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A B S T R A C T

Electric vehicles offer environmental benefits but pose challenges to power grids during peak demand. This
study introduces a method to optimize electric vehicle charging and incorporate vehicle-to-grid technology,
aiming to minimize electricity costs and electric vehicle loads during peak periods. Two models are developed
to evaluate electric vehicle owners’ willingness to participate in both non-vehicle-to-grid and vehicle-to-grid
scenarios, providing insights into future peak demand increases and potential reductions through optimization.

A case study in Texas, USA, utilizing data from the Pecan Street database, reveals that by 2030, the increase
in peak electric vehicle charging demand could exceed the current levels by over 4.7 times. This surge is up to
3.16% of the total electricity demand in Texas. However, with the implementation of the proposed optimization
methods, electric vehicles could potentially feed about 747 MWh of energy back into the grid, effectively
transforming them from energy consumers to suppliers during high-demand periods. This demonstrates the
crucial role that electric vehicles, coupled with strategic charging and vehicle-to-grid technologies, can play
in not only mitigating emissions but also in enhancing grid stability and efficiency.
1. Introduction

The 21st Conference of the Parties to the United Nations Framework
Convention on Climate Change (UNFCCC) held in Paris in 2015, was
a pivotal event where the Paris Agreement was adopted, marking
a global commitment to reducing carbon emissions and addressing
climate change. This conference catalyzed an upsurge in the adoption
of renewable energy worldwide [1].

Despite ongoing efforts, the automotive sector remains a major con-
tributor to greenhouse gas emissions, with an average vehicle emitting
over 5 tons annually [2]. To combat this, there has been a significant
global shift towards electric vehicles (EVs), marked by a notable in-
crease in sales. In 2019, EV sales reached 2.1 million units [3]. By 2023,
this number had skyrocketed to approximately 14 million [4], over six
times the sales figures from 2018; additionally, nearly 18% of all car
sales in 2023 were electric [5]. This robust growth indicates the rapid
expansion of the EV market.

However, this surge in EVs presents its own set of challenges for
the electrical grid, leading to concerns about increased peak demands
and the potential for grid overloading [6]. This issue highlights the
importance of examining the impact of EVs on peak energy demand
to ensure a reliable energy supply [7].

∗ Corresponding author.
E-mail address: Li.Li@uts.edu.au (L. Li).

Grid operators are tasked with a dual challenge: providing an
adequate supply to meet increasing demand and confirming that the
infrastructure, both in terms of transmission and distribution networks,
is robust enough to support this growth. In residential areas, the
focus is more acute on distribution networks, which must consider
the grid’s operational flexibility. Operational flexibility is the grid’s
ability to swiftly adapt to changing energy demands and supply while
maintaining a steady and reliable service. This encompasses the control
and forecast of distributed energy resources (DERs), quick adaptation
to demand and supply shifts, ensuring system stability through inertia
and frequency regulation, implementing demand response (DR) initia-
tives, leveraging smart grid technologies, utilizing energy storage, and
enforcing supportive grid policies and market mechanisms.

In this paper, we intend to project the anticipated demands of
EV charging in the next few years, with a particular focus on how
DR and vehicle-to-grid (V2G) strategies could shape this demand. The
analysis provided aims to equip grid operators with essential data for
informed decision-making, allowing for proactive updates to the grid.
This forward-planning is crucial for accommodating the expected rise
in EV adoption while maintaining grid reliability and efficiency.
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Nomenclature

Abbreviations:

CDDPG: Control Deep Deterministic Policy Gradient
C-VF: Coordinated Valley-Filling
C-VF-PS: Coordinated Valley-Filling and

Peak-Shaving
DRL: Deep Reinforcement Learning
DSOs: Distribution System Operators
EV: Electric Vehicle
ERCOT: Electric Reliability Council of Texas
FOMO: Fear of Missing Out
HEMS: Home Energy Management Systems
IoT: Internet of Things
LTSA: Long-Term System Assessment
ML: Machine Learning
PV: Photovoltaic
SHINES: Sustainable and Holistic Integration of

Energy Storage and Solar Photovoltaics
SoC: State of Charge
ToU: Time-of-Use
UNFCCC: United Nations Framework Convention on

Climate Change
V2G: Vehicle-to-Grid
ZCMES: Zero-Carbon Multi-Energy System
Indices and Sets
ℎ: Home index, where ℎ ∈ {𝐻} and 𝐻

represents the set of all homes
𝑡: Time step index, where 𝑡 ∈ {1,… , 𝑇 } and 𝑇

is the total number of time steps
𝑖: Appliance index, where 𝑖 ∈ {𝐼} and 𝐼

represents the set of all appliances
𝑑: Day index, where 𝑑 ∈ {𝐷} and 𝐷 represents

the total number of days
𝑠: Scenario index, with 𝑠 = {𝑠1, 𝑠2}
Parameters and Variables:
𝛽𝑡: Incentive given to customer at time 𝑡
𝛽𝑚𝑎𝑥𝑡 : Maximum possible incentive rate at time 𝑡
𝐶𝑠1
ℎ,𝐸 𝑉 , 𝐶𝑠2

ℎ,𝐸 𝑉 , 𝐶𝑠3
ℎ,𝐸 𝑉 : Total electricity costs for the EV in home ℎ

in scenarios 1, 2, and 3, respectively
𝐶𝑏𝑎𝑡
ℎ,𝐸 𝑉 : Capacity of home ℎ’s EV battery

𝛥𝐸𝑜𝑝𝑡,𝑝𝑒𝑎𝑘
𝐸 𝑉 ,𝑐 𝑢𝑟𝑟𝑒𝑛𝑡: Current EV peak demand reduction after

optimization
𝛥𝐸𝑜𝑝𝑡,𝑝𝑒𝑎𝑘

𝐸 𝑉 ,𝑓 𝑢𝑡𝑢𝑟𝑒: Future EV peak demand reduction after
optimization

𝐸𝑏𝑙 ,𝑝𝑒𝑎𝑘
𝐸 𝑉 ,𝑐 𝑢𝑟𝑟𝑒𝑛𝑡: Current baseline peak energy consumption

without optimization
𝐸𝑜𝑝𝑡,𝑝𝑒𝑎𝑘
𝐸 𝑉 ,𝑐 𝑢𝑟𝑟𝑒𝑛𝑡, 𝐸

𝑜𝑝𝑡,𝑝𝑒𝑎𝑘
𝐸 𝑉 ,𝑓 𝑢𝑡𝑢𝑟𝑒: Current and future energy consumption of

EVs within the peak period
𝜂𝑐 ℎ, 𝜂𝑑 𝑖𝑠: Charging and discharging efficiency of the

battery
𝑁𝑑 𝑎𝑡𝑎𝑠𝑒𝑡

𝐸 𝑉 , 𝑁𝑠𝑡𝑎𝑡𝑒
𝐸 𝑉 , 𝑁𝑓 𝑢𝑡𝑢𝑟𝑒

𝐸 𝑉 : Number of EVs in the dataset, currently
in the state, and expected in the future

𝑃 𝑜𝑝𝑡, 𝑃 𝑐 ℎ, 𝑃 𝑑 𝑖𝑠: The power consumption of the EV after op-
timization, the average charging power, and
the discharging power, respectively
2 
𝑆 𝑜𝐶 , 𝑆 𝑜𝐶𝑚𝑖𝑛, 𝑆 𝑜𝐶𝑚𝑎𝑥: State of Charge of the EV, and minimum
and maximum acceptable SoC

𝑡𝑜𝑝𝑡ℎ,𝑑 ,𝑏𝑒𝑔 , 𝑡
𝑜𝑝𝑡
ℎ,𝑑 ,𝑒𝑛𝑑 : Beginning and ending time for EV optimiza-

tion at home ℎ on day 𝑑
𝑡𝑏𝑒𝑔 , 𝑡𝑒𝑛𝑑 : Beginning and ending time of peak periods
𝑇peak: Time periods designated as peak periods by

the DR provider
𝑉 𝑎𝑢𝑥: Auxiliary variables
𝜏𝑎ℎ𝑒𝑎𝑑 ,𝑚𝑎𝑥, 𝜏𝑑 𝑒𝑙 𝑎𝑦,𝑚𝑎𝑥, 𝜏𝑎ℎ𝑒𝑎𝑑 ,𝑎𝑐 𝑡, 𝜏𝑑 𝑒𝑙 𝑎𝑦,𝑎𝑐 𝑡: Maximum allowable and

actual time shifts ahead of and delays
from the original charging schedule in the
baseline

𝜏𝑚𝑎𝑥: The maximum allowable and actual time
deviation from the original operation sched-
ule

𝜌𝑇 𝑜𝑈𝑡 , 𝜌𝑓 𝑒𝑒𝑑−𝑖𝑛,𝐸 𝑉𝑡 , 𝜌𝑓 𝑒𝑒𝑑−𝑖𝑛,𝐸 𝑉 ,𝑚𝑎𝑥𝑡 : Time-of-Use tariffs, feed-in tar-
iffs for EVs at time 𝑡, and maximum feed-in
tariffs for EVs at time 𝑡

𝜌𝐷 𝐴𝑀
𝑡 : Day-ahead market tariffs at time 𝑡

𝑚1, 𝑚2: Weighting factors for economic concerns
in Scenario 1, time deviation concerns in
Scenario 1, respectively

𝑛1, 𝑛2, 𝑛3: Weighting factors for incentive concern,
V2G reward concern, and inconvenience
due to scheduling differences in Scenario 2,
respectively

𝑢𝑜𝑝𝑡,𝑐 ℎ, 𝑢𝑜𝑝𝑡,𝑑 𝑖𝑠, 𝑢𝑏𝑙 ,𝑐 ℎ: Binary indicators of the EV’s charging and
discharging status under optimized and
baseline schedules

𝜔𝑠1
ℎ,𝐸 𝑉 ,𝑑 ,𝑡, 𝜔𝑠2

ℎ,𝐸 𝑉 ,𝑑 ,𝑡: Willingness of home ℎ’s EV owners on day
𝑑 at time 𝑡 in Scenarios 1 and 2

2. Literature review

The reliability of power grids, essential for meeting consistent and
growing energy demands, faces substantial challenges, particularly dur-
ng crises. A notable instance was the 2021 winter storm in Texas,
eading to extensive power outages and escalated energy costs [8]. In

addressing such challenges, strategies to enhance grid reliability are
increasingly important. DR strategies, especially those involving EVs,
are emerging as a key solution. This paper explores the role of EVs
in enhancing grid reliability, examining the potential benefits and the
necessary technological advancements.

2.1. Electric vehicle strategies for enhancing grid reliability

EVs offer promising strategies for improving the reliability of power
grids. Through innovative technologies such as optimal charging and
V2G systems, they contribute significantly to immediate grid stability
concerns and the long-term development of sustainable and resilient
energy systems. The following subsections explore various facets of EV
integration, detailing how they assist in building a more robust and
efficient power grid.

One key aspect of this integration is the V2G concept, which not
nly helps in reducing peak energy demand but also provides financial

benefits for EV owners. This concept has been effectively demonstrated
in Shanghai’s V2G systems sensitivity analysis [9]. Moreover, smart
charging and V2G in microgrids have shown a considerable reduction
in peak demand [10]. The V2G Logical Control algorithm, focusing on
cost minimization, has also displayed considerable savings in charging
costs [11].
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To enhance grid reliability, optimizing storage capacity is crucial
or managing peak demand. Techniques like Monte Carlo simulation
lay a vital role in assessing how various parameters affect storage
ptimization [12]. Ref. [13] illustrates how EV charging stations can

stabilize the grid by integrating with renewable energy and storage
ystems. Furthermore, V2G technology extends beyond load manage-
ent, offering ancillary services such as grid frequency and voltage

regulation, which are cost-effective solutions [14]. The integration of
solar power with EV batteries to reduce peak demand represents an-
other innovative strategy [15]. The Zero-Carbon Multi-Energy System
ZCMES) concept categorizes electricity usage of EVs into electric,
eating, and cooling applications, optimizing charging and discharging
chedules while addressing the uncertainties associated with renewable
nergy sources [16].

