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Abstract
The main aim of this study is to propose a novel convolutional neural network, named BrainNeXt, for the automated brain

disorders detection using magnetic resonance images (MRI) images. Furthermore, we aim to investigate the performance of

our proposed network on various medical applications. To achieve high/robust image classification performance, we

gathered a new MRI dataset belonging to four classes: (1) Alzheimer’s disease, (2) chronic ischemia, (3) multiple sclerosis,

and (4) control. Inspired by ConvNeXt, we designed BrainNeXt as a lightweight classification model by incorporating the

structural elements of the Swin Transformers Tiny model. By training our model on the collected dataset, a pretrained

BrainNeXt model was obtained. Additionally, we have suggested a feature engineering (FE) approach based on the

pretrained BrainNeXt, which extracted features from fixed-sized patches. To select the most discriminative/informative

features, we employed the neighborhood component analysis selector in the feature selection phase. As the classifier for

our patch-based FE approach, we utilized the support vector machine classifier. Our recommended BrainNeXt approach

achieved an accuracy of 100% and 91.35% for training and validation. The recommended model obtained the test

classification accuracy of 94.21%. To further improve the classification performance, we suggested a patch-based DFE

approach, which achieved a test accuracy of 99.73%. The obtained results, surpassing 90% accuracy on the test dataset,

demonstrate the effectiveness and high classification performance of the proposed models.
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Introduction

The brain is the most basic structure of the central nervous

system (Garman 2011). It is one of the most complex and

mysterious organs in the body (Petryński et al. 2023; Singh

et al. 2023). This organ works through neural networks and

neural communication (Majhi et al. 2019). The nerve cells

in the brain transmit electrical and chemical signals to the

various organs of the body to control their working patterns

(Levitan and Kaczmarek 2002). In this way, sensory,

cognitive, emotional and physical abilities are controlled,

which are basic human components (Tan and Nijholt

2010). These capabilities enable individuals to engage with

the external world and interact with their surroundings.

Structurally, the brain consists of four lobes, namely the

frontal, parietal, temporal, and occipital lobes (Lu et al.

2022). Ongoing investigations indicate that each lobe is

linked to distinct activities. For instance, the frontal lobe

plays a role in cognitive functions (Ventura-Campos et al.

2022) such as problem-solving, behavioral control, and

personality expression, whereas the parietal lobe facilitates

environmental awareness and spatial orientation (Bruner

et al. 2023). Similarly, the temporal lobe is involved in the

control of skills related to smell and hearing (Thalbourne

et al. 2003). The occipital lobe, at the back of the brain,

generally controls visual processing and vision-related

functions (Dong et al. 2012). As might be expected, dam-

age of these lobes affects the functions of the relevant lobe

and causes different symptoms and diseases in individuals.

As a result of brain damage, diseases such as AD,

Parkinson’s disease (PD), schizophrenia and epilepsy can

occur, severely impacting an individual’s quality of life
Extended author information available on the last page of the article
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and, in advanced stages, resulting in mortality (Emard et al.

1995; Németh et al. 2006; Welsh 2001).

Early diagnosis plays a key role in improving the peo-

ple’s quality of life with brain disorders (Paulsen et al.

2013). Early detection can potentially halt, slow or treat

disease progression. Currently, cutting-edge artificial

intelligence (AI) technologies offer compelling solutions in

this area. Recent advances, particularly in signal and image

processing, have enabled the early diagnosis of many dis-

eases (Saqib et al. 2023). An extensive review of the lit-

erature reveals remarkable accuracy in the classification

and interpretation of medical images, including but not

limited to magnetic resonance images (MRI), computed

tomography (CT) scans and X-rays (Chakraborty and Mali

2023). This paper presents a novel, lightweight methodol-

ogy called ‘‘BrainNeXt’’ for the initial diagnosis of selec-

ted brain-related disorders. We introduced a new

generation CNN model to automate the classification of

AD, MS, and CI, and this model is termed BrainNeXt. In

addition, a BrainNeXt-based deep FE approach is sug-

gested. To develop this deep FE model, local features are

extracted using fixed-size patches inspired by vision

transformers.

Literature review

Medical image classification using machine learning

methods is one of the most frequently studied topics in the

literature (Celard et al. 2023). In this study, AD, MS and CI

were classified using MRI images. In the review of the

literature, it was noted that there was no study in which

these diseases were considered as a whole. we explore the

distinctive clinical presentations, temporal profiles, and

radiological characteristics of two prominent diseases: MS

and AD. AD is recognized as an inflammatory disorder that

primarily manifests through recurrent neurological deficits

in young patients. Notably, it is characterized by distinctive

white matter lesions with a predilection for the pericallosal

white matter, juxtacortical region, brainstem, and spinal

cord. On the other hand, AD typically exhibits a more

gradual cognitive decline, initially affecting episodic

memory and subsequently extending to other cognitive

domains. This progression is accompanied by medial

temporal atrophy and the deposition of beta-amyloid and

phosphorylated tau, which can be effectively demonstrated

using PET imaging. For this reason, the literature review

presented in this study consists of studies including the

classification of related diseases. Some recent studies on

machine learning-based classification of the diseases con-

sidered in this study are summarized in Table 1.

