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A B S T R A C T

Air pollution poses a significant global health hazard. Effective monitoring and predicting air pollutant con-
centrations are crucial for managing associated health risks. Recent advancements in Artificial Intelligence (AI), 
particularly Machine Learning (ML) and Deep Learning (DL), offer the potential for more precise air pollution 
monitoring and forecasting models. This comprehensive review, conducted according to PRISMA guidelines, 
analyzed 65 high-quality Q1 journal articles to uncover current trends, challenges, and future AI applications in 
this field. The review revealed a significant increase in research papers utilizing ML and DL approaches from 
2021 onwards. ML techniques currently dominate, with Random Forest being the most frequent method, 
achieving up to 98.2% accuracy. DL techniques show promise in capturing complex spatiotemporal relationships 
in air quality data. The study highlighted the importance of integrating diverse data sources to improve model 
accuracy. Future research should focus on addressing challenges in model interpretability and uncertainty 
quantification.

1. Introduction

Air pollution, exacerbated by environmental and climate change, is a 
pressing global issue affecting numerous cities and regional places. 
Exposure to Particulate Matter (PM), a key air pollutant, has been linked 
to approximately 4.2 million deaths, ranking it the fifth leading global 
health risk (WHO TEAM, 2016). While global efforts have led to 
decreasing pollutant concentrations in many areas, levels often remain 
above World Health Organization (WHO) guidelines and national 
thresholds in numerous regions. This persistent challenge underscores 
the need for effective solutions to address air pollution. Air pollution 
contributes to various health issues, including respiratory complica-
tions, heart and lung conditions, premature mortality, and adverse 
community impacts, which can lead to mental health problems (Nazmul 
Hoq et al., 2019), (Soleimani et al., 2019). Timely access to air quality 
information and preventive measures are essential for mitigating health 

risks. Consequently, monitoring air quality has become imperative 
(WHO TEAM, 2016). Hence, air pollution poses significant public health 
challenges, contributing to various adverse effects on human health and 
the environment. Long-term exposure to poor air quality leads to pul-
monary and cardiovascular diseases, lung cancer, and strokes, resulting 
in a high global mortality rate (Zhang et al., 2014), (Yamamoto et al., 
2014). Developing nations are particularly vulnerable, with a substan-
tial number of premature deaths attributed to air pollution. Even 
developed countries are not immune to its impacts, with a considerable 
percentage of the population exposed to hazardous conditions (WHO 
TEAM, 2016). Short-term effects include sneezing, headaches, dizziness, 
and eye irritation. Moreover, emerging research has linked air pollution 
to infertility (Choe et al., 2018), (Gaskins et al., 2019).

The proliferation of cost-effective remote sensors and the availability 
of vast environmental and clinical data have led to a surge in pollution 
datasets for analysis. However, these large, complex datasets present 
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challenges that traditional epidemiological and environmental health 
models struggle to handle effectively. New analytical methods are 
required to gain deeper insights from these data. Data mining and Ma-
chine Learning (ML) techniques offer scalable and reliable approaches to 
analyze modern, large-scale air pollution datasets (Li et al., 2023a). 
However, analysing these extensive and complex datasets with tradi-
tional statistical regression models has limitations in capturing 
nonlinear relationships and achieving high prediction accuracy (Pielke 
et al., 2007). As such, more accurate and convenient methods are ur-
gently needed for effective data analysis in atmospheric science.

Artificial Intelligence (AI), encompassing both ML and Deep 
Learning (DL) techniques, has emerged as a powerful solution to 
improve traditional epidemiological and environmental health models 
(Pielke et al., 2007). Furthermore, AI plays a crucial role in the real-time 
tracking of pollution hotspots, identifying trends in pollution levels, and 
modeling the impact of meteorological factors (Han and Wang, 2021). 
This technology empowers researchers and policymakers to make 
informed decisions for air quality management and public health pro-
tection (Jerrett et al., 2001). By offering fast, accurate, and reliable so-
lutions, AI enables a deeper understanding of complex datasets in 
various scientific disciplines and supports data-driven decision-making 
processes. ML algorithms, such as Artificial Neural Networks (ANN), 
Random Forest (RF), Support Vector Machine (SVM), and Extreme 
Gradient Boosting (XGBoost), have proven to be invaluable tools in 
addressing air pollution and their impact on public health (Li et al., 
2023a), (Zheng et al., 2021). These algorithms excel at handling 
extensive and multidimensional air quality datasets, allowing for a 
deeper understanding of the complex relationships between air pollut-
ants and their health effects (Wei et al., 2021). By leveraging ML, we can 
achieve higher prediction accuracy and robustness, even in scenarios 
where air pollution exhibits intricate and nonlinear patterns (Chen et al., 
2022), (Joharestani et al., 2019). These advancements in ML empower 
us to make more informed decisions in environmental protection, assess 
the health risks associated with air pollution, and develop effective 
mitigation strategies to safeguard public health. Unsupervised learning 
methods, like K-means clustering, can improve data analysis further by 
revealing hidden patterns within unlabeled datasets, providing valuable 
insights for understanding complex phenomena (Ahmed et al., 2020). 
DL incorporates outcome driven feature engineering which leads to 
robust models that perform well in practical settings. Commonly used 
DL architectures are: Long Short-Term Memory (LSTM), Bidirectional 
Long Short-Term Memory (LSTM), and Recurrent Neural Networks 
(RNN). DL models have shown exceptional performance in predicting 
various air quality parameters, including fine particulate matter (PM2.5) 
concentrations (Bekkar et al., 2021), (Zhu et al., 2018). Their ability to 
capture nuanced relationships within air quality data makes DL a 
powerful tool for forecasting and health risk assessment (Bekkar et al., 
2021). Fig. 1 shows a typical AI-based framework for air pollution 
monitoring.

To the best of our knowledge, existing reviews have predominantly 
concentrated on either ML or DL tools for air pollution monitoring and 
forecasting. In contrast, our work offers a comprehensive review of ML 
and DL tools, encompassing most air pollutants. While previous reviews 

focused on air pollution prediction, our review addresses both fore-
casting and monitoring aspects. Monitoring typically refers to the real- 
time or near-real-time assessment of current air quality conditions, 
involving the collection, analysis, and interpretation of data about pre-
sent air pollution levels. Forecasting, on the other hand, involves pre-
dicting future air quality conditions based on current data and historical 
patterns. Moreover, we delve into the factors contributing to air pollu-
tion trends. Our paper also considers hybrid approaches combining AI 
methods with other techniques like geospatial parameters and data 
mining. Our paper encompasses a broad spectrum of air pollution as-
pects, many of which have remained unexplored in existing reviews.

This paper provides a comprehensive review of AI-based air pollu-
tion monitoring and forecasting. The remainder of the manuscript is 
structured as follows: background discussion, methods employed, and a 
thorough exploration of air pollutants. The study analyses various AI 
algorithms and delves into the results and implications. Extensive dis-
cussion unfolds the complexities, followed by insights into potential 
areas for future research. We highlight the limitations of current ap-
proaches and opportunities to enhance predictive performance. The 
review synthesizes key trends, knowledge gaps, and new directions to 
guide further advancement in applying AI for air quality monitoring and 
forecasting.

2. Methods

We closely adhered to the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) guidelines to select the most 
relevant articles on multi-modality in healthcare.

2.1. Related reviews

In recent years, there has been a surge in literature documenting 
efforts to harness the potential of ML and DL techniques for air pollution 
forecasting and monitoring. These efforts have resulted in notable im-
provements in prediction accuracy. This review paper explores the latest 
advancements in air pollution forecasting and real-time monitoring. To 
emphasize the unique and innovative aspects of our approach, we have 
summarized six existing review papers, facilitating a comparative 
analysis. 

• Gugnani et al. (Gugnani and Singh, 2022) (2022) offers an insightful 
yet limited overview of various DL techniques for predicting air 
quality. It highlights the advantages and disadvantages of DL without 
covering other ML models.

• Bellinger et al. (2017) (2017) systematically review data mining and 
machine learning algorithms applied in air pollution epidemiology, 
focusing solely on their use for forecasting and prediction.