2.1.1. Machine learning in electric vehicle charging optimization
As the landscape of EV integration evolves, machine learning (ML)

technologies, particularly Deep Reinforcement Learning (DRL), are
emerging as pivotal tools in optimizing EV charging processes. DRL
models, leveraging neural networks, are adept at adapting to real-time
ricing to optimize charging schedules, thereby reducing costs [17].

Techniques like safe DRL ensure efficient EV charging scheduling, guar-
anteeing a full charge at departure while also minimizing costs [18].
The Control Deep Deterministic Policy Gradient (CDDPG) algorithm,
for instance, is designed to meet specific State of Charge (SoC) re-
quirements while keeping costs low, without the necessity of a full
battery charge at departure [19]. The integration of the Internet of

hings (IoT) with EV charging, as explored in [20], facilitates the
identification of optimal charging stations, taking into account factors
like cost and distance. Additionally, DRL is employed to minimize the
total charging time at public stations [21]. Predictive analytics-based
ML strategies also play a significant role in optimizing V2G operations,
thereby leading to considerable energy savings [22].

The study by Qiu et al. highlights that most EVs are charged at
residential locations [23], with the assumption that each residential
roperty is equipped with its own charging facility. This assumption
liminates the need to consider several factors that are typically rele-
ant in non-residential settings. These factors include the availability of
harging facilities, the waiting time for charging, the level of charging
ower, and the proximity to charging stations.

This reduction in complexity and training requirements for ML
methods in residential charging scenarios leads to a preference for
simpler, conventional algorithms. Home charging, being simpler and
more direct compared to public or commercial charging scenarios,
creates an ideal setting for the use of less complex algorithms, such
as mixed-integer programming.

2.1.2. Conventional algorithms for electric vehicle charging optimization
Efficient optimization of EV charging schedules can be achieved

through conventional algorithms like mixed-integer programming.
These algorithms aim to minimize energy costs for EV owners and
manage peak demand for grid operators, ensuring a balance between
the dynamic needs of power grids and EV usage [24]. A prominent
xample is the robust V2G framework that employs a two-layer control

algorithm, which not only reduces EV charging costs but also stabilizes
grid voltage and frequency, enhancing grid reliability [25].

The consideration of battery degradation in charging schedules is
nother important aspect, and the study in [26] offers insights for
ustainable EV operation. To improve energy consumption efficiency,

strategies like Coordinated Valley-Filling (C-VF) and Peak-Shaving (C-
F-PS) have been developed to reduce load variance [27]. The feasi-
ility of rescheduling EV charging to off-peak hours to alleviate grid
tress and offer cost benefits is also being explored [18]. Furthermore,
he integration of renewable energy sources, such as photovoltaic (PV)

systems, with EV charging infrastructure is examined to encourage
sustainable energy use and lessen dependence on conventional power
3 
sources [28]. These conventional algorithms and strategies play a vital
role in enhancing EV charging optimization and contribute significantly
to the progression towards more sustainable energy systems.

The algorithms of EV optimization are only one side of the spec-
rum. On the other hand, EV owners’ willingness will significantly
nfluence EV flexibility.

2.1.3. Electric vehicle owners’ willingness impact on electric vehicle flexibil-
ty

EV owners’ participation in DR programs is a crucial part of broader
ustomer engagement in such initiatives [29]. To better understand
his participation, numerous studies have employed Home Energy Man-
gement Systems (HEMS). These systems are essential for investigat-
ng demand flexibility in residential homes, including the specific

demand flexibility associated with EVs. This paper concentrates on EV
flexibility.

EV flexibility primarily encompasses the implementation of optimal
charging schedules to reduce peak electricity demand, known as EV
demand flexibility [30]. This strategy not only alleviates grid load
during peak times but also includes the ability of EVs to return energy
o the grid via V2G technology, thereby enhancing grid stability and
fficiency [31]. Additionally, HEMS play a pivotal role in this ecosys-
em. They not only manage EV charging but also shift the operation of

household appliances from peak to off-peak hours. This showcases their
ffectiveness in automated energy management [32] and in integrating

residential PV systems to optimize EV charging [33].
However, the efficiency of HEMS is often hindered by the absence

f smart control for individual appliances in many residential homes.
This limitation underscores the importance of customer participation
and willingness in successful DR programs. The unpredictability of
customer energy use decisions significantly affects EV flexibility [34],
making accurate assessment of customer willingness crucial for reliable
flexibility estimation and to prevent incorrect energy demand forecasts
hat could jeopardize grid reliability [35].

Customer willingness to participate in DR programs is influenced by
everal factors. Incentives play a key role in shaping willingness within
ncentive-based DR programs [34]. Additionally, factors like consumer

habits, demand-side management through smart technologies, regula-
ory policies, and technical interventions including ML and gamifica-
ion for personalized recommendations influence customer behavior
n energy conservation [35]. Demographic elements such as income,
ge [36], and location also affect energy use behavior [37]. Further-

more, consumer behavior in DR programs is influenced by financial and
environmental motivations, trust in and familiarity with technology,
perceived risks and control, the complexity and effort required for
participation, and individual user characteristics and routines [38].
However, Ref. [39] focuses on designing customer willingness at the
appliance level but overlooks the aspect of customer willingness related
to the fear of missing out (FOMO) on savings [40], a significant factor
n enhancing customer response to discounts.

To address these challenges, we propose a methodology to assess
willingness at the appliance level, considering economic, comfort, and
adaptation factors, aiming to enhance the effectiveness of DR programs.
This methodology will be detailed in Section 3.

2.2. Research gaps and contributions

Our research aims to address several significant gaps in the current
research of EV integration into power grids. These gaps underscore
critical areas that require further exploration to develop effective grid
management strategies, especially as EV adoption continues to rise
rapidly.



J. Wu et al.

o

f

i

d
g
d
i
a
r

m

c
f

E

s
f

i

International Journal of Electrical Power and Energy Systems 164 (2025) 110435 
2.2.1. Research gaps
• Challenges in Modeling EV Demand during Peak Periods:

Despite numerous studies exploring EV flexibility, there remains
a notable gap in estimating accurately EV peak demand with
the increasing EV adoption. The complexity of predicting EV
charging demand during peak periods [41] underscores the need
for models that accurately account for future uncertainties and
complexities [42], including EV owners’ charging behaviors [43].

• Customer Willingness in DR Programs: The willingness of cus-
tomers to participate in EV DR programs, particularly in res-
idential settings, is crucial. Assumptions of ideal customer re-
sponsiveness can pose significant risks to grid reliability. It is
essential to incorporate real-world behaviors such as the FOMO
phenomenon to more accurately reflect customer behavior and
improve participation rates in DR programs.

• Adjusting Incentive Rates to Enhance EV Flexibility: While
incentive rates in DR programs are designed to encourage cus-
tomer participation, there is limited research on how these rates
can be strategically adjusted to influence EV flexibility and, con-
sequently, enhance the reliability of distribution networks. This
gap signifies the need for detailed studies on the optimization of
incentive structures to maximize their effectiveness.

• Future Energy Consumption of EVs: Research on the future
energy consumption of EVs is crucial but remains limited. As the
number of EVs continues to grow, this increase in energy demand
could significantly challenge the grid [44]. While short-term EV
charging demand has been forecasted [45], few studies focus on
long-term forecasting of EV charging demand and its flexibility in
the future. Understanding and planning for these long-term needs
are essential to ensure grid stability and prevent supply shortages.

Addressing these gaps through rigorous empirical research and
advanced modeling techniques is fundamental to developing robust
grid management strategies that can adapt to the evolving landscape
f vehicle electrification.

2.2.2. Contributions
This study focuses on evaluating future EV charging demand and its

lexibility through optimal charging schedules and V2G technologies.
These areas are critical in relation to DR programs and for assessing the
long-term impact of EV adoption on grid stability. Utilizing real-world
charging data, the research will analyze peak demand scenarios under
various conditions and investigate barriers to EV owner participation
n DR programs. This comprehensive approach is designed to equip

grid operators, distribution system operators (DSOs), and electricity
retailers with strategies necessary to manage the escalating EV charging
emand effectively. Ultimately, the research aims to provide actionable
uidance to grid operators and policymakers, facilitating informed
ecisions for grid reinforcement and expansion plans. This initiative
s crucial for developing robust grid management strategies that can
dapt to the evolving landscape of vehicle electrification, ensuring a
esilient and efficient energy infrastructure.

The contributions of this paper are as follows:

• Modeling EV Demand during Peak Periods: This study utilizes
real-world charging data to accurately model and predict future
EV charging demand under various scenarios. This addresses
the significant gap in estimating the EV charging peak demand
under the continued increasing EV adoption, where the complex-
ities [41], uncertainties [42], and customer behaviors [43] are
considered in the model. The approach could help grid opera-
tors and policymakers in making informed decisions about grid
reinforcement and expansion strategies.

• Improving Customer Participation in DR Programs: The accu-
racy of estimating EV flexibility is enhanced by developing two
equations for EV owners’ willingness that incorporate the FOMO
phenomenon. This contribution addresses the gap concerning
ideal customer responsiveness and its risks to grid reliability,
reflecting more realistic customer behavior in DR programs.
4 
• Impact of Incentive Rates on EV Flexibility: A comprehensive
sensitivity analysis is carried out to investigate how different in-
centive rates affect EV flexibility and the reliability of distribution
networks. This responds to the identified gap where few studies
have explored the adjustment of incentive rates to influence EV
flexibility effectively.

• Exploring Future Energy Consumption of EVs:This study ex-
amines potential energy reductions achievable through optimal
charging schedules and V2G technologies to address the gap
concerning future energy consumption of EVs and its impact on
grid supply [44]. This analysis prepares grid operators, DSOs, and
retailers for the challenges posed by increasing numbers of EVs.

• Case Study Analysis: Case studies are carried out that provide
insights into barriers to EV owner participation in DR programs
and strategies to mitigate these challenges. This contribution
complements the above theoretical findings and offers actionable
recommendations for enhancing grid management and customer
engagement in DR initiatives.

These contributions collectively address the gaps in literature and
practice by providing comprehensive, empirically supported solutions
and strategies for effective integration of EVs into the power grid.

The following paper is organized as follows: Section 3 outlines the
ethodology, detailing approaches for analyzing future EV charging

demand and flexibility during peak periods. Section 4 presents two
ase studies on the financial background and incentive impacts on EV
lexibility and charging costs. Section 5 summarizes the key findings,

discusses implications, and suggests future research directions.

3. Methodology

In this section, the methodology is outlined for optimizing EV
operations. This includes investigating EV flexibility through optimal
charging schedules and V2G technology, as well as forecasting future
V charging demand and potential load reduction during peak periods.

3.1. Problem introduction and assumptions

This study uses real-time data from Pecan Dataport, a comprehen-
ive database capturing minute-level electricity consumption patterns
or various appliances, including EV charging sessions [46]. The energy

consumption of an EV in the ℎth household is defined as the baseline
scenario, where the EV solely draws energy from the grid without V2G
nteraction or optimized charging schedules.

Key assumptions in this study are:

• EVs are parked, powered off, and ready for charging or V2G when
not in use.

• All EVs are fully charged at the end of each baseline charging
session, equating the energy drawn from the grid to the energy
used since the last charge.

• All EVs will remain undriven after their charging or discharging
periods end on that day.

3.2. Scenario introduction

Based on the baseline, two scenarios are developed to minimize EV
charging costs and enhance demand flexibility:

Scenario 1: Optimal Charging Schedules without V2G

• Utilizes a nonlinear model and a genetic algorithm to generate
optimal charging schedules.

• Offers incentives for energy reduction during peak periods, en-
couraging customer participation in DR programs.
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Scenario 2: Integration of V2G Technology

• Incorporates both optimal charging schedules and V2G technol-
ogy.

• Rewards customers for selling electricity back to the grid, enhanc-
ing demand flexibility.