An examination of the literature studies listed in Table 1

shows that both signal processing (Amooei et al. 2023;

Dogan et al. 2023) and image processing/deep learning

(DL) methods (Balasundaram et al. 2023; Kaplan et al.

2023) are used in the diagnosis of brain-related diseases.

Some of these studies aim to determine the severity of the

disease (Balasundaram et al. 2023; Murugan et al. 2021;

Pandian and Udhayakumar 2023), while others only make

a classification between healthy and diseased (Acar et al.

2022; Alsharabi et al. 2023; Payares-Garcia et al. 2023). In

addition, some studies include different types of diseases

together (Amooei et al. 2023; Faisal et al. 2023). However,

these studies generally aim to classify neurodegenerative

diseases (Payares-Garcia et al. 2023). In our study, in

addition to AD and MS, which are neurodegenerative

diseases (MS is primarily characterized as an inflammatory

disorder, although it also involves a component of neu-

rodegeneration), chronic ischemia is also included in the

dataset and classified. Chronic ischemia is not a neurode-

generative disease. Ischemia is a condition of reduced

blood flow to tissues and is a condition that can be seen in

any tissue in the body (Walter 2022; Zhang et al. 2019).

Among the elderly population, ischemia is a frequently

observed disorder, often resulting from uncontrolled

hypertension, diabetes, dyslipidemia, and various other

genetic predisposing conditions (Das et al. 2023). Early

diagnosis and treatment of chronic ischemia is therefore

important to increase the quality of the life.

Motivations and our models

We have three essential motivations and these motivations

are defined as follows:

Firstly, our motivation stems from the need to curate a

comprehensive dataset consisting of MR images, specifi-

cally targeting cases of AD, MS, and chronic ischemia

disorders. Our goal is to thoroughly investigate the classi-

fication capabilities of our proposed methods on this

carefully collected dataset.

Secondly, we are driven by the objective of proposing a

novel DL network. In the 2020s, transformer models have

demonstrated remarkable performance in classification

tasks, surpassing the commonly used convolutional neural

networks (CNNs) such as ResNet. Thus, to keep pace with

these advancements, a new generation of competitive

CNNs has emerged, one of which is ConvNeXt (Liu et al.

2022). Through our research, we aim to present the

effectiveness and potential of this new CNN model.

Lastly, we are motivated to introduce a fresh approach

to deep FE, incorporating transfer learning and fixed-size

patch division. Leveraging the pretrained BrainNeXt

model, we extract deep features from each patch using the

training signals. Our objective is to showcase the high

classification capability offered by this novel deep FE

approach.
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Table 1 State-of-the-art automatic brain disorder detection

Author(s) Data

type

Data Method Highlights

Murugan et al. (2021) MRI MiD-896

MoD-64

vMD-

2240

CO-3200

Data augmentation, Custom-designed

CNN (DEMNET)

The data is balanced with data

augmentation

AD is classified according to their level

The computational complexity is high

Classification performance is high

([ 95%)

Kaplan et al. (2021) MRI AD-569

CO-601

Feed-forward local phase quantization

network

Three datasets were used for validation

Binary classification was performed

([ 99%)

Garcia et al. (2023) MRI AD-60

MCI-30

PD-70

MS-30

CO-150

Spatially informed Bayesian neural

network, custom-designed CNN

A dataset with 5 classes was used

Neurodegenerative diseases are analyzed

The computational complexity is high

Accuracy is relatively low (= 83%)

Faisal et al. (2023) GRFs HD-20

PD-15

ALS-13

CO-16

Custom-designed CNN (NDDNet) A dataset with 4 classes was used

Neurodegenerative diseases are analyzed

The computational complexity is high

While successful results were obtained in

binary classification, relatively low

accuracy was achieved in multiclass

classification (* 83%)

Amooei et al. (2023) GRFs HD-20

PD-15

ALS-13

CO-16

Data augmentation, Spectrogram

transformation, wavelet transform,

CNN-LSTM

A dataset with 4 classes was used

Neurodegenerative diseases are analyzed

The computational complexity is high

Accuracy is high ([ 99%)

Dogan et al. (2023) EEG AD-12

CO-11

Primate brain pattern, TQWT, iterative

majority voting, kNN

The computational complexity is linear

Dataset is relatively small

Binary classification was performed

(* 92%)

Alsharabi et al. (2023) MRI AD-358

PD-423

CO-229

AlexNet-based quantum transfer learning

method

Neurodegenerative diseases are analyzed

The computational complexity is high

Binary classification was performed

([ = 96%)

Pandian and Udhayakumar

(2023)

