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Abstract
Automatic violence detection is one of the most important research areas at the intersection of machine learning and

information security. Moreover, we aimed to investigate violence detection in the context of neuroscience. Therefore, we

have collected a new electroencephalography (EEG) violence detection dataset and presented a self-organized explainable

feature engineering (SOXFE) approach. In the first phase of this research, we collected a new EEG violence dataset. This

dataset contains two classes: (i) resting, (ii) violence. To detect violence automatically, we proposed a new SOXFE

approach, which contains five main phases: (1) feature extraction with the proposed distance matrix pattern (DMPat),

which generates three feature vectors, (2) feature selection with iterative neighborhood component analysis (INCA), and

three selected feature vectors were created, (3) explainable results generation using Directed Lobish (DLob) and statistical

analysis of the generated DLob string, (4) classification deploying t algorithm-based k-nearest neighbors (tkNN), and (5)

information fusion employing mode operator and selecting the best outcome via greedy algorithm. By deploying the

proposed model, classification and explainable results were generated. To obtain the classification results, tenfold cross-

validation (CV), leave-one-record-out (LORO) CV were utilized, and the presented model attained 100% classification

accuracy with tenfold CV and reached 98.49% classification accuracy with LORO CV. Moreover, we demonstrated the

cortical connectome map related to violence. These results and findings clearly indicated that the proposed model is a good

violence detection model. Moreover, this model contributes to feature engineering, neuroscience and social security.

Keywords SOXFE � Distance matrix pattern � Violence detection � Cortical connectome diagram � EEG signal analysis

Introduction

Detection of violence with electroencephalography (EEG)

signals is an approach that investigates the neurophysio-

logical basis of violence and aggressive tendencies in

individuals by analyzing electrical activity in the cerebral

cortex (Bars et al. 2001; Patrick 2008). EEG analysis

examines the frequencies of brain waves and activity

changes in brain regions (Calzada-Reyes et al. 2013; Weon

et al. 2021). In this way, information about violent ten-

dencies can be obtained (Aliyari et al. 2020).

The frontal cortex and brain sub-regions related to

emotional control play an important role in violent ten-

dencies (Blair 2017; Siever 2008). The frontal lobe, espe-

cially the orbital frontal cortex (OFC) and dorsolateral

prefrontal cortex (DLPFC) are areas that regulate the

individual’s impulse control, decision-making and social

behaviors (Nejati et al. 2018). While the DLPFC plays a

role in cognitive control and attention processes, the OFC

is involved in regulating emotional reactions and evaluat-

ing social behaviors (Lin and Feng 2024). Neurological

activity abnormalities are observed in these regions in

individuals prone to violence. Aggressive and violent ten-

dencies can be detected by analyzing the electrical activi-

ties of these regions with EEG (Golden et al. 1996;

Hoptman 2003).

Beta and gamma frequencies are associated with high

cognitive workload and intense emotional processes.

Increases in this frequency band can be seen in severe

emotional situations. For example, beta waves (13–30 Hz)

may increase in stress, anxiety and arousal, while gamma

waves (30 Hz and above) can be associated with emotional
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arousal and aggressive behavior (Chikhi et al. 2022). The

increase observed in these frequencies in EEG signals may

indicate that the individual may be prone to violence at the

neurophysiological level (Patrick 2008). In addition, left

and right frontal lobe asymmetry is an important factor in

the detection of violence with EEG (Rohlfs and Ramı́rez

2006). Frontal alpha asymmetry is a condition frequently

observed in individuals with a tendency to violence (Lake

et al. 2014). Low activity in the left frontal region, in

particular, can be associated with negative emotional states

and aggression (López-Castro et al. 2023). This situation

may cause a decrease in the individual’s emotional control

and social adaptation capacity (Stead et al. 2023; Zsigo

et al. 2024). Such EEG analyses can be used in clinical

assessment and diagnosis processes in psychiatry (Hassan

et al. 2023; Squires et al. 2023), forensic sciences (Fidas

and Lyras 2023; O’Brien et al. 2024), and neuropsychology

(Carrarini et al. 2024). In addition, EEG-based machine

learning models can help predict and classify an individ-

ual’s violent tendencies with biomarkers extracted from

EEG data (Othmani et al. 2023). For example, explainable

AI (XAI) methods such as Directed Lobish can contribute

to these detection processes by making EEG signals more

understandable (Tuncer et al. 2024b).

Literature review

The literature contains many machine learning methods

(Gorur 2023; Gorur and Eraslan 2022; Gorur et al. 2023;

Ozturk et al. 2025). Below are some of the research on

violence detection (VD). Huszár et al. (2023) developed a

VD model in video surveillance. They used public datasets,

including Crowd Violence and Hockey Fights. They

achieved approximately accuracies of 80% across these

datasets. Yildiz et al. (2023) proposed an audio-based VD

approach using the TreePat23 feature extraction (FEX)

method on a dataset of 1444 audio observations collected

from YouTube. They achieved classification accuracies of

89.68% with kNN and 89.75% with SVM for leave-

onerecord-out cross-validation. Rendón-Segador et al.