• Balogun et al. (2021) (2021) review the interplay of climate change, 
air pollution, and urban sustainability using novel ML and spatial 
techniques. However, the scope is restricted to these spatial and ML 
tools for prediction to inform stakeholder interventions.

• Li et al. (2023b) (2023) provide a bibliometric analysis of ML ap-
plications in air pollution research, concentrating exclusively on 

Fig. 1. Typical steps for an AI-based air pollution monitoring and prediction framework. Sensors are generally used to collect air quality and environmental data. The 
data is used to train ML or DL models to learn patterns from historical data. Model performance is evaluated on test data, and results are provided to users through a 
dashboard or mobile app.
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chemical characterization, forecasting, detection, and emission 
control optimizations.

• Masood et al. (Masood and Ahmad, 2021) (2021) comprehensively 
review prominent AI techniques for air pollution forecasting, 
including ANN, DNN, SVM, and fuzzy logic, via a systematic litera-
ture review. However, the scope is limited to these standard AI 
methods.

• Subramaniam et al. (2022) (2022) discuss AI methodologies and ML 
algorithms for forecasting and early warning systems. Nonetheless, 
the focus remains narrowly on ML techniques.

While some recent reviews have emerged (Li et al., 2023b), 
(Subramaniam et al., 2022), they focused on specific aspects such as 
bibliometric analysis or forecasting applications. Unlike these prior re-
views, our comprehensive systematic review synthesizes both ML and 
DL techniques, expanding beyond forecasting to encompass monitoring 
and identification of pollution drivers. We provide a holistic analysis of 
the rapid technological evolution from 2019 to 2023, a period that saw 
substantial improvements in AI model performance (Abu El-Magd et al., 
2023). Moreover, our review goes beyond conventional approaches by 
exploring integrating AI techniques with geospatial data, data mining, 
and other related methodologies. Our comprehensive review of AI ap-
plications in air quality research allows for an in-depth examination of 
the complex, multifaceted factors influencing pollution. We assess a 
spectrum of pollutants and their health impacts using ML and DL 
models. This allows the identification of the most suitable techniques for 
specific pollutants based on spatial and temporal characteristics.

Our review offers researchers a comprehensive and holistic 
perspective on AI techniques across air pollution analysis domains. We 
assess the evolution of monitoring and prediction capabilities based on 
ML versus DL methods. Fig. 2 highlights our expansive scope compared 
to existing literature, spanning forecasting, monitoring, drivers, health 
impacts, ML, and DL approaches. This comprehensive vantage point 
empowers impactful solutions to this critical environmental and public 
health challenge.

2.2. Literature search strategy

The selection and review of articles on air pollution forecasting and 

monitoring using AI techniques in this paper comply with the Preferred 
Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) 
guidelines. To ensure a comprehensive article search, we have used the 
following databases: PubMed, ScienceDirect, and Web of Science. The 
search was carried out based on the following keywords: ”Air Pollution”, 
"Human Health,” "Machine Learning,” "Artificial Intelligence,” and 
"Deep Learning,”. This article’s examination encompasses the most 
recently accepted papers until June 20, 2023.

Following PRISMA guidelines, the initial literature search identified 
412 research papers. After removing 193 duplicate papers, 219 papers 
with unique titles were screened further. Papers were excluded at this 
stage if they did not meet the inclusion criteria of 1) being peer-reviewed 
research articles, 2) being published in English, 3) being relevant to the 
application of AI techniques for air pollution analysis, forecasting, or 
prediction, and 4) accessible in full text. Based on these criteria, 99 
papers were excluded. The remaining 120 articles underwent a detailed 
assessment of quality and relevance to identify papers published in Q1 
journals per Scimago rankings. A final set of 65 high-quality relevant 
papers were selected for review. Fig. 3 illustrates the flow diagram 
documenting the systematic article selection process, including identi-
fication, screening, eligibility assessment, and papers included and 
excluded at each stage as per PRISMA guidelines.

2.3. Air pollutants

This section provides an overview of the chemical properties and 
associated health effects of the most significant air pollutants. 

• Particulate matter (PM): PM consists of small solid or liquid particles 
suspended in air. These particles can vary in size and composition, 
with PM2.5 referring to fine particles with a diameter of 2.5 μm or 
smaller, and PM10 includes larger particles up to 10 μm in diameter. 
PM can be composed of various materials, including dust, pollen, 
soot, organic compounds, and metals. Long-term exposure to PM2.5 is 
associated with a range of health problems, including respiratory 
infections, aggravated asthma, decreased lung function, and pre-
mature death (Arden et al.). PM exposure has also been linked to 
cardiovascular diseases and lung cancer (Brunekreef and Holgate).

• Nitrogen Oxides (NOx): NOxs are a family of reactive gases that 
contain nitrogen and oxygen atoms. The two most common forms are 
nitrogen dioxide (NO2) and nitric oxide (NO). NOx emissions from 
combustion processes, such as those in vehicles and industrial ac-
tivities, primarily consist of nitric oxide (NO) (80–90%) with a 
smaller proportion of NO2 (10–20%). However, NO2 concentrations 
in ambient air increase rapidly, typically within minutes, due to the 
atmospheric conversion of NO to NO2. Prolonged exposure to NOx is 
associated with respiratory problems and decreased lung function (E. 
C. C. and H. WHO TEAM Air quality and health, 2006). It can also 
contribute to cardiovascular diseases (Brook et al., 2010).

• Ground-level ozone (O3): O3 is a secondary pollutant formed when 
precursor pollutants, such as volatile organic compounds (VOCs) and 
nitrogen oxides (Nox), react in the presence of sunlight. It is a 
molecule composed of three oxygen atoms and is a key component of 
smog. O3 can irritate the respiratory system and lead to coughing and 
shortness of breath (Bell et al., 2005). Long-term exposure to ozone is 
associated with reduced lung function and the development or 
exacerbation of respiratory diseases, including asthma and COPD 
(Jerrett et al., 2001).

• Carbon monoxide (CO): CO is a colorless, odorless gas consisting of 
one carbon and one oxygen atom. It is produced primarily by 
incomplete combustion of carbon-containing fuels, such as gasoline 
and wood. CO binds to hemoglobin in red blood cells, reducing their 
ability to carry oxygen. CO interferes with oxygen transport in the 
body, leading to symptoms like headaches and dizziness. While 
ambient CO levels monitored for air quality purposes are typically 
well below those causing acute poisoning, they serve as an important Fig. 2. Comparison of our review paper with existing literature reviews.
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indicator of combustion-related pollution. Chronic exposure to 
elevated ambient CO levels, though much lower than those causing 
acute poisoning, has been linked to an increased risk of cardiovas-
cular health issues (Brook et al., 2010). High levels of CO exposure 
can result in carbon monoxide poisoning, which can be fatal (Raub 
et al., 2000).

• Sulphur dioxide (SO2): SO2 is a pungent gas composed of one Sulphur 
atom and two oxygen atoms. It is generated primarily by burning 
fossil fuels containing Sulphur, such as coal and oil. SO2 can react 
with other atmospheric substances to form sulfuric acid (H2SO4), 
contributing to acid rain. SO2 irritates the respiratory system, 
causing symptoms like coughing and wheezing (Eftim et al., 2008). 
Long-term exposure to SO2 can contribute to respiratory diseases and 
exacerbate existing conditions. SO2 is also associated with cardio-
vascular problems (Brook et al., 2010).

Air pollutants can interact synergistically, resulting in cumulative 
adverse health effects. The severity of these health risks depends on 
factors including pollutant concentrations, length of exposure, and in-
dividual susceptibility. Effective regulatory measures and air quality 
monitoring are vital to mitigate air pollution and associated public 
health burdens (Bekkar et al., 2021). Fig. 4 shows the different types of 
contaminants, while Table 1 summarizes their impact on human health.