In both scenarios, assuming that the availability of charging and
2G facilities when EVs are parked. The study aims to minimize daily
harging costs for EV owners over a fixed number of days [0, 𝐷], with 𝐷
epresenting the total days and 𝑇 time steps within each day at interval
𝑡. The dataset covers 𝐻 households, each potentially owning one EV.
eak periods, denoted as 𝑇𝑝𝑒𝑎𝑘, are set by the DR provider based on
rea energy consumption.

3.3. Scenario 1: Optimal charging schedules without vehicle-to-grid

In Scenario 1, the objective is to explore the impact of optimal
harging schedules on EVs, especially excluding V2G technology. The
ocus is on evaluating EV flexibility, particularly in terms of the power
onsumption after optimization, 𝑃 𝑜𝑝𝑡

ℎ,𝐸 𝑉 ,𝑑 ,𝑡. This metric is calculated
or each household ℎ across various days 𝑑 and time intervals 𝑡,
ost-optimization, as shown in (1):

𝑃 𝑜𝑝𝑡
ℎ,𝐸 𝑉 ,𝑑 ,𝑡 = 𝑢𝑜𝑝𝑡,𝑐 ℎℎ,𝐸 𝑉 ,𝑑 ,𝑡𝜔𝑠1

ℎ,𝐸 𝑉 ,𝑑 ,𝑡𝑃 𝑐 ℎ
ℎ,𝐸 𝑉 + 𝑢𝑏𝑙 ,𝑐 ℎℎ,𝐸 𝑉 ,𝑑 ,𝑡(1 − 𝜔𝑠1

ℎ,𝐸 𝑉 ,𝑑 ,𝑡)𝑃 𝑐 ℎ
ℎ,𝐸 𝑉 (1)

Here, the variables 𝑢𝑏𝑙 ,𝑐 ℎℎ,𝐸 𝑉 ,𝑑 ,𝑡 and 𝑢𝑜𝑝𝑡,𝑐 ℎℎ,𝐸 𝑉 ,𝑑 ,𝑡 are binary indicators of the
EV’s charging status under baseline and optimized schedules, respec-
tively. The average charging power of the EV at home ℎ is denoted as
𝑃 𝑐 ℎ
ℎ,𝐸 𝑉 . The critical factor in this scenario is the decision of EV owners to

either comply with the optimized charging schedule or stick to regular
harging patterns, significantly influencing the power consumption,
𝑜𝑝𝑡
ℎ,𝐸 𝑉 ,𝑑 ,𝑡.

A key aspect of this study is the ‘willingness’ of EV owners to switch
to these optimized charging schedules, represented by 𝜔𝑠1

ℎ,𝐸 𝑉 ,𝑑 ,𝑡. This
willingness, crucial for evaluating the adoption of optimal charging
strategies, is developed from Eq. (3) in [39] and is described in (2).

𝜔𝑠1
ℎ,𝐸 𝑉 ,𝑑 ,𝑡 = 𝑚1

(𝛽𝑡)2

(𝛽max
𝑡 )2

+ 𝑚2
𝛽𝑡

𝛽max
𝑡

𝑓ℎ,𝐸 𝑉 ,𝑑 ,𝑡 (2)

In (2), 𝛽𝑡 represents the incentive rate provided by electricity retail-
rs to customers at time 𝑡, and 𝛽max

𝑡 denotes the maximum incentive
ate that retailers can offer to customers. Note that 𝛽max

𝑡 in this paper
s determined by the average difference between the retail ToU prices
or customers and the day-ahead market prices in the wholesale market
uring peak periods, as shown in Eq. (26). The parameters 𝑚1 and 𝑚2
eigh economic considerations and time deviation concerns, respec-

ively. The flexibility of the charging schedule is captured by 𝑓ℎ,𝐸 𝑉 ,𝑑 ,𝑡,
which is outlined in (3):

𝑓ℎ,𝐸 𝑉 ,𝑑 ,𝑡 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

|

|

|

𝜏𝑎ℎ𝑒𝑎𝑑 ,𝑚𝑎𝑥ℎ,𝐸 𝑉 ,𝑑 ,𝑡 −|𝜏𝑎ℎ𝑒𝑎𝑑 ,𝑎𝑐 𝑡ℎ,𝐸 𝑉 ,𝑑 ,𝑡 |||
|

|𝜏𝑎ℎ𝑒𝑎𝑑 ,𝑚𝑎𝑥ℎ,𝐸 𝑉 ,𝑑 ,𝑡 |

, if |𝜏𝑎ℎ𝑒𝑎𝑑 ,𝑎𝑐 𝑡ℎ,𝐸 𝑉 ,𝑑 ,𝑡 | > 0
|

|

|

𝜏𝑑 𝑒𝑙 𝑎𝑦,𝑚𝑎𝑥ℎ,𝐸 𝑉 ,𝑑 ,𝑡 −|𝜏𝑑 𝑒𝑙 𝑎𝑦,𝑎𝑐 𝑡ℎ,𝐸 𝑉 ,𝑑 ,𝑡 |||
|

|𝜏𝑑 𝑒𝑙 𝑎𝑦,𝑚𝑎𝑥ℎ,𝐸 𝑉 ,𝑑 ,𝑡 |

, if |𝜏𝑑 𝑒𝑙 𝑎𝑦,𝑎𝑐 𝑡ℎ,𝐸 𝑉 ,𝑑 ,𝑡 | > 0

1, if 𝜏𝑎ℎ𝑒𝑎𝑑 ,𝑎𝑐 𝑡ℎ,𝐸 𝑉 ,𝑑 ,𝑡 = 0,
& 𝜏𝑑 𝑒𝑙 𝑎𝑦,𝑎𝑐 𝑡ℎ,𝐸 𝑉 ,𝑑 ,𝑡 = 0

(3)

Here the term
𝜏max
ℎ,𝑖,𝑡 −|𝜏

act
ℎ,𝑖,𝑡|

𝜏max
ℎ,𝑖,𝑡

from [39] is substituted with a similar one
n (3). This change is made to address the potential inaccuracies in the

EV charging schedule. The original equation considers the maximum
deviation (𝜏𝑚𝑎𝑥ℎ,𝑖,𝑡 ) between the optimal and baseline schedules, which
could result in inaccuracies when EVs are actively being used.

To cope with it, 𝜏𝑚𝑎𝑥ℎ,𝑖,𝑡 is split into two components: the maximum
allowable shift ahead of time (𝜏𝑎ℎ𝑒𝑎𝑑 ,𝑚𝑎𝑥ℎ,𝑖,𝑡 ) and the maximum allowable
elay time (𝜏𝑑 𝑒𝑙 𝑎𝑦,𝑚𝑎𝑥). This split allows EV owners to preset these
ℎ,𝑖,𝑡
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values based on the knowledge of when the EVs will be in use, thereby
voiding inaccurate schedules generated by the optimization process.

Similarly, the actual time deviation (𝜏𝑎𝑐 𝑡ℎ,𝑖,𝑡) is divided into the actual
ime ahead of the baseline operation time (𝜏𝑎ℎ𝑒𝑎𝑑 ,𝑎𝑐 𝑡ℎ,𝑖,𝑡 ) and the actual
elay time from the baseline operation time (𝜏𝑑 𝑒𝑙 𝑎𝑦,𝑎𝑐 𝑡ℎ,𝑖,𝑡 ). This divi-
ion enables the application of different conditions for more accurate
cheduling.

The first term in (2) reflects the impact of economic incentives
on customer decisions. This term uses the square of the ratio of the
current incentive to the maximum possible incentive, introducing a
nonlinear emphasis on the importance of the retailer’s incentive. This
squared ratio is a key aspect of the equation, highlighting the principle
of increasing marginal significance based on consumer behavior. In
retail and e-commerce, there is evidence that as discounts or incentives
near their maximum levels, consumers experience a heightened sense of
urgency and perceive higher value, often due to diminishing marginal
utility and the FOMO phenomenon seen in market trends [40]. This re-
action is not simply linear; the incremental value of an offer nearing its
peak resonates strongly with consumers, leading to a disproportionately
large response. For instance, during peak discount events like Black Fri-
day, consumer purchasing behavior intensifies significantly compared
to other days with marginally lower discounts. This is because the
FOMO on substantial savings drives a surge in purchases. The squared
term in the equation reflects a particular behavioral detail: as incentives
get closer to their maximum possible value, customers become increas-
ingly likely to react. However, this reaction is not straightforward or
proportional; it changes at a rate that is not consistent as the incentives
increase [47].

The second term in (2) addresses the effect of incentives, suggesting
that EV owners might be less motivated to respond in the absence of
such benefits. With the incentive, customer response will be based on
the consideration of the inconvenience level.

This scenario also ensures that EVs receive a sufficient charge by
equiring the charging duration in the optimized schedule to match the

baseline, as mandated by constraint (4).
𝑇
∑

𝑡=1
𝑢bl,ch
ℎ,𝐸 𝑉 ,𝑑 ,𝑡 =

𝑇
∑

𝑡=1
𝑢opt,ch
ℎ,𝐸 𝑉 ,𝑑 ,𝑡 (4)

Furthermore, to ensure continuous charging, Eq. (5) mandates align-
ment of the charging process with the baseline period. This involves
setting the optimization beginning (𝑡𝑜𝑝𝑡ℎ,𝑑 ,𝑏𝑒𝑔) and ending time (𝑡𝑜𝑝𝑡ℎ,𝑑 ,𝑒𝑛𝑑)
within a permissible time range, which are adjusted to accommodate
the maximum allowable shifts. In Scenario 1, where no V2G activity
occurs, the EV is required to charge continuously, which is consistent
with the baseline.
𝑡opt
ℎ,𝑑 ,end−

(

∑𝑇
𝑎=1 𝑢

bl,ch
ℎ,EV,𝑑 ,𝑎−1

)

∑

𝑡=𝑡opt
ℎ,𝑑 ,beg

𝑢opt,ch
ℎ,EV,𝑑 ,𝑡𝑢

opt,ch
ℎ,EV,𝑑 ,𝑡+1

𝑢opt,ch
ℎ,EV,𝑑 ,𝑡+2 … 𝑢opt,ch

ℎ,EV,𝑑 ,𝑡+(∑𝑇
𝑎=1 𝑢

bl,ch
ℎ,EV,𝑑 ,𝑎−1

) ≥ 1

(5)

Assuming the EV is charged only once a day. If the binary variable
𝑜𝑝𝑡,𝑐 ℎ
ℎ,𝐸 𝑉 ,𝑑 ,𝑡 is equal to 1, then the EV is charging at time 𝑡, otherwise it
quals 0 and EV is not charging at time 𝑡.

For the EV to maintain continuous charging within the optimization
eriods, there should be at least ∑𝑇

𝑡=1 𝑢
𝑏𝑙 ,𝑐 ℎ
ℎ,𝑖,𝑡 consecutive times where

𝑜𝑝𝑡,𝑐 ℎ
ℎ,𝑖,𝑡 equals 1, between the optimization beginning time (𝑡𝑜𝑝𝑡ℎ,𝑑 ,𝑏𝑒𝑔) and
he optimization ending time (𝑡𝑜𝑝𝑡ℎ,𝑑 ,𝑒𝑛𝑑). Therefore, the sequence 𝑢𝑜𝑝𝑡,𝑐 ℎℎ,𝐸 𝑉 ,𝑑 ,𝑡,
𝑜𝑝𝑡,𝑐 ℎ
ℎ,𝐸 𝑉 ,𝑑 ,𝑡+1, 𝑢

𝑜𝑝𝑡,𝑐 ℎ
ℎ,𝐸 𝑉 ,𝑑 ,𝑡+2,… , 𝑢𝑜𝑝𝑡,𝑐 ℎ

ℎ,𝐸 𝑉 ,𝑑 ,𝑡+(∑𝑇
𝑎=1 𝑢

𝑏𝑙 ,𝑐 ℎ
ℎ,𝐸 𝑉 ,𝑑 ,𝑎−1

) should all be equal to
, ensuring that the EV continues to charge without interruption.

