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A B S T R A C T

This study investigates multi-objective and multi-constraint design optimization of compliant mechanisms
considering geometrical and material nonlinearities. When geometrical and material nonlinearities arise in
optimization due to high loading levels and/or weak region/hinges, the nonlinear finite element analysis data in
all load increments should be used to capture nonlinear behaviors of compliant mechanisms. Thus, in this work,
we present (1) a new formulation for output displacement in terms of mutual strain energy density calculated
using all incremental load steps in nonlinear finite element analysis; (2) problem formulation with multi-
objective functions defined in terms of nonlinear output displacements and compliance-related displacements;
and (3) an effective extended moving isosurface threshold algorithm for topology optimization of multi-objective
nonlinear compliant mechanisms with displacement, buckling, and volume constraints. Numerical results for
selected compliant mechanisms are presented and compared with those available in the literature to validate the
present formulations and algorithm. The present results illustrate the effects of utilizing all load step nonlinear
finite element analysis results on the optimum topology.

Introduction

Compliant mechanisms have attracted great research interests due to
its less friction, precise and smooth movement, and cost-effectiveness in
manufacturing and maintenance, while the topology design could be
challenging. The simplest design is a single-input-single-output (SISO)
compliant mechanism with linear deformation; topology optimization
for the single-output mechanism has been extensively studied [1–5]. In
practice, compliant mechanisms with multiple output ports are common
in micro-electromechanical systems (MEMS) and have recently attracted
considerable interests [6–9]. One of the main objectives for the optimal
design of compliant mechanisms is to maximize the displacement(s) at
the output port(s), and thus large deformation can be achieved. Opti-
mization for SISO compliant mechanisms with geometrical nonlinearity
has also been studied by many researchers [10–17]. As thin components
and hinges often appear in the optimum compliant mechanism, material
nonlinearity has been considered in [10,11,16,18–20]. Up to now, there
are few attempts for topology optimization for multi-objective
compliant mechanisms with multiple constraints considering geomet-
rical and material nonlinearities.

In topology optimization for structures with geometrical

nonlinearity [21–23], stiffness designs have been vastly studied in en-
gineering applications such as composite structures [24,25], in which
material and/or load nonlinearities are also considered [26–29]. In both
stiffness/compliance and compliant mechanism optimization problems,
stresses and strains in a final load step in nonlinear finite element
analysis (NFEA) are usually used in estimating objective functions, such
as the end compliance for stiffness optimization or the mutual strain
energy in the final load step for compliant mechanism design [10,11,18,
19,21]. Although it is simple to calculate the objective function using
data in the final load step, the drawbacks are [21,22]: 1) the structure
may collapse when the applied load is lower than the prescribed level; 2)
it may result in a degenerated structure supporting the designed load
only. When material and geometrical nonlinearities are considered in
the optimization for compliant mechanism with multi-output ports, the
challenges are: 1) cost associated with conducting nonlinear structural
analysis for each virtual force at each output port; 2) load histories of the
virtual and real forces need to be considered to find displacements at the
final load state at output port; and 3) magnitude of each virtual load
needs to be carefully determined as nonlinear finite element analysis can
diverge for too high load and nonlinear effects cannot be reflected at
very low load. Therefore, loading history should be considered in
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calculating objective and constraint functions for the optimization of
compliant mechanisms with geometrical and material nonlinearities.

In addition to the stress constraints [30,31], displacement con-
straints are another common consideration in structural topology opti-
mization. For example, the minimum mean compliance problem was
studied in [32–34], and the design of compliant mechanisms with input
displacement constraint was considered in [22,35]. In compliant
mechanisms with multi-output ports, displacements at some ports may
be constrained by application conditions [36]. In this case, the
displacement constraint needs to be considered.

The moving isosurface threshold (MIST) method [37], which uses a
physical response function surface and an isosurface threshold to
generate the optimal topologies, has been applied to a range of topology
optimization tasks, e.g., multiscale [38–40], piezoelectric [41], or
vibrating structures [42]. Recently, it has become more powerful, as
challenging optimization problems and advanced optimization
methods, such as cloaking metamaterials [43], isogeometric topology
optimization (ITO) [44], and reliability-based topology optimization
(RBTO) [45], have been investigated. However, the existing MIST
method can not deal with multi-objective and multi-constraint topology
optimization for nonlinear structures. This work aims to extend the
MIST method to solve this challenge.

In this paper, multi-objective optimization with multi-constraints is
studied to maximize multi-output displacements for compliant mecha-
nisms with geometrical and material nonlinearities. Novel displacement
formulations are derived using data of every incremental load step in
NFEA. An algorithm is developed based on the MIST for the proposed
multi-objective and multi-constraint optimization problem to design
nonlinear compliant mechanisms. Numerical results are presented for
designing linear and nonlinear compliant mechanisms with single-
output and two-output ports and under volume and displacement
constraints.

2. Problem statement

Consider an elastic body Ω of Fig. 1 subjected to a real load F(2),
which has Ni components F(2)im (m= 1,2,…,Ni) applied at Ni input ports
or degrees of freedom (DOFs) respectively. The problem is stated as: to
find the optimum distribution or topology of a given amount of material
in Ω that maximizes the displacements u(2)ol (l= 1, 2,…,No) at No inter-
ested output ports or DOFs under the given load or minimizes
− u(2)ol (l= 1,2,…,No) as shown in Fig. 1, where the superscripts (1) and
(2) denote the virtual and real load cases, respectively. This problem is
referred to as topology optimization of nonlinear compliant mechanisms
with multi-inputs and multi-outputs (MIMO) when geometrical and/or
material nonlinearities are taken into account in nonlinear finite
element analysis (NFEA).

