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A B S T R A C T

The traditional Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) methodology is 
commonly used for the multi-objective optimization of cementitious composites, allowing the simultaneous 
optimization of various mechanical and physical properties. Due to the significant scale differences among these 
properties, such as target strength (ranging from tens to hundreds) and strain (typically 0–1%), normalization is 
essential for accurate comparison. However, current civil engineering practices often employ fixed normalization 
methods, which may not always lead to optimal performance. This study addresses this limitation by proposing a 
novel framework for evaluating normalization methods within the TOPSIS process. The framework integrates 
metrics such as the Ranking Consistency Index (RCI), Spearman Correlation (SC), Rank Variance (RV), plurality 
voting, and Pareto dominance sorting to identify and exclude unsuitable normalization techniques. It was 
validated using three experimental datasets: hybrid fibre engineered cementitious composites, recycled aggre-
gate concrete, and geopolymer concrete. The results showed considerable variation in optimization outcomes 
depending on the normalization method. For the tested datasets, the framework identified the Linear max–min 
and Lai and Hwang methods as superior due to their higher RCI, SC and lower RV, and these methods also 
resulted in optimal properties, thereby confirming the effectiveness of the framework. Overall, the study high-
lights the critical role of selecting suitable normalization methods in multi-response optimization and demon-
strates how the proposed framework improves optimization accuracy.

1. Introduction

The design process of cementitious composites, such as engineered 
cementitious composites (ECC) considers multiple control factors (e.g., 
binder proportions, fibre geometry and dosage, water-binder ratio) and 
diverse response parameters (e.g., peak compressive stress, ultimate 
tensile strength, strain capacity) (Rawat et al., 2022). Traditionally, 
optimal mix proportions are determined through extensive laboratory 
testing using methods like full factorial design (Ozbay et al., 2009). 
However, limited modelling capacity of this method and extensive 
experimental cost has driven the development of alternative ap-
proaches, including fractional factorial design (Bhaskar et al., 2023) and 
response surface methodology (Li et al., 2021). Moreover, multi- 

response optimization studies have increasingly utilized advanced 
techniques, including evolutionary multi-objective optimization algo-
rithms such as Non-dominated Sorting Genetic Algorithm II (NSGA-II), 
as well as reinforcement learning approaches, to optimize mechanical 
properties and minimize the cost (Chen et al., 2022; Wang et al., 2023; 
Zheng et al., 2023).

Taguchi method is another powerful framework that allows the 
identification of optimal mix design with limited experiments on se-
lective control factors and control levels. When applied to cementitious 
composites with a single response parameter, Taguchi method has 
proven to be effective in reducing experimental trials (Ravathi and 
Chithra, 2022; Zhu et al., 2022). Building on this, recent studies have 
successfully integrated Taguchi method with other multi-response 
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analysis approaches, such as Grey relational analysis (Cui et al., 2017), 
Utility concept (Rahim et al., 2013), and Technique for Order of Pref-
erence by Similarity to Ideal Solution (TOPSIS) (Al Ghafri et al., 2024; 
Swathi & Vidjeapriya, 2024; Şimşek et al., 2022) to provide the ideal 
mix design by simultaneously considering multiple objectives. 
Compared to reinforcement learning, Taguchi method offers advantages 
in terms of computational efficiency, ease of implementation, and lower 
experimental cost—especially due to the use of orthogonal arrays to 
minimize the number of required experiments. Therefore, the integrated 
Taguchi framework offers a promising approach for optimizing 
cementitious composite mix designs while keeping costs and complexity 
manageable.

However, it is important to note that experiments designed within 
the Taguchi framework for cementitious composites often result in 
response data that may be incomparable due to differences in di-
mensions, scaling, and polarization (Rawat et al., 2022). For example, 
peak compressive strain typically ranges from 0 to 1 %, as it represents 
deformation and is constrained by material behaviour, while compres-
sive stress, which quantifies resistance to applied loads, can exceed this 
range. This variation is not contradictory but rather indicative of the 
distinct physical characteristics of these performance metrics and is an 
inherent feature of concrete datasets. Therefore, normalization is 
required to convert the raw data into numerically comparable data on a 
common scale (Corrente & Tasiou, 2023).

Existing researchers tend to adopt the normalization methods from 
the other previous studies neglecting the significant impact the choice 
may have. Moreover, there is no clear guideline on what normalization 
method should be adopted for multi-response optimization. For 
instance, Singh et al. (2023) used linear normalization for previous 
concrete mixtures, Warda et al. (2022) used Fuzzy weighted normali-
zation technique for fibre reinforced concrete, Şimşek et al. (2013) used 
vector normalization method for self-compacting concrete, whereas 
Rawat et al. (2022) used linear max–min normalization method for ECC. 
This issue is particularly important in light of recent studies on Multi- 
Criteria Decision-Making (MCDM) problems, which have shown that 
the choice of normalization technique can alter the resultant optimal 
design and may neglect the best decision solution (Corrente & Tasiou, 
2023; Vafaei et al., 2018). It is therefore likely that a similar bias could 
occur in the optimization of cementitious composite mixes if an un-
suitable normalization method is applied. Vafaei et al. (2018) proposed 
an assessment process for MCDM incorporating various statistical 
assessment methods to elect the better suited normalization method. 
However, its applicability to concrete or cementitious composite mix 
design optimization remains uncertain.

The current study addresses this gap by focusing on the analysis of 
the impact of normalization methods on the optimization of cementi-
tious composite mix designs using the Taguchi-TOPSIS framework. To 
achieve this, the approach suggested by Vafaei et al. (2018) was adopted 
and a new evaluation process for normalization methods is proposed to 
provide more robust evaluation procedure applicable to the optimiza-
tion of cementitious composites. The new process consists of i) Ranking 
consistency index (RCI) to show similarity between different normaliza-
tion methods; ii) Spearman correlation (SC) to identify the consistency of 
normalization methods, iii) Rank Variance (RV) analysis to show the 
relative amount of error for each normalization methods; and iv) plu-
rality voting and Pareto dominance sorting to identify the best normali-
zation method. Three data sets were used to validate the new 
overarching framework including a variety of mix designs namely for 
recycled aggregate concrete (Chang et al., 2011), geopolymer concrete 
(Chokkalingam et al., 2022) and hybrid fibre ECC (Rawat et al., 2022) 
and demonstrate the universal applicability of the proposed framework. 
This new evaluation system will allow a rigorous selection of the 
normalization method, which can be integrated with Taguchi method 
and multi-response analysis approaches (TOPSIS for the current case) to 
comprise an overarching framework for material optimization.

2. Methodology

2.1. Proposed overarching framework

TOPSIS is a widely acknowledged multi-response analysis approach 
and has been successfully used in various fields including engineering 
(Golui et al., 2024; Wang et al., 2024; Zhang et al., 2025). The combi-
nation of TOPSIS and Taguchi method gained popularity in concrete mix 
design optimization recently (Şimşek et al., 2013; Warda et al., 2022) 
but has not been sufficiently tested for ECC. Therefore, the framework 
has been specifically designed for integrated Taguchi-TOPSIS method 
and the applicability of the framework has been demonstrated with the 
ECC data set collected recently by the authors (Rawat et al., 2022). The 
detailed process outlining the improved framework integrating Taguchi- 
TOPSIS method is shown in Fig. 1.

The suggested approach introduces a normalization assessment 
framework within the analysis process. The primary goal is to identify 
and evaluate potential normalization methods from the available op-
tions. Jahan and Edwards (2015) provided a comprehensive review of 
normalization techniques, serving as a foundational reference for 
selecting suitable methods. Table 1 shows some of the available methods 
which may be applicable to the mix design of cementitious materials. 
The advantages and disadvantages of these methods are also presented 
alongside.