However, this equation introduces a mixed-integer nonlinear con-
straint, impacting optimization efficiency. To address this, we introduce
a new auxiliary variable 𝑉 𝑎𝑢𝑥

ℎ,EV,𝑑 ,𝑡 as follows:
𝑉 𝑎𝑢𝑥
ℎ,EV,𝑑 ,𝑡 = 𝑢𝑜𝑝𝑡,𝑐 ℎℎ,𝐸 𝑉 ,𝑑 ,𝑡𝑢

𝑜𝑝𝑡,𝑐 ℎ
ℎ,𝐸 𝑉 ,𝑑 ,𝑡+1𝑢

𝑜𝑝𝑡,𝑐 ℎ
ℎ,𝐸 𝑉 ,𝑑 ,𝑡+2 … 𝑢𝑜𝑝𝑡,𝑐 ℎ (

∑𝑇 𝑏𝑙 ,𝑐 ℎ ),

ℎ,𝐸 𝑉 ,𝑑 ,𝑡+ 𝑎=1 𝑢ℎ,𝐸 𝑉 ,𝑑 ,𝑎−1
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where 𝑡 = 𝑡𝑜𝑝𝑡ℎ,𝑑 ,𝑏𝑒𝑔 , 𝑡
𝑜𝑝𝑡
ℎ,𝑑 ,𝑏𝑒𝑔 + 1, 𝑡𝑜𝑝𝑡ℎ,𝑑 ,𝑏𝑒𝑔 + 2,…, 𝑡𝑜𝑝𝑡ℎ,𝑑 ,𝑒𝑛𝑑 − (∑𝑇

𝑎=1 𝑢
𝑏𝑙 ,𝑐 ℎ
ℎ,𝐸 𝑉 ,𝑑 ,𝑎− 1). It

is worth noting that ∑𝑇
𝑎=1 𝑢

bl,ch
ℎ,EV,𝑑 ,𝑎 is the total charging time of the day

for the EV. When EV charging optimization starts. Then, Eq. (5) can be
inearized using Eqs. (6)–(8).

𝑉 𝑎𝑢𝑥
ℎ,EV,𝑑 ,𝑡 ≤ 𝑢opt,ch

ℎ,EV,𝑑 ,𝑡+𝑘, where 𝑘 = 0, 1, 2,… ,

( 𝑇
∑

𝑎=1
𝑢bl,ch
ℎ,EV,𝑑 ,𝑎 − 1

)

(6)

𝑉 𝑎𝑢𝑥
ℎ,EV,𝑑 ,𝑡 ≥

∑𝑇
𝑎=1 𝑢

bl,ch
ℎ,EV,𝑑 ,𝑎−1
∑

𝑘=0
𝑢opt,ch
ℎ,EV,𝑑 ,𝑡 −

𝑇
∑

𝑎=1
𝑢bl,ch
ℎ,EV,𝑑 ,𝑎 + 1 (7)

𝑡𝑜𝑝𝑡ℎ,𝑑 ,𝑒𝑛𝑑−
(

∑𝑇
𝑎=1 𝑢

𝑏𝑙 ,𝑐 ℎ
ℎ,𝐸 𝑉 ,𝑑 ,𝑎−1

)

∑

𝑡=𝑡𝑜𝑝𝑡ℎ,𝑑 ,𝑏𝑒𝑔
𝑉 𝑎𝑢𝑥
ℎ,EV,𝑑 ,𝑡 ≥ 1 (8)

Note that Eqs. (6)–(7) ensure that 𝑉 𝑎𝑢𝑥
ℎ,𝐸 𝑉 ,𝑑 ,𝑡 = 1 if and only if all of

𝑜𝑝𝑡,𝑐 ℎ
ℎ,𝐸 𝑉 ,𝑑 ,𝑡+𝑘 are all 1, where 𝑘 = 0, 1,…

(

∑𝑇
𝑎=1 𝑢

bl,ch
ℎ,EV,𝑑 ,𝑎 − 1

)

.
This formulation improves the efficiency of the optimization by

inearizing this constraint, while still ensuring continuous charging
uring the specified periods.

The practical application of these constraints means that if an EV
starts charging at a particular time under the optimized schedule, it
hould continue for the same duration as outlined in the baseline.
hus, depending on the time shifts, different cases of (3) are utilized.
or instance, if a baseline schedule has an EV charging from 1:00
m to 3:00 pm and the customer allows a one-hour earlier shift, the

optimized schedule could run from 12:30 pm to 2:30 pm. In this case,
the actual time deviation for charging earlier is considered, while the
delay deviation is disregarded, applying the first case of (3) for power
consumption calculations.

To encourage EV owners to respond, the objective is to minimize
the EV charging cost, 𝐶𝑠1

ℎ,𝐸 𝑉 , of home ℎ over 𝐷 days, as calculated in
(9). In the big parentheses, the first part calculates the EV charging
costs, including the EV following the optimal charging schedule and
ollowing the schedule in the baseline. The second part is the incentive
rovided to the EV owners, who shift the EV charging schedule from
eak periods 𝑇𝑝𝑒𝑎𝑘 to other periods.

min𝐶𝑠1
ℎ,𝐸 𝑉 =

𝐷
∑

𝑑=1

{ 𝑇
∑

𝑡=1
𝑃 𝑜𝑝𝑡
ℎ,𝐸 𝑉 ,𝑑 ,𝑡𝜌𝑇 𝑜𝑈𝑡 𝛥𝑡−

∑

𝑡∈𝑇𝑝𝑒𝑎𝑘

𝜔𝑠1
ℎ,𝐸 𝑉 ,𝑑 ,𝑡𝑃 𝑐 ℎ

ℎ,𝐸 𝑉 𝛽𝑡(𝑢𝑏𝑙 ,𝑐 ℎℎ,𝐸 𝑉 ,𝑑 ,𝑡 − 𝑢𝑜𝑝𝑡,𝑐 ℎℎ,𝐸 𝑉 ,𝑑 ,𝑡)𝛥𝑡
} (9)

The current energy consumption of EVs in the dataset within the
peak period 𝑇𝑝𝑒𝑎𝑘 in Scenario 1, 𝐸𝑜𝑝𝑡,𝑠1,𝑝𝑒𝑎𝑘

𝐸 𝑉 ,𝑐 𝑢𝑟𝑟𝑒𝑛𝑡, is

𝐸𝑜𝑝𝑡,𝑠1,𝑝𝑒𝑎𝑘
𝐸 𝑉 ,𝑐 𝑢𝑟𝑟𝑒𝑛𝑡 =

𝐻
∑

ℎ=1

𝐷
∑

𝑑=1

∑

𝑡∈𝑇𝑝𝑒𝑎𝑘

𝑃 𝑜𝑝𝑡
ℎ,𝐸 𝑉 ,𝑑 ,𝑡𝛥𝑡 (10)

By comparing the current peak energy consumption in the baseline
nd in Scenario 1, the peak demand reduction, 𝛥𝐸𝑜𝑝𝑡,𝑠1,𝑝𝑒𝑎𝑘

𝐸 𝑉 ,𝑐 𝑢𝑟𝑟𝑒𝑛𝑡, is,
𝛥𝐸𝑜𝑝𝑡,𝑠1,𝑝𝑒𝑎𝑘

𝐸 𝑉 ,𝑐 𝑢𝑟𝑟𝑒𝑛𝑡 = 𝐸𝑏𝑙 ,𝑝𝑒𝑎𝑘
𝐸 𝑉 ,𝑐 𝑢𝑟𝑟𝑒𝑛𝑡 − 𝐸𝑜𝑝𝑡,𝑠1,𝑝𝑒𝑎𝑘

𝐸 𝑉 ,𝑐 𝑢𝑟𝑟𝑒𝑛𝑡 (11)

where the peak demand in the baseline is calculated as,

𝐸𝑏𝑙 ,𝑝𝑒𝑎𝑘
𝐸 𝑉 ,𝑐 𝑢𝑟𝑟𝑒𝑛𝑡 =

𝐻
∑

ℎ=1

𝐷
∑

𝑑=1

∑

𝑡∈𝑇𝑝𝑒𝑎𝑘

𝑢𝑏𝑙 ,𝑐 ℎℎ,𝐸 𝑉 ,𝑑 ,𝑡𝑃 𝑐 ℎ
ℎ,𝐸 𝑉 𝛥𝑡 (12)

Assume the current total number of EVs in the state, 𝑁𝑠𝑡𝑎𝑡𝑒
𝐸 𝑉 , and

he expected total number of EVs in the future, 𝑁𝑓 𝑢𝑡𝑢𝑟𝑒
𝐸 𝑉 , are known.

dditionally, the current total number of EVs in the dataset, 𝑁𝑑 𝑎𝑡𝑎𝑠𝑒𝑡
𝐸 𝑉 ,

s obtained from the data. Since the current EV energy consumption
n the dataset 𝐸𝑜𝑝𝑡,𝑠1,𝑝𝑒𝑎𝑘

𝐸 𝑉 ,𝑐 𝑢𝑟𝑟𝑒𝑛𝑡 is calculated by (10), the average EV energy

onsumption in the dataset is 𝐸𝑜𝑝𝑡,𝑠1,𝑝𝑒𝑎𝑘
𝐸 𝑉 ,𝑐 𝑢𝑟𝑟𝑒𝑛𝑡
𝑑 𝑎𝑡𝑎𝑠𝑒𝑡 . Assuming the average energy
𝑁𝐸 𝑉 s
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consumption of EV will be the same in the future, the peak energy
onsumption with increased EVs in the future, 𝐸𝑜𝑝𝑡,𝑠1,𝑝𝑒𝑎𝑘

𝐸 𝑉 ,𝑓 𝑢𝑡𝑢𝑟𝑒 , is,

𝐸𝑜𝑝𝑡,𝑠1,𝑝𝑒𝑎𝑘
𝐸 𝑉 ,𝑓 𝑢𝑡𝑢𝑟𝑒 =

𝑁𝑓 𝑢𝑡𝑢𝑟𝑒
𝐸 𝑉

𝑁𝑑 𝑎𝑡𝑎𝑠𝑒𝑡
𝐸 𝑉

𝐸𝑜𝑝𝑡,𝑠1,𝑝𝑒𝑎𝑘
𝐸 𝑉 ,𝑐 𝑢𝑟𝑟𝑒𝑛𝑡 (13)

Therefore, comparing with the current peak energy
consumption 𝐸𝑏𝑙 ,𝑝𝑒𝑎𝑘

𝐸 𝑉 ,𝑐 𝑢𝑟𝑟𝑒𝑛𝑡 in the baseline, the increment of EV peak
energy consumption in the future without optimization, 𝛥𝐸𝑏𝑙 ,𝑝𝑒𝑎𝑘

𝐸 𝑉 ,𝑓 𝑢𝑡𝑢𝑟𝑒, is
alculated as,

𝛥𝐸𝑏𝑙 ,𝑝𝑒𝑎𝑘
𝐸 𝑉 ,𝑓 𝑢𝑡𝑢𝑟𝑒 =

𝑁𝑓 𝑢𝑡𝑢𝑟𝑒
𝐸 𝑉

𝑁𝑑 𝑎𝑡𝑎𝑠𝑒𝑡
𝐸 𝑉

𝐸𝑏𝑙 ,𝑝𝑒𝑎𝑘
𝐸 𝑉 ,𝑐 𝑢𝑟𝑟𝑒𝑛𝑡 −

𝑁𝑠𝑡𝑎𝑡𝑒
𝐸 𝑉

𝑁𝑑 𝑎𝑡𝑎𝑠𝑒𝑡
𝐸 𝑉

𝐸𝑏𝑙 ,𝑝𝑒𝑎𝑘
𝐸 𝑉 ,𝑐 𝑢𝑟𝑟𝑒𝑛𝑡 (14)

where the first part is the future energy consumption without opti-
mization (the same as the baseline) in the future, and the second part
is the current energy consumption without optimization in the state.
Moreover, the peak demand increment after optimization, 𝛥𝐸𝑜𝑝𝑡,𝑠1,𝑝𝑒𝑎𝑘

𝐸 𝑉 ,𝑓 𝑢𝑡𝑢𝑟𝑒 ,
is,

𝛥𝐸𝑜𝑝𝑡,𝑠1,𝑝𝑒𝑎𝑘
𝐸 𝑉 ,𝑓 𝑢𝑡𝑢𝑟𝑒 = 𝐸𝑜𝑝𝑡,𝑠1,𝑝𝑒𝑎𝑘

𝐸 𝑉 ,𝑓 𝑢𝑡𝑢𝑟𝑒 −
𝑁𝑠𝑡𝑎𝑡𝑒

𝐸 𝑉
𝑁𝑑 𝑎𝑡𝑎𝑠𝑒𝑡

𝐸 𝑉
𝐸𝑏𝑙 ,𝑝𝑒𝑎𝑘
𝐸 𝑉 ,𝑐 𝑢𝑟𝑟𝑒𝑛𝑡 (15)

3.4. Scenario 2: Integration of vehicle-to-grid technology

In Scenario 2, not only optimal charging schedules but also V2G
echnology is applied to increase demand flexibility from EVs. The
verage discharging power of an EV battery under V2G is denoted by
𝑑 𝑖𝑠
ℎ,𝐸 𝑉 . It is crucial to note that the battery cannot perform charging and

discharging operations concurrently. Therefore, two binary variables
are introduced. One is 𝑢𝑜𝑝𝑡,𝑐 ℎℎ,𝐸 𝑉 ,𝑑 ,𝑡 for the optimal charging schedule, which
has been introduced in Scenario 1. Another variable is the optimal
discharging schedule for V2G, 𝑢𝑜𝑝𝑡,𝑑 𝑖𝑠ℎ,𝐸 𝑉 ,𝑑 ,𝑡. It is equal to 1 when the battery
is discharging, and 0 when it is not. The relationship is mathematically
formulated as shown in (16).