2.1. Displacement formulation

As displacement at an output port is usually chosen as the objective
function in topology designs of compliant mechanisms, it is important to
derive the formulation of this output displacement. Such an output
displacement can be expressed in terms of total mutual strain energy for
linear case [46]; it can be approximated as the total mutual strain energy
at the final load level for nonlinear cases [10,11]. In this section, we
propose an expression for such displacement in terms of the mutual
strain energy calculated using all incremental load steps.

In nonlinear analysis, an easy way is to describe loading as a function
of time, and the principle of virtual work can be expressed as [47]:
∫

0Ω

(t+Δt)Sijδεijd0Ω =

∫

0Ω

(t+Δt)f bi δuid0Ω +

∫

0S

(t+Δt)f si δuid
0S+ (t+Δt)f ci δui (1a)

where Sij and εij denote the second Piola-Kirchhoff stress and Green-
Lagrange strain tensors; fbi , f si and fci are the body force, surface trac-
tion and concentrated force; δui is an arbitrary virtual displacement; 0Ω
and 0S represent the structural volume and surface area at time t = 0.

Consider a structure under two cases of static loadings with both
geometrical and material nonlinearities. Let F(i), u(i), ε(i) and S(i) (i= 1, 2)
denote the applied loads and the nonlinear solutions for displacement,
strain and stress respectively for the two load cases. These nonlinear
solutions are usually obtained involving iterations and load increments
via load scaling factors αi (i = 1, 2) varying between zero and unity. This
leads to the pair of force-displacement (αiF(i)~u(i)(αi)) and stress-strain
(αiS(i)~ε(i)(αi)) relationships. Fig. 2(a) and (b) illustrate schematically
such curves with left superscript k denoting the results at the kth load
incremental step in standard NFEA based on the total Lagrangian
formulation. To calculate mutual work and mutual strain energy, we set
α2= α1= α to enable crossover of the above force-displacement and
stress-strain relationships, i.e., αF(1)~u(2)(α) and αS(1)~ε(2)(α), or
αF(2)~u(1)(α) and αS(2)~ε(1)(α). As the load increments for load cases (1)
and (2) are synchronized (α2= α1= α), one can also plot the force-
displacement (e.g., αF(1)~u(2)(α)) and stress-strain (e.g., αS(1)~ε(2)(α))
curves based on the NFEA results at different load incremental steps, as
shown in Fig. 2(c) and (d).

Now, by using the virtual work principle and NFEA for two loading
cases, at the kth load step, one has:

kF(1)δu(2) =
∫

0Ω

kS(1)ij δε(2)ij dΩ (k = 1, 2,…, n) (1b)

∫ku(2)

0

F(1)du(2) =
∫

0Ω

⎛

⎜
⎝

∫
kε(2)ij

0

S(1)ij dε(2)ij

⎞

⎟
⎠dΩ (k = 1, 2,…,n) (1c)

where F and u are the force and displacement vectors; k (=1,2,…,n) and
n denote the kth load increment and the total number of load increments
in NFEA; superscripts (1) and (2) represent the virtual and real load
cases.

Consider Eq. (1c) for two adjacent loads k-1αF(i) and kαF(i) (i = 1, 2),
one can obtain:

∫u(2)(α+Δα)

u(2)(α)

F(1)du(2)(α) =
∫

0Ω

⎛

⎜
⎜
⎝

∫
ε(2)ij (α+Δα)

ε(2)ij (α)

S(1)ij (α)dε(2)ij (α)

⎞

⎟
⎟
⎠dΩ (2a)

∫ku(2)

k− 1u(2)

F(1)du(2) =
∫

0Ω

⎛

⎜
⎜
⎝

∫
kε(2)ij

k− 1ε(2)ij

S(1)ij dε(2)ij

⎞

⎟
⎟
⎠dΩ (k = 1,2,…, n) (2b)

As an approximation, Eq. (2b) can be written asFig. 1. Design of nonlinear compliant mechanism with multiple inputs
and outputs.
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1
2
( kF(1) + k− 1F(1)

)( ku(2) − k− 1u(2)
)
=

∫

0Ω

1
2

(
kS(1)ij + k− 1S(1)ij

)(
kε(2)ij − k− 1ε(2)ij

)
dΩ

(3)

where k = 1,2,…,n.
If we assume that load cases 1 and 2 are virtual and real, respectively,

and one virtual force is applied at one port or one degree of freedom, Eq.
(3) is simplified as:

ku(2) − k− 1u(2) =
∫

Ω

[
kS(1)ij + k− 1S(1)ij
kF(1) + k− 1F(1)

]
(
kε(2)ij − k− 1ε(2)ij

)
dΩ (k=1,2,…,n) (4)

where kF(1) is the magnitude of kF(1); and ku(2) is the displacement
generated by the real load kF(2)at this port along the direction of kF(1).

By summing n equations in Eq. (4) and assuming that 0u(2) = 0, the
displacement generated by the real force in the final state can be derived
as:

u(2)ol = nu(2)ol =

∫

0Ω

Φ(2)
(mse)ld

0Ω =

∫

0Ω

∑n

k=1

(kS(1)ol + k− 1S(1)ol
kF(1)ol + k− 1F(1)ol

)
( kε(2) − k− 1ε(2)

)
d0Ω

(5)

It is evident that Eq. (5) takes into account the NFEA results of all
incremental load steps and relates the real displacement to the area
under the stress-strain curve rather than the area of the triangle formed
by the stress and strain at the final step as shown in Fig. 2(c) and (d).
Thus, this approach enhances the accuracy of evaluating the mutual
strain energy integration compared to approximation using NFEA data
at the final load level [10,11], and could potentially improve the
objective functions. For linear analysis, Eq. (5) degenerates to expres-
sion developed by the unit load method, as real displacement nu(2) in Eq.
(5) is independent on the virtual force in this case. It is worth noting that
the magnitude of the virtual force should be chosen according to that of
the real one in order to ensure convergence and to account for nonlinear
effects.