The first step involves identifying a subset of normalization methods 
appropriate for the dataset under consideration. Once these methods 
have been shortlisted, the framework can be employed to determine the 
most effective normalization technique for the specific dataset. The 
selected normalization method is then integrated with the TOPSIS 
approach to evaluate and optimize the mix proportions. Each step of the 
framework has been described in detail in the following section.

2.1.1. Taguchi method

2.1.1.1. Determination of control factors, control levels and response 
parameters. The framework begins with determination of control fac-
tors, levels, and response parameters to implement the Taguchi 
orthogonal array. In the present study, the control factors and control 
levels have been directly adopted from Rawat et al. (2022) where they 
optimized the mix design of ECC using Taguchi-Grey relational analysis 
and Taguchi-Utility concept. These parameters were then utilized to 
design Taguchi L16 array and implement the proposed framework with 
TOPSIS. Five governing control factors were chosen as:

(i) Total cement replacement (TCR) by supplementary cementing 
materials (SCM) – This factor was varied from 50 % to 80 % of the 
weight of binder and was adopted to ensure that the total cement con-
sumption could be minimized.

(ii) Dolomite to binder ratio – Dolomite was selected as one of the 
SCM to minimize the waste resulting from stone quarries (Rawat et al., 
2022) and its potential to use in ECC was assessed by varying its content 
from 10 % to 30 % of binder.

(iii) Slag to fly ash (FA) ratio – Recognizing the positive effect of 
ternary or quaternary blends in ECC for enhancing hydration and par-
ticle packing, the effectiveness of blends comprising slag and fly ash was 
further examined by varying this ratio from 1:0 to 1:0.6.

(iv) Fibre content – Combination of high modulus steel and low 
modulus polyethylene (PE) fibres was employed to achieve an optimal 
balance between compressive and tensile performance. Dosage of PE 
fibre was varied from 1.25 % to 1.75 % of the total volume and dosage of 
steel fibre was varied from 0.75 % to 1.0 % of the total volume.

(v) Water-binder ratio (WBR) – This factor was chosen to understand 
the effect of how water-binder ratio could affect hydration process and 
thereby, the performance of a quaternary blended mix. The ratio was 
varied from 0.20 to 0.30 to systematically capture its effect and estimate 
the strength range.
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Fig. 1. Proposed Taguchi-TOPSIS based overarching framework for optimization of mix proportion of cementitious composites.

Table 1 
Some of the available normalization methods for raw data conversion (benefit criteria).

Normalization method Formula Pros Cons

Vector rij
̅̅̅̅̅̅̅̅̅̅∑

r2
ij

√ Retains proportionality; ideal for datasets with similar 
scales.

Sensitive to outliers; may not work if comparing disparate ranges (like 
stress and strain).

Linear (max–min) rij − rmin
j

rmax
j − rmin

j

Scales data to [0, 1]; applicable for most of the 
concrete mechanical properties datasets.

May not be suitable for non-linear data or data with outliers.

Linear rij

rmax
j

Useful when the maximum value matters (e.g. 
strength).

May misinterpret if maximum value is an outlier.

z transformation rij − μj

σj

Centers data around the mean and handles outliers; 
useful for normally distributed data.

May not work well for all concrete data, as it doesn’t preserve scale and 
could complicate interpretation.

Lai and Hwang 
normalization

rij

rmax
j − rmin

j

Useful for datasets where the difference between max 
and min matters.

Sensitive to outliers that may stretch the range.

Enhanced accuracy
1 −

rmax
j − rij

∑
(rmax

j − rij)

Balances normalization by considering global dataset 
properties.

Computationally intensive for large datasets.

Linear (sum based) rij
∑

rij

Simple to interpret; easy to apply Sensitive to large values and may overshadow smaller values which 
may be critical in concrete materials context.

Non-linear (
rij

rmax
j

)2 Useful for applications requiring non-linear scaling. Distorts relationship between smaller values as squaring the ratios can 
magnify the differences.

Logarithmic lnrij

ln
∏

rij

Useful for datasets spanning several orders of 
magnitude.

Can not handle zero or negative values; may not work for values close 
to zero (e.g. peak comprssive or tensile strain).

Tzeng and Huang 
Normalization

rmax
j

rij

Highlights differences relative to the maximum value. May overemphasize the smaller but less significant values.

Zavadskas and Turskis 
normalization 1 −

⃒
⃒
⃒
⃒
⃒

rmax
j − rij

rmax
j

⃒
⃒
⃒
⃒
⃒

Balances normalization around the maximum value. Struggles with wide-range datasets and outliers, especially if the 
maximum value is an outlier.

Note: Here, rij= the rating of alternative i to performance attribute j, rmax
j =the maximum value of the performance attribute j, rmin

j =the minimum value of the per-
formance attribute j, μj=the mean value of performance attribute j, and σj = standard deviation of performance attribute j.
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The integration of optimization method was mainly aimed at maxi-
mizing five fundamental performance attributes, which consist of 
compressive strength (P1), peak compressive strain (P2), elastic 
modulus (P3), tensile strength (P4) and ultimate tensile strain (P5). 
These performance attributes represent the fundamental mechanical 
properties of any cementitious composite and can be used to identify its 
suitability for structural applications. It is further important to note that 
these performance attributes (P1-P5) are not absolute indicators for a 
given mix design; they can vary depending on external factors such as 
curing conditions and age of the material.

2.1.1.2. Design of the experiment and execution. For the considered case, 
the full factorial design would demand 1024 experimental testings to 
cover all the variation in the 5 control factors and 4 control levels. The 
orthogonal array (OA) principle proposed by Taguchi was therefore 
applied to reduce the number of experimentations. Taguchi recom-
mended the use of L16 array for five four-level factors to sufficiently 
represent all control factors as well as allowing the extraction of the 
maximum amount of information (Roy, 2010). The detailed mix pro-
portion of each trial is shown in Appendix A, Table A1. Each of the 16 
trials was mixed separately and cast in 100 mm diameter × 200 mm 
height cylinder for compression testing and 368 × 80 × 20 mm dogbone 
specimens (with a reduced section of 100 × 35 × 20 mm) for tensile 
testing. These specimens were demolded 24 h after casting and cured in 
the fog room maintained at 23 ◦C and 95.5 % relative humidity for 28 
days. Three specimens were prepared for each mix proportion to mini-
mize the bias in the results of response parameters. Subsequently, cyl-
inder specimens were tested at a displacement-controlled loading rate of 
0.05 mm/minute to obtain uniaxial compressive stress–strain behaviour 
and load controlled rate of 0.25 MPa/sec to obtain elastic modulus. The 
uniaxial tensile stress–strain curve tests were performed at a loading rate 
of 0.1 mm/minute and collectively, a decision matrix was obtained, 
which lists the test results of five performance attribute (P1-P5) for all 16 
mix trials (R1 – A1B1C1D1E1 to R16 – A4B4C1D3E2, Table A2). Note 
that the current study mainly focuses on implementation of TOPSIS on 
the previous dataset and application of the existing normalization 
framework. A detailed mix design procedure, specimen setup and testing 
procedure can be found in the original work (Rawat et al., 2022).

2.1.2. Normalization
In multi-response studies, the test results usually present varying 

dimensions and units across all response parameters, which requires 
data normalization to pre-process the data to comparable and non- 
dimensional, and scaled values. Normalization also helps to avoid 
erroneous results resulting from disparate goals and directions of the 
factors (Chang et al., 2011). For the ECC data set, the raw data was 
obtained for compressive strength, peak compressive strain, elastic 
modulus, tensile strength, and ultimate tensile strain, which had 
different dimensions (MPa vs %) and scales (MPa vs GPa). A detailed 
analysis of this raw data is available in the authors’ earlier work (Rawat 
et al., 2022) and it is further collated in Appendix Table A2.