(2023) developed CrimeNet for video VD. Tested on

datasets like UCF Crime and XD Violence, they attained

an accuracy of 99.98%. Kaur and Singh (2024) presented

an analysis of vision-based VD in videos using hybrid

methods. They evaluated various approachs on datasets

like Hockey Fight, Movies, and Crowd Violence. The

numerical results indicated varying levels of success across

methods. Tang et al. (2024) proposed a VD system for

animations using a modified Faster R-CNN approach. They

utilized a dataset of 4,044 violent images. They achieved

an average precision of 79.78%. Ehsan et al. (2023)

developed an unsupervised VD framework using a double-

stream AutoEncoder. They used the Hockey and Movies

datasets for evaluation. They calculated 84% and 98%

accuracy. Durães et al. (2023) proposed an audio-based VD

system in cars using a custom dataset. They tested various

approachs and found that EfficientNetB1 achieved the

highest accuracy at 95.06%. Bakhshi et al. (2023) pre-

sented a VD system using lightweight deep neural net-

works on audio signals. They reported that their best-

performing lightweight approach achieved an accuracy of

96.59% on the Real-Life Violence Situations dataset.

Garcia-Cobo and SanMiguel (2023) suggested a VD

approach using human skeleton extraction and change

detection. They tested it on the RWF-2000 dataset,

achieving 90.25% accuracy. Park et al. (2024) proposed a

Conv3D-based VD approach with optical flow, RGB data

to capture spatiotemporal features in videos. They utilized

the Hockey, UBI-Fight, Movie-Fights, Crowd datasets for

evaluation and attained high area under the curve (AUC)

scores of 95.4, 98.1, 94.5, and 100.0 on these datasets.

Abbass and Kang (2023) developed an enhancement for

VD using the UBI-Fights dataset with deep learning

architectures integrated with convolutional block attention

modules. They addressed class imbalance using categorical

focal loss and achieved an AUC of 94.93%. Magdy et al.

(2023) presented a 4D CNN model for VD in surveillance

videos using four benchmark datasets. The approach

achieved 94.67% accuracy on RWF2000, 97.29% on

Crowd Violence, and 100% on both Movie Fight, Hockey

Fight datasets. Rahman et al. (2023) suggested a method to

test the robustness of VD in videos using the Hockey Fight,

Movie datasets. They attained high attack success rates of

86.84% and 87.50%. Aldehim et al. (2023) suggested a VD

method using the tuna swarm optimization with deep

learning. Tested on the Hockey Fight, Movies datasets,

their approach achieved high accuracy rates of 98.72% and

98.44%.

Research gaps

– Most researchers have used well-known deep learning

(DL) or feature engineering (FE) approaches for EEG

signal classification (Khalfallah et al. 2025; Moctezuma

et al. 2025). This situation causes stagnation in the

presentation of new generation approaches for EEG

signal classification.

– DL models have exponential time complexity, while FE

approaches have linear time complexity. While DL

models attained high classification performance, FE

models have reached relatively lower classification

performance (Chen et al. 2024; Shirodkar et al. 2025;

Talukder et al. 2024). This tradeoff should be

addressed.

   86 Page 2 of 15 Cognitive Neurodynamics           (2025) 19:86 

123



– There are limited explainable FE models, and most FE

models have focused on attaining high classification

performance (Wang et al. 2025).

Motivation and our approach

Our primary motivation is to fill the gaps in the existing

literature. Therefore, we published an EEG VD dataset.

To classify these EEG signals, we suggested a new FE

approach, inspired by transformers and k-nearest neigh-

bors. The presented FE approach has five phases, which

are:

– DMPat-based feature extraction (FEX),

– Feature selection (FS),

– DLob-based XAI results generation,

– tkNN (Tuncer et al. 2024b)-based classification,

– Information fusion.

We suggested a new FEX function named DMPat in the

FEX phase. The proposed DMPat computes the distances

between channels and identifies the channels with the

minimum and maximum distances. By using these chan-

nels, decimal values were created, and the histograms of

the two generated feature map signals were extracted and

named feature vectors. Moreover, a third feature vector

was created by merging the two generated feature vectors,

using the minimum and maximum distances.

INCA (Tuncer et al. 2020) was applied to these three

feature vectors, and three chosen feature vectors were

created in the FS phase. In the DLob phase, the indices of

the chosen features were employed to create DLob strings,

and cortical connectome diagrams were computed using

these DLob strings. tkNN, an ensemble classifier, was used

in the classification phase. Mode-based majority voting

was applied, and the voted outcome was generated. By

deploying a greedy algorithm, the best of the four gener-

ated outcomes (3 classifier-based ? 1 voted) was selected.

Using this strategy, we presented a new generation DMPat-

based SOXFE approach.

