Adap-
tive Gradient Algorithm (Adagrad), and Adaptive Delta (Adadelta) are 
rarely seen in the best-performing models.

The multivariate plot (Fig. 7b) reveals that the best models often 
combine ReLU or GELU activation, a batch size of 32, learning rate 
around 0.001 to 0.01, 2 or 3 LSTM layers, 64 or 128 LSTM units, 
and Portmanteau of “Adam” and “Maximum” (Adamx) or Nadam op-
timizer. These findings suggest that while individual hyperparameters 
show clear trends, their interactions are crucial for achieving optimal 
performance. The consistent patterns among top performers indicate 
that focused hyperparameter tuning around these configurations could 
yield further improvements. Additionally, the results highlight the im-
portance of using adaptive optimizers and sufficient model capacity 
(through LSTM units) while maintaining a moderate network depth for 
this specific task.

3.5. Univariate vs. multivariate comparison

Leveraging the optimized model configurations, we now compare 
the performance of univariate and multivariate approaches. This com-
parison allows us to assess the value of incorporating multiple environ-
mental parameters in our predictive models.

Fig. 8 presents a comparison of temperature predictions from three 
LSTM model variants against actual values over a period of approx-
imately 200 hours (timesteps 800-1000 of the test set). As shown in 
Fig. 8a, the naive model demonstrated the poorest performance among 
the three. Its predictions (red dashed line) consistently lagged behind the 
actual temperature trends (blue solid line), often missing both peaks and 
troughs. The residuals (gray dotted line) exhibited large fluctuations, in-
dicating significant prediction errors throughout the time series.

In contrast, Fig. 8b illustrates that the univariate model showed a 
marked improvement over the naive approach. The green dashed line, 
representing the univariate model’s predictions, captured the general 
temperature trends more accurately, more closely following the actual 
values (blue solid line). However, it still displayed some lag in predicting 
rapid temperature changes, particularly at troughs. The residuals (gray 
dotted line) were notably smaller than those of the naive model but still 
showed some systematic patterns.

Fig. 8c demonstrates that the multivariate model exhibited the 
best performance among the three. Its predictions (purple dashed line) 
aligned most closely with the actual temperature values (blue solid line), 
accurately capturing both the overall trends and the short-term fluctu-
ations. The model successfully predicted most peaks and troughs with 
minimal lag. The residuals (gray dotted line) were the smallest and most 
uniform among the three models, indicating consistently low prediction 
errors across the time series.

The progression from naive to univariate to multivariate models, 
as visualized in subplots a, b, and c respectively, showed a clear im-
provement in prediction accuracy. The naive model’s poor performance 
suggested that simple persistence-based predictions were inadequate for 
the temperature forecasting task. The univariate model’s improved accu-
racy indicated that leveraging historical temperature data significantly 
enhanced prediction quality. The multivariate model’s superior perfor-
mance demonstrated the value of incorporating additional relevant vari-
ables beyond just historical temperature in the prediction process.

The multivariate model’s ability to accurately predict temperature 
fluctuations, including sudden changes, suggested that it effectively cap-

tured complex relationships between temperature and other environ-
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Fig. 7. Parallel coordinates plot for Bayesian optimization of LSTM model configurations. The results of Bayesian optimization for hyperparameter tuning of 
univariate (a) and multivariate (b) LSTM models. Each line represents a different model configuration, with color indicating the validation loss (purple lines represent 
better-performing models with lower loss). The plots display the relationships between various hyperparameters including activation function, batch size, learning 
rate, number of layers, number of units, and optimizer choice. The y-axis for validation loss is shown on the rightmost column. Color intensity corresponds to the 
logarithmic scale of validation loss.
mental or contextual factors. This improved accuracy, evident from the 
close alignment of the purple dashed line with the blue solid line in 
Fig. 8c, could be particularly valuable for applications requiring precise 
temperature control or forecasting, such as in building energy manage-
ment systems or climate control in sensitive environments.