In the context of the TOPSIS method, normalization is a foundational 
step to ensure the data is suitable for multi-response analysis. While 
vector normalization is commonly used, there is no universal consensus 
on the best method, as the choice often depends on the characteristics of 
the dataset and the desired solution. For this study, six normalization 
methods were selected from the 11 listed in Table 1—Vector (M1), 
Linear max–min (M2), Linear (M3), Z transformation (M4), Lai and 
Hwang method (M5), and Enhanced Accuracy (M6). These methods 
were chosen not only for their suitability to the dataset but also to 
demonstrate the flexibility and applicability of the proposed framework. 
If the outcomes from these methods were unsatisfactory, alternative 
approaches could be explored accordingly. It should further be noted 
that the normalization step also facilitates identifying the ideal solution, 
which represents the best possible value for each response parameter. In 

this study, benefit criteria were applied, where the ideal solution cor-
responds to the maximum value for performance attributes.

2.1.3. Multi-response analysis with TOPSIS

2.1.3.1. Weighting matrix. The normalized results of all response pa-
rameters need to be weighted before conducting the TOPSIS analysis. 
This can be done through various available techniques such as analytic 
hierarchy process, entropy method, deviation maximization method etc. 
(Chen, 2021). Rawat et al. (2022) recognized the importance of select-
ing appropriate weighting techniques where weighting method based on 
maximum deviation was found to be more appropriate for ECC. There-
fore, the same method was adopted in the current study as the dataset 
being used is the same.

2.1.3.2. Generating single response. TOPSIS is an effective data analysis 
approach for multi-response problems that generates ranking of the 
alternative solutions based on the shortest distance from the positive 
ideal solution and the farthest from the negative ideal solution (Vafaei 
et al., 2018). A step-by-step calculation procedure is also shown in Fig. 1.

Firstly, the positive and negative ideal solutions are identified from 
the normalized and weighted multi-response results. The positive ideal 
solution is calculated from all the best value and the negative ideal so-
lution is calculated from all worst values at the responses in the 
weighted normalized decision matrix. For each alternative, the separa-
tion to the positive ideal solution in each attribute sums up to the pos-
itive index (S+), which is expressed in eq. 1 (Xie & Zhang, 2023): 

S+ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑(

νj − ν+
j

)2
√

(1) 

where νj is the normalized and weighted value of attribute j of the 
alternative, and ν+j is the value of positive ideal solution for the attribute 
j across all alternatives.

Similarly, the negative index of a mix ratio (S− ) is the summation of 
the distance in all response parameters between normalized and 
weighted values of the alternatives to the values in the negative ideal 
solution (eq. 2). 

S− =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑ (
νi − ν−

i
)2

√

(2) 

where ν−i is the value of attribute i of the negative ideal solution across 
all alternatives.

With the computation of S+ and S− , each decision matrix can be 
reduced from 16 (mix ratios) × 5 (performance attributes) to 16 × 2 (S+

and S− ). Finally, the relative closeness of a mix ratio (R*) needs to be 
calculated using eq. 3: 

R* =
S−

S+ + S−
(3) 

Note higher value of the relative closeness represents better perfor-
mance (Vafaei et al., 2018), which can be ranked from the highest value 
to the lowest to determine the optimal mix ratio. Herein, ranking of the 
mix ratios is denoted as R. Thereafter, normalized multi-response deci-
sion matrices are reduced to a 16 × 1 (rank of the mix ratio) vector.

2.1.4. Normalization evaluation framework
Since different normalization methods can significantly influence 

MCDM outcomes, each method may produce a unique ranking, poten-
tially leading to different optimal mixes after the TOPSIS analysis. To 
address this, the current study introduces a novel evaluation process for 
selecting the most appropriate normalization method for cementitious 
composites based on the work by Vafaei et al. (2018). Before imple-
menting the evaluation process, normalization methods are chosen 
based on the characteristics of the dataset under consideration. If after 
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the application of framework, none of the selected normalization 
methods lead to satisfactory optimized results or if the outcomes appear 
unreliable, the user may need to revisit and select alternative normali-
zation methods. In the present case, the six single response vectors are 
gathered to form a compilation of 16 (from Taguchi L16 orthogonal 
array) × 6 (rankings in each normalization method) matrices. Using this 
16 × 6 matrix, the proposed evaluation criteria are then applied as 
described below.

(a) The new evaluation process starts with the calculation of RCI, 
which indicates the probability of a certain normalization method 
generating same optimal mix as the other normalization methods. Out of 
the total number of tests, the number of scenarios when a normalization 
method produced the same optimal mix with others were counted and 
weighted according to the extents of the consistency. RCI of a normal-
ization method is then computed as the ratio of the sum of the weighted 
counts to the total number of tests. Detailed computation procedure can 
be found in Yeo et al. (2007) and Chakraborty & Yeh (2009).

(b) The second part is the application of SC which shows the close-
ness of the ranking of mix proportions between alternative normaliza-
tion methods (Vafaei et al., 2018; Wang and Luo, 2010) and is expressed 
as (eq. 4): 

rs = 1 −
6
∑

d2
i

n(n2 − 1)
(4) 

where rs represents the Spearman correlation for a normalization 
method, di is the difference in the rankings of an alternative between two 
normalization methods, and n is the total number of comparisons. The 
difference in ranking di is calculated as (eq. 5): 

di = Rankmethodα(xi) − Rankmethodβ(xi) (5) 

here Rankmethodα(xi) and Rankmethodβ(xi) denote the ranks of the i-th 
alternative under the two selected normalization methods, α and β, 
respectively.

Intuitively, the more comparable a normalization method is to 
others, the smaller the difference in the ranking of the mix ratios exists, 
the higher SC is reported.

(c) The next step in the evaluation process is to assess the variance of 
each normalization method with RV, which can be described through 
eq. 5: 

RV =
1
n
∑n

1

(
RiM − Ri,avg

)2 (5) 

where n is total number of mix proportions, RiM is the ranking of the i-th 
mix proportion resulted by normalization method M and Ri,avg is the 
arithmetic average of the rankings of the i-th mix proportion across all 
normalization methods. Unlike RCI and SC, a lower RV is preferred, as it 
indicates greater consistency across different normalization methods 
and stable rankings across trials. This is particularly important for the 
practical application of new cementitious construction materials, where 
high variability could lead to unreliable or less repeatable performance 
parameters. Therefore, the inclusion of RV ensures that the selected 
optimal mix is not overly influenced by the choice of normalization 
methods, promoting better consistency for the practitioners.

(d) Finally, the normalization methods are ranked based on their 
statistical performance in three criteria: the highest RCI, the highest SC, 
and the lowest RV, respectively. Two approaches were employed to 
identify the most suitable normalization method by integrating perfor-
mance across these criteria: Plurality Voting and Pareto Dominance Sort-
ing. In the Plurality Voting approach, the rankings for RCI, SC, and RV 
were combined into an index by summing their individual rankings. The 
normalization method with the highest index value was considered the 
best overall performer, indicating the most statistically suitable method. 
In contrast, Pareto Dominance Sorting involved pairwise comparisons of 
normalization methods to identify non-dominated solutions. A method 

was considered non-dominated if no other method outperformed it 
across all three criteria while being strictly better in at least one 
(Dosantos et al., 2024). This process identified the Pareto front, repre-
senting the set of optimal trade-offs among the objectives. Both ap-
proaches were compared, and the optimal mix design consistently 
predicted by both methods was selected as the best representative mix.

2.2. Data sets

In this work, a total of 48 trials from three studies were collated, 
showing relevant information on the mix proportions. The dataset on 
ECC is originally sourced from Rawat et al. (2022) and the application of 
framework is shown after reconducting the confirmation trial in this 
study using Taguchi-TOPSIS approach. Additionally, two other case 
studies are included, one on recycled aggregate concrete (Chang et al., 
2011) and another on geopolymer concrete (Chokkalingam et al., 2022). 
All three studies were analysed with Taguchi-TOPSIS method integrated 
with the new framework. A summary of the mix proportions and the 
resulting datasets is presented in Appendix A, Tables A1–A.6. The mix 
proportions (Tables A1, A3, and A5) were tested according to their 
respective methodologies, and the corresponding data matrices were 
generated (Tables A2, A4, and A6) for use in this study.