The presented DMPat-based SOXFE approach has lin-

ear time complexity and achieved high classification per-

formance. The recommended DMPat-based SOXFE

approach attained 100% and 98.49% classification accu-

racies with tenfold and LORO CVs, respectively. These

results clearly demonstrate the robustness of the DMPat-

based SOXFE approach. Our approach is a self-organized

approach because we used a greedy algorithm in the clas-

sification (tkNN) and information fusion phases. In this

respect, tkNN selects the best outcomes from the computed

parameter-based and voted outcomes. In the information

fusion phase, the best outcome was selected, resulting in

high classification performance with linear time

complexity.

To obtain explainable results, we integrated the sug-

gested approach with DLob. By deploying DLob, cortical

connectomes were generated, providing insights related to

neuroscience.

Contributions and novelties

Contributions:

– The presented DMPat-based SOXFE is a highly

accurate approach. This approach attained over 98%

classification accuracy on the collected EEG VD

dataset. In this respect, it contributes to FE and is

competitive with DL models.

– By integrating DLob with the proposed FE approach,

we generated cortical connectome diagrams. In this

regard, this research contributes to neuroscience.

Moreover, this research has potential to contribute

social security in spite of VD.

Novelties:

– A new EEG VD dataset was collected.

– We proposed a new FEX function, named DMPat.

– By deploying the proposed DMPat as a feature

extractor, a new SOXFE approach was presented.

Dataset

In this research, a novel EEG VD dataset was utilized, and

this VD dataset has two classes: (i) resting/control and (ii)

violence (Bektas et al. 2024). The EEG signals was gath-

ered from 14 participants (11 males and 3 females). During

EEG collection, the meditation and violence videos were

demonstrated to the subjects. To collect the EEG signals, a

brain cap with 14 channels was used, and the sampling

frequency of this brain cap is 128 Hz. This brain cap is

Epoch X, and the channels used are: (1) AF3, (2) F7, (3)

F3, (4) FC5, (5) T7, (6) P7, (7) O1, (8) O2, (9) P8, (10) T8,

(11) FC6, (12) F4, (13) F8, and (14) AF4. After collecting

the EEG signals, they were seperated into segments, each

15 s long (1920 = 128 9 15).

During the dataset collection phase, participants wat-

ched two videos. The goal was to create two emotional

states: violence and rest. For the violence condition, short

film clips showing conflict and aggression and violence

were shown. These clips were taken from past user com-

ments and are known to create strong emotional responses

and researchers used publicly available violence videos.

For the rest/control condition, meditation and nature videos
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were used. These videos showed calming scenes and soft

music to help the participants feel relaxed.

Each session included several short clips, ranging in

length of the clips was between 1 and 5 min. This was

enough to record clear EEG signals. Before starting, each

participant signed a consent form. This study was con-

firmed by the ethics board of Firat University.

The layout of the acquired EEG signals is shown in

Table 1.

In Table 1, ‘‘records’’ refers to full EEG recording

sessions taken while participants watched videos. One

participant could have more than one record if they joined

more than one session. So, the number of records does not

always match the number of participants.

Each EEG record was split into smaller parts/segments.

The length of the part/segment is 15 s. Since the sampling

rate is 128 Hz, each segment contains 1920 data points.

The ‘‘number of segments’’ column shows how many 15-s

pieces/segments/parts were taken from all the EEG records

in each class.

For example, the violence class includes 47 records.

These were divided into 286 segments. The control class

has 38 records, which were divided into 442 segments.

This dataset was published on Kaggle, and can be

downloaded it in.mat format using the following URL:

https://www.kaggle.com/datasets/turkertuncer/turkish-vio

lence-detection-eeg-dataset.

The presented SOXFE

The essential objective of this SOXFE approach is to

obtain high classification accuracy with explainable results.

This approach has five main phases, which are:

– DMPat-based FEX,

– Feature selection based on INCA,

– Explainable results employing DLob symbolic

language,

– tkNN-based classification,

– Information fusion.

To clarify the presented approach, a visual depiction of

this approach is showcased in Fig. 1.

A detailed explanation of the recommended DMPat-

based SOXFE approach is provided below.

Step 1: Apply DMPat to the proposed approach to

extract features.

f 1; f 2; f 3½ � ¼ DMPatðEEGÞ ð1Þ

where DMPatð:Þ: DMPat FEX function and f : feature

vector.

In this step, we derived three feature vectors, and the

lengths of which are 196, 196, and 392, as the third feature

vector is the concatenated version of the first two feature

vectors. To better explain this step, the visual depiction of

this feature vector is demonstrated in Fig. 2.

The steps of the presented DMPat are also given below

for clarification.

Step 1.1: Create channel vector by reading channels of

each point.

Step 1.2: Compute the distance vector for each channel

value and create a distance vector.

DM i; jð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ch2i þ Ch2j

q

; i; j 2 1,2; . . .;NCf g ð2Þ

Herein, DM: distance matrix, NC: number of channels

and Ch: channel value.