2.4. Artificial intelligence algorithms

AI represents a transformative field miming human intelligence in 
machines using techniques like ML and DL. ML employs an algorithm 
that learns patterns from data to make decisions, while DL leverages 
neural networks to extract complex features automatically. This enables 
DL to excel in complex tasks like image and speech recognition, setting it 
apart from traditional ML techniques. The following ML techniques were 

Fig. 3. Study search strategy by PRISMA guidelines. Papers published in non-Q1 journals were excluded from this review.

Fig. 4. Different types of air contaminants.

S. Chadalavada et al.                                                                                                                                                                                                                          



Environmental Modelling and Software 185 (2025) 106312

5

used for air pollution forecasting and monitoring. 

• K-Nearest Neighbours (KNN) is a simple yet effective ML algorithm 
used for classification and regression tasks. It makes predictions by 
finding the K data points nearest to a given input and assigning a 
label based on the majority class (for classification) or computing a 
weighted average (for regression) (Cover and Hart, 1952). KNN is 
easy to implement, non-parametric, and can handle both categorical 
and numerical data. It’s also beneficial for small to medium-sized 
datasets.

• Random Forest (RF) is an ensemble learning method that combines 
multiple decision trees to make predictions (Probst et al., 2019). It 
operates by constructing decision trees during training and outputs 
the class, which is the mode of the classes (classification) or mean 
prediction (regression) of individual trees. RF is robust against 
overfitting, handles high-dimensional data, and handles both cate-
gorical and numerical features well.

• Extreme Gradient Boosting (XGBoost) is a gradient-boosting algo-
rithm widely used in classification and regression tasks (Chen and 
Guestrin, 2016). It sequentially builds an ensemble of decision trees, 
optimizing for residuals at each step. XGBoost offers high perfor-
mance, handles missing data, and provides feature ranking.

• Regional Feature Selection-based ML (RFSML) is a ML approach that 
emphasizes selecting relevant features from different regions or parts 
of the data (Wu et al., 2017). It typically involves feature engineering 
and selection techniques tailored to the specific areas of the dataset. 
RFSML allows for fine-grained feature selection, potentially 
improving model performance and interpretability.

The following DL techniques were used for air pollution forecasting 
and monitoring. 

• Neural Basis Expansion Analysis for Time Series forecasting (N- 
BEATS) is a DL architecture designed for time series forecasting tasks 
(Oreshkin et al., 2019). It consists of fully connected neural networks 
stacked in an ensemble-like fashion. N-BEATS is scalable to handle 
complex time series data and offers an interpretable and flexible 
architecture.

• LSTM with Bayesian optimizer combines two methods to achieve 
high classification and prediction performance. LSTM is a recurrent 
neural network (RNN) designed to model sequential data, making it 
suitable for time series and sequence prediction tasks (Smagulova 
and James, 2019). Bayesian optimization is a method for hyper-
parameter tuning to optimize the model’s performance. LSTM cap-
tures temporal dependencies in data, while Bayesian optimization 
efficiently searches hyperparameters.

• Enhanced Long Short-Term Memory (ELSTM) extends the traditional 
LSTM architecture. It incorporates enhancements to capture longer- 
range dependencies and improve model performance in sequential 
data tasks. ELSTM addresses the vanishing gradient problem by 
introducing gating mechanisms and is well-suited for tasks where 
capturing long-term dependencies is crucial, such as natural lan-
guage processing and time series analysis.

• Convolutional Long Short-Term Memory (Conv-LSTM) is a hybrid 
neural network architecture that combines the convolutional neural 
networks with the sequential modeling capabilities of LSTM. It is 
beneficial for tasks where spatial and temporal patterns must be 
captured (Shi et al.). Conv-LSTM can effectively learn spatial features 
from data with temporal dependencies, making it applicable to tasks 
like video analysis, weather forecasting, and image captioning.

• Bayesian Deep-Learning Model combines deep neural networks with 
Bayesian inference techniques. It introduces probabilistic in-
terpretations into DL to quantify uncertainty and make more reliable 
predictions (Seoni et al., 2023), (Gal and Ghahramani, 2015). 
Bayesian deep-learning models offer probabilistic predictions, which 
are valuable in scenarios where uncertainty estimation is critical, 
such as medical diagnosis, autonomous driving, and financial 
forecasting.

• Hybrid Deep Learning-Driven Sequential Concentration Transport 
Emission Model (DL-CTEM) is a specialized DL model designed for 
modeling and forecasting concentration, transport, and emissions of 
pollutants in a sequential manner. It combines DL techniques with 
domain-specific knowledge (Kim et al., 2023). DL-CTEM leverages 
the power of deep learning to capture complex patterns in environ-
mental data while incorporating domain-specific information, mak-
ing it suitable for air quality prediction and environmental 
monitoring.

3. Results

Fig. 5 depicts the publication trends for automated air pollution 
monitoring and forecasting, specifically based on ML and DL ap-
proaches. The graph highlights a noticeable uptick in research papers 
from 2021 onwards, indicating these techniques have gained significant 
traction recently. There is a growth in papers on ML/DL for air pollution 
analysis starting in 2021, underscoring rapid advances in this field.

This reflects the maturation of AI capabilities and the pressing need 
for improved pollution modeling. In addition, the number of papers 
relying primarily on ML methods vastly exceeds those using DL. This 
suggests ML techniques currently dominate, likely due to greater inter-
pretability and ease of implementation. However, DL adoption is 
accelerating, given its advantages in capturing complex spatiotemporal 
relationships. The dominance of ML thus far indicates that most pub-
lished studies focus on forecasting and regression tasks where ML excels 
currently.

Fig. 6 displays the average accuracy of AI models for air pollution 

Table 1 
Air pollutants and their impact on human health.

Contaminant Health impact

Particulate matter 
(PM)

Long-term exposure to PM can cause respiratory infections, 
reduce lung function, and lead to premature death (Arden 
et al.), (Brunekreef and Holgate).

Nitrogen Oxides 
(NOx)

NOx irritates the respiratory system and is associated with 
respiratory problems and cardiovascular diseases (E. C. C. 
and H. WHO TEAM Air quality and health, 2006), (Brook 
et al., 2010).

Ground-level ozone 
(O3)

Long-term exposure to O3 can lead to reduced lung function 
and the development or worsening of respiratory diseases (
Jerrett et al., 2001), (Bell et al., 2005).

Carbon monoxide 
(CO)

High levels of CO exposure can lead to carbon monoxide 
poisoning, which can be fatal (Brook et al., 2010), (Raub 
et al., 2000).

Sulphur dioxide 
(SO2)

Long-term exposure to SO2 contributes to respiratory 
diseases and is associated with cardiovascular problems (
Brook et al., 2010), (Eftim et al., 2008).

Fig. 5. Number of papers published on ML and DL for Air Pollution monitoring 
and forecasting.
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forecasting and monitoring over the past five years. The highest accu-
racy recorded was observed in ML-based study in 2023. The RF method 
is the most frequent and popular ML method, with 98.2 % accuracy for 
automated air pollution forecasting and monitoring conducted by El- 
Magd et al. (Abu El-Magd et al., 2023). This work considers only one 
contaminant (PM10), rather than a mixture of contaminants, as in most 
of the studies conducted.

Table A1 provides a comprehensive summary of the studies on ML 
techniques for air pollution forecasting and monitoring, while Table A2
presents a detailed compilation of the studies that focus on DL methods. 
Both tables serve as valuable references, offering a consolidated view of 
the different ML-based and DL-based methods utilized in air pollution 
forecasting and monitoring. They provide researchers and practitioners 
with a comprehensive resource for exploring and comparing the diverse 
approaches employed in this field.

In our analysis, we classify AI applications in air pollution research 
into three distinct areas. 

- Prediction (forecasting): This field focuses on forecasting future 
concentrations of air pollutants using historical data. To predict 
pollution levels hours or days in advance, these models usually use 
temporal sequences of historical pollution measurements, meteoro-
logical data, and other pertinent variables. For instance, Wang et al. 
(2022a) forecasted pollution levels 24–48 h in advance using his-
torical PM2.5 data and meteorological parameters.