𝑢𝑜𝑝𝑡,𝑐 ℎℎ,𝐸 𝑉 ,𝑑 ,𝑡 + 𝑢𝑜𝑝𝑡,𝑑 𝑖𝑠ℎ,𝐸 𝑉 ,𝑑 ,𝑡 ≤ 1 (16)

Note that it is permissible for both 𝑢𝑜𝑝𝑡,𝑐 ℎℎ,𝐸 𝑉 ,𝑑 ,𝑡 and 𝑢𝑜𝑝𝑡,𝑑 𝑖𝑠ℎ,𝐸 𝑉 ,𝑑 ,𝑡 to be equal to
0 from (16), which indicates an idle scenario.

The SoC of the EV at home ℎ during time step 𝑡, denoted as
 𝑜𝐶ℎ,𝐸 𝑉 ,𝑑 ,𝑡, is determined based on (17) when the EV is stationary and

connected for charging or V2G.
𝑆 𝑜𝐶ℎ,𝐸 𝑉 ,𝑑 ,𝑡 = 𝑆 𝑜𝐶ℎ,𝐸 𝑉 ,𝑑 ,𝑡−1 + (𝑢𝑜𝑝𝑡,𝑐 ℎℎ,𝐸 𝑉 ,𝑑 ,𝑡𝑃 𝑐 ℎ

ℎ,𝐸 𝑉 𝜂𝑐 ℎℎ

𝛥𝑡 −
𝑢𝑜𝑝𝑡,𝑑 𝑖𝑠ℎ,𝐸 𝑉 ,𝑑 ,𝑡𝑃 𝑑 𝑖𝑠

ℎ,𝐸 𝑉
𝜂𝑑 𝑖𝑠ℎ

𝛥𝑡)∕𝐶𝑏𝑎𝑡
ℎ,𝐸 𝑉

(17)

In (17), the parameter, 𝐶𝑏𝑎𝑡
ℎ,𝐸 𝑉 , represents the capacity of the EV battery.

The charging efficiency and discharging efficiency of the battery are
denoted by 𝜂𝑐 ℎℎ and 𝜂𝑑 𝑖𝑠ℎ , respectively.

When the EV is ready to drive away, the SoC should be within the
acceptable range as in (18).

𝑆 𝑜𝐶𝑚𝑖𝑛
ℎ,𝐸 𝑉 ≤ 𝑆 𝑜𝐶ℎ,𝐸 𝑉 ,𝑑 ,𝑡𝑜𝑝𝑡ℎ,𝑑 ,𝑒𝑛𝑑 ≤ 𝑆 𝑜𝐶𝑚𝑎𝑥

ℎ,𝐸 𝑉 (18)

When an EV owner is unwilling to take the optimal schedule, the EV
ill keep charging as in the baseline. Similarly, if the EV is unwilling

o sell electricity to the grid via V2G, there is no V2G because no V2G
s applied in the baseline. According to the survey in [48], when SoC

is less than 0.55, customers will charge EVs because of range anxiety.
Moreover, the average EV daily trip in the U.S. is less than 50 km [49].
It is also pointed out that the popular EV model in the market is Telsa

odel 3, and its standard model can drive 491 km [50]. Considering
driving behaviors, and traffic conditions, the real range is about 360
km. Therefore, to ensure energy for trips of the next day, 15% of
capacity is added to the minimum allowable energy in this paper. That
is, the minimum SoC of the battery, 𝑆 𝑜𝐶𝑚𝑖𝑛

ℎ,𝐸 𝑉 , is set as 70%. Besides, to
increase the battery life, the maximum SoC of the battery, 𝑆 𝑜𝐶𝑚𝑎𝑥

ℎ,𝐸 𝑉 , is
51].
et as 80% [



J. Wu et al.

o

i
a

t

f

(

d
t
o
a
e
o

p

V
e
b
𝜌
i
t
t
f
c
a

e

c
p

T
a
t
o
o
i
T

e

d

𝐷
n
s
e
c

International Journal of Electrical Power and Energy Systems 164 (2025) 110435 
Besides, to enhance the model’s accuracy in predicting EV demand
ver 𝐷 days, the SoC at the initial time when the EV is parked

and begins to charge or discharge on day 𝑑, denoted as 𝑡𝑜𝑝𝑡ℎ,𝑑 ,𝑏𝑒𝑔 , is
introduced. Considering that all EVs in the dataset are fully charged
at the end of each baseline charging session, it is assumed that the
EV’s energy usage (including trips and other energy consumption by
n-car facilities such as air conditioners, audio systems, etc.) is equiv-
lent to the energy charged from the grid on the current day, ex-

pressed as ∑𝑇
𝑡=1 𝑢

𝑏𝑙 ,𝑐 ℎ
ℎ,𝐸 𝑉 ,𝑑 ,𝑡𝑃 𝑐 ℎ

ℎ,𝐸 𝑉 𝜂𝑐 ℎℎ 𝛥𝑡. A random input, varying from 10%
o 100%, is applied to the SoC for the first day (𝑑=1). Subsequently,

the 𝑆 𝑜𝐶ℎ,𝐸 𝑉 ,𝑑 ,𝑡𝑜𝑝𝑡ℎ,𝑑 ,𝑏𝑒𝑔 for the following days will be determined (19).
𝑆 𝑜𝐶ℎ,𝐸 𝑉 ,𝑑 ,𝑡𝑜𝑝𝑡ℎ,𝑑 ,𝑏𝑒𝑔 = 𝑆 𝑜𝐶ℎ,𝐸 𝑉 ,𝑑−1,𝑡𝑜𝑝𝑡ℎ,𝑑−1,𝑒𝑛𝑑

−
∑𝑇

𝑡=1 𝑢
𝑏𝑙 ,𝑐 ℎ
ℎ,𝐸 𝑉 ,𝑑 ,𝑡𝑃 𝑐 ℎ

ℎ,𝐸 𝑉 𝜂𝑐 ℎℎ 𝛥𝑡

𝐶𝑏𝑎𝑡
ℎ,𝐸 𝑉

if 𝑑 > 1,
(19)

The objective function (20) in Scenario 2 is similar to the one in (9)
or Scenario 1.

min𝐶𝑠2
ℎ,𝐸 𝑉 =

𝐷
∑

𝑑=1

{ 𝑇
∑

𝑡=1
[𝑢𝑜𝑝𝑡,𝑐 ℎℎ,𝐸 𝑉 ,𝑑 ,𝑡𝜔𝑠2

ℎ,𝐸 𝑉 ,𝑑 ,𝑡𝑃 𝑐 ℎ
ℎ,𝐸 𝑉 𝜌𝑇 𝑜𝑈𝑡 + 𝑢𝑏𝑙 ,𝑐 ℎℎ,𝐸 𝑉 ,𝑑 ,𝑡

1 − 𝜔𝑠2
ℎ,𝐸 𝑉 ,𝑑 ,𝑡)𝑃 𝑐 ℎ

ℎ,𝐸 𝑉 𝜌𝑇 𝑜𝑈𝑡 − 𝑢𝑜𝑝𝑡,𝑑 𝑖𝑠ℎ,𝐸 𝑉 ,𝑑 ,𝑡𝜔𝑠2
ℎ,𝐸 𝑉 ,𝑑 ,𝑡𝑃 𝑑 𝑖𝑠

ℎ,𝐸 𝑉 𝜌𝑓 𝑒𝑒𝑑−𝑖𝑛,𝐸 𝑉𝑡 ]

⋅𝛥𝑡 −
∑

𝑡∈𝑇𝑝𝑒𝑎𝑘

𝜔𝑠2
ℎ,𝐸 𝑉 ,𝑑 ,𝑡𝑃 𝑐 ℎ

ℎ,𝐸 𝑉 𝛽𝑡(𝑢𝑏𝑙 ,𝑐 ℎℎ,𝐸 𝑉 ,𝑑 ,𝑡 − 𝑢𝑜𝑝𝑡,𝑐 ℎℎ,𝐸 𝑉 ,𝑑 ,𝑡)𝛥𝑡
}

(20)

In both cases, the goal is to minimize the charging costs incurred to the
EV owner at home ℎ.

The EV electricity charging price, 𝜌𝑇 𝑜𝑈𝑡 , is usually a time-of-use
(ToU) tariff. The feed-in price is denoted by 𝜌𝑓 𝑒𝑒𝑑−𝑖𝑛,𝐸 𝑉𝑡 , and the will-
ingness of EV owners to apply optimal charging schedule and V2G
is represented by 𝜔𝑠2

ℎ,𝐸 𝑉 ,𝑑 ,𝑡. In (20), the charging costs of the EV are
ivided into two parts: the cost under optimal charging schedules and
he cost under baseline schedules. Scenario 2 involves both V2G and
ptimal charging schedules. Therefore, the cost function (20) must
lso take into account the benefit obtained by customers from selling
lectricity back to the grid. This benefit is represented in the third part
f the equation, which accounts for the revenue generated by selling

electricity to the grid. The final part of the equation represents the
reward received by EV owners for participating in the DR program,
utilizing the optimal charging schedules and the incentive rate 𝛽𝑡. It
is important to note that this incentive is only provided during peak
eriods. The willingness of EV owners to participate in V2G and the

optimal charging schedule is expressed as (21),

𝜔𝑠2
ℎ,𝐸 𝑉 ,𝑑 ,𝑡 = 𝑛1

(𝛽𝑡)2

(𝛽max
𝑡 )2

+ 𝑛2
𝜌𝑓 𝑒𝑒𝑑−𝑖𝑛,𝐸 𝑉𝑡

𝜌𝑓 𝑒𝑒𝑑−𝑖𝑛,𝐸 𝑉 ,𝑚𝑎𝑥𝑡

𝛽𝑡
𝛽max
𝑡

+𝑛3
𝜏𝑚𝑎𝑥ℎ,𝐸 𝑉 ,𝑑 ,𝑡 − |𝜏𝑎𝑐 𝑡ℎ,𝐸 𝑉 ,𝑑 ,𝑡|

|𝜏max
ℎ,𝐸 𝑉 ,𝑑 ,𝑡|

𝛽𝑡
𝛽max
𝑡

(21)

where 𝑛1, 𝑛2, and 𝑛3 are the weighting factors for incentive concern,
2G reward concern, and inconvenience concern (due to the differ-
nce between the optimal charging schedule and the schedule in the
aseline), respectively. The maximum EV feed-in price is denoted by
𝑓 𝑒𝑒𝑑−𝑖𝑛,𝐸 𝑉 ,𝑚𝑎𝑥
𝑡 . The reason that the feed-in prices are considered in (21)
s to account for the impact on electricity costs for EV owners. Noted
hat the EV owner can sell the electricity to the grid all day; however,
he incentive is only granted to customers who shift charging schedules
rom peak periods to other periods. Therefore, the total peak energy
onsumption 𝐸𝑜𝑝𝑡,𝑠2,𝑝𝑒𝑎𝑘

ℎ,𝐸 𝑉 ,𝑐 𝑢𝑟𝑟𝑒𝑛𝑡 of EVs at home ℎ in Scenario 2 is calculated
s follows.