Step 1.3: Select the points with minimum and maximum

distances.

a1; a2½ � ¼ argminðDMÞ ð3Þ
b1; b2½ � ¼ argmaxðDMÞ ð4Þ

Herein, a; b: channels indices. By deploying these

indices, feature map signals have been computed.

Step 1.4: Compute the feature map values deploying the

extracted channel indices.

val1 ¼ ða1 � 1Þ � NC þ ða2 � 1Þ ð5Þ

val2 ¼ ðb1 � 1Þ � NC þ ðb2 � 1Þ ð6Þ

Herein, val: the computed decimal values.

Step 1.5: Iterate steps 1.1–1.4 until the desired number

of EEG signals is observed and value arrays are obtained.

Step 1.6: Extract histograms of the value arrays and

obtain the first and second feature vectors.

f k ¼ e valkð Þ; k 2 f1,2g ð7Þ

where f : feature vector with a length of NC2, eð:Þ: his-
togram extraction function.

Step 1.7: Merge the first and second feature vector to

generate third feature vector.

f 3 ið Þ ¼ f 1 ið Þ; i 2 f1,2; . . .;NC2g ð8Þ

f 3 iþ NC2
� �

¼ f 2 ið Þ ð9Þ

These seven steps (Steps 1.1–1.7) have been defined in

the presented DMPat.

Table 1 Details of the collected dataset

No Class Number of records Number of segments

1 Violence 47 286

2 Rest/Control 38 442

Total 85 728
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In the presented DMPat, meaningful features are

extracted. The use of minimum and maximum distances

between EEG channels is based on the functional charac-

teristics of brain activity. Minimum distances often indi-

cate strong functional connectivity between adjacent

regions, common during focused cognitive states or emo-

tional processing. Although maximum distances show

long-range interactions between distant brain areas. These

distances show how different parts of the brain work

together at a global level. By combining both local and

distant relationships, the DMPat FEX method captures a

broad range of inter-channel dynamics. Using this strategy,

we can extract the meaningful features.

Step 2: Chose the most informative features by imple-

menting the INCA feature selector, generate three selected

feature vectors (Tuncer et al. 2020).

sk ¼ INCA f h; yð Þ; h 2 f1,2; 3g ð10Þ

Here, s: selected feature vector, INCAð:Þ: INCA feature

selector, f h: h
th feature vector and y: actual/real labels.

The steps of the INCA feature selector appear as

follows.

Step 2.1: Derive the qualified indexes by deploying

NCA feature selector (Goldberger et al. 2004).

idh ¼ NCAðf h; yÞ ð11Þ

where id: the qualified indexes of the by computing NCA

feature selector.

Step 2.2: Deploy iterative feature selection.

sf r�startþ1
h d; jð Þ ¼ f h d; idh jð Þð Þ; j 2 1,2; . . .; rf g; ð12Þ

r 2 fstart; start þ 1; . . .; stopg; d 2 f1,2; . . .; nosg ðL2Þ

Herein, sf : iterative selected feature vector, start: start

index of the loop, stop: stop index of the loop and nos:

number of segments.

Step 2.3: Derive the misclassification value of the

selected features by deploying a classifier. In this research,

we have used k-nearest neighbors (kNN) with tenfold CV.

loss r � start þ 1ð Þ ¼ C sf r�startþ1
h ; y

� �

ð13Þ

Fig. 1 Visuıal overview of the

proposed DMPat-based SOXFE

approach. Herein, f: feature

vector, s: chosen feature vector

t: tkNN-based outcome and v:

voted outcome
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where loss: the computed loss values and Cð:Þ: classifier.
Step 2.4: Select the best feature vector with minimum

loss value. We employed a self-organized feature selector

called INCA.

index ¼ argminðlossÞ ð14Þ

sh ¼ sf startþindex�1
h ð15Þ

where sh: the ultimate selected feature vector of the hth

method.

Step 3: Generate DLob string with the indices of the

chosen features. The DLob string generation phase is

demonstrated in below using mathematical equations

(Tuncer et al. 2024a).

Table ¼ fFL;FL;FL;FL; TL;PL;OL;OR;PR;TR;FR;FR;FR;FRg
ð16Þ

nid1 ¼ dsfidh tð Þ
NC

e; t 2 f1,2; . . .;Ng ð17Þ

nid2 ¼ sfidh tð Þ modNCð Þ þ 1 ð18Þ
dlsh cð Þ ¼ Table nid1ð Þ; c 2 f1,3; . . .; 2N � 1g ð19Þ
dlsh cþ 1ð Þ ¼ Table nid1ð Þ ð20Þ

Herein, Table: look up table of the employed brain cap

according to DLob, nid: index of the DLob symbol, sfid :
index of the chosen feature vector, N: the number of the

selected features, dls: the generated DLob string. More-

over, the meaning of the used DLob symbols are given

below.

FL: The left frontal lobe is referred to, being responsible

for higher cognitive functions such as reasoning, decision-

making, and problem-solving.