In the optimal design of compliant mechanism with nonlinear effects
to maximize the displacement of an output port, Eq. (5) will be used in
the present optimization, and thus the output displacement using NFEA

Fig. 2. Nonlinear force-displacement and stress-strain relationships: (a) and (b) for virtual and real load cases; (c) relationship of virtual force-real displacement; (d)
relationship of virtual stress-real strain.
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data at all load steps will be obtained in iteration as illustrated in Fig. 2
(c) and (d). As the objective function is rigorously computed by using the
NFEA data of all increment steps as compared to that by using the NFEA
data in the final state only, it is expected that numerical results are more
stable and stress distributions in the optimal design is more uniform.

2.2. Problem definition

The optimal design of the multi-input-output mechanism is to
maximize the total displacement (u(2)out) of output ports or to minimize −

u(2)out . When force F is prescribed, minimizing compliance C (=Fu) is
equivalent to minimizing displacement u; therefore, the compliance
caused by real forces at input ports and that by virtual forces at output
ports can be expressed in terms of the total displacement (u(2)in ) of input
ports and that (u(1)out) of output ports. It is assumed that port numbers of
the output, input and displacement constraint are No, Nin and Nc. The
displacement constraint may be defined as uc ≤ u∗c where u∗c is the
specified value at port c.

Topology optimization for MIMO compliant mechanisms with
nonlinear effects and displacement constraints considering compliances
can be stated as to find xe so that:min : J = − u(2)out + u

(2)
in + u(1)out (6a)

s.t. :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

nR(2)(u,xe) = 0 λ(2)1 ≥ 1
nR(1)

l (u,xe) = 0 (l = 1, 2, …, No) λ(1)l1 ≥ 1
nR(2)

m (u,xe) = 0 (m = 1, 2, …, Nin) λ(2)m1 ≥ 1
nuc ≤ u∗c (c = 1, 2, …, Nc)

∑Ns

e=1
(xeVe) ≤ VfV; 0 ≤ xe ≤ 1

(6b)

where xe is the design variable;Ne is the total element number; u denotes
the field satisfied with the state equation; nR is the residual force in a
final equilibrium state; Ve, Vf, V and are the element volume, the pre-
scribed volume fraction and total volume; subscripts l, m and c denote
the input, output and constraint ports; λ(2)1 , λ(1)l1 and λ(2)m1 are the buckling

factors of mode 1 for the real load case F(2), virtual force F(1)l and real
force F(2)m . In NFEA, the selection of the virtual force requires careful
consideration. It should be sufficiently large to induce significant de-
formations in the structure but not so large that it causes the NFEA to
diverge. In Eq. (6), the buckling factors are used as the constraints so
that high load level generating large deformations can be applied and
the convergent results can be obtained in the NFEA [48]. It should also
be noted that considering buckling behavior in topology optimization
with finite deformation effects is essential, and nonlinear topology
optimization can also improve buckling resistance to some extent [49].

In the objective function of Eq. (6a), u(2)out , u
(2)
in and u(1)out can be

expressed in the following linear combinations:

u(2)out =
∑No

l=1
αlnu(2)l (7)

u(2)in =
∑Nin

m=1
βm

nu(2)m (8)

u(1)out =
∑No

l=1

γl
nu(1)l (9)

where αl, βm and γl (m = 1, 2, Nin; l = 1, 2, No) are the coefficients; when
the coefficients are equal to 1, total values of the displacements (u(2)out and
u(2)in ) in output and input ports caused by real load and that (u(1)out) in

output ports caused by virtual forces are obtained.nu(2)l , u(2)m and n u(1)l are
calculated on the basis of Eq. (5) and can be expressed as:

nu(2)l =

∫

Ω

[
∑n

k=1

(
kS(1)lij + k− 1S(1)lij
kF(1)l + k− 1F(1)l

)
(
kε(2)ij − k− 1ε(2)ij

)
]

dΩ =

∫

Ω

Φ(2)
(me)ldΩ

(10)

nu(s)r =

∫

Ω

[
∑n

k=1

(
kS(s)mij + k− 1S(s)mij
kF(s)r + k− 1F(s)r

)
(
kε(s)rij − k− 1ε(s)rij

)
]

dΩ =

∫

Ω

Φ(s)
(se)rdΩ (11)

where r = l, m and s = 1, 2; subscript (me) and (se) represent the mutual
strain energy and the strain energy; Φ denotes the response function; In
Eq. (6b), unc ≤ u∗c denotes the displacement constraint at observation port
c; u∗c is the specified displacement.

The objective function including the mean compliances caused by
real and virtual forces for compliant mechanismwas studied in [6,7] and
optimization for MIMO compliant mechanism was discussed in [7]. In
these investigations, nonlinear effects and displacement constraints
were not taken into account. In the present study, nonlinear effects and
displacement constraints are considered. The present objective function
is expressed in terms of generalized displacements representing the
mutual strain energy and the strain energies. It can be seen from Eq. (11)
that the mean compliances for both virtual and real loads are included.
Therefore, artificial springs are unnecessary in optimization, and
hinge-free design may be obtained.