These results underscore the importance of model complexity and 
input richness in time series prediction tasks, particularly for dynamic 
environmental variables like temperature. The multivariate LSTM ap-
proach appears to be the most suitable for this specific temperature 
prediction task, offering a balance of accuracy and responsiveness to 
short-term variations, as clearly demonstrated by the comparison in 
Fig. 8.

3.6. Model performance comparison

Expanding on our univariate-multivariate comparison, we conduct a 
comprehensive evaluation of different model architectures. This analysis 
helps us identify the most effective approach for temperature prediction 
9

in indoor environments amongst common deep learning architectures.
Fig. 9 presents a comparison of three performance metrics (SMAPE, 
MAPE, and RMSE) across different model architectures and input types. 
The boxplots provide a visual representation of the distribution of these 
metrics.

Examining the SMAPE results in Fig. 9a, we observe that multivariate 
input consistently outperforms univariate input across all model types. 
This is particularly evident for the CNN model, where the multivari-
ate median SMAPE (1.38%) is lower than its univariate counterpart 
(1.42%). The LSTM model shows the most significant improvement 
with multivariate input, with the median SMAPE decreasing from 1.85% 
(univariate) to 1.59% (multivariate).

The MAPE results, depicted in Fig. 9b, reveal a similar trend. The 
CNN model demonstrates the best performance, with a multivariate 
median MAPE of 1.39%, compared to 1.42% for univariate input. The 
CNN-LSTM and LSTM models also benefit from multivariate input, with 
notable reductions in median MAPE values.

Fig. 9c illustrates the RMSE results, which align with the patterns 
observed in SMAPE and MAPE. The CNN model again exhibits the low-

est median RMSE (0.40ºC for multivariate, and univariate), indicating 
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Fig. 8. Comparison of LSTM model temperature predictions against ac-

tual values. Each LSTM model uses 12 historical hourly timepoints to predict 
one hour into the future. Subplots show: (a) Naive model, (b) Univariate LSTM 
model, and (c) Multivariate LSTM model. Blue lines represent actual temper-
atures, orange dashed lines show model predictions, and gray areas depict 
prediction residuals. The x-axis represents hourly timesteps, showcasing approx-
imately 200 hours of predictions.

Fig. 9. Performance Comparison of univariate and multivariate Models for 
temperature prediction. The boxplots show: (a) SMAPE, (b) MAPE, and (c) 
RMSE for each model type. Blue boxes represent univariate models, while red 
boxes indicate multivariate models. Each model type (CNN-LSTM, CNN, LSTM) 
is compared across these three error metrics. Lower values indicate better perfor-
mance. The boxes show the interquartile range (IQR), with the median marked 
by a horizontal line. Whiskers extend to 1.5 times the IQR from the edges of the 

Fig. 10. Training time across model architectures. The boxplots show the 
distribution of training time for each model type. The boxes show the interquar-
tile range (IQR), with the median marked by a horizontal line. Whiskers extend 
to 1.5 times the IQR from the edges of the box. Points beyond the whiskers rep-
resent outliers.

its superior predictive accuracy. A tighter interquartile range of these 
models also demonstrates greater reliability across indoor conditions. 
The LSTM model shows the largest improvement when switching to 
multivariate input, with the median RMSE decreasing from 0.58ºC to 
0.46ºC.

Key findings from this analysis include:
1. Multivariate superiority: Across all metrics and model types, mul-

tivariate inputs consistently lead to better performance than univariate 
inputs. This suggests that incorporating additional relevant variables en-
hances prediction accuracy. This aligns with previous research on fore-
casting indoor temperature using multivariate analysis in conditioned 
indoor environments, which has demonstrated high forecasting accu-
racy [53].

2. CNN model performance and efficiency: The CNN architecture 
appears to be the most effective, consistently showing the lowest error 
rates and highest consistency across all metrics whilst maintaining the 
lowest average training time (Fig. 10). This indicates that convolutional 
layers alone perform well for this particular prediction task.