MRI CIS-87

RRMS-

87

PPMS-87

SPMS-87

CO-87

Chaotic Leader-Selective Particle Swarm

Optimization, Hybrid deep CNN

Two datasets were used for validation

The levels of MS disease are categorized

Classification performance is high

([ 98%)

Acar et al. (2022) MRI MS-971

CO-971

Data augmentation, Custom designed

CNN

The data is balanced with data

augmentation

The computational complexity is high

Binary classification was performed

(= 98%)

Balasundram et al. (2023) MRI MiD-896

MoD-64

vMD-

2240

CO-3200

Custom designed CNN Two datasets were used for validation

AD is classified according to their level

The computational complexity is high

Classification performance is relatively

high ([ 94%)
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We suggest both a new generation CNN and deep FE

models. BrainNeXt shares similarities with ConvNeXt,

albeit with a different configuration. ConvNeXt introduces

a novel block structure employing 7 9 7 and 1 9 1 con-

volutions to create an inverted bottleneck, layer normal-

ization, and the Gaussian Error Linear Unit (GELU)

activation function. In contrast, BrainNeXt adopts 7 9 7

and 1 9 1 convolutions to form an inverted bottleneck and

employs leaky rectified linear units (ReLU), similar to

DarkNet, along with batch normalization. Additionally, we

employ maximum pooling and concatenation layers to

construct the proposed BrainNeXt architecture.

Transformers have commonly utilized fixed-size patches

to extract image features. Building upon this attribute of

transformers, we propose an exemplary deep-FE approach.

Our model divides the input image into patches of size

32 9 32. We train the proposed BrainNeXt using the

training dataset and utilize the global average pooling

(GAP) layer of the pretrained BrainNeXt to extract features

from both patches and the entire image. Neighborhood

Component Analysis (NCA) (Goldberger et al. 2004) fea-

ture selector (FS) has been applied. The Support Vector

Machine (SVM) (Vapnik 1998) has been used and the

chosen features have been utilized as the input of the used

SVM.

In summary, this paper presents a new generation of

CNN and deep FE models. By conducting extensive

experiments and analyses, we demonstrate the classifica-

tion capability and potential applications of these proposed

models.

Innovations and contributions

Innovations

• To the best of our knowledge, our collected dataset is

the first to include images related to MS, AD, and

chronic ischemia. Hence the dataset is used for the

automated classification of MS, AD and ischemia

classes. A novel BrainNeXt model developed using

CNN architecture. The proposed BrainNeXt achieved

high classification performance for input MRI images.

Additionally, BrainNeXt is a lightweight CNN since it

contains fewer than 10 million (about 8.9 million)

learnable parameters.

• We introduced a new generation deep FE approach. It

demonstrated a high classification performance with

linear time complexity (computationally efficient).

Also, the BrainNeXt-based deep FE approach has

improved the test classification accuracy of BrainNeXt.

Contributions

We collected the MRI dataset belonging to MS, AD, and

chronic ischemia classes. We achieved the classification

accuracy of over 90% on the collected MRI image

dataset using our proposed BrainNeXt model.

This study presents a novel lightweight DL approach

called BrainNeXt. It achieved high classification perfor-

mance with fewer learnable parameters. Additionally, we

demonstrated the explainable artificial intelligence (XAI)

capabilities of BrainNeXt by highlighting important

regions in each class to provide confidence to clinicians.

We suggested a patch-based deep FE approach called

BrainNeXt-based deep FE approach to enhance the test

classification performance of the recommended

BrainNeXt.

Dataset

The dataset used in this work was obtained retrospectively

and consists of four classes: (1 AD, (2) chronic ischemia,

(3) MS, and (4) control. Four radiologists meticulously

assessed and approved the collected images. The MRI

scans were conducted between 01/01/2016 and 31/12/2023,

with the radiologists carefully selecting the most relevant

images. The dataset comprised of T2-weighted FLAIR

images collected from 2,100 Turkish and Arabic

Table 1 (continued)

Author(s) Data

type

Data Method Highlights

Kaplan et al. (2023) CT

MRI

AD-569

CO-601

Patch division, LBP, LPQ and HOG,

NCA, SVM

Two datasets were used for validation

The computational complexity is linear

Binary classification was performed

(= 100%)

MCI mild cognitive impairment, CO control, CIS clinically isolated syndrome, RRMS relapsing–remitting MS, PPMS primary progressive MS,

SPMS secondary progressive MS, HD Huntington’s disease, ALS amyotrophic lateral sclerosis, MiD mild demented, MoD moderate demented,

vMD very mild demented, GRF ground reaction force
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participants aged between 32 and 89. This dataset includes

1269 female and 831 male MRIs collected from a medical

center. The sample collected images are shown in Fig. 1.

The attributes of this dataset have been tabulated in

Table 2.

Our proposals

In this work, we introduce BrainNeXt, a novel framework

designed to address the challenges associated with brain-

related tasks. Furthermore, we propose an innovative FE

approach, built upon the foundations of BrainNeXt. In this

section, the details of the suggested deep models have been

explained.