3. Algorithm and implementation

In order to solve Eq. (6), an algorithm should have capacities to deal
with load histories and low-density elements. When nonlinear effects are
considered in optimization for MIMO compliant mechanism, topology
highly depends on load level and numerical instability caused by low-
density elements may result in iterative divergence [19,26–28,50]. A
powerful nonlinear solver is also critical as the NFEA is a highly
nonlinear problem normally [28,51]. In this paper, an algorithm based
on the MIST [37] will be developed; the NFEA is implemented using
commercial software NASTRAN. In the present algorithm, the 1st
buckling factor is used to determine the load level as in [48], and the
instability is eradicated by removing void elements in NFEA [28].

3.1. MIST algorithm for MIMO compliant mechanism with multi-
constraints

The objective function in Eq. (6a) can be rewritten as [37]:

L= J+
∑Nc

c=1
ηc
( nuc − u∗c

)
=

∫

Ω

Φ(u,xe)H(Φ(u,xe), tk)dΩ+
∑Nc

c=1
ηcwcnu(2)c (u,xe)

(12)

where tk is the threshold level of the Φ function for the prescribed vol-
ume fraction at the kth iteration and H is the Heaviside function: H = 1
⇔ Φ ≥ tk and H = 0 ⇔ Φ < tk; ηc (c = 1, 2, Nc) are the Lagrange mul-
tipliers; wc are the weighted coefficients [41]. Φ, nu(2)c and wc can be
calculated by:

Φ =
∑No

l=1

αlΦ(2)
(me)l +

∑Nin

m=1
βmΦ(2)

(se)m +
∑No

l=1

γlΦ
(1)
(se)l (13)

nu(2)c =

∫

Ω

[
∑n

k=1

(
kS(1)cij + k− 1S(1)cij
kF(1)c + k− 1F(1)c

)
(
kε(2)ij − k− 1ε(2)ij

)
]

dΩ =

∫

Ω

Φ(2)
(me)cdΩ

(14)
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wc =

⎧
⎪⎪⎨

⎪⎪⎩

wc
⃒
⃒
⃒
⃒1 −

u∗c
nu(2)c

⃒
⃒
⃒
⃒

nu(2)c ∕= 0

0 nu(2)c = 0
(15)

where wc (c = 1, 2, …, n) are the weighted factors, which are used to
reflect the influences of each displacement constraint; and wc is used to
consider that case if nu(2)c is equal to zero or not, so that the computation
can be implemented. In this paper, one displacement constraint is
considered as in [32,52] and application to the multi-displacement
constraints is to be further studied.

In Eq. (12), the Lagrange multiplier is introduced to consider the
displacement constraint. Eq. (12) is equivalent to Eq. (6a) when nuc = u∗c
or ηc = 0. If nuc < u∗c , the constraint is satisfied; if nuc > u∗c , optimization
of minimizing (nuc − u∗c) to satisfy the displacement constraint in later
iterations [32,52]. The Lagrange multiplier can be determined by the
first-order KKT condition as in [32,37,52]:

∂L
∂t =

∂J
∂t + ηc

∂
(
wnu(2)c

)

∂t = 0 (c = 1) (16)

Based on Eq. (16), ηc can be found as in [32,52]. In the present
computation, ηc = 0 in the initialization and is found using Eq. (16) in
iteration. When ηc is determined, the objective function can be expressed
as:

L =
∫

Ω

Φ(u,xe)H(Φ(u,xe), tk)dΩ (17)

where

Φ(u,xe) = Φ(u,xe) + ηcwcΦ
(2)
(me)c(u,xe) (18)

As the objective function in MIST is expressed in an integral form
over the design domain Ω as Eq. (17), the response function is deter-
mined as the integrand Eq. (18). Hence, the response function (18) can
capture the nodal structural response in relation to the objective func-
tion within Ω serving as sensitivity information for updating the topol-
ogy. With the response function Φ(u,xe) derived, a MIST algorithm [37,
53] can be used to solve Eq. (6). The MIST algorithm to minimize
compliance of nonlinear structures was discussed in detail in [24,28]
where the total Lagrange formulation based NFEA [47] was discussed.

In the present algorithm, the design domain is divided into Ω(k)
1 with

solid and grey elements and Ω(k)
1 \Ω with void elements (xe ≤ xmin =ε=

10–3). For the MIMO compliant mechanism with the displacement
constraint, the NFEA for each virtual and real load case is conducted in
Ω(k)
1 . The MIST algorithm consists of the following steps [28]: 1)

initialization, 2) NFEA in Ω(k)
1 , 3) construction of the Φ function, 4)

determination of isosurface threshold value tk, 5) update of design
variables and 6) convergent assessment. It can be described by using 3
blocks as shown in the flowchart in the Appendix: Flowchart of the
present MIST algorithm and detailed below. The major extensions
compared to the MIST algorithm in [24] are: dealing with
multi-objective functions, dealing with multi-constraint, and new
formulation for output displacement.