3. Model ranking: Based on these results, the models can be ranked 
in order of decreasing performance as follows: CNN > CNN-LSTM > 
LSTM. This ranking holds true for both multivariate and univariate in-
puts. Similar models architectures were previously used for temperature 
prediction modeling based on data collected from a room in a univer-
sity building in Belgium [15]. The results of their study confirmed that 
the CNN-LSTM model outperformed other models and showed a bet-
ter robustness against error accumulation. However, it is important to 
note that their study focused on a single room and primarily utilized 
HVAC information, whereas our study includes a broader range of en-
vironmental metrics.

4. Variance in performance: The LSTM model shows the largest vari-
ance in performance across all metrics, as evidenced by the wider boxes 
and longer whiskers in Fig. 9. This suggests that its predictions are less 
consistent compared to the CNN-based models.

These results highlight the importance of both model architecture 
and input complexity in achieving accurate and consistent predictions. 
The superior performance of the multivariate CNN model suggests that 
this approach is particularly well-suited for capturing complex spatial 
relationships in the data, leading to more accurate predictions. The con-
sistent improvement seen with multivariate inputs underscores the value 
of incorporating diverse, relevant data streams in predictive modeling 
tasks for indoor temperature forecasting.

3.7. History and prediction length experiments

To further refine our modeling approach, we investigate the impact 
of historical input length and prediction horizon on model performance, 
with timesteps on an hourly scale. This exploration informs the optimal 
configuration for balancing prediction accuracy and computational ef-
10

box. Points beyond the whiskers represent outliers.
 ficiency, considering the granularity of hourly data intervals. Fig. 11
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Fig. 11. Performance of CNN multivariate models with varying historical 
input and prediction lengths. The x-axis represents the historical input length 
(1 to 12 time steps), while the y-axis shows the SMAPE. Each line represents a 
different prediction length (P) from 1 to 12 time steps, as indicated by the color 
legend. Lower SMAPE values indicate better model performance.

illustrates the performance of the CNN multivariate model across differ-
ent combinations of historical input length and prediction length (P), as 
measured by SMAPE.

Historical input length The plot reveals a general trend of decreasing 
SMAPE as the historical input length increases, particularly for longer 
prediction lengths (P=7 to P=12). This suggests that providing more 
historical context generally improves the model’s predictive accuracy, 
especially for long-term forecasts. For instance, with P=12, the SMAPE 
decreases from 5.25% at 1 time step to 3.08% at 12 time steps, a sub-
stantial improvement of 41.3%.

However, the impact of historical input length varies across different 
prediction horizons. For shorter prediction lengths (P=1 to P=6), the 
effect is less pronounced and more erratic. For example, with P=1, the 
SMAPE fluctuates between 1.08% and 1.97% across different historical 
input lengths, showing no clear trend of improvement.

Prediction length (P) Since room temperature has a highly recurrent dy-
namics, previous values of the variable significantly impact future pre-
dictions. Therefore, it was anticipated that performance would decrease 
with longer prediction horizons. As the prediction length increases, we 
observe:

1. Short-term predictions (P=1 to P=4) show the lowest SMAPE 
values across all historical input lengths, indicating higher accuracy for 
near-term forecasts. The mean SMAPE for P=1 is 1.54%, while for P=4 
it increases to 3.49%.

2. Medium-term predictions (P=5 to P=8) exhibit moderate SMAPE 
values, with performance degrading as P increases. The mean SMAPE for 
P=5 is 4.06%, rising to 4.58% for P=8.

3. Long-term predictions (P=9 to P=12) consistently show the high-
est SMAPE values, reflecting the increasing difficulty of accurate long-
range forecasting. The mean SMAPE for P=9 is 4.97%, reaching 4.61% 
for P=12. Interestingly, there’s a slight improvement in performance 
from P=11 to P=12, with mean SMAPE decreasing from 4.69% to 
4.61%.