BrainNeXt

In this research, we introduce BrainNeXt, a novel genera-

tion convolutional neural network (CNN) specifically tai-

lored for brain-related tasks. To ensure its efficiency, we

leverage the lightweight structure of the ConvNeXtV2

model (Woo et al. 2023). Within the BrainNeXt frame-

work, we employ an inverted bottleneck design for con-

volutions, employing 7 9 7 and 1 9 1 convolutional

kernels. Additionally, maximum pooling with a filter size

of 3 9 3 and stride of 2 9 2 is utilized for compression. To

augment the number of filters, we leverage depth con-

catenation. Notably, we have made modifications to the

ConvNeXt block, resulting in the creation of our

customized ConNeXt block and ConvNeXt V2 block.

Figure 2 provides a visual representation of these blocks.

By using the above block (similar to ConvNeXt blocks),

we have created the presented BrainNeXt. The details of

the presented BrainNeXt are outlined in Table 3.

To better explain the proposed BrainNeXt, the graphical

explanation is given in Fig. 3.

As depicted in Fig. 3, the presented BrainNeXt model

incorporates several key components. Firstly, we employ a

ConvNeXt-like block, which exhibits similarities to the

ConvNeXt architecture. Secondly, the DarkNet activation

function, utilizing leaky ReLU, is employed to enhance the

model’s representational capabilities. Finally, the structural

elements of the swin transformer or ConvNeXt V2 tiny are

incorporated into the model’s design.

It is worth noting that the presented BrainNeXt model

possesses approximately 8.9 million trainable parameters,

rendering it a lightweight convolutional neural network

(CNN). This characteristic allows for efficient training and

inference while maintaining competitive performance.

BrainNeXt-based exemplar FE approach

To enhance the FE process, we have presented an exemplar

(fixed-size patch) model built upon the pre-trained Brain-

NeXt network. The suggested FE approach, which lever-

ages the capabilities of the presented BrainNeXt, is

illustrated in Fig. 4. The diagram provides a high-level

overview of the key components and their interactions

Fig. 1 Sample images used from the dataset used
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within the FE approach, showcasing its efficacy in

extracting informative features from the data.

As depicted in Fig. 4, our suggested approach consists

of three fundamental phases: (i) exemplar deep feature

extraction (FEX), (ii) FS, and (iii) classification.

During the FEX phase, we resize the input image to a

size of 224 9 224 and create fixed-size patches with

dimensions of 32 9 32. This process results in the creation

of 49 patches ( 224
32

� �2
). We utilize the global average

pooling layer of the proposed BrainNeXt network as the

FEX, generating features from both the patches and the raw

image. As a result, we obtain a total of 50 feature vectors

(49 patches ? 1 raw image). Finally, these 50 feature

vectors are merged to create a single final feature vector.

The raw image (224 9 224) provides a holistic view of

the entire MRI, enabling the model to capture global fea-

tures, such as general structural patterns and large-scale

abnormalities. In contrast, fixed-size patches (32 9 32)

focus on localized regions of the image, allowing the

model to detect fine-grained details, such as small lesions

or subtle abnormalities that may be overlooked in the

global context. The global average pooling layer in

BrainNeXt extracts representative features from both the

patches and the raw image, processing these inputs uni-

formly to ensure consistency in FEX. Combining features

from these two perspectives (global and local) improved

the classification ability of the approach. Additionally,

using 32 9 32 patches reduces the time complexity of the

FEX process while maintaining high performance. Hence,

the patch size of 32 9 32 provided the best results.

Table 2 Details of the collected

dataset used
No Class Number of images Number of participants

Train Test Train Test

1 AD 900 296 448 148

2 Chronic ischemia 302 84 148 43

3 MS 897 339 440 167

4 Control 1027 403 514 192

Total 3126 1122 1550 550

Fig. 2 Block designs of the ConvNeXt, ConvNeXt V2 and the

proposed BrainNeXt. **D7 9 7: Depthwise convolution with 7 9 7

sized kernel, LN: Layer Normalization, GELU: Gaussian Error Linear

Unit, BN: Batch Normalization, ReLU: Rectified Linear Unit

Table 3 Details of the

BrainNeXt approach
Layer Input size Operation Output size

Stem 224 9 224 4 9 4, 96, stride: 4 56 9 56

Layer 1 56 9 56 d7� 7; 96
1� 1; 384
1� 1; 96

2

4

3

5� 2

28 9 28

Layer 2 28 9 28 d7� 7; 192
1� 1; 768
1� 1; 192

2

4

3

5� 2

14 9 14

Layer 3 14 9 14 d7� 7; 384
1� 1; 1536
1� 1; 384

2

4

3

5� 6

7 9 7

Layer 4 7 9 7 d7� 7; 768
1� 1; 3072
1� 1; 768

2

4

3

5� 2

7 9 7

Output size 7 9 7 Global average pooling, fully connected layer, softmax Number of classes

Number of learnable parameters 8.9 Millions
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Fig. 3 Graphical overview of

the presented BrainNeXt

Fig. 4 Schematic depiction of

the proposed BrainNeXt-based

FE architecture. **fp: fixed-size

patch, f: feature vector, CI:

chronic ischemia
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To select the most informative features from the gen-

erated feature vector, we employ NCA (Goldberger et al.