- Monitoring: This area involves real-time or near-real-time assess-
ment of current air quality conditions using contemporaneous data. 
in contrast to prediction models, monitoring applications estimate 
current pollution levels using measurements of co-variates (such as 
traffic density, weather, or satellite data). For example, Adams et al. 
(2020) created models to estimate real-time PM2.5 concentrations 
across unmonitored areas using ground measurements and current 
satellite data.

- Impact Assessment: This area examines the relationships between air 
pollution and various outcomes, such as public health effects, eco-
nomic consequences, or environmental impacts. These studies use AI 
to analyze historical data and identify correlations or causal re-
lationships. For example, Meng et al. (2022) used ML to assess the 
relationship between PM2.5 exposure and COPD exacerbations, while 
Zou et al. (2022) analyzed air pollution’s impact on housing prices.

This classification helps organize the literature based on the primary 
objective and temporal focus of each study, though some research may 
span multiple areas. Fig. 7 shows the distribution of studies across these 

three areas, highlighting the evolution of research focus over time. In the 
early years, such as 2020, more studies emphasized monitoring current 
pollution levels and assessing the impacts of air quality on public health 
and the environment. However, beginning in 2021, there was a 
noticeable shift towards prediction-oriented research. Specifically, the 
figure indicates that in 2022, the majority (16) of related studies were 
focused on developing methods and models to predict future air 
pollutant concentrations based on factors like emissions, meteorology, 
and land use. Only two studies focused on sensor-based monitoring 
approaches, while 5 assessed the impacts of pollution exposure. This 
shift demonstrates the growing interest from researchers in applying ML 
and AI to develop predictive air quality systems.

Fig. 8 provides insight into the types of models used across the 
different tasks of prediction, monitoring, and impact assessment. It 
shows a clear prevalence of traditional ML algorithms over DL ap-
proaches. ML methods dominated all three tasks. Monitoring studies 
employed ML almost exclusively, with just one identified work 
leveraging a DL model. This single DL study focused on an integrated 
approach for air pollutant detection and sensor data prediction. Mean-
while, prediction and impact assessment saw a slightly higher applica-
tion of DL techniques than monitoring, but ML still accounted for most 
models in these areas. This suggests that researchers have relied more 
heavily on traditional algorithms like regression, decision trees, and 
support vector machines that can effectively capture patterns in air 
quality datasets with fewer data requirements.

Fig. 9 provides insight into the distribution of air contaminant types 
studied across the surveyed literature. Most works (over 70%) investi-
gated multiple pollutants simultaneously rather than focusing on a 
single contaminant. The most examined joint pollutants were particulate 
matter indicators like PM2.5 and PM10 and gaseous pollutants such as 
CO2, SO2, and NOx. Among individual contaminants, particulate matter 
PM2.5 and PM10 received the highest research focus, with over half of all 

Fig. 6. Evolution of model accuracy and number of studies over time.

Fig. 7. Evolution of task trends (impact study, monitoring, prediction) in AI 
models for air pollutant analysis.

Fig. 8. Tasks executed by AI models divided by ML and DL techniques.
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papers analyzing these air contaminants.

4. Discussion

The harmful health impact of air pollution has driven researchers 
worldwide to advance air quality monitoring and forecasting. AI 
methods have proven highly effective for those efforts. AI techniques 
have witnessed a remarkable rise, increasing from just two studies in 
2019 to 22 in 2022, as shown in Fig. 5. By early 2023, 16 more publi-
cations contributed to this rapid growth, considering only relevant Q1 
journal papers. The total number of publications has risen in the past 
three years, totaling nearly 120, with 65 Q1 publications featured in this 
review. These trends reflect the growing recognition that AI has the 
potential to transform global air pollution monitoring and forecasting. 
The rapid expansion underscores the appeal of this technology for 
tackling the challenge of understanding and forecasting air quality. 
Continued growth is expected as researchers leverage AI innovations, 
from ML interpretability to DL spatiotemporal modeling. Improved 
pollution forecasting could help protect even more individuals from the 
adverse health impacts of air pollution.

4.1. Air quality monitoring using AI methods

Monitoring air quality in urban areas is inherently challenging due to 
the complex interplay of weather, topology, and seasons that impact 
pollution levels. Advanced techniques that integrate wireless sensor 
networks with ML models have proven effective. Rosero-Montalvo et al. 
(Rosero-Montalvo et al. (2022) achieved 96% accuracy in monitoring 
NO and CO using optimally positioned sensors and a neural network 
algorithm. A comparable approach combining sensors and artificial 
neural networks (ANN) yielded an R2 of 0.78 for CO and NO2. However, 
model accuracy depends on the number of deployed sensors, requiring 
optimization between sensor networks and ML tools to enhance effi-
ciency, as demonstrated by Zhao et al. (2021). Recent advances in data 
aggregation techniques using optimization algorithms (Heidari et al., 
2024) could improve the integration and processing of data from 
distributed air quality sensor networks.

For risk monitoring and early warning, Xie et al. (2021) developed a 
hybrid deep learning sequential Concentration Transport Emission 
Model (DL-CTEM) to monitor PM2.5, PM10, SO2, CO, NO2 and O3 with 
95.6% accuracy. Satellite imagery integrated with AI and ground data 
can track pollution levels and seasonal impacts. Song et al. (2021a)
effectively applied this with a RF model to monitor diverse pollutants. 
Geospatial techniques add flexibility, with Stacked Ensemble Modeling 
achieving high accuracy in Adams et al. (2020).

Assessing the influence of multiple factors using AI aids in real-world 
monitoring. Li et al. (2023a) applied RF on hourly data to evaluate 

pollution drivers related to fuel combustion with 94% accuracy for 
PM2.5 prediction. Numerous studies leveraged AI to model the 
COVID-19 lockdown’s pollution impact, including Wijnands et al. 
(2022) and Habeebullah et al. (2022), again demonstrating RF’s reli-
ability despite complex inputs. Beyond health, Zou et al. (2022) applied 
ML to examine air pollution’s economic impact on housing prices.

In summary, multivariate AI techniques show tremendous promise 
for unraveling the intricacies of real-world air quality monitoring. 
Hybrid approaches that optimize sensor networks leverage satellite 
imagery, and evaluate diverse pollution factors enable robust, accurate 
systems for tracking hazardous pollution. Air quality modeling has long 
provided valuable insights to support public health policies and inform 
populations. However, as research continues, AI-enabled monitoring 
could offer additional actionable intelligence to strengthen these efforts 
and better protect public health.

4.2. Air quality forecasting using AI methods

Fine particulate matter exacerbates chronic obstructive pulmonary 
disease (COPD), significantly increasing mortality risk. A KNN model by 
Meng et al. (2022) (demonstrated a 74% accuracy in showing that PM2.5 
emission reductions could protect non-smoking COPD patients. Con-
ibear et al. (Wijnands et al., 2022) also used ML emulators to predict 
over 99% of the variance in PM2.5 and ozone concentrations, along with 
associated health impacts from emission changes across five key sectors.

Remote sensing and GIS data on factors like morphology and geo-
information aid monitoring. El-Magd et al. (Abu El-Magd et al., 2023) 
leveraged Landsat spectral bands and land use indices as inputs, 
providing pollution distribution insights. Landsat bands and land use 
indexes assessed PM10 distribution. Song et al. (2021a) integrated sat-
ellite, reanalysis, and ground data into a ML model examining seasonal 
and annual pollution changes from 2018 to 2019. However, substantial 
data is needed to fully exploit deep learning possibilities, with RF 
proving a reliable geospatial forecasting model.

Huang et al. (Habeebullah et al., 2022) found shallow neural net-
works optimal for building morphology and pollutant concentration 
modeling, achieving a R2 = 0.94 for PM2.5. Mobile monitoring data 
tends to be less stable and challenging to model realistically. While 
mobile monitoring data tends to be less stable and challenging to model 
realistically, shallow neural networks demonstrated superior perfor-
mance compared to conventional dispersion models, providing faster 
and more accurate predictions of pollution diffusion patterns in urban 
environments.