FR: The right frontal lobe is corresponded to, playing a

key role in regulating emotions, social behavior, and

understanding spatial relationships.

OL: The left occipital lobe is represented, being pri-

marily involved in interpreting visual information from the

right visual field.

OR: The right occipital lobe is stood for, processing

visual stimuli from the left visual field.

PL: The left parietal lobe is signified, being responsible

for integrating sensory information, spatial awareness, and

aspects of language comprehension.

PR: The right parietal lobe is symbolized, being crucial

for processing sensory inputs and contributing to spatial

orientation and body coordination.

TL: The left temporal lobe is denoted, being essential

for language comprehension, auditory processing, and

memory functions.

TR: The right temporal lobe is represented, being

associated with processing sounds, retrieving memories,

and emotional responses.

We applied information entropy analysis, built transition

tables for the cortical connectome diagram, and extracted

insights from the three DLob strings.

Step 4: Assign classes to the chosen feature vectors via

tkNN.

th ¼ tkNNðsh; yÞ ð21Þ

where t: tkNN-based outcomes, sh: the ultimate selected

feature vector of the hth method and y: actual/real labels.

The tkNN is an ensemble classifier and the mathematical

definition of classifier is given below (Tuncer et al. 2024a).

dv ¼ fcityblock; euclidean; cosine; spearmang ð22Þ
w ¼ fsquaredinverse; equal; inverseg ð23Þ
k ¼ f1,2; . . .; 10g ð24Þ

pouthe ¼ kNN Sg; y; dva;wb; kc
� �

; ð25Þ

a 2 1,2; 3f g; b 2 1,2; 3,4f g; c 2 1,2; . . .; 10f g; e
2 1,2; . . .; 120f g ð26Þ

cacðeÞ ¼ / outhe ; y
� �

ð27Þ

ix ¼ argsortð�cacÞ ð28Þ

Fig. 2 Graphical explanation of the proposed DMPat FEX function

   86 Page 6 of 15 Cognitive Neurodynamics           (2025) 19:86 

123



vouthl ¼ - pouthix 1ð Þ; pout
h
ix 1ð Þ; . . .; pout

h
ix lþ2ð Þ

� �

; l

2 1,2; . . .; 118f g ð29Þ

cacð120þ lÞ ¼ / vohl ; y
� �

ð30Þ

idx ¼ argmaxðcacÞ ð31Þ

th ¼
pouthidx; idx� 120

vouthidx�120; idx[ 120

�

ð32Þ

Herein, dv: distance value, w: weight of the kNN, pout:

parameter-based outcome, cac: classification accuracy,

pout: parameter-based outcome, /ð:Þ: classification accu-

racy computation function, ix: the qualified classification

accuracies by descending, vout: voted outcome and idx: the

index of the maximum classification accuracy.

Equations (22)–(26) define the iterative parameter-

based outcomes generation, Eqs. (27)–(29) explain the

IMV algorithm, and Eqs. (30)–(32) represent the greedy

algorithm. In this context, the tkNN used employs iterative

parameter-based outcomes generation, IMV-based voted

outcomes generation, and a greedy algorithm to choose the

best outcome.

Step 5: Generate voted outcomes by deploying mode-

based majority voting and select the best outcome via a

greedy algorithm (DeVore and Temlyakov 1996).

vot ¼ -ðt1; t2; t3Þ ð33Þ
fot ¼ GAðt1; t2; t3; votÞ ð34Þ

where vot: the final voted outcome, fot: the ultimate/final

outcome and GAð:Þ: greedy algorithm.

These five steps clearly defined the presented DMPat-

based EEG VD approach. The graphical outcome of the

tkNN classifier is demonstrated in Fig. 3.

The Fig. 3 shows the working of tkNN classifier. We

generated voted outcomes by using the IMV and parame-

ter-based outcomes. A greedy algorithm chosen the best

result by choosing the outcome with the highest classifi-

cation accuracy.

Performance evaluation

The presented DMPat-based SOXFE approach was coded

via the MATLAB (version 2024a) programming environ-

ment. This SOXFE approach, has linear time complexity.

Therefore, it was deployed in central processing unit (CPU)

mode, without parallel programming approaches or

graphical processing unit (GPU) hardware.

The initial parameters of the proposed DMPat-based

SOXFE approach are given below:

FEX:

DMPat: The dataset used has 14 channels, resulting in a

distance matrix of size 14 9 14. Maximum and minimum

distances were used to generate the feature map. The first

and second feature maps were created by extracting the

histogram of these generated feature maps. The lengths of

the first and second feature maps are both 196. The third

feature map was created by merging the first and second

feature maps, with a length of 392.

FS:

INCA: The range of iterations was 14 to 98, and the loss

value generator was selected as kNN with tenfold CV. The

attributes of this classifier are as follows:

k: 1

Distance: L1-norm

Weight: equal

By applying the INCA feature selector, three selected

feature vectors were created with lengths of 21, 25, and 80,

respectively.