3. Results

This section presents a detailed implementation of the framework 
outlined in Fig. 1. It includes a tabulated decision matrix and results 
matrix, along with normalized and plotted data to illustrate how the 
choice of normalization method can impact the mix design results. The 
tabulated results for normalization rankings, as well as the mechanical 
properties of the optimal mix formula, have also been described.

3.1. Normalized results and TOPSIS analysis

According to the framework in Fig. 1, the five performance attributes 
were normalized using six normalization methods. As described earlier, 
the normalization method was first applied to the raw data of the five 
performance attributes (P1-P5), and for each normalization method, the 
value of R was reported. For instance, when vector normalization (M1) 
was applied to the mix, the results for R1 – A1B1B1D1E1 (Table A2) in 
terms of the five performance attributes were converted to [P1, P2, P3, 
P4, P5] = [0.313, 0.232, 0.288, 0.240, 0.147]. This normalized data was 
then weighted, and TOPSIS analysis was performed to reduce the multi- 
response raw data to S+ and S− , R* and ranking R. Similarly, other 
normalization methods were applied to the dataset. The ranking of the 
first alternative − R1 among the total 16 tested mixtures is shown in 
Table 2. It can be observed that ranking of R1 is different for different 
normalization methods M1-M6 confirming that change in normalization 
method may lead to variation in processed data.

Tables 3 and 4 further demonstrates the collated results of the pos-
itive and negative ideal solution (S+ and S− ), Relative closeness (R*) and 
TOPSIS ranking (R) for all 16 tested mix trials (R1-R16, Table A2) with 

Table 2 
Calculation results of R1 after normalization with M1-M6 methods.

M1 M2 M3 M4 M5 M6

Normalized decision matrix of R1
P1 0.313 0.946 0.976 1.642 2.179 0.993
P2 0.232 0.295 0.750 − 0.654 2.115 0.920
P3 0.288 1.000 1.000 1.362 3.084 1.000
P4 0.240 0.300 0.717 − 0.264 1.774 0.932
P5 0.147 0.051 0.344 − 1.065 0.497 0.908
Relative closeness
R* 0.217 0.540 0.331 0.499 0.540 0.683
Ranking of R1 in different normalization methods
R 13 4 12 4 4 2

S. Rawat et al.                                                                                                                                                                                                                                   



Expert Systems With Applications 272 (2025) 126732

6

all 6 normalization methods. As shown in Table 4, the rankings for the 
16 alternatives vary depending on the normalization method applied, 
with no clear trend in the rankings of the different trials. Though 
normalization methods M2, M4, M5, and M6 suggest that trial 2 is closer 
to the optimum, vector normalization (the most preferred method in 
TOPSIS) places it as the 6th ranked trial. Moreover, the ranking of other 
trials is also not consistent even among M2, M4, M5 and M6. Since the 
final optimal outcome depends on the combined effect of the ranking 
system, significant variations in the TOPSIS ranking imply that the 
choice of normalization method could notably influence the determi-
nation of optimal mix design.

The effect of normalization methods on the observed trend could 
further be understood using Fig. 2 which depicts the variation of the 
mean value of the average normalized data with changing control levels 
in five control factors. It can be observed that different normalization 
methods lead to different optimal mix design. For example, despite the 
variation in the mutual rankings of different trials for Linear max – min 
(M2), Z transformation (M4), Lai and Hwang method (M5) and 
Enhanced accuracy (M6) normalization methods, the best mix design 
remained the same i.e. TCR 50 %-dolomite 15 %-slag: FA (1:0.2) − fibre 
content (PE + Steel = 1.50 + 0.75)-water/binder ratio 0.2. However, 
with Vector (M1) and Linear (M3) methods, the optimal mix design 
prediction differed. Method M1 indicated a TCR 80 %-dolomite 10 
%-slag: FA (1:0.2)-fibre content (PE + Steel = 1.25 + 0.75)-water/ 
binder ratio 0.3 as optimum, whereas M3 predicted the optimum ratio as 
TCR 80 % − dolomite 10 % − Slag: FA (1:0.2) – fibre content (PE + Steel 

= 1.50 + 0.75) − water/binder ratio 0.3.
Notably, the optimum levels of dolomite content, slag to FA ratio and 

fibre content from all six normalization methods fall in similar range as 
identified previously (Rawat et al., 2022). However, methods M1 and 
M3 predict 80 % total cement replacement and a water-binder ratio of 
0.3 as the optimal mix, which is in clear contradiction of the outcome 
from the L16 trials in the authors’ earlier work (Rawat et al., 2022). In 
that study, the elastic modulus was found to have the highest weight 
among all the factors, and its values at 80 % total cement replacement 
and a 0.3 water-binder ratio were clearly the least, as shown in Fig. 3. 
This is because such high replacement percentages or water content are 
not likely to fully contribute to hydration and hence will lead to a 
reduced compressive performance. Consequently, any approach (in this 
case M1 and M3) resulting in this outcome may not accurately represent 
the true optimum scenario. Therefore, the evaluation and selection of 
suitable normalization method is crucial to the Taguchi based multi- 
response optimal analysis.

3.2. Evaluation of the most suitable normalization method

Table 4 and Fig. 2 indicate that multiple optimal mixes can be 
deduced by applying different normalization methods. To search for the 
most desirable optimal mix, the evaluation framework as in Fig. 1 was 
implemented, which allows the identification of the best normalization 
method and sequentially the most appropriate optimal formula.

The evaluation process was operated using the TOPSIS ranking of the 

Table 3 
Positive and negative ideal solution (S+ and S− ) for each mix computed using six normalization methods.

Mix No. M1 M2 M3 M4 M5 M6

Sþ S- Sþ S- Sþ S- Sþ S- Sþ S- Sþ S-

R1 0.110 0.030 0.264 0.310 0.216 0.107 1.013 1.008 0.264 0.310 0.023 0.050
R2 0.115 0.038 0.217 0.374 0.220 0.131 0.792 1.290 0.217 0.374 0.018 0.054
R3 0.103 0.025 0.264 0.227 0.205 0.077 0.933 0.847 0.264 0.227 0.027 0.034
R4 0.075 0.049 0.335 0.201 0.170 0.104 1.106 0.906 0.335 0.201 0.049 0.021
R5 0.019 0.117 0.205 0.286 0.065 0.231 0.763 1.006 0.205 0.286 0.029 0.032
R6 0.091 0.035 0.244 0.247 0.181 0.098 0.930 0.832 0.244 0.247 0.024 0.038
R7 0.086 0.036 0.267 0.193 0.176 0.087 0.979 0.676 0.267 0.193 0.031 0.028
R8 0.114 0.020 0.293 0.241 0.227 0.074 1.115 0.763 0.293 0.241 0.027 0.041
R9 0.101 0.025 0.313 0.183 0.207 0.071 1.157 0.623 0.313 0.183 0.033 0.029
R10 0.084 0.040 0.269 0.237 0.172 0.101 1.055 0.766 0.269 0.237 0.027 0.038
R11 0.073 0.050 0.316 0.155 0.163 0.101 1.106 0.611 0.316 0.155 0.041 0.019
R12 0.064 0.058 0.258 0.195 0.140 0.119 0.928 0.706 0.258 0.195 0.033 0.026
R13 0.061 0.062 0.287 0.194 0.142 0.125 0.979 0.791 0.287 0.194 0.038 0.023
R14 0.043 0.093 0.361 0.192 0.133 0.180 1.223 0.743 0.361 0.192 0.053 0.017
R15 0.049 0.074 0.210 0.262 0.111 0.154 0.790 0.919 0.210 0.262 0.027 0.033
R16 0.090 0.035 0.283 0.268 0.187 0.093 1.143 0.846 0.283 0.268 0.030 0.043

Table 4 
The relative closeness (R*) and the TOPSIS ranking (R) for each mix computed using six normalization methods.

