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Abstract
In deep underground engineering design, the true‐triaxial compressive strength
of intact rocks is a critical evaluation index. Traditional methods for acquiring
true‐triaxial strength data are hampered by labor‐intensive manual operations. To
mitigate the time‐consuming nature of true‐triaxial experiments, this study le-
verages the unique capabilities of the relevance vector machine (RVM) to develop
machine learning prediction models. These models aim to streamline the process
and enhance predictive accuracy, thereby offering a more efficient alternative to
conventional experimental approaches. The proposed models establish a corre-
lation between the major principal stress (σ1) and the material constants, along-
side other Hoek–Brown (H–B) strength parameters. A comprehensive data set,
encompassing 408 sets of true‐triaxial experimental data from 12 different rock
types, was collated from previous studies. This true‐triaxial strength data set was
systematically divided into three groups based on the intact rock material content
(mi), facilitating subsequent validation efforts. To enhance prediction accuracy
and generalization capability, particle swarm optimization (PSO) is employed to
optimize the hybrid kernel function parameters of the RVM. This study intro-
duces a dynamic inertia weight decreasing method, demonstrating superior pre-
diction accuracy compared to conventional PSO improvement techniques. In
comparison with five three‐dimensional H–B type criteria and two other machine
learning models, the improved PSO‐RVM model demonstrated superior per-
formance across three distinct mi groups. Additionally, the proposed model is
capable of generating probabilistic predictions, thereby effectively capturing the
inherent uncertainty associated with rock strength. The probability distribution
of model prediction errors closely aligns with that indicated by the generalized
Zhang–Zhu criterion, underscoring the improved PSO‐RVM model's ability to
capture the uncertainty in true‐triaxial compressive strength. Furthermore, this
study explores sample selection for combined tests integrating true‐triaxial ex-
periments and the proposed improved PSO‐RVM model, providing a tentative
optimal ratio for predicting the true‐triaxial compressive strength of intact rocks.
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Highlights
• A particle swarm optimization‐relevance vector machine (PSO‐RVM) model
with a hybrid kernel function is developed to predict the major principal
stress σ1.

• A method for improving the PSO algorithm has been proposed.
• The optimal sample ratio for predicting the true triaxial compressive strength
of intact rocks has been identified.
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1 | INTRODUCTION

Rock strength was one of the important evaluation
indexes in deep underground engineering design (Hoek &
Brown, 1980b). In recent years, the increased excavation
activities in deep rock engineering have frequently en-
countered phenomena of brittle fracture, such as rock
failure and rock bursts, under complex stress paths.
These occurrences pose significant threats to the stability
of geological engineering projects and the safety of
technical personnel (Michelis, 1985, 1987; Mogi, 1966).
Accurate prediction of rock strength is crucial for pro-
viding technical support in deep underground engineer-
ing, as it significantly enhances both the safety and eco-
nomic efficiency of such projects.

The true triaxial compression test addresses the chal-
lenges associated with intermediate principal stress and
complex stress paths, which are increasingly critical issues
in deep underground engineering. By enabling the inde-
pendent variation of principal stresses, it accurately reflects
the actual loading conditions experienced by rock in situ
(Mogi, 1971b). Since Mogi's development of the pioneering
intact rock triaxial apparatus (Mogi, 1971a, 1971b, 1972),
a variety of true‐triaxial apparatuses (TTAs) have been
implemented for rock testing. A few TTA adopt flexible
loading devices (Smart, 1995), whose three principal
stresses are all loaded by the rubber sac. Meanwhile, a
triaxial rigid loading device is applied in another type of
TTA (Sun et al., 2005; Tiwari & Rao, 2004). The pre-
dominant apparatus combines elements from both afore-
mentioned types. In this hybrid TTA configuration, the
minor principal stress is induced by a pressure chamber,
while the intermediate principal stress is applied through
vertically compressible plates (Chang & Haimson, 2000;
Feng et al., 2015; Mogi, 1971a). The true‐triaxial com-
pression test furnishes essential data for rock mechanics
research, model validation, and rock mass stability analysis
in the field of deep underground engineering.