2004). NCA utilizes a distance metric, such as L1-norm/

Manhattan distance, to compute the weights of the features.

It employs an optimizer, such as stochastic gradient descent

(SGD), and generates non-negative features. NCA can be

viewed as a FS variant of the k-nearest neighbors (kNN)

(Peterson 2009) and is known to enhance the classification

capabilities of the classifiers. Given its effectiveness, NCA

is a widely recognized and popular FS within the field of

FE.

To perform the classification task, we apply SVM

(Vapnik 1998) to the selected features obtained from NCA.

The following steps outline the methodology employed in

this approach.

Step 1: Resize the image to 224 9 224.

Step 2: Apply patch division operator and create 49

patches and the size of each patch is 32 9 32.

fph ii; jj; kð Þ ¼ Im iþ ii� 1; jþ jj� 1; kð Þ;
i 2 1; 33; 65. . .; 193f g; k 2 1; 2; 3f g
j 2 1; 33; 65. . .; 193f g; ii 2 1; 2; . . .; 32f g; jj
2 1; 2; . . .; 32f g; h 2 1; 2; . . .; 49f g

ð1Þ

Herein, fp defines fixed-size patch and Im is image. The

above equation mathematically defines the patch division

process.

Step 3: Extract features by using global average pooling

layer of the trained BrainNeXt.

fv1 ¼ BrainNeXt Im;GAPð Þ ð2Þ

fvhþ1 ¼ BrainNeXt fph;GAP
� �

ð3Þ

where fv defines the feature vector and the proposed

BrainNeXt defines as a function. The parameters of the

BrainNeXtð:; :Þ function is the used input and the used layer
for FEX. In this step, 50 feature vectors have been created.

As can be noted in Table 2, the length of each feature

vector is 768.

Step 4: Construct final feature vector by merging the

generated 50 feature vector.

F qþ 768� t � 1ð Þð Þ ¼ fvt qð Þ; t 2 1,2; . . .; 50f g; q
2 1,2; . . .; 768f g ð4Þ

Herein, F is the feature vector with a length of 38,400

(= 768 9 50).

Step 5: Identify the most informative 100 features out of

the generated 38,400 features.

index ¼ NCAðF; yÞ ð5Þ

s w; rð Þ ¼ F w; index rð Þð Þ;w 2 1,2; . . .; nf g; r
2 1,2; . . .; 100f g ð6Þ

where s defines the selected feature vector, NCAð:; :Þ
implies the NCA FS, index represented the qualified

indexes of the features by generating NCA, y is actual

output and n defines the number of the observation (MRIs).

Step 6: Classify the selected features by deploying

SVM.

The given six steps above have been defined the sug-

gested FE approach.

Experimental results

In this research, we have presented two image classification

models: the presented BrainNeXt model and the Brain-

NeXt-based FE approach. To implement these models, we

utilized the MATLAB programming environment, specif-

ically leveraging the MATLAB deep network designer

tool. Below, we provide the details of the parameters

employed in these proposed models.

To obtain classification results, we trained the Brain-

NeXt model using the designated train dataset. The training

process involved the utilization of parameters outlined in

Table 4. Throughout the training phase, we monitored and

recorded the performance metrics on both the training and

validation datasets. The graphical representations of these

results have been observed in Fig. 5, providing valuable

insights into the approach’s progress and performance.

The final validation accuracy for the trained BrainNeXt

model was computed as 91.35%. We proceeded to evaluate

its performance on the test dataset. Additionally, we

employed the proposed BrainNeXt-based approach on the

test images during the second phase of evaluation. To

assess the quality of the test results, we employed various

metrics, including classification accuracy, precision, recall,

and F1-score. These metrics were computed by extracting

the confusion matrices, which provide valuable insights

into the model’s performance for each class. The confusion

matrices, highlighting the distribution of predictions and

ground truth labels, are illustrated in Fig. 6.

Per the Fig. 6, the computed evaluation metrics have

been summarized in Table 5.

Table 5 presents the comprehensive class-wise and

overall results of both proposed models. The presented

BrainNeXt achieved a commendable test accuracy of

94.21%, while the exemplar FE approach attained an

impressive test accuracy of 99.73%. These outcomes

unequivocally demonstrate the effectiveness of our sug-

gested BrainNeXt approach for MRI classification, show-

casing the utility of patch-based transfer learning.

Furthermore, we computed the total number of learnable

parameters in the proposed BrainNeXt approach, which

amounts to 8.9 million. This result underscores the
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lightweight nature of the model, affirming its status as a

compact CNN.