Mix No. M1 M2 M3 M4 M5 M6

R* R R* R R* R R* R R* R R* R

R1 0.217 13 0.540 4 0.331 12 0.499 4 0.540 4 0.683 2
R2 0.250 12 0.633 1 0.373 8 0.620 1 0.633 1 0.745 1
R3 0.193 15 0.463 8 0.273 14 0.476 5 0.463 8 0.556 7
R4 0.393 7 0.375 13 0.378 7 0.450 7 0.375 13 0.302 15
R5 0.862 1 0.582 2 0.780 1 0.569 2 0.582 2 0.519 9
R6 0.280 11 0.504 5 0.352 10 0.472 6 0.504 5 0.608 3
R7 0.296 9 0.419 11 0.329 13 0.409 12 0.419 11 0.478 10
R8 0.150 16 0.451 9 0.245 16 0.406 13 0.451 9 0.601 4
R9 0.196 14 0.369 14 0.254 15 0.350 16 0.369 14 0.466 11
R10 0.325 8 0.469 7 0.370 9 0.421 11 0.469 7 0.588 5
R11 0.407 6 0.329 16 0.384 6 0.356 15 0.329 16 0.320 14
R12 0.475 5 0.430 10 0.460 5 0.432 9 0.430 10 0.441 12
R13 0.501 4 0.403 12 0.468 4 0.447 8 0.403 12 0.373 13
R14 0.686 2 0.348 15 0.575 3 0.378 14 0.348 15 0.245 16
R15 0.600 3 0.556 3 0.580 2 0.538 3 0.556 3 0.546 8
R16 0.281 10 0.486 6 0.332 11 0.425 10 0.486 6 0.588 6
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Fig. 2. Comparison of the optimization results with different normalization methods for ECC data sets (Note: Levels 1,2,3, and 4 of Slag:FA represent 1:0, 1:0.2, 1:0.4 
and 1:0.6 respectively. Levels 1,2,3, and 4 of Fibre represent 1.25 %PE + 0.75 %steel, 1.25 % PE + 1 % Steel, 1.5 % PE + 0.75 % Steel, and 1.75 % PE + 0.75 % Steel 
respectively).
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16 tested mix ratios (R) in Table 4. RCI, SC and RV were calculated for 
each normalization method as per the method described in section 2.1.4
and the deduced values are listed in Table 5. Thereafter, plurality voting 
and Pareto dominance sorting were employed to rank the normalization 
methods by combining the statistical performance across all three 
criteria (RCI, SC, and RV), as shown in in Table 6.

As shown in the Table 4, the Linear max–min (M2) and Lai and 
Hwang (M5) methods emerge as the best performers, each receiving the 
highest voting score and being non-dominated in the Pareto analysis, 
indicating they offer the most consistent and reliable rankings across the 
evaluation criteria, and should be prioritized for selecting the optimal 
mix design. The corresponding TOPSIS analysis results are shown in 
Table 7, note that the S+, S− , R*, and R for M2 and M5 are the same.

3.3. Optimal mix and confirmation test

According to Table 7, R2 is the best ranked mix in the 16 tested 
formulae. However, it is encouraged to check with the plotted full 
response result in Fig. 2 to deduce the most optimal formula (Rawat 
et al. 2022). For the ECC dataset, the full response results in Fig. 2
indicate a slightly different optimal mix, which was not covered by the 
orthogonal array. By applying the M2 normalization method, the 
optimal mix design was identified as A1B2C2D3E1, with the factors 
corresponding to the following: TCR of 50 % − dolomite 15 % − Slag: FA 
(1:0.2) − Fiber content (PE + Steel = 1.50 + 0.75) – WBR as 0.2. In 
A1B2C2D3E1, the letter A, B, C, D, E represents the five factors (in order) 
as shown in Fig. 2 and number 1, 2 and 3 denote the first, second, and 

third control level, respectively. This emphasizes the importance of 
using a mean of means analysis, as it allows for identifying the optimal 
mix even outside the range of the trial matrix. The confirmation test was 
further conducted to verify the prediction in terms of the performance 
attributes (P1-P5) of the optimal mix ratio.

Table 8 and Fig. 4 show test values of the five performance attributes 
namely compressive strength, peak compressive strain, elastic modulus, 
tensile strength, and ultimate tensile strain. As shown in the Table 8, the 
optimal mix demonstrates high strength 90.8 MPa of compressive 
strength and 10.3 MPa of tensile strength, as well as high ductility with 
the peak compressive strain of 0.52 % and ultimate tensile strain of 1.22 
%. Unlike the results of the L16 trials which failed to optimize all pa-
rameters at once, these response parameters using the predicted optimal 

Fig.3. Mean effect of different control factors and levels on elastic modulus (Rawat et al., 2022).

Table 5 
Evaluation of the normalisation methods for ECC data sets of Rawat et al. 
(2022).

Normalization methods Values

RCI SC RV

Vector 5.2 0.04 40.7
Linear max–min 10.0 0.52 20.4
Linear 1.8 0.19 34.3
Z transformation 7.4 0.51 20.9
Lai and Hwang method 10.0 0.52 20.4
Enhanced accuracy 3.2 0.20 33.8

Table 6 
Plurality voting and Pareto Dominance sorting for data sets of Rawat et al. (2022).

Normalization methods Plurality voting Pareto Dominance

RCI SC RV Plurality voting Dominated by Any Other? Pareto front (Yes ¼ 1, No ¼ 0)

Vector 3 5 5 0 Yes 0
Linear max–min 1 1 1 3 No 1
Linear 5 4 4 0 Yes 0
Z transformation 2 2 2 0 Yes 0
Lai and Hwang method 1 1 1 3 No 1
Enhanced accuracy 4 3 3 0 Yes 0

Table 7 
TOPSIS results of Rawat et al. (2022) using the best M2/M5 normalization 
method.

Mix No. S+ S- R* R

R1 0.264 0.310 0.540 4
R2 0.217 0.374 0.633 1
R3 0.264 0.227 0.463 8
R4 0.335 0.201 0.375 13
R5 0.205 0.286 0.582 2
R6 0.244 0.247 0.504 5
R7 0.267 0.193 0.419 11
R8 0.293 0.241 0.451 9
R9 0.313 0.183 0.369 14
R10 0.269 0.237 0.469 7
R11 0.316 0.155 0.329 16
R12 0.258 0.195 0.430 10
R13 0.287 0.194 0.403 12
R14 0.361 0.192 0.348 15
R15 0.210 0.262 0.556 3
R16 0.283 0.268 0.486 6

Table 8 
Mechanical properties of optimum mix obtained using TOPSIS.

Mix design P1 (MPa) P2 (%) P3 (GPa) P4 (MPa) P5 (%)

A1B2C2D3E1 90.8 0.52 28.5 10.3 1.22
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mix were found to be higher for each factor. For instance, not only does 
this mix has higher ultimate tensile strain (>1%) but also shows high 
value of peak compressive strain (>0.5 %) deeming it suitable for 
structural applications. Moreover, the mean value of the relative close-
ness value of the confirmation trial was found to be 0.567 which is 
within 95 % confidence interval of the predicted optimum (0.653).

These results further validate the suitability of TOPSIS method and 
the developed framework in achieving a mix design with excellent 
mechanical properties. However, it is important to note that the pro-
posed Taguchi-TOPSIS framework focuses on single-point optimization 
by identifying the closest alternative to the ideal solution. While this 
approach is generally straightforward and computationally efficient, 
making it practical for implementation, it may overlook other optimal 
solutions that represent trade-offs between objectives. For instance, 
when durability of ECC is weighted higher than the strength, the pro-
posed method may emphasize solutions that maximize durability, 
potentially excluding some better alternatives that offer acceptable 
durability but superior strength. In cases where flexibility is required or 
trade-offs are highly context-dependent, other methods such as non- 
dominated sorting methods (e.g., NSGA-II) could be considered, which 
may provide an advantage by offering a broader range of solutions 
(Chen et al., 2022).