The Hoek–Brown (H–B) criterion represents a preva-
lent model derived from extensive true‐triaxial test data on
hundreds of rock samples, supported by rigorous statis-
tical analysis (Hoek & Brown, 1980a, 1980b, 1988, 2019).
The H–B strength criterion does not account for the
influence of the intermediate principal stress, a factor that
significantly impacts rock strength in numerous scenarios
(Deng et al., 2020; Song et al., 2019; Zhao et al., 2021). In
response to this limitation, several three‐dimensional
strength criteria have been proposed (Pan & Hudson,
1988; Priest, 2005; Single et al., 1998; Zhang & Zhu, 2007;
Zhang et al., 2013), aiming to address and mitigate the
aforementioned drawbacks.

True‐triaxial experiments are hampered by labor‐
intensive manual operations, posing challenges in
obtaining the true‐triaxial compressive strength of intact
rock using TTA (Babanajad et al., 2017). Moreover, the
accuracy of such criteria varies with the geological
composition and the complexity of stress combinations
(Benz & Schwab, 2008). Furthermore, the inherent un-
certainties associated with rock materials, necessitating
substantial data for comprehensive characterization,
must also be acknowledged (Bozorgzadeh et al., 2018;
Contreras et al., 2018; Miranda et al., 2009; Wang &

Aladejare, 2016; Xu et al., 2017). To streamline the
complexities of true‐triaxial experiments and improve
predictive accuracy, novel methodologies can be pro-
posed to efficiently and precisely forecast the potential
range of rock strength. Recent advancements in machine
learning algorithms have shown rapid development in
predictive research, owing to their broad applicability
and robust performance. Moreover, these methods often
yield highly reliable and accurate outcomes, circum-
venting the need for a predefined structure in addressing
critical issues (Liu et al., 2015; Zhang et al., 2019).

Various machine learning methodologies have been
investigated to develop diverse prediction models. For
instance, artificial neural networks (ANN) (Azoor
et al., 2022; Yu et al., 2021) and support vector machines
(SVM) (Li & Tan, 2016; Miah et al., 2020; Ren
et al., 2018) are prevalent algorithms that have demon-
strated successful applications in prediction tasks. Intelli-
gent algorithms often struggle to produce consistent
probability outputs and fail to deliver probabilistic pre-
diction results reliably. Additionally, unoptimized tradi-
tional algorithms may exhibit drawbacks such as over-
fitting and local optimization, influenced by data set noise
and the principles of structural risk minimization. The
relevance vector machine (RVM) stands out as a robust
regression method grounded in the Bayesian framework
(Tipping, 1999, 2000). RVM, akin to SVM, circumvents
constraints associated with the necessity for a positive‐
definite kernel (Karimi & McAuley, 2016), distinguishing
itself in its approach to regression tasks. Moreover, the
relevance vectors in RVM exhibit greater sparsity com-
pared to the support vectors in SVM, thereby enhancing
computational efficiency during testing (Ceryan, 2014). To
refine the kernel function parameters within RVM, particle
swarm optimization (PSO) (Kennedy & Eberhart, 1995) is
employed. PSO, recognized as a stochastic optimization
technique, has found extensive application in optimizing
model parameters in rock engineering studies (Babanouri
et al., 2013; Jahed Armaghani et al., 2015; Shinoda &
Miyata, 2019).