Optimal configuration Based on this analysis, the optimal configuration 
11

for the CNN multivariate model appears to be:
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1. Historical input length: 10 - 12 time steps provides good accu-
racy for long-term predictions (P=10-12). For example, with P=12, 
the SMAPE decreases from 4.63% at 10 time steps to 3.08% at 12 time 
steps, a significant improvement of 33.5%. For short term predictions 
(P=1-4), there are varying historical input lengths that can be consid-
ered.

2. Prediction length: The models perform best for short-term pre-
dictions (P=1 to P=4), with a gradual decrease in performance as P 
increases. If longer-term predictions are required, users should expect 
a notable decrease in accuracy, particularly beyond P=8. The mean 
SMAPE increases by 196% from P=1 (1.54%) to P=12 (4.61%).

These findings highlight the importance of carefully tuning the his-
torical input length and managing expectations for prediction accuracy 
as the forecast horizon extends. While longer historical contexts gener-
ally improve performance, there are diminishing returns, especially for 
short-term predictions.

The analysis reveals that the relationship between historical input 
length, prediction length, and model performance is complex and non-
linear. For instance, the best performance for P=12 is achieved with 
a historical input length of 12 (SMAPE = 3.08%), while for P=1, the 
optimal historical input length is 1 (SMAPE = 1.08%). This suggests that 
the optimal configuration may need to be tailored to specific prediction 
horizons.

This detailed examination can guide users in selecting the most ap-
propriate model configuration based on their specific forecasting needs 
and accuracy requirements, balancing the trade-offs between prediction 
accuracy, computational resources, and the desired forecast horizon.

3.8. Model interpretability: SHAP analysis

To gain deeper insights into our best-performing model’s decision-
making process, we conducted a SHAP analysis [41]. For this analysis, 
we focused on a model configuration with a 12-timestep historical in-
put and a 1-timestep prediction horizon. This specific configuration was 
chosen to elucidate the temporal impact of various features on a simple, 
short-term prediction timeframe. By examining how the model weighs 
information from different historical timesteps for a single-step future 
prediction, we can better understand the relative importance of recent 
versus older data across different features. This approach allows us to 
dissect the model’s internal logic and reveal how it integrates informa-
tion over time to make its predictions, providing valuable insights into 
the dynamics of indoor environmental forecasting.

The SHAP analysis provides a deeper understanding of feature im-
portance and temporal relevance, highlighting key drivers of indoor 
temperature dynamics. By quantifying the contribution of each fea-
ture at each historical timestep to the final prediction, we can identify 
which factors are most crucial for accurate short-term forecasting and 
how their influence varies over the recent past. Similar analyses have 
previously been used to investigate the impact of borehole field data in-
put parameters on the forecasting accuracy of multivariate hybrid deep 
learning models for building heating and cooling [3].

Fig. 12 presents the mean absolute SHAP values for all features, pro-
viding an aggregate view of feature importance in our CNN multivariate 
model. The analysis reveals a clear hierarchy of feature importance, 
with temperature emerging as the most influential factor by a signifi-
cant margin (SHAP value of 0.021063). This is followed by humidity 
(0.003982) and HVAC status (0.002960), underscoring the critical role 
of these parameters in indoor climate prediction. Pressure (0.001750) 
and VOC levels (0.001317) show moderate importance, while booking 
status (0.000853) demonstrates notable influence despite being a non-
environmental factor. The remaining features, including PM2.5, CO2 
levels, people count, and PM10, exhibit relatively low importance with 
SHAP values ranging from 0.000445 to 0.000211.

Examining the temporal importance of building utilization features 
(Fig. 13), HVAC status demonstrates high importance, particularly in 

recent timesteps (T-6 to T-1). Its SHAP value increases from -0.0017 at 



R. Minassian, A.-S. Mihăiţă and A. Shirazi

Fig. 12. Mean Absolute SHAP values for all features in the CNN multivariate 
model. Features are ranked from most to least important based on their impact 
on model predictions. Higher SHAP values indicate greater feature importance.