3.1.1. Block 1: design update in Ω with fixed mesh
When the Φfunction surface is constructed in the Cartesian coordi-

nate system, coordinates x and y are the nodal locations, and coordinate
z represents the Φ value at nodes. The Φ values are calculated based on
Eq. (18) for all load cases when element e inΩ(k)

1 and those in Ω(k)
1 \Ω are

set to be zero. The Φ values at nodes can be interpolated by using data at
elemental centers [24,28]. In this article, stress and strain at nodes are
output in the NFEA. Although the Φ can be less than, equal to or larger
than zero, theΦ values inΩ(k)

1 \Ω can be set to be zero as σij ≈ 0 and εij ≈

0 when ε is small [28].
When theΦ function is constructed, it will be filtered and normalized

to [− 1, 1]. The isosurface threshold level tk is determined for the pre-
scribed volume fraction. When tk is found, the design variables are
calculated and updated as given in [24,28]. The convergence criterion

isΔΦk =
[∑Nn

n=1 |Φk(rn) − Φk− 1(rn)|
]
/
[
VfNn

]
≤ 0.1%, where Φk(rn) (k =

1, 2, Nn) is the value at node rn and Nn is the total node number.

3.1.2. Block 2: NFEA in Ω(k)
1

In the NFEA in Ω(k)
1 , the residual force equations in Eq. (6b) are

solved and the stress and strain vectors at every load step are extracted,
with which the mutual strain energy densities are calculated using all
incremental load steps, i.e., Eq. (5), and the response function Φ (Eq.
(18) can be calculated. In the NFEA computation, the following settings
are applied. When material nonlinearity is considered, sensitivity anal-
ysis for nonlinear materials needs to be iteratively found, leading to
tremendous computational cost. It may be available only for simple
cases [22,28,51,54,55], e.g., for bilinear elastoplastic material, the
model can be: Ee = xp1e E; σYe = xp2e σY , ETe (ε) = xp3e ET where σY is the
yielding stress; ET is the tangential modulus; p1, p2 and p3 are the pen-
alties. An alternative material model is to use stress-strain relationships
[22,51]: σe = xpeσ(ε) where σe denotes the stress in element e; σ(ε) is the
prescribed stress-strain relationships and p (=3) is the penalty. This
material model will be used in this work.

In the present algorithm, void elements will be removed from the
NFEA computation. The material can reappear in the void region via
interpolating, filtering and intersecting the Φ function as indicated in
Fig. 6 of [28]. As void elements are not involved in the NFEA, load path
continuity in Ω(k)

1 is checked via a linear FEA, which is interactive with
the data process block to adjust parameter ε so that the NFEA could be
conducted in Ω(k)

1 that varies with iteration. In optimization for
nonlinear structures, the optimized topology is highly dependent on
load levels [56]. In the present algorithm, the load magnitude at itera-
tion k is calculated by [22,48]:

Pk = λk− 11 Pk− 1 (19)

where Pk− 1and Pkare the applied loads at iterations (k-1) and k; λk− 11 is
the buckling factor of the 1st mode at iteration (k-1). In the present
computation, the NFEA is conducted for all virtual and real load cases
and the results of all load steps are used; the buckling constraint is used
to determine load levels as in [48] so that nonlinear effects can be re-
flected in optimization and the NFEA will converge.

3.1.3. Block 3: data process to create NFEA input file and extract the output
data

This data process block is interactive with the other two blocks to: (a)
generate the input data file using the updated design variables and the
initialized data where void elements will be removed when xe is less than
ε by deleting the associated material, connectivity and property defini-
tions and the value of ε may also be adjusted to ensure the load path
continuity; (b) extract the NFEA results in Ω(k)

1 in all load steps for each
load case; and (c) transform the NFEA results in Ω(k)

1 to those inΩ via the
established relationships of element and node numbers in Ω and in Ω(k)

1 .

3.2. Interface with NFEA and implementation

Implementing procedures of the MIST algorithm were given in de-
tails in [53]; the NFEA for optimization of nonlinear structures was
discussed in [28]; and the MIST algorithm for minimizing compliance
with geometrical nonlinearity was detailed in [24].

In the present optimization for compliant mechanisms with
geometrical and material nonlinearities, the MIST algorithm is coded in
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MATLAB and interfaced with NASTRAN as the NFEA solver. The opti-
mization is interfaced with NASTRAN via the NFEA input and output
text files, which can be generated and extracted by MATLAB. Corre-
sponding to the 3 blocks, implementation includes generating input files
for the NFEA, extracting the NFEA results, and processing the data to
update design variables as detailed in [24].

4. Numerical results

Numerical results are presented for single and two-output compliant
mechanisms considering geometrical and material nonlinearities.
Elastic constants, design domains, boundary conditions, meshes, and
volume fractions of the two design problems are depicted in Fig. 3(a)
and (b), which are the same as those in [12] and [6], respectively. The
nonlinear properties for the single and two output mechanisms are given
in Fig. 3(c) and (d). In the present computations, plane stress state is
assumed.

4.1. Single-output compliant mechanism

In this section, a force inverter is studied by the present algorithm,
where the compliance is not considered but artificial springs are used for
comparison. The design case is to find xe so that:

min : uout =
∫

Ω

[
∑n

k=1

(
kσ(1)

ij + k− 1σ(1)
ij

kF(1)out + k− 1F(1)out

)
(
kε(2)ij − k− 1ε(2)ij

)
]

dΩ (20)

4.1.1. Linear analysis and comparison
Input data identical to those in the literature [12] are used: Fin = 1,

Fout =1; kin = 1, and kout =1 × 10–3. Displacements in input (uin) and
output (-uout) ports computed by the present algorithm are illustrated in
Fig. 4(a), where the embedded figures are the optimized density plot
(left) and topology (right); N_solid and N_void denote numbers of solid
(xe ≥0.999) and void elements (xe ≤ ε = 0.001). It can be seen from
Fig. 4(a) that void elements are effectively removed, and the removal of
void elements will play a critical role in nonlinear analysis.