Traditional ML prioritizes overall accuracy, neglecting peak pollu-
tion values and complex factor interplay. Addressing this, Bai et al. 
(2022) developed a hybrid extreme learning machine with 
multi-objective optimization for prediction. This improved deterministic 
accuracy to 71.52% and enabled effective pollutant concentration in-
terval forecasts.

In summary, multivariate techniques leveraging diverse data sources 
provide insights into spatiotemporal pollution distributions and associ-
ated health impacts. While shallow neural networks show promise for 
focused applications, RF excels for geospatial forecasting given suffi-
cient data. Advances in hybrid AI now allow accurate peak pollution 
prediction while capturing intricate relationships. Such comprehensive, 
reliable modeling empowers targeted, effective interventions.

4.3. AI technique selection based on pollutant characteristics

Our analysis reveals that the effectiveness of AI techniques varies 
depending on the spatial and temporal characteristics of specific pol-
lutants. This underscores the importance of tailoring the choice of AI 
method to the nature of the pollutant being studied.

For pollutants exhibiting strong seasonal patterns, such as PM2.5 and 
PM10, ensemble methods like RF have demonstrated efficacy (Abu 
El-Magd et al., 2023), (Zhang et al., 2023a). These methods excel at 

Fig. 9. Air pollutants studied in the works reviewed.
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capturing non-linear relationships and handling the multivariate nature 
of seasonal pollution data. For instance, Abu El Magd et al. (Abu 
El-Magd et al., 2023) achieved 98.3% accuracy using RF for PM10 
prediction.

In contrast, when dealing with pollutants characterized by complex 
temporal dynamics, such as O3 and NO2, DL approaches, particularly 
LSTM networks, have shown superior performance (Sun et al., 2022), 
(Dairi et al., 2021). Sun et al. (2022) found that a hybrid WRF-CMAQ 
LSTM model reduced prediction errors for PM2.5 and O3 by 40% and 
20%, respectively, compared to traditional models. The ability of these 
models to capture long-term dependencies in time series data makes 
them well-suited for predicting pollutants with intricate temporal 
patterns.

For pollutants with significant spatial variability, such as ultra-fine 
particles, techniques that can incorporate geospatial data have proven 
advantageous. Convolutional Neural Networks (CNNs), especially when 
combined with satellite imagery, have shown promise in capturing the 
spatial distribution and variation of these pollutants (Liang et al., 2023), 
(Steininger et al., 2020). Liang et al. (2023) developed a multi-scale, 
attention-enhanced CNN architecture that achieved an R2 of 0.94 for 
PM2.5 prediction using geospatial features.

This observed relationship between pollutant characteristics and AI 
model performance highlights the need for a nuanced approach in air 
quality modeling. Researchers and practitioners should consider not 
only the overall performance metrics of AI models but also how well 
these models align with the specific spatial and temporal characteristics 
of the pollutants under investigation.

4.4. Health impacts

Air pollution can have far-reaching health impacts with both acute 
and chronic effects. The size and composition of particles determine 
toxicity and health consequences. Larger PM10 particles deposit in the 
upper airways while finer PM2.5 penetrates deeper into the alveolar 
region, increasing cardiopulmonary risks. Absorption into the blood-
stream can lead to ischemic heart disease, myocardial infarction, and 
cerebrovascular disease. Solubility also affects distribution; highly sol-
uble SO2 absorbs in the upper airways, exacerbating respiratory illness, 
while less soluble NO2 reaches deeper regions, impairing lung devel-
opment and increasing influenza susceptibility in children. High CO 
levels are fatal, and moderate exposure impairs vision and coordination.

Air pollution from various sources poses significant health risks 
across different regions. Dust storms in dry regions, forest fires, trans-
boundary pollution events, and urban air pollution from industrial and 
automobile emissions are major contributors. Every source has different 
health risks. Increased respiratory and cardiovascular morbidity is 
linked to urban air pollution, especially from industrial and trans-
portation sources (Chen et al., 2017). Long-distance movement of tiny 
particulate matter by dust storms can exacerbate pre-existing diseases 
like asthma and cause acute respiratory symptoms (Achilleos et al., 
2014). PM2.5, CO, and volatile organic compounds are among the 
complex mixture of contaminants found in wildfire smoke that can have 
both short-term and long-term negative health impacts (Reid et al., 
2016). In order to track these many pollution sources and give suscep-
tible populations early warnings, it is now essential to create AI-based 
monitoring and forecasting systems. More focused public health mea-
sures are now possible because of recent research showing how well 
machine learning algorithms anticipate pollution levels from a variety of 
sources (Agbehadji and Obagbuwa, 2024), (Zhang et al., 2024).

While many studies focus on single pollutants, the real-world sce-
nario involves simultaneous exposure to multiple air pollutants. AI 
techniques can be used to understand these intricate multi-pollutant 
interactions and their combined health effects. For example, Usmani 
et al. (2023) employed a Long Short-Term Memory model to analyze the 
combined effects of multiple pollutants (CO, O3, NO, NO2, NOx, SO2, and 
PM10) on cardiorespiratory mortality, achieving high prediction 

accuracy. Similarly, Sun et al. (2023) developed a ML-based early 
warning model for mixed exposure to multiple air pollutants, demon-
strating 94.5% sensitivity in predicting respiratory disease mortality. 
These AI approaches can disentangle the relative contributions of 
different pollutants to specific health outcomes, enabling more targeted 
intervention strategies. Ravindra et al. (2023) utilized RF models to 
evaluate how combinations of primary and secondary pollutants affect 
respiratory hospital admissions, achieving an R2 of 0.872. Such 
multi-pollutant analyses provide a more realistic assessment of envi-
ronmental health risks and can better inform public health policies than 
single-pollutant studies.

In summary, AI techniques such as deep neural networks now offer 
new insights which can help with understanding the complex relation-
ships between various pollution exposures and related health effects, 
enabling focused interventions. In this regard, risk assessment and 
vulnerable population protection may be enhanced by AI-enabled 
pollution-health impact modeling.

4.5. Challenges and limitations

Despite the significant advancements in AI-based air pollution 
monitoring and forecasting, several challenges persist. Data quality and 
availability remain major hurdles, particularly in developing countries 
where air quality monitoring infrastructure is limited. The heterogeneity 
of data sources, including ground-based sensors, satellite imagery, and 
meteorological data, poses integration challenges for AI models. More-
over, the interpretability of complex deep learning models is still a 
concern, especially when these models are used to inform policy de-
cisions. The generalizability of AI models across different geographical 
regions and climate conditions is another ongoing challenge, as models 
trained on data from one area may not perform well in others due to 
varying pollution sources and weather patterns. Additionally, the 
computational resources required for training and deploying sophisti-
cated AI models can be a barrier to widespread adoption, particularly in 
resource-constrained environments. Similar challenges in implementing 
distributed AI systems have been documented in other domains 
(Aminizadeh et al., 2024), highlighting common issues of data integra-
tion, system reliability, and resource optimization.

The environmental impact of implementing AI, especially for DL 
models, is another major limitation. Significant energy and computa-
tional resources are needed to train these models, which may exacerbate 
the environmental problems they are intended to solve. According to 
recent research, the lifetime carbon emissions of training a large deep 
learning model can equal the carbon emissions of five cars (Strubell 
et al., 2020). Implementing lightweight architectures and model 
compression strategies, making use of green computing infrastructure, 
and using transfer learning to eliminate the need for training from 
scratch are some strategies that can lessen these environmental costs 
(Howard et al., 2019-). These tactics can assist in striking a balance 
between the advantages of AI deployment for bettering air quality 
monitoring and management and its negative effects on the environ-
ment. The challenge lies in developing more energy-efficient algorithms 
while maintaining high prediction accuracy and model performance.