Fig. 13. Temporal SHAP values for building utilization features over 12 
historical timesteps (T-12 to T-1). The plot shows the importance of Booking 
Status, People Count, and HVAC Status at each timestep (mean ± 95% CI), with 
larger magnitude of values indicating greater influence on model predictions.

T-12 to -0.0037 at T-6, indicating that recent HVAC operations have a 
significant and immediate impact on predictions. Booking status shows 
relatively consistent importance across all timesteps, with values rang-
ing from -0.0007 to -0.0020, suggesting a steady influence of room 
reservation patterns on predictions. People count exhibits the lowest 
importance among these features, with values between -0.0003 and -
0.0009, showing minimal variation across timesteps.

The temporal importance of micro-climate features (Fig. 14) fur-
ther emphasizes the critical role of temperature. Its SHAP values in-
crease dramatically from -0.0031 at T-3 to -0.2110 at T-1, indicating 
its paramount importance in recent timesteps. Humidity demonstrates 
moderate importance, with values ranging from -0.0011 to -0.0162, 
showing increased relevance in recent timesteps (T-3 to T-1). Pressure 
exhibits moderate importance with values between -0.0004 and -0.0090, 
reflecting relatively consistent influence across all timesteps. VOC levels 
12

show low to moderate importance, with values from -0.0006 to -0.0125, 
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Fig. 14. Temporal SHAP values for micro-climate features over 12 histori-

cal timesteps (T-12 to T-1). The plot illustrates the importance of Temperature, 
Pressure, VOC Levels, Humidity, PM10, PM2.5, and CO2 Levels at each timestep 
(mean ± 95% CI). Larger magnitude of values indicating greater influence on 
model predictions.

while PM2.5, PM10, and CO2 levels all demonstrate relatively low im-
portance with absolute SHAP values generally below 0.005.

This SHAP analysis offers valuable insights into the CNN multivari-
ate model’s decision-making process. The dominance of temperature as 
a predictor, particularly in recent timesteps, suggests that recent tem-
perature data is crucial for accurate forecasting. The model’s emphasis 
on recent information (especially T-6 to T-1) for most features indicates 
that immediate past conditions are more relevant for predictions. The 
high importance of HVAC status, especially in recent timesteps, high-
lights the direct impact of climate control systems on indoor conditions.

While some features like PM10 and people count show low overall 
importance, their inclusion still contributes to the model’s multivariate 
approach, potentially capturing subtle interactions or edge cases. The 
varying temporal importance of features suggests that the CNN architec-
ture effectively captures both short-term and longer-term dependencies 

in the data.
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These findings can guide feature selection, data collection priorities, 
and potential areas for model refinement in future iterations. The clear 
importance of recent temperature and HVAC status data suggests that 
real-time monitoring and responsive control systems could significantly 
improve prediction accuracy and, consequently, indoor climate manage-
ment.

4. Discussion

The results of our comprehensive analysis of indoor environmental 
prediction models provide valuable insights into the performance, opti-
mization, and interpretability of various machine learning approaches 
within building automation systems. Due to the safety-critical nature of 
HVAC systems in buildings, conducting experiments on the actual sys-
tems is not feasible because of the associated risks. Therefore, predictive 
models serve as digital twins of the buildings, enabling experimental 
implementations and performance validation. This discussion section 
synthesizes our findings and explores their implications for future re-
search and practical applications in smart building management.

4.1. Model performance and architecture comparison

Our analysis revealed that the CNN model consistently outperformed 
both the LSTM and hybrid CNN-LSTM models for temperature predic-
tion, as evidenced by lower SMAPE, MAPE, and RMSE values. A previous 
study investigated Multi-Layer Perceptron (MLP), LSTM, and CNN-LSTM 
models, evaluating and comparing them across 1, 30, 60, and 120-
minute horizons using a closed-loop prediction scheme [15]. The results 
demonstrated that the CNN-LSTM outperformed all other models across 
all prediction horizons and exhibited better robustness against error 
accumulation. However, they did not investigate the CNN model. Ad-
ditionally, that study only analyzed data from one room over 19 days, 
whereas our study collected and analyzed data from multiple rooms over 
a longer period. Furthermore, unlike that study, our variables were in-
dependent of the HVAC system, with the HVAC schedule being only one 
of the influencing factors.