By comparing with numerical results in [12], the density plot in
Fig. 4(a) is the same as that of Fig. 4 in [12]; the output displacement
(-uout = 2.21) correlates well with that in [12] where (-uout) = 2.25, 2.13
and 2.55 for the sensitivity, density and close filter techniques. In the
present computation, the parameters similar to those in [12] are used:
filter radius rmin=0.04; xmin= 10–3; penalty p= 1 and then increases to 3
via ‘p = p + 0.05′. Dynamic move limit kmv with an initial value of 0.3 is
adopted. Fig. 4(a) validated the present algorithm for the single-output
compliant mechanism in linear analysis.

Fig. 4(b) illustrates material distributions (densities) and topologies

Fig. 3. Input data (a) design domain of a force inverter; (b) design domain of two output mechanism; (c) nonlinear material properties for (a); (d) nonlinear material
properties for (b).
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Fig. 4. (a). Output displacements versus iteration in optimization to maximize (-uout) in linear analysis where the embedded figures are optimized density (left) and
topology (right). (b). Densities (left) and topologies (right) at iterations 1, 10, 50 and 100.
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at iterations 1, 10, 50 and 100. The curve in Fig. 4(a) shows that the
converged value is reached after iteration 50, and Fig. 4(b) indicates that
0–1 design is obtained at iteration 50. That is, the convergence is almost
achieved at iteration 50 in the present computation.

4.1.2. Optimal designs of a force inverter with nonlinear effects
In optimization for the force inverter with nonlinear effects, input

data of forces and artificial springs are: Fin=1.0 × 10–2; Fout=1.0 × 10–4;
kin = 1 × 10–1; and kout =1 × 10–3. The applied forces are determined by
the buckling constraints in geometrical and material analysis and are
used in other cases for comparisons. The spring stiffness in the input port
is decreased to reduce its effect on nonlinear analysis, as material
nonlinearity of the springs is not modeled.

Topologies and output displacements computed by using the present

algorithm for 4 cases are shown in Fig. 5. The linear case, as shown in
Fig. 5(a), is the same as Fig. 4 from Section 0, even though kin is
decreased from 1 to 1 × 10–1. By comparing Fig. 5(a) with Fig. 5(b) and
(c) with (d), it can be seen that the optimized densities and topologies in
linear analysis and geometrically-linear but materially-nonlinear anal-
ysis are almost the same; densities and topologies in geometrically-
nonlinear but materially-linear and both of nonlinear analysis using
the data in a final state have minimal difference. However, there are
significant differences between the designs in (a)-(b) and those in (c)-
(d). It can be seen that geometrical nonlinearity has significant effects on
the optimized designs, while material nonlinearity has relatively small
impacts. This is consistent with results from other topology optimization
methods in the literature [20,26,27], which also show that material
nonlinearity plays a minor role.

Fig. 5. Optimized densities and topologies for 4 cases: (a) linearity; (b) geometrical linearity but material nonlinearity; (c) geometrical nonlinearity but material
linearity; (d) geometrical and material nonlinearity where the data in a final state are used for cases (b)-(c).
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However, when stress and strain of all load steps are considered, a
significantly different topology is obtained, as in Fig. 6. Fig. 6 illustrates
comparisons of the optimized topologies and displacements predicted
using data of all load steps and those of the final state only. It can be seen
that the topology optimized using the present formulation (embedded
left figure) is different from that (embedded right figure) using the final
state data. The output displacement (0.171) by using the present
formulation is 11 % larger than that (0.154) by using the data in a final
state. Fig. 6 indicates that numerical stability by using the data of all
load steps is better.

As the topologies in Fig. 6 are obtained using artificial springs,
output displacements are not true values. The performance of the
practical mechanisms can be studied by importing the optimized to-
pologies into PATRAN. Fig. 7 illustrates deformations and von Mises
stress distributions of the two topologies where the same enforced
displacement (uin = 0.13) is applied to the input port. Table 1 lists the
output displacements of the two designs for the same applied force and
the same input displacement. For the same applied force (Fin = 1.29 ×

10–3) and the same input displacement (uin = 0.13), (- uout) of the design
using the data of all load steps are 8.6 % and 6.4 % larger than those
using the data in a final state, respectively. Table 1 also shows that the
maximum force applicable in the NFEA for the design obtained by using
the present formulation is much higher than that by using the final state
data (3.87 × 10–3 ~ 1.59 × 10–3). Hence, the performance of the design
obtained by using the data of all load steps is clearly better.

4.2. Multi-output compliant mechanism

The design domain, material properties and mesh scheme for
designing two-output compliant mechanism are shown in Fig. 3(b) and
(d). The objective function using artificial springs or compliances is,
respectively:

J = nu(2)o1 + nu(2)o2 (Using artificial springs) (21)

J = α1u(2)o1 + α2u(2)o2 + β1u(2)in + γ1u
(1)
o1 + γ2u

(1)
o2 (Using compliances)

(22)

4.2.1. Linear analysis
By using Eq. (21), the optimized topology and density of the

compliant mechanism are given in Fig. 8(a) and (c); displacement var-
iations are plotted in Fig. 9, and output displacements are listed in
Table 2, where the used parameters p and kmv are the same as those in
Section 4.1 and rmin =0.1. Artificial spring stiffness and virtual forces
are: kin = 0.5, ko1 = 0.5, ko2 = 0.5, and Fo1= Fo2 = 1. These data are the
same as those in [6], which are confirmed via private communication. In

the present computation, enforced displacement u∗in (=0.545) is applied.
In addition, the enforced displacements u∗in of 0.52 mm and 0.56 mm
have also been considered in computations, resulting in almost identical
topologies.