Data integration poses significant challenges in AI-based air pollu-
tion monitoring. While diverse data sources (ground sensors, satellite 
imagery, meteorological data, traffic monitors) can enhance model 
performance, integrating these heterogeneous data streams presents 
several technical hurdles. Different temporal and spatial resolutions 
among data sources require preprocessing techniques. For example, 
satellite data typically provides broad spatial coverage but limited 
temporal frequency, while ground-based sensors offer high temporal 
resolution but sparse spatial coverage. Researchers have addressed this 
through various approaches: Wang et al. (2022a) employed a multi-scale 
fusion network to combine different resolution data streams, achieving a 
27.65% improvement in RMSE compared to single-source models. Time 
series alignment techniques and interpolation methods have 
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harmonized data with different sampling frequencies. Li et al. (2023a)
demonstrated success using a hierarchical data fusion approach that 
achieved 94% accuracy in PM2.5 prediction by combining hourly ground 
measurements with daily satellite observations.

Despite these promising results, there are issues with managing 
missing data, resolving measurement uncertainties from various sour-
ces, and preserving data quality throughout integration. Additionally, 
the computational overhead of processing and integrating multiple data 
streams in real time can impact model deployment, especially in 
resource-constrained environments.

4.6. Real-world applications

Several notable implementations demonstrate the practical impact of 
AI in air quality monitoring and management. In Hong Kong, Li et al. 
(2021) created a comprehensive smart air quality monitoring system by 
fusing deep learning models with Internet of Things sensors. Through a 
mobile application, their Grid-LSTM framework enabled personalized 
health recommendations while achieving 82% accuracy in real-time 
pollution prediction. Better public health awareness and more efficient 
pollution exposure management resulted from the system’s successful 
implementation. In Vietnam, Rakholia et al. (2023) used a multi-output 
ML model to forecast regional air pollution. Their system produced 
precise predictions for several pollutants at once by combining meteo-
rological parameters with data from 18 monitoring stations. During 
periods of high pollution, the implementation assisted local authorities 
in modifying traffic management plans and promptly issuing air quality 
warnings. A particularly successful application in China by Wang et al. 
(2022b) demonstrated how supportAI can support policy decisions. 
Compared to conventional techniques, their hybrid GWO-LSTM model 
increased prediction accuracy by more than 30%, allowing authorities to 
enact focused emission control measures. Measurable improvements in 
urban air quality resulted from the system’s predictions, which assisted 
in identifying the main sources of pollution and refining intervention 
tactics. In resource-constrained environments, Ali et al. (2021a) devel-
oped a cost-effective solution combining low-cost sensors with AI-based 
calibration in Malaysia. Their ANN-based system demonstrated how AI 
can improve the dependability of low-cost monitoring networks by 
achieving an R2 of 0.78 for CO and NO2 monitoring. Cities with inade-
quate monitoring infrastructure were given a scalable solution by this 
implementation.

4.7. Future research directions

As AI continues to revolutionize air pollution monitoring and fore-
casting, several key areas emerge as critical for future research. Future 
research should focus on developing AI models capable of integrating 
diverse data sources beyond traditional air quality sensors. This could 
include satellite imagery, social media data, traffic patterns, and citizen- 
reported observations. The challenge lies in harmonizing these hetero-
geneous data types and dealing with varying temporal and spatial res-
olutions. For instance, researchers could explore DL architectures that 
simultaneously process satellite imagery, ground-based sensor data, and 
text-based reports to provide a more holistic view of air quality. This 
multi-modal approach could reveal complex interactions between 
pollution sources, meteorological conditions, and human activities that 
are currently overlooked. Moreover, this research direction could 
benefit from advancements in natural language processing to interpret 
unstructured data from social media and citizen reports, potentially 
providing early warning signals of air quality issues before they’re 
detected by traditional sensors.

Explainable AI (Seoni et al., 2023) is a potential area for further 
research in air quality assessment. While current AI models offer high 
predictive accuracy, their ‘black box’ nature often makes it difficult for 
the endusers to trust and act on their predictions (Loh et al., 2022). 
Several interpretability techniques have been successfully implemented 

in recent air pollution studies. For example, Li et al. (2023c) used SHAP 
(SHapley Additive exPlanations) analysis to identify meteorological 
conditions and the previous day’s pollution levels as key predictors of 
PM2.5 concentrations. Stirnberg et al. (2021a) showed how well LIME 
(Local Interpretable Model-agnostic Explanations) worked to identify 
local emission sources and explain particular cases of elevated PM1 
concentrations. Additionally, Wang et al. (2022b) demonstrated in their 
LSTM-based forecasting system that attention mechanisms in deep 
learning models have yielded important insights into temporal patterns 
of pollution. Zhang et al. (2023b) have also found partial dependence 
plots to be helpful in visualizing the correlations between PM2.5 levels 
and meteorological parameters. The goal of these approaches is to 
provide clear, intuitive explanations for why a model predicts high 
pollution levels on a given day, highlighting the relative importance of 
different factors (e.g., traffic patterns, industrial activities, weather 
conditions). Such explainable models could significantly enhance the 
actionability of AI predictions, allowing policymakers to implement 
targeted interventions and helping the public understand and mitigate 
their exposure to air pollution.

Uncertainty quantification (Seoni et al., 2023) in AI predictions 
represents another critical area for future research in air quality 
assessment. While current models demonstrate high accuracy in point 
estimates, the reliable quantification of prediction uncertainties remains 
challenging yet crucial for effective decision-making. Recent studies 
have shown promising directions: Bayesian deep learning approaches 
have successfully provided probability distributions rather than 
single-point predictions, with Han et al. (2022a) demonstrating error 
reductions up to 12.4% for PM2.5 and PM10 predictions while quanti-
fying prediction uncertainties. However, several challenges persist in 
distinguishing between different uncertainty sources: measurement er-
rors in input data, model structural uncertainties, and parameter un-
certainties. Future research should focus on developing computationally 
efficient methods that can quantify both epistemic uncertainty (model 
uncertainty) and aleatoric uncertainty (inherent data noise) in real-time 
applications. This is particularly important in air quality monitoring, 
where reliable uncertainty estimates could improve public health ad-
visories and support more informed policy decisions.

Future research should also explore the development of dynamic, 
self-adapting AI models that can continuously learn and adjust to 
changing environmental conditions. In fact, climate change may alter 
weather patterns and potentially affect air pollution dynamics, causing 
static AI models to become less effective over time. The design of dy-
namic AI models could involve online learning algorithms that update in 
real-time as new data becomes available or meta-learning approaches 
that can quickly adapt to new scenarios with minimal additional 
training. These adaptive models could be crucial for maintaining accu-
rate air quality predictions in the face of climate change-induced shifts 
in weather patterns and pollution dynamics. Researchers might also 
explore the use of reinforcement learning techniques to create AI agents 
that can proactively suggest optimal air quality management strategies 
under different climate scenarios. Recent advances in cloud-based IoT 
environments using optimization algorithms (Vakili et al., 2024), 
(Darbandi et al., 2018), (Darbandi, 2017) could enhance the processing 
efficiency and scalability of large-scale air quality monitoring systems.

Novel applications of AI in air pollution monitoring and forecasting 
present exciting opportunities for advancement. One unexplored area is 
the integration of AI with blockchain technology to create a decentral-
ized system for air quality data collection and sharing. This could 
enhance data reliability and transparency, which is crucial for both 
research and policy-making. Another innovative application could be 
the development of AI-powered personal air quality assistants that 
combine real-time pollution data with individual health information to 
provide personalized recommendations for outdoor activities and route 
planning. To address current limitations, researchers could explore 
using federated learning techniques to develop robust models that can 
learn from distributed datasets without compromising data privacy or 
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security. This approach could be particularly valuable in overcoming 
data-sharing barriers between different regions or countries. In public 
health, AI-driven air quality management systems could be integrated 
with healthcare databases to provide early warnings to vulnerable 
populations and help hospitals prepare for potential increases in 
respiratory-related admissions.

5. Conclusion

Rapid urbanization and industrialization have led to major air 
pollution problems worldwide. Air quality monitoring and forecasting 
are challenging due to complex interactions between diverse contrib-
uting elements. Recent advances in AI methodologies show promise in 
improving predictions fueled by extensive datasets, computing capa-
bilities, and recognition of AI’s advantages. Our analysis shows that the 
research was concentrated in India, China, and the US.