𝐸𝑜𝑝𝑡,𝑠2,𝑝𝑒𝑎𝑘
ℎ,𝐸 𝑉 ,𝑐 𝑢𝑟𝑟𝑒𝑛𝑡 =

𝐷
∑

𝑑=1

{

∑

𝑡∈𝑇𝑝𝑒𝑎𝑘

[𝑢𝑜𝑝𝑡,𝑐 ℎℎ,𝐸 𝑉 ,𝑑 ,𝑡𝜔𝑠2
ℎ,𝐸 𝑉 ,𝑑 ,𝑡𝑃 𝑐 ℎ

ℎ,𝐸 𝑉 + 𝑢𝑏𝑙 ,𝑐 ℎℎ,𝐸 𝑉 ,𝑑 ,𝑡

⋅(1 − 𝜔𝑠2
ℎ,𝐸 𝑉 ,𝑑 ,𝑡)𝑃 𝑐 ℎ

ℎ,𝐸 𝑉 − 𝑢𝑜𝑝𝑡,𝑑 𝑖𝑠ℎ,𝐸 𝑉 ,𝑑 ,𝑡𝜔𝑠2
ℎ,𝐸 𝑉 ,𝑑 ,𝑡𝑃 𝑑 𝑖𝑠

ℎ,𝐸 𝑉 ]𝛥𝑡
}

(22)
7 
The total energy consumption consists of three components: the
nergy obtained from the grid according to the optimal charging sched-

ules, the energy obtained from the grid following the same schedule as
the baseline, and the energy sold back to the grid. By comparing the
urrent peak energy consumption in the baseline and Scenario 2, the
eak demand reduction in Scenario 2, 𝛥𝐸𝑜𝑝𝑡,𝑠2,𝑝𝑒𝑎𝑘

𝐸 𝑉 ,𝑐 𝑢𝑟𝑟𝑒𝑛𝑡, is,

𝛥𝐸𝑜𝑝𝑡,𝑠2,𝑝𝑒𝑎𝑘
𝐸 𝑉 ,𝑐 𝑢𝑟𝑟𝑒𝑛𝑡 = 𝐸𝑏𝑙 ,𝑝𝑒𝑎𝑘

𝐸 𝑉 ,𝑐 𝑢𝑟𝑟𝑒𝑛𝑡 −
𝐻
∑

ℎ=1
𝐸𝑜𝑝𝑡,𝑠2,𝑝𝑒𝑎𝑘
ℎ,𝐸 𝑉 ,𝑐 𝑢𝑟𝑟𝑒𝑛𝑡 (23)

where the peak energy consumption 𝐸𝑏𝑙 ,𝑝𝑒𝑎𝑘
𝐸 𝑉 ,𝑐 𝑢𝑟𝑟𝑒𝑛𝑡 in the baseline is calcu-

lated by (12). The future peak energy consumption with increased EVs
and V2G strategies, 𝐸𝑜𝑝𝑡,𝑠2,𝑝𝑒𝑎𝑘

𝐸 𝑉 ,𝑓 𝑢𝑡𝑢𝑟𝑒 , is,

𝐸𝑜𝑝𝑡,𝑠2,𝑝𝑒𝑎𝑘
𝐸 𝑉 ,𝑓 𝑢𝑡𝑢𝑟𝑒 =

𝑁𝑓 𝑢𝑡𝑢𝑟𝑒
𝐸 𝑉

𝑁𝑑 𝑎𝑡𝑎𝑠𝑒𝑡
𝐸 𝑉

𝐻
∑

ℎ=1
𝐸𝑜𝑝𝑡,𝑠2,𝑝𝑒𝑎𝑘
ℎ,𝐸 𝑉 ,𝑐 𝑢𝑟𝑟𝑒𝑛𝑡 (24)

By comparing the current energy consumption in the state, the future
peak energy increment is calculated as (25),

𝛥𝐸𝑜𝑝𝑡,𝑠2,𝑝𝑒𝑎𝑘
𝐸 𝑉 ,𝑓 𝑢𝑡𝑢𝑟𝑒 = 𝐸𝑜𝑝𝑡,𝑠2,𝑝𝑒𝑎𝑘

𝐸 𝑉 ,𝑓 𝑢𝑡𝑢𝑟𝑒 −
𝑁𝑠𝑡𝑎𝑡𝑒

𝐸 𝑉
𝑁𝑑 𝑎𝑡𝑎𝑠𝑒𝑡

𝐸 𝑉
𝐸𝑏𝑙 ,𝑝𝑒𝑎𝑘
𝐸 𝑉 ,𝑐 𝑢𝑟𝑟𝑒𝑛𝑡 (25)

3.5. Flow chart of electric vehicle optimization

This section outlines the EV optimization process illustrated by
Fig. 1.

The process begins with the input of electricity prices (including
oU and feed-in prices from electricity retailers) and EV data from
 database. The data include the power consumption of EVs at each
ime step, sourced from [46]. The optimization process considers EV
wners’ preferences for maximum allowable time deviations from their
riginal schedules 𝜏𝑎ℎ𝑒𝑎𝑑 ,𝑚𝑎𝑥ℎ,𝐸 𝑉 ,𝑑 ,𝑡 , 𝜏𝑑 𝑒𝑙 𝑎𝑦,𝑚𝑎𝑥ℎ,𝐸 𝑉 ,𝑑 ,𝑡 , and 𝜏𝑚𝑎𝑥ℎ,𝐸 𝑉 ,𝑑 ,𝑡. The incentive rate
s predetermined. The home index (ℎ) and day index (𝑑) are set to 1.
he optimization model involves two main scenarios:

Scenario 1: Optimal Charging Scheduling Only
This scenario generates an optimal charging schedule to minimize

lectricity costs for home ℎ. It ensures the total and continuous charging
time (See (4) and (5)).

Scenario 2: Optimal Charging Scheduling with V2G
This scenario generates both charging and discharging schedules.

It ensures the SoC remains within allowable limits when the EV is
isconnected (See (18)).

If any constraint is not met, the optimization process restarts to
generate a new optimal schedule. If all constraints are met, the process
records the daily electricity costs, the willingness of home ℎ’s EV
owners at each time 𝑡 on day 𝑑, the SoC of the battery in Scenario 2,
and the optimal charging or discharging schedule.

The process then checks if day 𝑑 equals the total days for simulation,
. If not, 𝑑 is incremented by 1, and the optimization repeats for the
ext day. If 𝑑 = 𝐷, then 𝑑 is reset to 1 and ℎ is incremented by 1, to
tart the optimization for the next home. This process continues until ℎ
xceeds 𝐻 , indicating that all homes have minimized their electricity
osts.

After that, all data on the current and future number of EVs are
input to the optimization model. This allows the calculation of EV
flexibility in the dataset (See (10) for Scenario 1, (23) for Scenario 2)
and the future peak demand increment without optimization (See (14)
for Scenario 1, (24) for Scenario 2). After optimization, the future peak
demand increment is recalculated (See (15) for Scenario 1, and (25) for
Scenario 2).

Finally, the potential for future EV flexibility is calculated, demon-
strating the impact of optimization on peak demand reduction. Note
that the optimization problem can be solved by the ‘ga’ solver in
Matlab.
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Fig. 1. Flow chart of EV optimization.
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4. Case study

This section outlines our case studies designed to assess the impact
f EVs on grid stability and electricity demand. We utilize detailed
ata from the Pecan Street Dataport [46], examining how increased

EV adoption influences grid management and energy consumption pat-
terns. These studies are crucial for developing strategies that effectively
accommodate rising EV numbers while ensuring grid efficiency and
eliability.

4.1. Current and future electric vehicle numbers

By August 1, 2023, there are over 211,000 registered EVs in Texas,
U.S. [52]. The Electric Reliability Council of Texas (ERCOT), the inde-
pendent system operator for Texas, uses its Long-Term System Assess-

ent (LTSA) [53] to forecast that this number could grow to 1 million
y 2030 [54]. This forecast is crucial for planning the expansion of
exas’s extra-high voltage (345-kV) system over the next ten to fifteen
ears to ensure the grid can handle the expected increase in demand.
he accurate assessment of the impact on grid reliability due to this
rojected surge in EV numbers is increasingly important. By utilizing
urrent and projected EV numbers, along with EV charging data from
ur dataset, the present and future EV charging demand and flexibility
n Texas are estimated. This estimation is conducted using (13) and (15)
or Scenario 1, and (24) and (25) for Scenario 2.

Two simulations are conducted using high-resolution data from
ustin, Texas, sourced from Pecan Street Dataport [46]. The data

include energy usage recorded each minute from 98 homes, with
pproximately 96 EVs involved. It encompasses a broad spectrum of EV

models, from new to old, which enables the modeling of energy con-
sumption patterns across a diverse array of EV models. This diversity
supports the accurate calculation of average energy consumption.

Additionally, the EV numbers are listed in Table 1, which also
ncludes data on the present and estimated future registrations of EVs
n Texas, U.S.

4.2. Case studies on electric vehicle flexibility and incentive impact

This subsection conducts two case studies using the previously
iscussed data. These studies explore how EV flexibility in response to
lectricity demand varies across different socioeconomic regions and
ow changes in incentive rates can impact EV integration strategies.
8 
Table 1
EV Numbers [46,52,54].

EVs in the dataset Current EVs in Texas Projected EVs in Texas by 2030

96 211,000 1,000,000

4.2.1. Case study 1: Electric vehicle flexibility across income levels
This case study utilizes historical data to assess EV flexibility during

eak electricity demand across regions with varying income levels. By
analyzing energy usage patterns and integration strategies in diverse
economic backgrounds, we explore how socioeconomic factors affect
the adoption of optimization strategies like optimal charging schedules
and V2G technology.

4.2.2. Case study 2: Impact of incentive rates on electric vehicle integration
Following insights from our data analysis, this case study conducts

 sensitivity analysis to evaluate how different incentive rates affect
V flexibility, the electricity costs of EV owners, and the future peak

demand increment due to EVs. This analysis provides essential insights
for grid operators, DSOs, and electricity retailers, aiding in the prepa-
ration and management of the rising prevalence of EVs. The findings
underscore how incentive adjustments could enhance grid management
and support a transition to a more sustainable and efficient energy
system.

4.3. Electricity tariffs

Electricity pricing and feed-in rates, as provided by Austin En-
ergy, one of the main electricity suppliers in Austin, are detailed in
Table 2 [55]. Austin Energy is also part of the ‘‘Sustainable and Holis-
tic Integration of Energy Storage and Solar Photovoltaics’’ (SHINES)
roject, which aims to improve methods of electrical generation, de-
ivery, and consumption. This project incorporates a wide range of

resources, including utility-scale energy storage systems, residential
and commercial energy storage systems, smart inverters, real-time
data transmission, a distributed energy resource optimizer, and a V2G
component [56].

Within the SHINES project spearheaded by Austin Energy, the feed-
in price for V2G technology is aligned with the residential solar energy
rate, both adjusted to 9.7¢/kWh as part of the retailer’s secondary
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Table 2
Electricity tariff [55–57].

Period Time ToU tariff (Summer) Feed-in tariffs from the retailer Maximum feed-in tariffs from the retailers

Peak Period 15:00-18:00 $0.16616/kWh $0.09700/kWh $0.14000/kWh

Other Period 00:00-14:59 $0.09256/kWh $0.09700/kWh $0.14000/kWh
18:01-23:59 $0.09256/kWh $0.09700/kWh $0.14000/kWh
p
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w
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Table 3
Weighting factors [58].