The superior performance of the CNN model suggests that the spatial 
dependencies and local patterns captured by convolutional layers are 
particularly effective in modeling indoor temperature dynamics. This 
aligns with recent studies, such as Zhao et al. [54], which explored 
the optimal control of heat network in residential district using hy-
brid model based on CNN. The relatively poorer performance of the 
LSTM and hybrid CNN-LSTM models in this context is intriguing. It may 
indicate that for temperature prediction in indoor environments, the 
long-term dependencies captured by LSTM layers are less critical than 
the local patterns extracted by convolutional operations. This could be 
due to the strong influence of recent conditions and control actions (e.g., 
HVAC operations) on indoor temperature.

4.2. Optimization of model parameters

Our investigation into the effects of historical input length and pre-
diction length on model performance revealed several key insights. In-
creasing historical input length generally improved model performance, 
particularly for long-term predictions (7-12 timesteps ahead). How-
ever, the benefits of longer historical contexts diminished beyond 8-10 
timesteps, suggesting an optimal range for balancing performance and 
computational efficiency. Prediction accuracy consistently decreased as 
the prediction length increased, with a notable performance drop for 
predictions beyond 8 timesteps ahead. This is aligned with all previous 
studies [31,6,49,15], which a significant drop in accuracy was observed 
as the prediction horizon widened. This behavior is expected since mod-
els use their own predictions to forecast further into the future, causing 
prediction errors to accumulate over time.

These findings highlight the challenge of long-term predictions in 
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dynamic indoor environments and suggest that frequent model updates 
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with recent data may be more effective than attempting to forecast far 
into the future. This aligns with previous study [25] on adaptive HVAC 
control systems, which emphasized the importance of short-term pre-
dictions for real-time optimization.

4.3. Feature importance and temporal dynamics

The SHAP analysis provided crucial insights into the relative impor-
tance of different features and their temporal dynamics. Temperature 
emerged as the most influential feature, followed by humidity and HVAC 
status. This hierarchy of importance aligns with fundamental principles 
of indoor climate control and human comfort, as discussed in Fanger’s 
seminal work on thermal comfort [17]. It also aligns with a review study 
on measuring factors impacting thermal comfort and indoor air quality 
[28].

The high importance of recent timesteps (particularly T-6 to T-1) for 
most features underscores the rapid dynamics of indoor environments 
and the need for real-time or near-real-time monitoring and prediction 
systems. This also highlights the importance of CNN models and their 
capabilities in short-horizon predictions.

The varying temporal importance patterns across features (e.g., con-
sistent importance for booking status vs. increasing importance for tem-
perature in recent timesteps) reflect the complex interactions between 
building usage, environmental factors, and climate control systems. The 
relatively low importance of some features (e.g., PM10, people count) 
does not necessarily negate their value. In specific contexts or edge 
cases, these features may play crucial roles. This is the first time these 
factors have been included in a building temperature prediction model. 
Therefore, future work could explore the significance of these features 
in greater detail under various conditions or in specific types of build-
ings.

4.4. Implications for smart building management

Our findings have several important implications for the develop-
ment and implementation of smart building management systems. The 
superior performance of multivariate models suggests that comprehen-
sive sensor networks capturing a wide range of environmental parame-
ters are crucial for accurate predictions and efficient building manage-
ment. The effectiveness of the CNN model indicates that investment in 
this neural network architecture can yield significant improvements in 
prediction accuracy.

The optimal historical input length of 8-10 timesteps provides guid-
ance for data storage and processing requirements in real-time predic-
tion systems. The high importance of temperature, humidity, and HVAC 
status underscores the need for high-quality, reliable sensors for these 
parameters and suggests that they should be prioritized in data collec-
tion and model development efforts.