This systematic review has analyzed the state-of-the-art AI applica-
tions for air pollution monitoring and prediction, revealing key trends, 
challenges, and future directions. The field has shifted towards ML and 
DL techniques, with research papers increasing notably from 2021. 
Random Forest has emerged as the most effective method, achieving up 
to 98.2% accuracy. DL techniques, while less common, show promise in 
capturing complex spatiotemporal relationships.

Challenges include the ‘black box’ nature of many AI models, posing 
difficulties for interpretability and trust. Harmonizing heterogeneous 
data types and varying resolutions remain hurdles in developing 
comprehensive models. Adapting AI models to account for dynamic 
pollution patterns, especially considering climate change, is an ongoing 
challenge.

Future AI applications are promising, including multi-modal models 
integrating diverse data sources, explainable AI techniques enhancing 
trust and actionability, and dynamic, self-adapting models. Interdisci-
plinary collaboration between AI researchers, environmental scientists, 
and policymakers will be crucial in translating these advancements into 
tangible improvements in air quality and public health. To guide future 
research, we propose the following key questions and hypotheses. 

1. How can AI models be designed to effectively capture the long-term 
impacts of climate change on air pollution patterns?

2. Can federated learning techniques be employed to develop globally 
applicable air quality models while respecting data privacy 
concerns?

3. Hypothesis: Integrating social media data and citizen science initia-
tives into AI models will significantly improve the accuracy of 
hyperlocal air quality predictions.

4. How can AI be leveraged to optimize the placement and operation of 
air quality monitoring sensors, especially in resource-constrained 
environments?
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APPENDIX 

Table A1 
Summary of studies that ML approaches for air pollution forecasting and monitoring.

Author, year Contaminants Features Classifier Findings/Results (%)

(Meng et al., 2022) PM2.5 Age, sex, smoking status, Group ABCD, 
FEV1, CAT score, and RNA profile

KNN Sen: 46%, Acc: 74.3%

(Conibear et al., 
2021)

PM2.5 and ozone (O3) Mean PM2.5 concentrations and O3 
exposure

ML Emulator The emulators predicted 99.9% of the 
variance in PM2.5 and O3 concentrations.

(Li et al., 2023a) PM2.5 PM2.5, NO2, SO2, CO, and O3 RF Prediction of PM2.5 concentration: RMSE 
and MAE of 9.4 μg/m3 and 5.7 μg/m3, 
respectively.

(Rosero-Montalvo 
et al., 2022)

NOx and CO NOx, CO, UV, HUM, TEMP ANN Acc: 96%

(Huang et al., 2022) PM2.5 and PM10 influence indicators, including vehicle 
speed, temperature, relative humidity, and 
dew point temperature, were used as feature 
variables.

Shallow neural network R2 = 0.94 for PM2.5 and R2 = 0.89 for 
PM10 for all training samples.

(Rakholia et al., 
2023)

NO2, SO2, O3, and CO NO2, CO, O3, SO2, Humidity, Temperature, 
Visibility, Pressure, uvIndex, Wind speed, 
Cloud cover, Dew point Hour

N-BEATS 

(Bai et al., 2022) PM2.5 concentration Daily PM2.5 concentration series of three 
major cities

Hybrid model based on ML Acc: 71.5%

(Abu El-Magd et al., 
2023)

PM10 LST, Landsat bands, SAVI, distance from the 
road and distance from the station

RF Acc: 98.3%

(Gu et al., 2022) PM 2.5 Automatic feature generation and feature 
selection procedures

Hybrid Interpretable 
Predictive ML model.

The accuracies of 1, 3 and 6-h-ahead 
prediction are 98.7%, 0.93.3% and 85.8%, 
respectively

(continued on next page)
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Table A1 (continued )

Author, year Contaminants Features Classifier Findings/Results (%)

(Heydari et al., 2022) NO2 and SO2 The datasets include wind speed, air 
temperature, NO2, and SO2 for five months.

LSTM and multi-verse 
optimization algorithm

RMSE: 0.0310; MAE: 0.0263; MAPE: 
17.2091

(Ravindra et al., 
2023)

Primary and secondary 
pollutants

Concentration of air pollutants RF Best performance with R2 = 0.872, 0.871 
without lag and 1-day lag, respectively on 
total patients

(Kumar and Pande, 
2023)

PM2.5, PM10 NO, NO2, 
NOX, NH3, CO, SO2, and O3 
Benzene Toluene

PM2.5, PM10 NO, NO2, NOX, NH3, CO, 
SO2, and O3 concentrations

XBoost Acc: 91%

(Sun et al., 2023) Warning model of mixed 
exposure to air pollutants

30 variables including death date; age; sex; 
daily average temperature; average relative 
humidity; NO2; PM10, PM2.5 SO2 and CO 
and O3

XBoost Sen: 94.5%; Spe: 89.6%; Acc: 98.0%; AUC: 
94.4%

(Ku et al., 2022) PM2.5, PM10, O3, NO2, CO, 
and SO2

Climatic factors and air-pollution indicators, 
including PM2.5, PM10, O3, NO2, CO, and 
SO2,

XGBoost and GPR-based 
ML models

R2 values of over 0.67 and RMSE values 
below 13.9 per 10,000 inhabitants.

(Lai et al., 2022) CO, O3, and NO2 Concentration of air pollutants Ensemble model The R2 value of the CO gas model is 0.73; it 
reached 0.51 for the O3 gas model and 0.37 
for the NO2 gas model.

(Zhang et al., 2023a) PM2.5 PM2.5, PM10, CO, NO2, O3, and SO2 RF –
(Fang et al., 2022) PM2:5, CO, SO2, and NO2 PM2:5, CO, SO2, and NO2 Regional feature selection- 

based ML (RFSML)
Acc: 0.72

(Zhou et al., 2022) PM2.5 Aerosol and gaseous species (Org, SO42, 
NO3, NH4+, Cl, nc-POA, COA, SOA, SO2, 
NO2, CO and O3)

RF –

(Almalawi et al., 
2022)

CO2, SO2, NO2, and 
atmospheric PM

CO2, SO2, NO2, and atmospheric PM2.5 
and PM10

GBDT ensemble RMSE MAE MSE (04.146 5.209 3.135)

(Khan et al., 2022) PM2.5 PM2.5 RF R2 MAE RMSE (0.94 11.33 22.77)
(Wan et al., 2022) PM2.5, PM10, SO2, CO, 

NO2, and O3
PM2.5, PM10, SO2, CO, NO2, and O3 RF AUROCs by 0.712 up to 0.771

(Zou et al., 2022) SO2, NO2, and PM10 SO2, NO2, and PM10 GBDT The optimal R2, MAE, and RMSE values 
obtained by the GBDT model are 10.320, 
7.087, and 0.975, respectively.

(Liu et al., 2022) PM2.5 PM2.5, SO2, NO2, and CO RF –
(Tao et al., 2023) PM2.5 Meteorological and soil parameters LSTM integrated with 

Bayesian optimizer
RMSE = 13.4%, Kling-Gupta efficiency =
0.89

(Wijnands et al., 
2022)

NO2, PM10, PM2.5 and O3 Total precipitation, mean temperature and 
mean solar radiation over three days.