Weighting factors Rich Areas Poor Areas

𝑚1 0.1450 0.3610
𝑚2 0.8550 0.6290
𝑛1 0.1450 0.3610
𝑛2 0.4275 0.3145
𝑛3 0.4275 0.3145

SHINES programs [55]. This rate, set by Austin Energy, is a strategic
decision to encourage the adoption of renewable energy sources and

2G technologies among its customers.
However, it is important to note that the maximum feed-in price

or this case study is capped at 14¢/kWh, as determined by the ER-
OT, which operates the grid in Texas. ERCOT’s setting of this higher
ate serves as the upper limit for feed-in tariffs in the region, under
hich Austin Energy operates and sets its own rates for the SHINES
roject [57].

Additionally, the maximum incentive rate in this paper is calculated
as (26), where 𝜌𝐷 𝐴𝑀

𝑡 is the electricity prices in the day-ahead market,
obtained from Energy Online, managed by LCG Consulting [59].

𝛽max
𝑡 =

∑𝑡end
𝑡=𝑡beg

(

𝜌𝑇 𝑜𝑈𝑡 − 𝜌𝐷 𝐴𝑀
𝑡

)

𝑡𝑒𝑛𝑑 − 𝑡𝑏𝑒𝑔 + 1
(26)

Eq. (26) represents that 𝛽max
𝑡 is calculated as the average discrepancy

etween the ToU prices and day-ahead market prices among the peak
eriods. The reason for this is that retailers can benefit from DR pro-
rams when the incentive rate does not exceed the average difference
etween the ToU retail prices charged to customers and the day-ahead
arket wholesale prices paid by retailers. In this paper, the day-ahead
arket prices for June 1st, 2021, were selected, and based on the

alculations, 𝛽max
𝑡 is determined to be $0.12.

4.4. Weighting factors of willingness to respond

Since a city or a state must include varieties of rich suburbs, poor
uburbs, and mixed suburbs, the weighting factors’ values are set as

Table 3 [39], where 𝑚1 and 𝑚2 are used in Scenario 1, applying only
optimal charging schedules for shifting peak demand. The rest of the

eighting factors (𝑛1, 𝑛2 and 𝑛3) are applied in Scenario 2, where the
V can not only shift the charging schedules but also sell electricity to
he grid.

4.5. Simulation results

To compare the EV flexibility in scenarios 1 and 2, two examples
of a weekly EV energy consumption for low-income areas are shown in
Figs. 2 and Fig. 3.

Fig. 2 illustrates the total energy consumption of EVs before and
fter optimization in Scenario 1. The gray dash-dotted line represents
he weekly energy consumption of all EVs in the dataset, while the blue
olid line denotes the target energy consumption, reflecting the total
nergy without considering willingness.

As shown in Fig. 2, there is a noticeable spike in energy consump-
tion from day 0 to day 1 during the peak period, indicating that this
is when energy consumption reaches its highest level for the day. After
 s

9 
optimization, this peak shifts slightly earlier, occurring just before the
peak period.

It is important to note that EVs are optimized only near or during
eak periods. In periods without optimization, the total energy con-
umption after optimization (represented by the blue curve) and the
aseline energy consumption (represented by the gray curve) remain

the same. This rule also applies to the total energy consumption that
considers willingness (represented by the red curve). These trends could
be illustrated and observed by the small dots (in blue and red) along
the gray curve.

Fig. 2 shows the total energy consumption of EVs before and after
optimization in Scenario 1. The gray dash-dotted curve represents the

eekly energy consumption of all EVs in the dataset, while the blue
solid line represents the target energy consumption, reflecting total en-
ergy consumption without considering willingness after optimization.
As shown in Fig. 2, from day 0 to day 1, there is a noticeable spike
during the peak period, indicating that this time experiences the highest
energy consumption of the day. After optimization, this peak shifts
slightly earlier, occurring just before the peak period.

Taking into account customers’ willingness to engage in DR pro-
grams, some customers choose to adopt the new charging schedules,

hile others stick to the baseline schedules. Examining the red dotted
ine in Fig. 2 (total energy consumption with consideration of will-

ingness), it becomes evident that during peak periods, the red curve
is lower than the gray curve (baseline), but higher than the baseline
and lower than the blue curve (desired energy consumption) during
the periods slightly ahead of the peak periods.

Note that optimization only occurs near or during the electricity
eak periods. In periods without optimization, the total energy after
ptimization (blue curve) matches the baseline energy consumption
gray curve), as no adjustments are made. This also applies when
onsidering willingness. This pattern is indicated by small dots (blue
nd red) along the gray curve, highlighting areas of consistent energy
onsumption.

Similarly, in Fig. 3, the total energy consumption of EVs before and
after optimization in Scenario 2 is depicted. The gray, blue, and red
curves represent the total energy of EVs in the baseline, without and
with consideration of willingness, respectively. In contrast to Fig. 2,
the blue curve in Fig. 3 during peak periods does not remain at 0 kWh;
nstead, it shows negative values, indicating that EVs are supplying
lectricity through V2G to the grid during peak periods to gain benefits.
s EVs discharge during peak times, more energy is required to charge

hem outside of these peak periods to satisfy the constraint in (18).
onsequently, the blue curve in Figs. 3 exhibits higher spikes compared
o Fig. 2 in the time leading up to peak periods.

In summary, Figs. 2 and 3 illustrate energy consumption in scenarios
1 and 2. Considering customer willingness reveals the disparity in total
energy consumption compared to scenarios without such consideration.
Neglecting customer willingness in DR programs can yield inaccurate
outcomes for retailers, DSOs, and grid operators, potentially leading to
wrong decision-making and posing a threat to grid stability.

4.5.1. Case study 1
This case study will examine the charging requirements of a growing

umber of EVs in the next few years, exploring how demand flexibility
ight vary under various scenarios. Additionally, it will investigate

how demand flexibility varies across different financial sectors when
ubjected to a uniform incentive rate of $0.05 per kWh.
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Fig. 2. Energy curve of low-income areas in Scenario 1.
Fig. 3. Energy curve of low-income areas in Scenario 2.
Table 4
Analysis of weekly energy consumption and charging costs of EVs for high-income areas, with future prediction.
Scenario Index Baseline Scenario 1 Scenario 2
Incentive rate ($/kWh) 0 0.05 0.05

Current peak demand of the dataset (kWh) 162.340 118.614 85.023
Current peak demand reduction of the dataset (kWh) 0 43.726 77.316

Current total energy of the dataset (kWh) 1036.291 1036.291 1004.118
Current total energy consumption reduction of the dataset (kWh) 0 0 32.173

Current total cost of the dataset ($) 108.155 102.889 87.431
Current total cost reduction of the dataset ($) 0 5.266 20.724

Current peak demand in Texas (MWh) 356.902 260.772 186.923
Future peak demand in Texas (MWh) 1691.037 1235.566 885.659
Future peak demand increment in Texas (MWh) 1334.135 878.664 528.757
b

i

Table 4 provides a comprehensive overview of the weekly energy
onsumption and charging costs of EVs in high-income areas, along
ith future predictions. This table reveals significant differences in

harging costs and peak energy reduction between scenarios 1 and
. Specifically, in Scenario 1, there is a decrease in charging costs
rom $108.155 to $102.889, amounting to a reduction of 4.869%. In

contrast, Scenario 2 showcases a more substantial decrease in these
osts, lowering them to $87.431, which represents a 19.161% reduction
10 
from the baseline. The greater cost reduction observed in Scenario 2 can
e attributed to the opportunity afforded to EV owners to sell electricity

back to the grid at a feed-in price during peak periods, a feature that
s absent in Scenario 1.

Moreover, the impact on peak demand reduction is more obvious
than the cost reduction. Scenario 1 achieves a 26.935% reduction in
peak demand, while Scenario 2 reaches 47.626%. This significant dis-
parity highlights the effectiveness of V2G technology. V2G contributes
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Table 5
Analysis of weekly energy consumption and charging costs of EVs for low-income areas, with future prediction.
Scenario Index Baseline Scenario 1 Scenario 2
Incentive rate ($/kWh) 0 0.05 0.05

Current peak demand of the dataset (kWh) 162.340 112.396 75.531
Current peak demand reduction of the dataset (kWh) 0 49.944 86.809

Current total energy of the dataset (kWh) 1036.291 1036.291 1000.404
Current total energy consumption reduction of the dataset (kWh) 0 0 35.887

Current total cost of the dataset ($) 108.155 102.336 86.259
Current total cost reduction of the dataset ($) 0 5.819 21.896

Current peak demand in Texas (MWh) 356.902 247.102 166.052
Future peak demand in Texas (MWh) 1691.037 1170.794 786.772
Future peak demand increment in Texas (MWh) 1334.135 813.892 429.870
t
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to a higher current peak demand reduction of 77.316 kWh, surpassing
the overall reduction of 32.173 kWh. The reason for this discrepancy
is the requirement for EVs to maintain sufficient SoC as (18).

Additionally, in Scenario 1, the absence of total energy reduction
is due to the implementation of only optimal EV charging schedules,

hich shift peak demand by charging EVs outside of peak periods.
n contrast, Scenario 2 utilizes both optimal charging schedules and
2G technology, resulting in decreases in both peak demand and total
nergy consumption. In Scenario 2, due to the constraint of (18), EV

batteries are only allowed to charge within an acceptable range, falling
hort of a full charge.

The above results discussed are based on the current number of
Vs in the dataset. Considering Texas’ registered EV count of 211,000,
hese vehicles currently consume an estimated 356.9 MWh of energy.

Without optimization, the total peak demand by EVs is expected to
rise to 1691.037 MWh by 2030, assuming the number of EVs in
Texas reaches 1 million. This represents a more than fourfold increase,
posing a substantial challenge to the grid’s energy supply. However, the
application of demand management strategies significantly mitigates
this increase in peak demand. Under Scenario 1, the expected future
eak energy demand is reduced to 1235.566 MWh, while Scenario 2
urther reduces it to 885.659 MWh.

Compared with the current peak demand in Texas in the baseline,
the increment in peak demand is 878.664 MWh for Scenario 1. How-
ver, this increase is notably lower in Scenario 2, at only 528.757
Wh. This comparison highlights the effectiveness of optimal charg-

ng schedules for EVs in reducing peak energy demand. Furthermore,
ncorporating V2G technology enhances this effect, further increasing
V flexibility.

Given these findings, it becomes evident that policies and pro-
otional strategies by electricity retailers, DSOs, or grid operators

are crucial. These strategies should aim to encourage EV owners to
participate in demand reduction, such as optimal charging schedules
and V2G programs. Through these methods, the pressure on the grid
supply can be substantially reduced, contributing to a more sustainable
and stable energy future as the adoption of EVs continues to increase.

Additionally, Table 5 lists the weekly energy consumption and
harging costs of EVs for low-income areas with future predictions.

The analysis in Table 5 shows that with the same incentive rates,
ow-income areas have greater EV flexibility compared to high-income
reas (as indicated in Table 4). Specifically, in low-income areas under

Scenario 1, peak demand of EVs is reduced by 49.944 kWh, amounting
to 30.765% of the peak demand in the baseline. This reduction is
more significant than in high-income areas, where the reduction is only
26.934% of the baseline. In Scenario 2, the peak demand reduction in
low-income areas reaches 86.809 kWh, which is 9.493 kWh higher than
in high-income areas, reflecting a higher motivation to incentives in
low-income areas than in high-income areas.

Moreover, this higher motivation in low-income areas also results
in more substantial cost reductions: $5.819 in Scenario 1 and $21.896
in Scenario 2. These reductions exceed those in high-income areas
by 10.50% in Scenario 1 and 5.66% in Scenario 2, as Table 4. As
 t

11 
the number of EVs grows, the difference between low-income and
high-income areas also expands. Currently, peak energy demand in
low-income areas is 247.102 MWh in Scenario 1, 13.67 MWh lower
han in high-income areas. This difference widens to 20.871 MWh in
cenario 2. By 2030, the anticipated peak demand is 1170.794 MWh
n Scenario 1 and 786.772 MWh in Scenario 2 for low-income areas,
arking increases of 813.892 MWh and 429.870 MWh from the current

baseline, respectively. These increments are 64.772 MWh and 98.887
MWh lower than those in high-income areas in scenarios 1 and 2,
respectively.