XAI:

DLob: DLob symbols described in Sect. ‘‘The presented

SOXFE’’ were used to create DLob strings. Three DLob

strings were created in this research based on the indices of

the selected feature vectors. Each selected feature vector

contains two DLob symbols. The lengths of the generated

DLob strings are 42, 50, and 160, respectively. We used the

transition table from the DLob symbols to build cortical

connectome diagrams. Additionally, histograms and

information entropies of the DLob symbols were

determined.

Classification:

tkNN: Using this ensemble classifier, three classifier-

based outcomes were constructed. The parameters for this

ensemble classifier are as follows:

Distance metrics: City block, Euclidean, Cosine,

Spearman

Weight: Equal, inverse, squared inverse

k: from 1 to 10

Number of constructed parameter-based outcomes: 120

(= 4 9 3 9 10)

Number of constructed voted outcomes using IMV: 118

IMV parameters:

Range: 3 to 120

Sorting factor: accuracy (descending)

Voting function: mode

Total number of outcomes: 238 (= 120 ? 118)

Selection of the best outcome: Based on maximum

classification accuracy.

Information Fusion:

Mode-based majority voting: The mode operator was

applied to the three tkNN-based outcomes, creating a voted

outcome.
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Classification results

The proposed DMPat-based SOXFE approach generates

both classification and explainable results. The first output

of this SOXFE is the classification. Metrics such as clas-

sification accuracy, sensitivity, specificity, and geometric

mean were used to evaluate the classification results. These

performance metrics have been defined below, and to

compute these classification metrics, the numbers of true

positives (TP), false positives (FP), true negatives (TN),

and false negatives (FN) have been used. The details of the

performance metrics used in this research are given below

(Chicco and Jurman 2020; Warrens 2008).

Accuracy: Accuracy illustrates how many predictions

were correct out of all predictions. It defines how well the

approach works overall. The formula for the classification

accuracy is given below.

Accuracy ¼ TPþ TN

TPþ TN þ FPþ FN
ð35Þ

Sensitivity/Recall: Sensitivity showcases how many

real positive cases the approach found. A high sensitivity

means the approach catches most of the positive cases.

Sensitivity=Recall ¼ TP

TPþ FN
ð36Þ

Specificity: Specificity demonstrates how many real

negative cases the approach found. A high specificity

means the approach avoids false alarms.

Specificity ¼ TN

TN þ FP
ð37Þ

Geometric Mean: Geometric mean combines sensitiv-

ity and specificity. It gives a balanced score for both pos-

itive and negative classes. Geometric mean is helpful when

the data is unbalanced.

GeometricMean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP

TPþ FN
� TN

TN þ FP

r

ð38Þ

By utilizing the four given classification performance

metrics, the recommended DMPat-centric SOXFE has

been evaluated.

This DMPat-based SOXFE approach generates four

outcomes and selects the best one from the generated

outcomes. Additionally, tenfold and LORO CV methods

were utilized, and the computed classification perfor-

mances are presented in Table 2.

To give results comprehensively, confusion matrices of

the final outcomes have been depicted in Fig. 4.

Fig. 3 Graphical depiction of

the tkNN classifier
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Interpretable results

In the second step, the recommended DMPat-based

SOXFE approach generates explainable results using

DLob, and the indices of the selected feature vectors are

utilized. Therefore, the generated three DLob strings are

demonstrated in Table 3.

Table 3 showcases the generated DLob strings, cortical

connectome diagrams, and information entropies of these

generated strings. A DLob string was created for each

selected feature vector. By computing the transitions of

these three DLob strings, three cortical connectome dia-

grams were also created and showcased in Table 3.

Moreover, the histogram of the used symbols is demon-

strated in Fig. 5.

Figure 5 showcases that the dominantly active brain

lobe is the frontal lobe, as the most frequently used DLob

symbols are FL and FR.

Discussion

In this research, we presented a new DMPat-based SOXFE

approach, which is self-organized and explainable. This

approach is considered self-organized because:

– INCA automatically selects the best feature vector,

– tkNN automatically selects the best classification

outcomes,

– In the information fusion phase, the best final outcome

is automatically selected.

Our essential motivation in this research is to extract

information related to violence. Therefore, we collected a

new EEG VD dataset from 14 participants. By collecting

this dataset, we have integrated neuroscience with infor-

mation security. Using this dataset, individuals who have

experienced violence can be detected, and more approa-

ches and datasets can be developed and collected to

achieve this objective.

The DMPat feature extractor was proposed in our

approach to attain high classification performance. The

DMPat feature extractor identifies the maximum and

minimum distances between channels, and using this

information, it extracts valuable features. Furthermore,

three feature vectors were extracted by deploying the rec-

ommended DMPat feature extractor. The classification

performance of these feature vectors was investigated

using tkNN-based classification accuracies, and the com-

parative results for the feature vectors are depicted in

Fig. 6.