Discussions

In our approach, we collected a novel MRI dataset com-

prising four categories. The purpose of collecting this

dataset was to augment the exposure and comprehensive-

ness of our suggested approach. Inspired by the ConvNeXt

architecture, we have developed the BrainNeXt model to

enhance the classification performance in this research. To

provide further insights into the model’s classification

efficacy, we incorporated an explainable method known as

a gradient-weighted class activation map (Grad-CAM). By

deploying Grad-CAM, we generated heat maps for a

selection of sample images, illustrating the regions of

interest and highlighting the model’s attention. These

informative heat map images have been illustrated in

Fig. 7, enabling a deeper understanding of the BrainNeXt

model’s classification capabilities using an explainable

method.

Figure 7 showcased the ability of the presented Brain-

NeXt to focus on distinct regions of interest (ROI) for each

class. Notably, the proposed BrainNeXt model accurately

identifies and emphasizes abnormal areas in the case of

disorders while emphasizing corner regions to extract dis-

tinguishing features from healthy MRIs. These inter-

pretable findings, as showcased in Fig. 6, served as the

foundation for our proposal of a patch-based FE approach.

By extracting informative features from the patches, we

successfully developed a patch-based deep FE approach,

which exhibits a test accuracy that surpasses BrainNeXt by

5.52% (99.73%—94.21%).

The results obtained using XAI are given below:

Table 4 Hyperparameters used for the proposed models

Model Parameters Value

BrainNeXt Split ratio Training: 70%, validation: 30%

Solver SGDM

Validation

Frequency

50

Epoch 30

Mini Batch Size 32

L2

Regularization

10–4

Momentum 0.1

Initial learning

rate

0.01

BrainNeXt-

based FE

Size of the

patch

32 9 32

FEX function Global average pooling layer

FEX 50 feature vectors (the length of each feature vector is 768) are extracted by deploying the global average

pooling layer, patches and the MRI

Feature merging The length of the final feature vector is 38,400

FS The most informative 100 features are selected

Classification SVM: Kernel function: Cubic, C value (box constraint level): 1, coding: One-vs-all, validation: tenfold

cross-validation (CV)

Fig. 5 Training and validation curves obtained for the suggested

approach

Cognitive Neurodynamics           (2025) 19:53 Page 9 of 17    53 

123



• Figure 7c indicates the ability of our model to focus on

regions related to AD pathology, such as cortical

atrophy and ventricular enlargement.

• Figure 7d highlights ischemic lesions and regions of

reduced perfusion.

• Figure 7g demonstrates white matter lesions of MS

cases, particularly in periventricular regions.

• Figure 7h shows the corners (black areas) and high-

lights the absence of abnormalities.

In our deep FE approach, we selected the most infor-

mative 100 features out of the initially generated 38,400

features. To accomplish this, we employed iterative NCA

on the generated feature set. The range of iteration was

defined to include 100–1000 features, allowing for the

computation of classification accuracies for the selected

901 feature vectors. These comprehensive results, delin-

eating the classification performance across different fea-

ture vector sizes, are presented in Fig. 8.

In Fig. 8, we present the classification accuracies

obtained through the utilization of an SVM classifier with

tenfold CV on the test image dataset. It is evident from

Fig. 8 that the highest classification accuracy was achieved

when employing the selected 100 features.

In our deep FE approach, the SVM classifier was chosen

as the primary classifier due to its exceptional performance

among the tested classifiers. Consequently, we exclusively

employed SVM as the classifier in our model. To demon-

strate the superiority of the SVM (Vapnik 1998), we

compared its classification accuracy with conventional

classifiers, including decision tree (DT) (Safavian and

Landgrebe 1991), linear discriminant (LD) (Zhao et al.

1998), efficient logistic regression (ELR) (Tsangaratos and

Ilia 2016), naı̈ve Bayes (NB) (Ng and Jordan 2002), kNN

(Maillo et al. 2017), multi-layer perceptron (MLP) (Biswas

and Mia 2015), random forest (RF) (Pal 2005), and SVM.

The classification accuracies of these classifiers are

Fig. 6 Confusion matrices obtained for the two models. **AD, 2: Chronic ischemia, 3: MS, 4: Control

Table 5 Results (%) of the

suggested deep models for the

test dataset

Model Class Accuracy Precision Recall F1-score

BrainNeXt AD – 94.83 92.91 93.86

CI – 83.54 78.57 80.98

MS – 94.08 93.81 93.94

Control – 95.90 98.76 97.91

Overall 94.21 92.09 91.01 91.52

BrainNeXt-based FE AD – 99 100 99.50

CI – 100 98.81 99.40

MS – 100 99.41 99.70

Control – 100 100 100

Overall 99.73 99.75 99.55 99.65
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illustrated in Fig. 9, providing a comprehensive overview

of their relative performance.