4. The application of the proposed framework in other types of 
concrete

The previous section demonstrates that the proposed framework, 
utilizing TOPSIS and the normalization method evaluation framework, 
can effectively solve the MCDM problem for the optimization of ECC mix 
design. To further highlight the versatility and broad applicability of this 
framework, two additional research examples—recycled aggregate 
concrete and ceramic waste geopolymer concrete—are discussed in this 
section.

4.1. Recycled aggregate concrete

For the recycled aggregate concrete, the Taguchi orthogonal array 
and the average responses presented in the study by Chang et al. (2011)
were adopted. The original mix proportions and data set from this study 
are also collated in Appendix A, Table A3-A.4, which shows five control 
factors and two levels for each control factor. In this case, there are 
eleven responses as the assessment criteria, and all of them are consid-
ered to be positive factors. To simplify the calculation, all the eleven 
responses are assumed to be equally important and therefore, the 
weighting of each attributes followed the equal weight method with (j) 
= 0.09. By applying the framework, the evaluation results of the six 
normalization methods were obtained and has been demonstrated in 

Table 9. The best normalization method is determined based on highest 
values for RCI and SC, along with lowest value for RV. Table 10 indicates 
that the Linear max–min and Lai and Hwang methods are the most 
suitable normalization techniques for this case. These methods were 
ranked highest in the plurality voting (both with 3 votes) and dominate 
the Pareto front, confirming their effectiveness in optimizing the mix 
design of recycled aggregate concrete.

The ranking analysis revealed that C3 (A1B1C2D1E2) was the most 
optimal mix among the tested alternatives, as shown in Table 11. 
Further analysis, using the means of the means normalized with the 
Linear max–min method, was plotted in Fig. 5. This plot indicated that a 
mix ratio similar to C4 (A1B1C2D2E2) emerged as the overall most 
optimal mix design. These findings showed agreement with the original 
literature, demonstrating the applicability of the current framework in 
recycled concrete design.

4.2. Geopolymer concrete

Another numerical example involves the optimization of geopolymer 
concrete made from ceramic waste, as explored by Chokkalingam et al. 
(2022). Five control factors with four levels were considered in their 
experimental design (Table A5), and the developed Taguchi orthogonal 
array is shown in Appendix A, Table A6. The signal to noise (S/N) ratio 
obtained from the raw test results from the original literature showed 
some discrepancies. However, since the focus of the current study was to 
compare the normalization methods, the S/N matrix was directly 
adopted to showcase the application of proposed framework.

With the application of the proposed framework, six normalization 
methods were applied to normalize the raw data, and the data obtained 
after the application of framework is listed in Tables 12 and 13. It is 
interesting to note that the two best normalization methods for ceramic 
waste geopolymer concrete are same as the above-mentioned two study 
cases, which are Linear max–min and Lai and Hwang. In addition, the Z 
transformation method also showed suitability to predict the optimum 

Fig. 4. Mechanical properties of the optimal mix − A1B2C2D3E1 of ECC (a) Compressive strength; (b) Tensile strength.

Table 9 
Evaluation of the normalization methods for recycled aggregate concrete data 
sets of Chang et al. (2011).

Normalization methods Values

RCI SC RV

Vector 32.6 0.945 2.33
Linear max–min 42.4 0.961 1.65
Linear 28.2 0.945 2.33
Z transformation 41.0 0.961 1.68
Lai and Hwang method 42.4 0.961 1.65
Enhanced accuracy 26.2 0.957 1.83
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response for the adopted dataset. All the three methods ranked the 
highest in the plurality voting and were not dominated by any other 
method, making them the most suitable choices for the dataset.

The result of Taguchi-TOPSIS with the most suitable normalization 
methods (Linear max–min) are presented in Table 14 and the mean of 
means plot has been further shown in Fig. 5. Notably, the optimized case 
using the proposed framework, A2B3C1D2E2, matched with the find-
ings reported in the study, despite their use of a vector normalization 
approach. This underscores the applicability of the current framework 
for this type of dataset. However, it should be noted that the ranking of 

the resultant matrix obtained through the use of framework slightly 
differed from that reported in original literature. This may be crucial in 
case of dataset involving wide range of performance attributes as shown 
for the case of ECC. Consequently, in such instances, relying solely on 
vector normalization might not be suitable. Instead, the utilization of the 
proposed framework is recommended for achieving accurate results. 
Moreover, though linear max–min and Lai and Hwang method were 
found suitable for the dataset considered in the present study, these 
methods may not be universally applicable, and the framework needs to 
be applied to each dataset individually to ensure accurate prediction of 
optimal mix proportions.

5. Conclusion

Taguchi method is typically integrated with multi-response analysis 
methods such as TOPSIS to simultaneously optimize more than one 

Table 10 
Plurality voting and Pareto Dominance sorting for data sets of Chang et al. (2011).

Normalization methods Plurality voting Pareto Dominance

RCI SC RV Plurality voting Dominated by Any Other? Pareto front (Yes ¼ 1, No ¼ 0)

Vector 3 4 4 0 Yes 0
Linear max–min 1 1 1 3 No 1
Linear 4 4 4 0 Yes 0
Z transformation 2 2 2 0 Yes 0
Lai and Hwang method 1 1 1 3 No 1
Enhanced accuracy 5 3 3 0 Yes 0

Table 11 
TOPSIS results of Chang et al. (2011).

Mix No. S+ S- R* R

C1 0.176 0.151 0.461 9
C2 0.130 0.187 0.590 4
C3 0.105 0.221 0.678 1
C4 0.120 0.202 0.628 2
C5 0.155 0.188 0.547 6
C6 0.198 0.134 0.404 10
C7 0.187 0.176 0.485 7
C8 0.146 0.235 0.617 3
C9 0.200 0.126 0.386 11
C10 0.226 0.142 0.386 12
C11 0.183 0.160 0.467 8
C12 0.147 0.201 0.578 5
C13 0.237 0.100 0.297 16
C14 0.230 0.114 0.332 15
C15 0.206 0.121 0.371 14
C16 0.208 0.125 0.375 13

Fig. 5. Normalized results of Recycled concrete and geopolymer concrete data sets with Linear max − min method.

Table 12 
Evaluation of the normalization methods for geopolymer concrete data sets of 
Chokkalingam et al. (2022).

Normalization methods Values

RCI SC RV

Vector 168.8 0.984 0.700
Linear max–min 190.4 0.996 0.175
Linear 181.6 0.993 0.300
Z transformation 190.4 0.996 0.175
Lai and Hwang method 190.4 0.996 0.175
Enhanced accuracy 185.6 0.992 0.325
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performance attributes. Normalization is of the essence in such analysis, 
as the data with multi-scale and diverse dimensions need to be trans-
formed to dimensionless and comparable to obtain the best results for 
the attributes. The present study showed that choice of normalization 
method can significantly influence the final optimization outcomes. A 
novel framework was introduced, combining Taguchi and TOPSIS with a 
robust evaluation process for normalization techniques. The framework 
assesses various metrics, including the RCI, SC and RV, followed by 
plurality voting and Pareto dominance sorting to select the most suitable 
normalization method for a given dataset.

The suitability of this framework was demonstrated on three pub-
lished research cases consisting of ECC, recycled aggregate concrete, and 
ceramic waste geopolymer concrete. For these datasets, the framework 
identified the Linear max–min and Lai and Hwang methods as consis-
tently outperforming other normalization techniques. For instance, 
these two methods achieved the highest RCI (10.0), SC (0.52), and 
lowest RV (20.4) for ECC dataset, whereas, the commonly used vector 
normalization method produced inferior results, with an RCI of 5.2, SC 
of 0.04, and RV of 40.7. The identified normalization methods also 
produced the best-optimized mix proportions, which were consistent 
with the results from existing literature, further demonstrating the 
effectiveness of the framework.