In Fig. 9 and Table 2, uo1= uo1y, uo2 = uo2y and uout = |uo1y| + |uo2y|.
By comparing with the results in [6], the topology of Fig. 8(a) correlates
with that of Fig. 13 in [6]. Table 2 indicates that the displacements
predicted by the present algorithm are almost identical to those in [6];
the present uout (=0.777) is 3.9 % larger than that (uout =0.748) in [6].

In optimization for compliant mechanism, springs are conventionally
attached to input and output ports. It is believed that hinges appearing in
the optimized design are mainly caused by the artificial springs [6,7].
The hinge-free compliant mechanism can be obtained in topology
optimization by applying minimum length scale [57] and/or stress

Fig. 6. Output displacements (-uout) and topologies predicted by the present
formulation (left topology) and using the NFEA data in a final state (right to-
pology) in geometrical and material nonlinear analysis.

Fig. 7. Deformation and von Mises stress distribution of the optimized topol-
ogies computed by using the NFEA data of (a) all load steps and (b) in a
final state.

Table 1
Performance of the two optimized topologies for the same applied force or
enforced input displacement.

Loadings Method Fin uin - uout

Same applied force using data of all
load steps

1.29 ×

10–3
0.131 0.354

using data in a
final state

1.29 ×

10–3
0.140 0.326

Same input displacement using data of all
load steps

​ 0.13 0.316

using data in a
final state

​ 0.13 0.297

The maximum force can be
applied in the NFEA

using data of all
load steps

3.87 ×

10–3
0.248 0.379

using data in a
final state

1.59 ×

10–3
0.180 0.343
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constraints [30]. It can also be achieved by considering compliances [6,
7], which will be employed in this paper. When compliances are used in
an objective function, it is unnecessary to use artificial springs, and both
the density-based [7] and level set [6] optimization approaches can be
used. In the MIST method, optimal density and topology plots can be
obtained. In the present computation, an objective function in Eq. (22) is
used, and the coefficients are:

α11=1; α21=1; β1 =

(
Φ(2)

(me)1+Φ(2)
(me)2

)

max −
(
Φ

(me)1(2)+Φ(2)
(me)2)min

(Φ(2)
(se)1)max − (Φ(2)

(se)1)min

(23a)

γ1 = γ2 =

(
Φ(2)

(me)1 + Φ(2)
(me)2

)

max −
(
Φ(2)

(me)1 + Φ(2)
(me)2

)

min

(Φ(1)
(se)1 + Φ(1)

(se)2)max − (Φ(1)
(se)1 + Φ(1)

(se)2)min

(23b)

The optimized topology and density using Eqs. (22)-(23) for the
enforced displacement uin = 0.05 is illustrated in Fig. 8(b) and (d); the
displacements are plotted in Fig. 10 and listed in Table 2. It can be seen
that the topology of Fig. 8(b) or the density plot of Fig. 8(d) is a hinge-
free design. The topology is different from that of Fig. 16 in [6], but the
output displacements correlate with each other as indicated in Fig. 10
and Table 2; the present uout (=0.114) is 5.8 % less than that (uout
=0.121) in [6]. The difference of the topologies is due to using different

Fig. 8. The topology and density obtained in linear analysis: (a) and (c) using springs; (b) and (d) using compliances. Deformation with von Mises stress distribution:
(e) for topology (a); and (f) for topology (b).
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compliances in the two computations. Fig. 8(e) and (f) depict von Mises
stress distributions of the optimal designs by using artificial springs and
compliances for the same applied force (Fin = 0.0196). The maximum
von Mises in Fig. 8(e) is 350, which is considerably higher than that in
Fig. 8(f). In Fig. 8(f), the maximum von stress is 4.69 in the weak region.
By comparing with Fig. 16(b) in [6], von Mises stress distribution in
Fig. 8(f) is more uniform. Therefore, the hinge-free design of
multi-output compliant mechanism is obtained using the present opti-
mization algorithm. This example verified the present computations for
MIMO compliant mechanism in linear analysis.

4.2.2. Hinge-free designs of compliant mechanism with nonlinear effects
When Eqs. (22) and Eq. (23) are used, the optimized topologies and

the output displacements predicted by the present algorithm considering
geometrical and material nonlinearities are illustrated in Fig. 11. In the
embedded figures, the left one is the topology obtained by using the
NFEA data of all load steps, and the right one is that by using the data in
a final state. The optimized topologies show that hinge-free designs are
also obtained in nonlinear analysis by using the compliances without

artificial springs. The enforced displacement and virtual forces for
Fig. 11 are: u∗in=0.16; Fo1= Fo2 = 1 × 10–2.

Fig. 11 indicates that topologies predicted by using the data of all
load steps and those in a final state are different; the output displace-
ment (0.316) by using the present formulation is 18.8 % larger than that
(0.266) by using the final state data. It is also evident that the conver-
gence history obtained using all load step results in NFEA appears
smoother and more stable than that predicted by using the final step
NFEA results only. This result illustrates that the results of all load steps
in NFEA should be used in the topology optimization of compliant
mechanism considering geometrical and material nonlinearities.