Figure 6 demonstrates that the best results are obtained

from the third feature vector, which was created using the

merging strategy. Furthermore, the minimum distance-

based feature vector performs better than the maximum

distance-based feature vector.

We aimed to achieve high classification performance by

deploying INCA, tkNN, and information fusion. The rec-

ommended approach attained 98.49% and 100% classifi-

cation accuracies using LORO CV and tenfold CV,

respectively.

To present explainable features, we integrated the pre-

sented DMPat-based SOXFE approach to obtain explain-

able results. In Sect. ‘‘Performance evaluation’’, we

presented the explainable results. The discussions for the

generated DLob strings are as follows:

DLob String 1: The Occipital Lobe is highly engaged,

reflecting the intense visual processing required when

viewing violent videos. This is expected as the occipital

cortex is responsible for visual perception. Overstimulation

in this region could lead to a spillover effect, influencing

other brain regions such as the parietal lobe (PL), which

integrates sensory information and spatial reasoning. The

high frequency of FR activations suggests that motor

planning and cognitive processing are heavily involved. In

violent situations, the brain’s frontal regions are activated

to prepare for potential movement (e.g., jumping or

defensive actions) and to process complex information

about the stimuli. Temporal Lobe involvement indicates

emotional processing and memory retrieval. The temporal

cortex plays a role in understanding the emotional content

of videos, contributing to how the brain processes violent

content.

DLob String 2: There is an increased involvement of

both frontal and temporal lobes, suggesting significant

cognitive and emotional processing while watching violent

videos. The temporal lobe’s activation further indicates

that the content may evoke strong emotional reactions and

perhaps stimulate memory recall of similar experiences.

The involvement of the occipital lobe remains consistent,

Table 2 Results (%) of the presented DMPat-based SOXFE approach

Validation Output Acc Sen Spe GM

LORO CV 1 97.12 96.85 97.29 97.07

2 94.64 96.50 93.44 94.96

3 98.08 98.60 97.74 98.17

4 (Voted) 98.49 98.60 98.42 98.51

Tenfold CV 1 99.59 98.95 100 99.47

2 99.31 99.30 99.32 99.31

3 99.86 99.65 100 99.83

4 (Voted) 100 100 100 100

**Acc.: Classification accuracy, Sen..: Sensitivity, Spe.: Specificity,

GM: Geometric mean. The results of the final outcome have been

highlighted using bold font face
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reinforcing the importance of visual input processing.

Meanwhile, the parietal lobe’s involvement reflects the

brain’s integration of sensory and motor responses during

the observation of violent stimuli.

DLob String 3: The frontal and parietal lobes remain

key players, indicating sustained cognitive processing and

motor planning, alongside the integration of sensory

information. The brain appears to prepare itself for action,

as would be expected during high-stress situations such as

violence. Emotional responses continue to be processed, as

the temporal lobe shows frequent activation. This suggests

that the emotional impact of violent videos is substantial,

influencing both immediate reactions and longer-term

memory associations.

The findings, advantages, limitations and future works

of this research are discussed below.

Findings:

– Three feature vectors were created by calculating

maximum and minimum distances between channels

in the EEG signals. Per the results, minimum distance-

based features are more effective than maximum

distance-based features. Also, the best feature vector

is the merged feature vector.

– The INCA feature selector reduced the feature set to

vectors of 21, 25, and 80 features.

– DLob symbolic language was used to generate cortical

connectome diagrams, making the brain’s response to

violence interpretable.

– Dominant in processing complex cognitive functions

(FL and FR), including decision-making and motor

planning. Their frequent activation during violent video

viewing suggests heightened readiness for action, such

as defensive movements or quick reactions.

– OL and OR symbols depicted high activation, indicat-

ing that the brain’s visual systems are heavily engaged

when processing violent stimuli.

– Increased activation in PL and PR symbols reflects how

the brain coordinates sensory inputs, particularly when

combining visual information with potential motor

actions during violence.

– TL and TR symbols are crucial role in emotional

processing and memory retrieval. The emotional con-

tent of violent videos likely triggers responses in the

temporal cortex, influencing both immediate emotional

reactions and longer-term memory associations with

violent experiences.

– Entropy values calculated from the DLob strings

showcased moderate predictability (1.4341 to 1.9791).

– This approach uses three self-organized methods:

INCA, tkNN and information fusion.

– The mode-based majority voting system and greedy

algorithm selected the best classification result for both

validation techniques.

– By extracting cortical connectome diagrams the cortical

pathways of violence have been demonstrated.

Advantages:

– tenfold CV and LORO CV have been used to demon-

strate robust and reliable classification performances

and the recommended DMPat-based SOXFE approach

reached 100% classification accuracy with tenfold CV

and 98.49% with LORO CV.

– The DMPat-based FEX function and the overall

approach have linear time complexity, making it

efficient for real-time processing.

– Integration with the DLob symbolic language allows

for extracting explainable results, bridging neuro-

science and machine learning.