Overall, the proposed approach is both feasible and widely appli-
cable for optimizing mix proportions for a wide range of concrete. 

Therefore, it is strongly recommended that this framework be integrated 
into future research on mix design optimization to improve the accuracy 
and reliability of outcomes. A meaningful extension of the current study 
could involve assessing the applicability of the framework for other 
multi-response analysis methods, such as grey relational analysis and 
the utility concept. Moreover, since the current method focuses on a 
single optimal solution, it may overlook other feasible alternatives that 
could better suit different weighting schemes or priorities. Future 
research could explore the use of evolutionary optimization algorithms 
(e.g., NSGA-II) and reinforcement learning techniques to assess their 
comparative accuracy with the integrated Taguchi method. Especially in 
scenarios where flexibility and complex trade-offs between different 
objectives are essential, this extension could offer valuable insights and 
help identify the most suitable approach for cementitious composite 
optimization.
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Appendix A. Data sets

Details of all datasets utilized in this study are summarized in Tables A1–A6, which expand upon the datasets collected from Rawat et al. (2022), 
Chang et al. (2011), and Chokkalingam et al. (2022). Table A1 outlines the mix proportions from the authors’ previous study (Rawat et al., 2022), 
where cement, slag, fly ash (FA), dolomite, sand, water, and high-range water reducer (HRWR) are expressed as volumetric ratios to cement. 
Additionally, polyethylene (PE) and steel fibers are expressed as volumetric percentages of the mix. These mixes were designed based on the 
methodology reported in the original article, and the corresponding performance attributes are presented in Table A2. Similarly, Table A3 provides a 
summary of mix proportions from Chang et al. (2011), where W/C is the water-to-cement ratio, RCA represents recycled coarse aggregate (%), RSR 
denotes river sand replacement (%), and CB refers to crushed bricks (%). The resulting performance attributes from this dataset are listed in Table A4. 

Table 13 
Plurality voting and Pareto Dominance sorting for data sets of Chokkalingam et al. (2022).

Normalization methods Plurality voting Pareto Dominance

RCI SC RV Plurality voting Dominated by Any Other? Pareto front (Yes ¼ 1, No ¼ 0)

Vector 4 4 4 0 Yes 0
Linear max–min 1 1 1 3 No 1
Linear 3 3 2 0 Yes 0
Z transformation 1 1 1 3 No 1
Lai and Hwang method 1 1 1 3 No 1
Enhanced accuracy 2 2 3 0 Yes 0

Table 14 
TOPSIS results of Chokkalingam et al. (2022).

Mix No. S+ S- R* R

Ch1 0.231 0.314 0.576 10
Ch2 0.235 0.330 0.584 3
Ch3 0.231 0.324 0.583 7
Ch4 0.231 0.324 0.583 8
Ch5 0.233 0.328 0.584 4
Ch6 0.232 0.326 0.584 6
Ch7 0.234 0.325 0.581 9
Ch8 0.234 0.329 0.584 5
Ch9 0.232 0.305 0.569 12
Ch10 0.233 0.292 0.557 14
Ch11 0.236 0.343 0.592 1
Ch12 0.342 0.241 0.413 15
Ch13 0.233 0.299 0.563 13
Ch14 0.342 0.241 0.413 16
Ch15 0.233 0.309 0.571 11
Ch16 0.235 0.333 0.586 2
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Table A5 contains the dataset from Chokkalingam et al. (2022), where B/C represents the binder-to-cement ratio (kg/m3), CW is ceramic waste, GBFS 
is ground granulated blast furnace slag, AS refers to the alkaline solution, B stands for binder, S:H is the sodium silicate-to-sodium hydroxide ratio, and 
NaOH is the sodium hydroxide concentration expressed in moles (M). The quality performance criteria (QPC) derived from this study are further 
compiled in Table A6. Across all datasets (Tables A1–A6), the letters A–E represent the five control factors, while the numbers 1–4 denote the four 
control levels.

Table A1 
Mix proportions from Rawat et al. (2022).

Mix. No. Cement Slag FA Dolomite Sand Water HRWR PE fibre (%) Steel fibre (%)

R1 – A1B1B1D1E1 1.00 0.80 0.00 0.20 0.73 0.40 0.042 1.25 0.75
R2 – A1B2C2D2E2 1.00 0.58 0.12 0.30 0.73 0.46 0.022 1.25 1.00
R3 – A1B3C2D2E3 1.00 0.43 0.17 0.40 0.73 0.54 0.012 1.50 0.75
R4 – A1B4C4D4E4 1.00 0.25 0.15 0.60 0.73 0.60 0.008 1.75 0.75
R5 – A2B1C2D3E4 1.00 1.04 0.21 0.25 0.91 0.75 0.010 1.50 0.75
R6 – A2B2C1D4E3 1.00 1.13 0.00 0.38 0.91 0.68 0.014 1.75 0.75
R7 – A2B3C4D1E2 1.00 0.63 0.38 0.50 0.91 0.58 0.028 1.25 0.75
R8 – A2B4C3D2E1 1.00 0.54 0.21 0.75 0.91 0.50 0.052 1.25 1.00
R9 – A3B1C3D4E2 1.00 1.43 0.57 0.33 1.21 0.77 0.018 1.75 0.75
R10 – A3B2C4D3E1 1.00 1.15 0.69 0.50 1.21 0.67 0.070 1.50 0.75
R11 – A3B3C1D2E4 1.00 1.67 0.00 0.67 1.21 1.00 0.011 1.25 1.00
R12 – A3B4C2D1E3 1.00 1.11 0.22 1.00 1.21 0.90 0.031 1.25 0.75
R13 – A4B1C4D2E3 1.00 2.19 1.31 0.50 1.82 1.35 0.055 1.25 1.00
R14 – A4B2C3D1E4 1.00 2.32 0.93 0.75 1.82 1.50 0.021 1.25 0.75
R15 – A4B3C2D4E1 1.00 2.50 0.50 1.00 1.82 1.00 0.097 1.75 0.75
R16 – A4B4C1D3E2 1.00 2.50 0.00 1.50 1.82 1.15 0.029 1.50 0.75

Table A2 
Average value of performance attributes corresponding to mix R1-R16 (Rawat et al., 2022).

Mix. No. Compressive Strength (MPa) Peak compressive Strain (%) Elastic Modulus (GPa) Tensile Strength (MPa) Ultimate tensile Strain (%)

R1 – A1B1B1D1E1 99.66 0.43 34.16 4.91 0.98
R2 – A1B2C2D2E2 102.13 0.49 34.12 6.85 0.88
R3 – A1B3C2D2E3 80.68 0.51 30.25 4.82 1.13
R4 – A1B4C4D4E4 60.36 0.57 23.82 4.96 1.68
R5 – A2B1C2D3E4 84.09 0.45 28.04 5.50 2.86
R6 – A2B2C1D4E3 90.58 0.44 31.13 5.05 1.33
R7 – A2B3C4D1E2 79.42 0.45 28.99 4.93 1.43
R8 – A2B4C3D2E1 81.86 0.42 32.92 4.70 0.93
R9 – A3B1C3D4E2 82.19 0.44 29.23 4.08 1.18
R10 – A3B2C4D3E1 87.88 0.41 31.55 4.55 1.47
R11 – A3B3C1D2E4 69.72 0.48 26.27 4.25 1.72
R12 – A3B4C2D1E3 73.58 0.47 28.21 5.03 1.85
R13 – A4B1C4D2E3 68.24 0.52 26.59 4.63 1.92
R14 – A4B2C3D1E4 56.41 0.49 23.08 4.39 2.49
R15 – A4B3C2D4E1 72.15 0.45 29.83 6.33 2.09
R16 – A4B4C1D3E2 67.80 0.37 33.67 6.08 1.37

Table A3 
Mix proportions from Chang et al. (2011).