As illustrated in Fig. 9, among the eight tested classi-

fiers, the SVM classifier exhibits the highest accuracy,

achieving an impressive 99.73% accuracy. The kNN clas-

sifier follows closely as the second-best performer, with an

accuracy of 99.38%.

We have compared the performance of our approach

with other deep-learning models such as (1) DenseNet201

(Huang et al. 2017), (2) ResNet50 (He et al. 2016), (3)

MobileNetV2 (Sandler et al. 2018), (4) DarkNet53 (Red-

mon and Farhadi 2017), (5) ShuffleNet, (Zhang et al. 2018)

(6) NasNetMobile (Zoph et al. 2018), (7) InceptionV3

(Szegedy et al. 2016), (8) InceptionResNetV2 (Szegedy

et al. 2017), (9) GoogLeNet (Szegedy et al. 2013), (10)

AlexNet (Krizhevsky et al. 2012), (11) VGG19 (Simonyan

and Zisserman 2014), and (12) SqueezeNet (Iandola et al.

2016). We employed these networks to create a FE

approach to select the most informative 100 features. The

obtained test accuracies are depicted in Fig. 10, high-

lighting the superior performance of our proposed Brain-

NeXt (13th CNN in Fig. 10).

We compared our proposed BrainNeXt model with 12

other CNN-based models. As shown in Fig. 10, the Den-

seNet201-based exemplar deep FEX model achieved an

accuracy of 98.22%, making it the second highest-per-

forming network in Fig. 10. However, our proposed

BrainNeXt-based model obtained the highest classification

accuracy of 99.73%. Furthermore, we extended our eval-

uation by comparing the results of our proposed

(a) AD MRIs (b) Chronic ischemia MRIs 

(c) Heat-maps of AD MRIs (d) Heat-maps of chronic ischemia MRIs

(e) MS MRIs (f) Healthy MRIs

(g) Heatmaps of MS MRIs (h) Heatmaps of healthy MRIs

Fig. 7 Grad-CAM results obtained for sample MRI images
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BrainNeXt-based model with other state-of-the-art models.

The comparative outcomes are tabulated in Table 6,

offering a concise summary of the performance compar-

ison between our model and the leading models in

biomedical image classification.

As shown in Table 6, most of the studies are focused on

DL. These methods have high computational complexity,

but they achieve high classification success (Marwa et al.

2023). In our study, FEX is achieved by using our archi-

tecture. In this way, a lightweight approach has been

obtained compared to the literature. Literature studies

generally focus on disease level (Balasundaram et al. 2023)

or disease detection (binary classification) (Acar et al.

2022). In our paper, a new multi-class dataset was collected

and classified. Garcia’s approach (Payares-Garcia et al.

2023) is similar to our study in terms of the dataset.

However, some neurodegenerative diseases (Alzheimer,

Mild cognitive impairment, PD, and MS) are considered in

their study. In our dataset, in addition to neurodegenerative

diseases (AD and MS), CI is also included and there is no

such dataset in the literature. Moreover, when the accuracy

values of the studies given in Table 6 are analyzed, our

model is prominent. The model developed in this research

Fig. 8 Classification accuracies

of the selected feature vectors

with various sizes

Fig. 9 Comparisons of accuracies obtained by various classifiers Fig. 10 Classification accuracies for various deep networks
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surpassed 99% in all metric values. These results showcase

the superiority of the suggested method.

Table 6 compares the binary and multi-class tasks. The

binary classification tasks (e.g., detecting a specific disease

or distinguishing between sick and healthy cases) are less

complex due to two classes. The multi-class tasks, such as

our 4-class classification presents additional challenges as

it involves various diseases and healthy controls. The

proposed BrainNeXt and BrainNeXt-based deep FE mod-

els perform better for 4-class task compared to the binary

classification tasks, highlighting the high classification

capabilities of the proposed models.

BrainNeXt has the ability to extract clinically significant

features using the modified ConvNeXt structure and inter-

layer concatenation functionality.

In the BrainNeXt-based deep FE approach, the proposed

BrainNeXt architecture, combined with patch-based

(transformer-like) FE, is able to extract discriminative

features across all classes. The inclusion of chronic

ischemia with neurodegenerative diseases (AD and MS)

provides a dataset that is more representative of real-world

scenarios. Advanced FS techniques, such as NCA assists in

the extraction of salient features and boost the classification

performance. Additionally, the recommended model was

compared to the base version of ConvNeXt, and the test

classification accuracies of these models are shown in

Fig. 11.

Figure 11 indicates that BrainNeXt achieved higher test

classification performance than ConvNeXt due to the use

of concatenation and leaky ReLU functions.

Table 6 Comparisons with other MRI classification models

Author(s) Aim/number of classes Method Validation Performance

(%)

Payares-

Garcia et al.

(2023)

Neurodegenerative disease detection (AD, MCI, PD,

MS, Healthy)/ Five class problem

Spatially informed Bayesian neural

network, custom-designed CNN

Holdout

validation

(70:15:15)

Acc. = 83.0

Sen. = 85.0

Spe. = 81.0

F1. = 82.0

Tatli et al.