4.3. Multi-output compliant mechanism with displacement constraint

Design domain andmaterial properties shown in Fig. 3(b) and (d) are
used to study optimization for the multi-output mechanism with the
displacement constraint that uo2x is constrained. When Eqs. (22) and
(23) are adopted, the problem can be stated to find xe so that:

min : J = α1u(2)o1 + α2u(2)o2y + β1
(
u(2)in
)
+ γ1u(1)o1 + γ2u(1)o2y (24a)

s.t. :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

nR(2)(u,xe) = 0 λ(2)1 ≥ 1
nR(1)

l (u,xe) = 0 (l = 1, 2) λ(1)l1 ≥ 1

uo2x ≤ u∗o2x
∑Ns

e=1
(xeVe) ≤ VfV; 0 ≤ xe ≤ 1

(24b)

where nu(2)o2x denotes the displacement along x direction at port O2 in
Fig. 3(b) and the weighted factor w is given by:

w =

(
Φ(2)

(me)1 + Φ(2)
(me)2

)

max −
(
Φ(2)

(me)1 + Φ(2)
(me)2

)

min

(Φ(2)
(me)o2x)max − (Φ(2)

(me)o2x)min

(25)

The same coefficients as those in Sections 4.1 and 4.2 are used. In Eq.
(24), optimization is to minimize the output, compliances and the error
between the computed displacement nu(2)o2x and the specified one u∗o2x.

4.3.1. Optimization for mechanism with the displacement constraint in
linear analysis

The input data for this design case are the same as those in Section
4.2, except for those given here: real prescribed displacement u∗in =

0.16, and virtual forces Fo1 = Fo2 = 1 and Fo2x = 1. Two cases are
considered in the optimization with displacement constraint: u∗o2x=

Fig. 9. Output displacement versus iteration in linear analysis without
compliance component in objective function.

Table 2
Output displacements of the optimized topologies for the multi-output
compliant mechanisms and comparisons.

Case uin uo1 uo2 uout

Fig. 8(a) (using spring) 0.545 0.362 − 0.415 0.777
Zhu et al. [6] (using springs) 0.545 0.365 − 0.383 0.748
Fig. 8(b) (using (compliance) 0.05 0.073 − 0.041 0.114
Zhu et al. [6] (using compliances) 0.05 0.072 − 0.049 0.121

Fig. 10. Displacements computed by the present algorithm and Zhu et al. [6]
(u_o1*, u_o2*, u_out*) in linear analysis using objective function with compli-
ances caused by real and virtual forces.

Fig. 11. Output displacements and topologies predicted by using the present
formulation (left topology) and using the NFEA data in a final state
(right topology).
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− 0.003 and 0.03. The output displacements for the two displacement
constraint cases and the optimization without displacement constraint
are illustrated in Fig. 12, where the embedded figures are the topologies
for u∗o2x = -0.003 (left) and u∗o2x = 0.03 (right). The obtained displace-
ments in iteration for the two cases are u(2)o2x =− 0.0034 and 0.0256,
respectively.

4.3.2. Optimal design with the displacement constraint in nonlinear
analysis

For the nonlinear case, input data are u∗in = 0.16; Fo1= Fo2 =Fo2x = 1
× 10–2; and u∗o2x= 0.01 and − 0.015 are specified as displacement con-
straints, respectively, as the displacement uo2x obtained when there is no
displacement constraint (embedded left figure of Fig. 11) is 0.012. The

optimized topologies for the two constraints are embedded in Fig. 13
where the output displacement for the optimization without displace-
ment constraint is also plotted for comparison. The computed dis-
placements are u∗o2x = 0.0096 and u∗o2x = -0.016, respectively. Figs. 12
and 13 show the effectiveness of the present algorithm in optimization
for multi-output compliant mechanisms with multi-constraints. The
output displacements for these cases are decreased when the displace-
ment constraints are applied.

5. Conclusion

This study investigates multi-objective andmulti-constraint topology
optimization of nonlinear compliant mechanisms, considering (1)
geometrical and material nonlinearities, (2) volume, displacement, and
buckling constraints; and (3) hinge-free MIMO compliant mechanism
designs. A novel formulation for the output displacement in terms of all
load step results of NFEA of a structure is proposed, alongside an
effective MIST-based method and algorithm for multi-objective and
multi-constraint nonlinear topology optimization. Numerical examples
for topology optimization of linear and nonlinear (geometrical and
material) compliant mechanisms with one and two objectives and con-
straints are presented, and comparisons with the results available in the
literature validate the present algorithm. The present results show that
the uptake of all load step NFEA results yields a topology with larger
output displacement(s) and appears more structurally stable.

The limitations of this work include: (1) the absence of explicit
sensitivity analysis renders the proposed response functions, which
serve as sensitivity information, less effective for multi-objective prob-
lems in updating design variables compared to those based on explicit
sensitivity analysis; (2) the selection of the weighted factors wc may
require further investigation; and (3) while the proposed formulations
and method are designed for MIMO optimization problems, only single-
input multi-output numerical examples are presented.
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Appendix. : Flowchart of the present MIST algorithm

Fig. A1 illustrates the flowchart of the present MIST algorithm, which comprises three main blocks: (1) Design update in Ω with fixed mesh; (2)
NFEA in Ω(k)

1 ; and (3) Data process to create NFEA input file and extract the output data. Detailed descriptions of these three blocks are provided in
Section 0.

Fig. 12. Displacements and optimized designs of compliant mechanism with
displacement constraints in linear analysis: left embedded figure: u∗o2x =

-0.003; right figure: u∗o2x = 0.03.

Fig. 13. Displacements and optimized topology of compliant mechanism with
displacement constraints in nonlinear analysis: embedded left figure: u∗o2x =

0.01; embedded right figure: u∗o2x = -0.015.
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Fig. A1. Flowchart of the present MIST algorithm for topology optimization of nonlinear compliant mechanisms.
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Data will be made available on request.
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