– It is the pioneering brain-related VD work and it opens

new avenues for creating VD approaches for children

and people with disabilities. In this aspect, this project

is a social project.

Limitations:

Fig. 4 Confusion matrices of

the final outcomes. Herein, 1:

violence, 2: control
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– The approach was tested on a dataset of only 14

participants, which may not fully represent diverse

populations or varied types of violent stimuli.

– More diverse and bigger EEG signal datasets can be

used to test the presented DMPat-based SOXFE

approach.

Future works:

– To the best of our knowledge, no public EEG dataset

available that supports a detailed multiclass emotion

detection task like our dataset (the available EEG

emotion datasets do not include a violence class). We

plan to collect data from more people with different

backgrounds. The experiments should also be designed

to trigger different emotions. This type of dataset would

help build better emotion detection models and may

Table 3 The extracted explainable results on the used dataset, deploying DMPat-based SOXFE

Selected

feature

vector

DLob string Cortical connectome diagram Entropy

1 TR PL OR OR PL PL FR OL FL FL FR OL FR FR FR OR FR PL OR OL FR

OL FR PL FR FR FR FR FR FR FR FR FR FR TR OR FR FL FR PR PR OL

1.4341

2 PL TL TR TL TL TL PR TL FR TL OR TL OL TL FR TL TR FL PL FL PL

FL OL FL PR FL TL FL PR FL OL FL FR FL FR TL PR OR FR TR TL FL

FR FL PR OL FR FL TR FL

1.9791

3 FL FL PL PL TL TL OR TL PR TL TR TL FR OL PL FL TR PL FR TL OR

OR FR OL OL TL PL FL FR OR PR PR TR OR FR OL TR TR OR OL FR

FL FR FR OL FL FR OR PR OR FR TR FR PL FR FR FR TL FR FL FR PL

FR FR PL TL FR PR FR FR FL FL FL FL OR PL FR FL FR FR FR FR FR

FR PR PL FL FL TR FL FR TR FR PL FL FL PR OL FR PL TR PR FR PR

FR PR FR FL TR OL PR FL FR FR TL FL FR OR TL FL OL OL OR FL

FR TR PL FL TR FL FR FL FR OL FR PR FR FR FR OR TL FL OL PL FR

FL PR FL FR FL FR TL FR FR PR FL OR FL TR TL

1.9534
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help to understand the processing of the brain during

different emotions better.

– The approach could be tested with a wider variety of

violent stimuli to understand how different types of

violence affect brain activity.

– Additional EEG channels can be incorporated to

capture more detailed brain responses and improve

the accuracy of the approach.

– The presented DMPat-based SOXFE approach’s per-

formance on real-time VD could be investigated in

practical applications such as security systems or

psychological assessments.

– Hybrid models could be developed by combining

DMPat with other FEX methods to further enhance

classification accuracy.

– The integration of the approach with other modalities,

such as fNIRS or facial recognition, could be explored

to provide a more comprehensive analysis of emotional

and cognitive responses to violence.

– The use of the DLob symbolic language could be

extended to broader contexts like detecting aggression

or other emotional states.

– How the approach performs across different age groups,

particularly in children or individuals with mental

health conditions, could be investigated.

– The potential for deploying this approach in clinical

settings to identify individuals with a predisposition to

violent behavior or to support rehabilitation programs

could be researched.

– A user-friendly software interface could be developed

for non-experts to apply the approach in various real-

world environments, such as schools, workplaces, or

homes.

– We are planning to create a dictionary of the DLob for

different brain activities.

Conclusions

The DMPat-based SOXFE approach has demonstrated high

classification accuracy in detecting violence through EEG

signals. The approach achieved 100% accuracy using ten-

fold CV and 98.49% accuracy with LORO CV and these

results highlight the robustness and reliability of the rec-

ommended DMPat-based SOXFE approach. By utilizing

the DMPat FEX method, which calculates minimum and

maximum distances between EEG channels, and integrat-

ing the INCA feature selector, the approach effectively

reduced the feature space while maintaining strong per-

formance. The merged feature vector, combining both

minimum and maximum distance-based features, proved to

be the most effective.

The DLob symbolic language was employed to generate

cortical connectome diagrams, making the brain’s response

to violent stimuli interpretable. The frontal lobes (FL and

FR) were shown to play a key role in decision-making and

motor planning, while occipital lobes (OL and OR) were

heavily engaged in processing visual information. The

parietal lobes (PL and PR) coordinated sensory input, and

the temporal lobes (TL and TR) contributed to emotional

processing and memory recall. This integration of machine

learning and neuroscience through XAI bridges the gap

between these fields, offering a deeper understanding of

Fig. 5 Frequencies of the used DLob symbols according to the DLob

string

Fig. 6 Classification accuracies of the feature vectors. Herein, the

first feature vector was generated by deploying the minimum distance,

the second feature vector was created using the maximum distance,

and the third feature vector was the merged version of the first and

second feature vectors
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brain activity during violent stimuli and opening avenues

for future research and practical applications.
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