(2024)

MS disease detection (MS, myelitis, control)/ Three

class problem

Neighborhood component analysis,

CNN

tenfold CV Acc. = 97.63

Pre. = 97.23

F1. = 97.23

Acar et al.

(2022)

MS disease detection/ Two class problem Data augmentation, Custom

designed CNN

fivefold CV Acc. = 98.0

Sen. = 97.9

Spe. = 98.3

Pre. = 98.2

Balasundram

et al. (2023)

AD severity detection (Non-demented, Mildly

demented, very mildly demented, Moderate

demented)/ Four class problem

Custom designed CNN Holdout

validation

(80:20)

Acc. = 94.10

Pre. = 95.65

Rec. = 91.66

F1. = 93.61

El-Geneedy

et al. (2023)

AD severity detection (Non-demented, Mildly

demented, very mildly demented, Moderate

demented)/ Four class problem

Data augmentation, Custom

designed CNN

Holdout

validation

(80:20)

Acc. = 99.68

Sen. = 100

Spe. = 100

Auc. = 100

Abbas et al.

(2023)

AD detection/ Two class problem Jacobian map feed CNN 15-fold CV Acc. = 94.20

Sen. = 94.64

Spe. = 93.75

Auc. = 96.66

Hussain et al.

(2020)

AD detection/ Two class Custom designed CNN Holdout

validation

(80:20)

Acc. = 97.75

Auc. = 99.21

Our method AD, MS, CI, control detection/ Four class problem Custom-designed CNN

(BrainNeXt), deep FEX from

BrainNeXt, FS with NCA and

SVM

tenfold CV Acc. = 99.73

Pre. = 99.75

Rec. = 99.55

F1. = 99.65
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The obtained/calculated results highlight the superior

classification performance of our proposed approach

compared to other state-of-the-art models.

Key points of our research are outlined below:

• We acquired a new MRI dataset encompassing AD,

chronic ischemia, MS, and control cases. We have

made this dataset publicly available, aiming to con-

tribute to the field of biomedical image classification.

• A lightweight CNN model, BrainNeXt, was introduced,

boasting a mere 8.9 million trainable parameters.

• Inspiring the advantages of ConvNeXt and vision

transformers (ViT), we proposed both the BrainNeXt

model and an exemplar deep FE approach.

• Our proposed models achieved high test accuracies of

94.21% and 99.73%, respectively.

• Notably, we did not rely on any fine-tuning operations

to attain these high classification performances.

• The presented BrainNeXt model exhibited the lowest

accuracy for the chronic ischemia class, likely due to

the limited availability of MRI samples for this class.

Conversely, the control class yielded the highest

accuracy, likely due to its larger sample size.

Demerits:

• The potential to test the proposed BrainNeXt model on

larger and more diverse MRI datasets to further validate

its performance.

• The possibility of exploring different versions of the

BrainNeXt model, such as nano, femto, tiny, base, and

large, to assess their respective capabilities and

scalability.

Future works:

• We intend to test our developed model by collecting

more diverse images belonging to various races and

severity of classes.

• Various versions (Nano to large) of the proposed

BrainNeXt model can be developed for different

applications.

• We may have to modify the proposed model using

patches to detect classes with unclear or overlapping

symptoms.

• A novel XAI interface can be employed to assist

clinicians in confirming their findings.

• Our developed BrainNeXt model can be used to as a

next-generation intelligent radiologist assistant for

clinicians.

Conclusions

Our research has demonstrated the superiority of our pro-

posed approach in achieving high-performance classifica-

tion results for MRI image analysis. Through the

development of the BrainNeXt model, we have introduced

a lightweight CNN architecture with a compact parameter

count of only 8.9 million. This innovative model capital-

izes on the strengths of ConvNeXt and ViT, enabling

efficient and effective FEX for accurate classification.

Our presented BrainNeXt reached 94.21% test accuracy

and our BrainNeXt-based deep FE approach yielded

99.73% on the test dataset. The computed experimental

result underscored the high classification performance of

the presented BrainNeXt. Especially, these outstanding

results were obtained without applying fine-tuning opera-

tions to underscore the high MRI classification capability

of our proposed models.

Our proposals have contributed to the advancement of

biomedical image classification and serve as a foundation

for future investigations in this domain since we designed a

new network by using the structure of the CNNs for the

2020s.

For future research, expanding the evaluation of the

BrainNeXt model on larger and more diverse MRI datasets

will enable us to assess its performance robustness and

generalization capabilities. Additionally, exploring various

versions of the BrainNeXt model, including nano, femto,

tiny, base, and large variants, can further elucidate the

model’s scalability and potential for broader application

domains. Moreover, patch-based models like transformers

and ConvMixer can be proposed to increase validation

scores.

Fig. 11 Test classification accuracies obtained for ConvNeXt and

BrainNeXt models using the collected dataset
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