The proposed CNN architecture could potentially make a signifi-
cant contribution to Model Predictive Control (MPC) HVAC systems [1]. 
These models enable controllers to explore the consequences of their 
actions without interacting with the real environment, allowing them 
to optimize their strategies to achieve desired control objectives. These 
insights can guide the design of more effective and efficient smart build-
ing systems, potentially leading to improved energy efficiency, occupant 
comfort, and overall building performance.

4.5. Limitations and future research directions

While our study provides valuable insights, it also has limitations 
that point to future research directions. Our analysis focused on a spe-
cific set of buildings and environmental conditions, using only within-
room sensor data. Various modeling factors, such as the employed ar-
chitecture, software framework, and data processing, could influence 

prediction capability. Therefore, results from the methods developed in 
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this paper should be considered as the baseline for comparison and not 
a generalized solution.

Future work should explore the generalizability of these findings 
across different building types, climates, and usage patterns. The rel-
atively low importance of some features (e.g., PM levels, CO2) in our 
models may not hold true for all environments. Studies in more pol-
luted areas or densely occupied spaces might yield different results.

Binary representation of HVAC status has proved effective for the 
current study, yet we acknowledge its limitations in capturing the full 
complexity of HVAC operations. Future work could explore more nu-
anced representations, potentially incorporating variable setpoints or 
multiple operational states, should such data become available and 
demonstrate significant improvements in model performance.

A key objective for subsequent studies would be to expand the spatial 
and temporal scope of our models. Specifically, we aim to investigate 
the spatio-temporal impacts of these deep learning systems by incor-
porating information across multiple rooms and, crucially, including 
outdoor measurements. This expanded dataset would allow us to bet-
ter understand and model temperature transfer across different areas of 
the built environment. By integrating outdoor climate data such as tem-
perature, humidity, and solar radiation, we could potentially tease apart 
the complex interactions between internal and external factors influenc-
ing indoor thermal conditions.

This paper was primarily focused on point predictions. Exploring 
probabilistic forecasting methods could provide valuable uncertainty 
estimates for decision-making in building management. The integra-
tion of external factors (e.g., weather forecasts, energy prices) into the 
prediction models could potentially improve long-term forecasting ca-
pabilities.

Future research should address these limitations and explore emerg-
ing technologies, such as federated learning for privacy-preserving 
multi-building models or the integration of reinforcement learning for 
adaptive building control strategies. Additionally, investigating the po-
tential of transfer learning techniques could enhance model adaptability 
across different building types and environmental conditions.

Such an expanded research direction aligns with our overarching 
goal of developing more comprehensive and robust predictive mod-
els for indoor environmental management, ultimately contributing to 
improved energy efficiency and occupant comfort in diverse building 
settings.

5. Conclusion

In this study, we compared the performance of CNN, LSTM, and a 
CNN-LSTM hybrid model architecture for indoor temperature modeling. 
The dataset, collected from multiple rooms on one level of a university 
building in Sydney’s CBD, includes various environmental and building 
management measurements.

The results showed multivariate inputs consistently lead to better 
performance than univariate inputs. The CNN architecture appears to be 
the most effective, consistently showing the lowest error rates and high-
est consistency across all metrics. Additionally, the models perform best 
for short-term predictions (P=1 to P=4). The SHAP analysis provides 
a deeper understanding of feature importance and temporal relevance, 
highlighting temperature, humidity and HVAC status as the key drivers 
of indoor temperature dynamics.

Our comprehensive analysis of indoor environmental prediction 
models provides a solid foundation for the development of more ac-
curate, efficient, and interpretable smart building management systems. 
By leveraging multivariate data, advanced neural network architectures, 
and insights from feature importance analysis, HVAC systems can bet-
ter optimize energy usage, enhance occupant comfort, and contribute to 
more sustainable built environments. The superiority of CNN models in 
this context opens new avenues for research in time series forecasting for 
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indoor environmental prediction, challenging researchers to reconsider 
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traditional approaches and explore innovative architectures tailored to 
the unique characteristics of smart building data.
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