In conclusion, the comparison between Tables 4 and 5 illustrates
hat, with the same incentive rate, EV owners in low-income areas
xhibit more EV flexibility than counterparts in high-income areas,
rimarily due to higher motivation to participate in DR/V2G for greater
inancial benefits from incentives. This discovery offers insights for

grid operators, DSOs, and retailers, emphasizing the importance of
considering financial factors when developing policies and promotional
strategies.

4.5.2. Results comparison with the existing paper
To validate the effectiveness of our EV optimal charging schedul-

ing and V2G model, it is crucial to compare our results, particularly
regarding EV flexibility, with those of the existing literature. Ref. [60]
develops an optimized scheduling model for private EV charging using
an improved particle swarm optimization algorithm. Focusing on ToU
electricity pricing, their model aims to minimize peak-to-valley load
differences and reduce electricity costs for EV users through optimal
charging schedules and V2G technology, aligning closely with our
tudy.

Unlike our approach, Ref. [60] designs scenarios using various
participation rates of EV owners, which are set at 30%, 60%, and
100%. According to their results shown in Figs. 4 and 5, with 30%
of EVs participating, there is a reduction of 3735 kWh in charging
demand during peak periods, which represents a 42.66% decrease from
the baseline peak demand of 8755 kWh. When the participation rate
increases to 60%, the reduction reaches 64.88%.

In Case Study 1 of our research, we observed that the average will-
ingness of EV owners to participate is between approximately 30.1%
and 45.55%, which results in an average reduction of about 50.55%
in peak electricity demand due to EV charging during peak periods.
These reductions are consistent with the results reported in [60], falling
between the 42.66% and 64.88% reductions associated with 30% and
60% EV participation rates, respectively. This comparison serves to
validate the accuracy of our models and our assumptions regarding
wner willingness.

Moreover, according to Figure 6 in [60], with full participation from
EV owners, the total EV charging demand reduction during peak peri-
ods could be about 7750 kWh, accounting for an 88.5% reduction of the
eak demand. Applying the highest willingness value from our study
45.55%) suggests that their approach could potentially reduce peak
emand by 40.31%. However, this 40.31% is significantly lower than
he 50.55% peak demand reduction achieved in our study, underlining
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Fig. 4. Sensitivity analysis of EV flexibility in the dataset.
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the enhanced effectiveness of our approach in increasing EV flexibility
during peak periods.

It is noteworthy that Ref. [60] primarily uses ToU pricing to encour-
ge EV owners to adjust their charging away from peak periods. Our
tudy not only applies ToU pricing but also introduces additional incen-
ives to motivate customer participation further. This comprehensive
trategy significantly enhances the outcomes observed in our research,

demonstrating the benefits of combining various incentives with ToU
ricing.

4.5.3. Case study 2
While Case Study 1 explored the variability in EV flexibility, elec-

tricity costs, and future EV charging demands across different financial
scenarios, it did not account for the impact of incentives on these
actors. To bridge this gap, Case Study 2 employs a sensitivity analysis,
tilizing incentive rates that increase incrementally by $0.001/kWh

at each step, starting from $0/kWh and capping at a maximum of
0.12/kWh, as calculated in (26). This fine-grained approach to ad-

justing incentive rates allows us to precisely gauge their influence on
EV flexibility, electricity costs, and future peak demand from EVs. The
high precision of these increments significantly enhances the sensitivity
analysis by providing a detailed resolution of how slight changes in
ncentives can affect the system’s responsiveness. This detailed insight

is crucial for designing incentive schemes that are both effective and
efficient, ensuring optimal participation from EV owners and maximum
benefit to the grid.

Fig. 4 illustrates the trends in EV flexibility in response to increasing
ncentive rates across different scenarios. The red curves denote high-

income areas, while the blue curves represent low-income areas. The
yellow curves show the maximum achievable EV flexibility in the
two scenarios, revealing that low-income areas exhibit significantly
higher EV flexibility compared to high-income areas as incentive rates
increase. Notably, at an incentive rate of $0.32/kWh, the difference in
EV flexibility between these areas reaches its maximum, supporting the
findings from Case Study 1 which noted a higher willingness to respond
n low-income areas.

As incentive rates climb to around $0.86/kWh, the differences in
esponsiveness between high-income and low-income areas become less
oticeable. At this level, the incentives are sufficient to motivate a
imilar level of engagement from both high and low-income areas,
eading to comparable EV flexibility across these areas. It is crucial
o highlight that EV flexibility starts at 0 kWh when there is no
ncentive ($0/kWh). This occurs because EV owners lack the motivation
o modify their charging behaviors in the absence of incentives, as
etailed in (2) and (21). The lack of incentive influence is further
12 
reflected in the associated electricity costs and projections for future
eak EV demand, as illustrated in Figs. 5 and 6.

Comparing scenarios in Fig. 4, it is evident that Scenario 2, which
ncludes V2G technology, significantly enhances EV flexibility com-
ared to Scenario 1. For example, while the maximum EV flexibility
n Scenario 1 is 133.3 kWh, in Scenario 2 it rises to 234.3 kWh, rep-
esenting approximately 75.7% increase from the flexibility observed

in Scenario 1. This significant increase is due to the integration of
V2G technology, which not only allows for optimal charging schedule
djustments but also enables EVs to feed electricity back to the grid
uring peak periods.

In Scenario 2, similar to the trends observed in low-income ar-
eas before the incentive exceeds $0.074/kWh, the difference in EV
flexibility between low and high-income areas reaches its maximum
at around $0.3/kWh. This peak corresponds to the incentive rate of
$0.32/kWh in Scenario 1, which maximizes the discrepancy in EV
flexibility between the two income areas. This phenomenon indicates
that while high-income areas may require significant incentives to
alter their behavior, lower-income areas are more responsive at lower
incentive rates, demonstrating a higher initial willingness to adapt.
This similarity between the two scenarios, where one includes only
optimal charging schedules (Scenario 1) and the other incorporates
urther V2G technology (Scenario 2), suggests that there are threshold
evels of incentives beyond which both high and low-income areas
oticeably change their energy consumption behaviors. This response
s likely influenced by the inherent cost–benefit evaluations made by
V owners from different income areas, assessing the value of shifting
heir consumption relative to the incentives offered.

Similarly, Fig. 5 demonstrates the shifts in electricity costs with in-
creasing incentives, highlighting that electricity costs of EV in Scenario
1 are higher, at about $83.7, which is approximately $13.6 higher than
in Scenario 2. This difference arises because EV owners in Scenario 2
are compensated for contributing electricity back to the grid via V2G. A
comparison of high-income and low-income areas indicates that while
high-income areas are less sensitive to incentives, leading to smaller
differences in EV flexibility and electricity costs, as incentives increase,
low-income areas show greater responsiveness, as previously observed.
Additionally, in Scenario 2, when incentive rates exceed $0.063/kWh,
electricity costs for EV owners drop below those in Scenario 1. These
differences in incentive thresholds that lead to optimal outcomes in
Scenario 2, as shown in Figs. 4 and 5, reflect the complex interplay
between EV operations and variables such as electricity tariffs, feed-in
tariffs, and rewards.

The analysis also includes future EV peak demand, as depicted in
Fig. 6. Here, Scenario 2 consistently exceeds Scenario 1 in terms of
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Fig. 5. Sensitivity analysis of electricity costs.
Fig. 6. Sensitivity analysis of future peak demand of EVs.
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performance. Notably, in Scenario 2, the peak EV demand can become
negative, dropping to a minimum of −747.646 MWh. This indicates the
potential of EVs to serve as energy suppliers during peak times. When
ompared to Scenario 1’s lowest future peak demand of 303.106 MWh,

Scenario 2 offers a reduction in peak demand exceeding 1050.752
Wh. While the reduction in peak demand for Scenario 1, which

alls from approximately 1691.037 MWh to 303.106 MWh (a decrease
f 1387.931 MWh), is substantial, Scenario 2 shows an even greater
eduction. In Scenario 2, the peak demand potentially decreases by
bout 2438.683 MWh when the incentive rate is at its maximum.

This scenario provides crucial insights for grid operators, DSOs, and
etailers regarding the management of peak demand shortages. The
indings indicate a strategic approach for maintaining grid stability:
scalating incentives to a substantial level to enhance EV flexibility

during acute energy shortages, and subsequently moderating these
ncentives to an appropriate level when the energy storage situation

is less critical.
In summary, Case Study 2 highlights the significant impact of

incentives on EV flexibility and electricity costs in high and low-income
areas. The study reveals that increased incentives can enhance EV
flexibility and reduce electricity costs and peak demand, particularly in
scenarios allowing EVs to sell electricity back to the grid. These find-
ings provide actionable insights for grid operators and policymakers,
13 
emphasizing the importance of incentive structures in optimizing EV
ntegration into the energy system.

5. Conclusion

This paper analyzes current and future trends in electric vehicle
harging demand. From our analysis, we predict a substantial increase
n electric vehicle charging demand, potentially rising to five times the
urrent levels by 2030. This surge poses significant challenges to exist-

ing grid infrastructures. To mitigate these challenges, we propose two
strategies: optimal charging schedules and vehicle-to-grid technology,
aimed at reducing peak charging demands and balancing grid loads.

We estimate that in the absence of optimization, electric vehicles
will contribute to a peak demand of more than 1.691 GWh by 2030, an
increase of 1.3 GWh over the current demand. This increase represents
about 3% of the current peak demand in Texas, U.S. [61]. As the
number of EVs is expected to surpass the 1 million threshold, the
ssociated demand is likely to escalate significantly, placing substantial

pressure on the grid’s supply capabilities.
In response, our study designs two models to incentivize customer

participation in demand response programs. These models focus on
reducing electric vehicle charging costs and consider the rate of cus-
tomer participation. Applying optimal scheduling could potentially
decrease the peak charging demand of electric vehicles by up to 1.387
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GWh. With the integration of V2G technology and optimal charging
chedules, a substantial peak demand reduction of up to 2.483 GWh is
chievable.

Furthermore, two case studies explore the impact of socioeconomic
ackground and incentive rates on electric vehicle flexibility. These
tudies examine how variations in incentive rates significantly influ-
nce electric vehicle owner behavior and the overall demands on the

grid as electric vehicle adoption increases. The insights from these
ase studies are invaluable for grid stakeholders tasked with effectively
anaging the integration of electric vehicles into energy systems. They

highlight the direct effects of policy adjustments on consumer behavior
nd provide a deeper understanding of how these changes can influence
rid stability and efficiency.

This study offers critical insights for grid operators, DSOs, and
etailers on the impact of electric vehicles on the power grid. Electric

vehicles play a dual role as both energy consumers and storage devices,
consuming energy when demand is low and supplying energy back
to the grid during high demand periods. Recognizing this dual role is
essential for planning grid upgrades and devising strategies to manage
potential imbalances between energy supply and demand. These strate-
gies and insights ensure that our recommendations are not only based
on realistic scenarios but are also actionable for future grid planning
and policy development.

Despite the effective modeling of V2G systems and optimal charging
strategies within this study, the current state of battery technology
and charging infrastructure may not yet fully support the widespread
implementation of these strategies. The existing battery solutions might
not adequately accommodate the longevity and efficiency demands re-
quired for robust V2G applications at both system-level and node-level
of the power grid, and the charging infrastructure may be insuffi-
cient for large-scale deployment. Future research should, therefore,
focus on advancing battery technology and enhancing the charging
infrastructure. This involves exploring battery life extension techniques,
improving charging speeds, developing more durable battery compo-
nents, node-level charging load impact, and expanding the charging
infrastructure with smart grid functionalities to manage increased ca-
pacities effectively. Such advancements will enhance the practicality
and efficiency of V2G technologies and ensure their adaptability to
evolving energy systems and increasing EV penetration.
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