XBoost 

(Habeebullah et al., 
2022)

O3, NO2, and PM10 O3, NO2, and PM10 Supervised ML 

(Ji et al., 2023) NO2, CO, and PM (PM10 
and PM2.5)

NO2, CO, PM10, and PM2.5 RF NO2, CO, O3, PM2.5, and PM10 are 
significantly correlated with the numbers of 
clinic visits (PCC:0.35)

(Ren et al., 2020) PM2.5 PM2.5 Rapidly exploring random 
tree star (RRT*)

R2 value equal to 0.9459

(Liang et al., 2023) PM2.5 The traffic, LULC, and PA features are the 
most informative, followed by LiDAR tree 
heigh

Multi-scale, attention- 
enhanced CNN 
architecture

The R2 and RMSE values for this model were 
0.94 and 1.34 μg/m3, respectively

(Xie et al., 2022) PM2.5, PM10, SO2, CO, 
NO2, and O3

Concentration of air pollutants Bayesian neural network 95.6% prediction accuracy

(Hashad et al., 2021) No specific pollutant, in 
general

Vegetation dimension (width or height) and 
particle size were the top two selected 
features

RF, ANN, and XGB RF, ANN, and XGB performed well with a 
normalized RMSE of 6–7% and an average 
test R2 value > 0.91

(Ali et al., 2021b) CO and NO2 concentrations 
and an infrared sensor to 
measure PM levels

Raw air pollutant concentration, 
temperature, and humidity correction

ANN-based calibration 
method

MAPE of 38.89% and R2 of 0.78

(Lautenschlager 
et al., 2020)

NOx or PM Industry usage, commercial usage, 
residential usage, light/heavy traffic

RFOstochastic RMSE of 1.74 and R2 equal to 0.19

(Lovrić et al., 2021) NO2, PM10, O3 (ozone), and 
Ox (total oxidant)

City average concentrations of PM10 and 
NO2 concentrations

RF R2: 0.84

(Cole et al., 2020) SO2, NO2, CO, and PM10 Temperature, wind direction, wind speed, 
and atmospheric pressure

RF –

(Delavar et al., 2019) PM10 and PM2.5 Meteorological parameters, topography, 
and pollutant concentrations.

Autoregressive nonlinear 
neural network

Acc: 94%

(Stirnberg et al., 
2021b)

PM1 Concentration of air pollutants Tree-based ML R2 is 0.58

(Mele and 
Magazzino, 2020)

CO2, PM2.5 Concentration of air pollutants LSTM CO2 PM2.5:0.92111 0.88457

(Razavi-Termeh 
et al., 2021)

CO, PM10,PM2.5, NO2, 
SO2, and O3

Season information and concentrations of 
CO, PM10 and PM2.5, NO2, SO2, and O3

RF Acc: 0.823, 0.821, 0.83, and 0.827 for three 
seasons

(Song et al., 2021a) PM2.5, PM10, O3, and CO Meteorological factors and concentration of 
air pollutants

RF RMSE for the PM2.5, PM10, O3, and CO 
validation dataset were 9.027 g/m3, 20.312 
g/m3, 10.436 g/m3, and 0.097 mg/m3, 
respectively

(Cazzolla Gatti et al., 
2020)

PM2.5 PM10, O3, SO2, NO2, CO, and Benzene RF R2 is 0.95 and RMSE is 28.9

(continued on next page)
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Table A1 (continued )

Author, year Contaminants Features Classifier Findings/Results (%)

(Zhao et al., 2021) PM2.5 Land use, characteristics, traffic, and road 
network, as well as external factors such as 
meteorological information

XBoost R2 is 0.80 and RMSE is 8.1

(Ren et al., 2020) CO, SO2, PM10, PM2.5, 
NOx, VOC, NH3

Deciduous forest coverage, longitude, daily 
maximum relative humidity, wind speed, 
and wind direction

XBoost R2 is: 0.96 RMSE is 2

(Adams et al., 2020) PM2.5 Data source, attribute name, units, and 
tapered elemental oscillating microbalance 
measurement

Stacked Ensemble Model R2 is from: 0.8–0.99

(Du et al., 2021) PM2.5, PM10, CO, NO2, O3, 
and SO2

PM2.5, PM10, CO, NO2, O3, and SO2 Time-Varying Filter 
Empirical Mode 
Decomposition

MAPE is 2.03%

(Xiao et al., 2019) General Concentration of air pollutants A parameterized non- 
intrusive reduced order 
model (P-NIROM)

RMSE is 8%

(Li et al., 2021) PM2.5, PM1.0, and NO2 Concentration of air pollutants Grid-LSTM Acc: 82%
(Song et al., 2021b) PM2.5 Wind speed, pressure, water vapor pressure, 

temperature, and humidity
ML framework (Deep- 
MAPS)

SMAPE< 15%

(Usmani et al., 2021) PM10, CO, NOx, NO2, NO, 
and SO2

PM10, CO, NOx, NO2, NO, and SO2 ELSTM model RMSE: 0.002

Acc: accuracy; Sen: sensitivity; Spe: specificity; RMSE: root mean square error; MAPE: mean absolute percentage error.

Table A2 
Summary of studies that DL approaches for air pollution forecasting and monitoring.

Author, year Contaminants Features Classifier Findings/Results (%)

(Usmani 
et al., 2023)

CO, O3, NO, NO2, NOx, SO2, and 
PM10

AQM Station, Date, cardiorespiratory 
mortal. it count, and the air pollutants, 
i.e., CO, O3, NO, NO2, NOx, SO2, and 
PM10.

Enhanced LSTM ELSTM: 0.004 (in terms of RMSE and MAE

(Shu et al., 
2023)

PM2.5, PM10, SO2, NO2, CO, and O3 PM2.5, PM10, SO2, NO2, CO, and O3 Proposed DW-CAE model 
is more accurate than other 
baseline models

Acc: 93%

(Sun et al., 
2022)

PM2:5 and O3 Ground observation data for different 
source stations

Hybrid WRF-CMAQ LSTM RMS is 40% and 20% lower than the Weather 
Research and Forecasting–Community 
Multiscal. e Air Quality model

(Zhu et al., 
2018)

Temperature, CH4, NO, CO, relative 
humidity, NMHC (non-methane 
hydrocarbons), PM10, NOx, O3, SO2, 
PM2.5, and NO2

Temperature, CH4, NO, CO, relative 
humidity, NMHC (non-methane 
hydrocarbons), PM10, NOx, O3, SO2, 
PM2.5, and NO2

Conv. LSTM Acc: 91%

(Han et al., 
2022b)

PM2:5 and PM10 PM2.5 and PM10 Bayesian deep-learning 
model

DL model can reduce the prediction errors by a 
maximum of 3.7% and 12.4%

(Xie et al., 
2021)

Ammonia (NH3), CO2, and hydrogen 
sulphide (H2S)

NH3, CO2, and H2S Driven sequential 
Concentration Transport 
Emission Model (DL- 
CTEM)

Mean errors: 0.1 ppm, 79.2 ppm, and 106.3

(Xie et al., 
2022)

NH3, CO2, and H2S Gas concentrations and air pollution 
from pig buildings

DL-CTEM R2 for concentrations of NH3, CO2, and H2S at 
PLS and pit in both winter and summer were 
0.8875, 0.7808, and 0.6335, respectively.

(Kabir et al., 
2020)

PM2.5 Automatic feature extraction from 
outdoor images

BRB based CNN Sen: 97.1%; Spe: 95.6%; AUC: 93.6

(Tao et al., 
2019)

PM2.5 Meteorological data and air pollutant 
concentration

Convolutional-based 
bidirectional gated 
recurrent unit (CBGRU) 
model

RMSE as: 14.5 and MAE is: 10.48

(Dairi et al., 
2021)

NO2, SO2, CO, and O3. Concentration of air pollutants Integrated multiple 
directed attention 
variational autoencoder 
(IMDA-VAE)

R2 is 0.87 and RMSE is 13.44

(Steininger 
et al., 2020)

NO2 Entity, area, and distance features MapLUR R2 is: 0.673 RMSE is 8.002

(Gao et al., 
2021)

PM2.5, PM10, CO, NO2, O3, and SO2 Concentration of air pollutants LSTM Forecast Model Air quality evaluation score has improved from 
0.3494 in 2015 to 0.4504 in 2019

(Hähnel et al., 
2020)

NO2 and PM10 Pollution measurements, traffic data, 
weather data

Geometric DL MAE of the DL computed values was 1.7μg/cm3

(Bekkar et al., 
2021)

PM2.5 PM2.5, PM10, and CO CNN-LSTM multivariate MAE: 9.03; RMSE: 16.6; R2: 0.979

(Wang et al., 
2022a)

PM2.5 PM2.5, PM10, SO2, CO, NO2 and O3 
and meteorological data including 
wind speed, air temperature, and dew 
point

GWO-LSTM Improves the MAE, RMSE and MAPE by 
32.92%, 27.65% and 30.02%, respectively
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Data availability

Data will be made available on request.
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