Mix. No. W/C RCA (%) RSR (%) CB (%) Washed

C1 – A1B1C1D1E1 0.50 42.00 0 5.00 No
C2 – A1B1C2D2E2 0.50 42.00 0 0.00 Yes
C3 – A1B1C2D1E2 0.50 42.00 100 5.00 Yes
C4 – A1B1C2D2E1 0.50 42.00 100 0.00 No
C5 – A1B2C1D1E2 0.50 40.40 0 5.00 Yes
C6 – A1B2C1D2E1 0.50 40.40 0 0.00 No
C7 – A1B2C2D1E1 0.50 40.40 100 5.00 No
C8 – A1B2C2D2E2 0.50 40.40 100 0.00 Yes
C9 – A2B1C1D1E2 0.70 42.00 0 5.00 Yes
C10 – A2B1C1D2E1 0.70 42.00 0 0.00 No
C11 – A2B1C2D1E1 0.70 42.00 100 5.00 No
C12 – A2B1C2D2E2 0.70 42.00 100 0.00 Yes
C13 – A2B2C1D1E1 0.70 40.40 0 5.00 No
C14 – A2B2C1D2E2 0.70 40.40 0 0.00 Yes
C15 – A2B2C2D1E2 0.70 40.40 100 5.00 Yes
C16 – A2B2C2D2E1 0.70 40.40 100 0.00 No
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Table A4 
Average value of performance attributes corresponding to mix C1-C16 (Chang et al., 2011).

Mix. No. Slump (cm) Slump flow (cm) Resistivity (KΩ cm) Ultrasonic pulse velocity (m/s) Compressive strength (MPa)

7-day 14-day 28-day 7-day 14-day 28-day 7-day 14-day 28-day

C1 – A1B1C1D1E1 17.50 37.00 7.57 7.97 7.93 2837 2893 2723 17.79 20.94 22.91
C2 – A1B1C2D2E2 15.50 40.00 6.50 9.43 9.00 2753 3253 3013 17.54 24.89 25.24
C3 – A1B1C2D1E2 18.00 35.00 7.73 9.55 9.30 2817 3347 3193 18.35 22.04 28.88
C4 – A1B1C2D2E1 18.00 32.00 7.43 9.17 9.20 2910 3130 2873 23.16 25.94 30.17
C5 – A1B2C1D1E2 9.50 20.00 7.23 8.07 8.53 3040 3155 3057 21.96 26.22 29.91
C6 – A1B2C1D2E1 14.00 26.00 6.50 7.20 7.43 2843 3120 2893 17.02 18.92 20.26
C7 – A1B2C2D1E1 10.50 20.00 7.07 7.10 7.80 3047 2933 2837 23.64 29.35 33.59
C8 – A1B2C2D2E2 5.00 20.00 9.03 8.63 10.13 2750 3277 3007 28.36 33.79 36.16
C9 – A2B1C1D1E2 10.00 23.00 7.47 9.03 9.10 2573 3003 2707 13.22 17.17 18.48
C10 – A2B1C1D2E1 20.00 56.00 6.40 8.47 8.67 2550 2620 2840 5.85 7.57 9.74
C11 – A2B1C2D1E1 15.00 60.00 7.83 8.20 8.33 2383 3015 3043 10.54 13.88 17.64
C12 – A2B1C2D2E2 9.00 20.00 9.20 10.33 9.53 2747 3050 2910 21.55 23.98 27.67
C13 – A2B2C1D1E1 16.00 35.00 6.67 6.77 7.70 2677 2556 2937 7.88 9.98 12.91
C14 – A2B2C1D2E2 19.00 43.00 5.70 6.93 7.93 2567 2783 2863 8.76 11.92 14.32
C15 – A2B2C2D1E2 11.50 36.00 7.07 7.37 7.80 2907 3000 2723 11.87 14.63 19.86
C16 – A2B2C2D2E1 16.00 33.00 6.63 7.03 7.43 2750 3103 2800 11.81 16.22 20.42

Table A5 
Mix proportions from Chokkalingam et al. (2022).

Mix. No. B/C (kg/m3) CW:GBFS AS:B S:H NaOH (M)

Ch1 – A1B1C1D1E1 400 4:1 0.50 1.0 8
Ch2 – A1B2C2D2E2 400 3:2 0.55 1.5 10
Ch3 – A1B3C3D3E3 400 2:3 0.60 2.0 12
Ch4 – A1B4C4D4E4 400 1:4 0.65 2.5 14
Ch5 – A2B1C2D3E4 450 4:1 0.55 2.0 14
Ch6 – A2B2C1D4E3 450 3:2 0.50 2.5 12
Ch7 – A2B3C4D1E2 450 2:3 0.65 1.0 10
Ch8 – A2B4C3D2E1 450 1:4 0.60 1.5 8
Ch9 – A3B1C3D4E2 500 4:1 0.60 2.5 10
Ch10 – A3B2C4D3E1 500 3:2 0.65 2.0 8
Ch11 – A3B3C1D2E4 500 2:3 0.50 1.5 14
Ch12 – A3B4C2D1E3 500 1:4 0.55 1.0 12
Ch13 – A4B1C4D2E3 550 4:1 0.65 1.5 12
Ch14 – A4B2C3D1E4 550 3:2 0.60 1.0 14
Ch15 – A4B3C2D4E1 550 2:3 0.55 2.5 8
Ch16 – A4B4C1D3E2 550 1:4 0.50 2.0 10

Table A6 
S/N value of QPC corresponding to mix Ch1-Ch16 (Chokkalingam et al., 2022).

Mix. No. QPC-1 QPC-2 QPC-3 QPC-4 QPC-5 QPC-6 QPC-7 QPC-8 QPC-9

Ch1 – A1B1C1D1E1 26.7 16.0 28.4 30.7 12.2 4.7 19.2 58.8 70.5
Ch2 – A1B2C2D2E2 31.7 12.8 31.1 23.6 10.6 9.2 24.4 65.2 72.6
Ch3 – A1B3C3D3E3 29.8 15.2 28.4 30.6 10.6 7.6 20.5 60.5 72.5
Ch4 – A1B4C4D4E4 29.8 15.1 28.6 30.1 10.2 7.6 20.2 60.2 72.6
Ch5 – A2B1C2D3E4 30.8 13.5 31.4 24.8 12.0 8.8 21.7 62.5 73.0
Ch6 – A2B2C1D4E3 30.3 13.8 31.4 26.0 11.4 7.7 21.4 62.5 72.3
Ch7 – A2B3C4D1E2 30.1 13.9 28.6 27.0 10.1 8.3 20.5 62.1 72.0
Ch8 – A2B4C3D2E1 31.4 13.1 30.8 24.3 9.3 9.0 23.6 64.8 71.9
Ch9 – A3B1C3D4E2 24.1 16.4 26.9 36.4 9.0 4.1 16.8 58.0 69.7
Ch10 – A3B2C4D3E1 20.5 16.9 26.6 40.0 4.3 0.8 11.4 57.7 69.2
Ch11 – A3B3C1D2E4 35.1 12.4 31.4 19.3 13.8 9.8 28.3 72.6 76.2
Ch12 – A3B4C2D1E3 − 60.0 100.0 100.0 100.0 − 60.0 − 60.0 − 60.0 − 60.0 − 60.0
Ch13 – A4B1C4D2E3 22.5 16.7 26.0 37.6 5.9 3.9 15.6 57.3 69.2
Ch14 – A4B2C3D1E4 − 60.0 100.0 100.0 100.0 − 60.0 − 60.0 − 60.0 − 60.0 − 60.0
Ch15 – A4B3C2D4E1 25.6 15.7 26.6 35.2 7.6 4.2 17.2 58.2 70.2
Ch16 – A4B4C1D3E2 32.2 12.7 31.1 23.1 13.0 9.3 25.9 66.9 73.6

Data availability

Data will be made available on request.
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