This study introduces an optimized RVM model using
an improved PSO algorithm to predict the true‐triaxial
compressive strength of intact rocks based on the H–B
strength criterion. A comprehensive true‐triaxial database
comprising 408 datasets sourced from the literature forms
the basis for establishing the PSO‐RVM model, which is
subsequently validated. Considering the distinct properties
of intact rock materials, the data set is stratified into three
distinct groups. Following iterative optimization using the
PSO algorithm, the PSO‐RVM model was constructed.
Validation of the predictive accuracy of this model
involved comparative analyses with two other machine
learning approaches. An improved method for the
PSO algorithm was introduced, demonstrating superior
performance over traditional PSO improvement tech-
niques. The predictive capabilities of the improved model
were assessed using true‐triaxial experimental data and
validated against five three‐dimensional H–B criteria
through various statistical metrics. Additionally, the paper
discusses the selection of samples for combined tests based
on true‐triaxial experiments and the proposed improved
PSO‐RVM model.

2 | ZHANG ET AL.

 27701328, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/dug2.70007 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [24/07/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2 | METHODOLOGY AND
APPLICATION OF THE PSO ‐RVM
MODEL

2.1 | Methodology

2.1.1 | Relevance vector machine

RVM represents a Bayesian sparse kernel method
used in both regression and classification problems
(Tipping, 2000). This approach effectively bypasses
the primary constraints associated with SVM, par-
ticularly the requirement for positive definiteness in
kernel functions. Given a data set denoted as the
training sample set =x t{ , }i i i

N
1, where N signifies the

total number of samples, =x{ }i i
N

1 denotes the input
vector, and =t{ }i i

N
1 represents the corresponding target

vector. Simultaneously, the target vector can be ex-
pressed as the sum of the model output ωy x( ; ),
depicted in Equation (1).

ω ε= +t y x( ; ) ,i i (1)

where εi is the Gaussian noise element with zero mean
and variance σ2, which is denoted by ∈ε σN (0, )i

2 .
The regression function y(x;ω) for the target values is

defined by

∑ω ω ω= +
=

y x K x x( ; ) ( , ) ,
i

N

i i
1

0 (2)

where K(x, xi) represents the kernel function; ω =
ω ω ω…[ , , , ]N0 1

T denotes the weighted parameter vector
corresponding to the kernel function.

p t x( | )i follows the normal distribution N. Its distri-
bution is expressed as

ω σ=p t x N t y x( | ) [ | ( ; ), ].i i i
2 (3)

Assuming that =t{ }i i
N

1 is independent, thus the
probability distribution of t is determined by









∏ω ω

Φω

σ σ

σ
σ

=

= π −
ǁ − ǁ

=

−

p t N t y x

t

( | , ) [ | ( ; ), ]

(2 ) exp
2

.

i

N

i i

N

2

1

2

2 /2
2

2

(4)

where Φ is a designed matrix of the kernel function and is
expressed as

⋯

⋯
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⋯
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1 ( , ) ( , )
1 ( , ) ( , )

1 ( , ) ( , )

,

N

N
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1

(5)

When a new target vector t* is given, the probability
distribution can be derived by

∫ ω
ω ω

σ
σ σ

ω σ=p t t p t
p t p

p t
( *| ) ( *| , )

( | , ) ( , )
( )

d d .2
2 2

2

(6)

In addressing the challenge of overfitting arising from
maximum likelihood estimation of the weight vector and
variance, a constraint superposition technique is applied,
utilizing Bayes' theorem. A prior distribution, described
by a zero‐mean constraint over the weight vector as
outlined in Equation (7), is introduced for this purpose.

ω α ω α= −p N( ) ( 0, ),i i i i
1 (7)

where α α α α= …[ , , , ]N0 1 represents the hyper‐parameter
vector, which controls the amount of the weights
deviated from zero.

The posterior distribution over the weights is
expressed by







∑ ∑

α

ω

σ

μ μ= π − − −−
− −

p w t

w

( | , , )

(2 ) exp
1
2

( ) ( ) ,N T

2

/2
1/2 1 (8)

where Σ represents a posterior covariance matrix,
which is denoted by Φ ΦσΣ = +− −A( )T2 1; =A diag
α α α…( , , , )N0 1 ; Φμ σ= ∑− tT2 .

α σ α σ=
α σ

p t( , ) arg max ( | , ).MP MP
2

,

2
2 (9)

Since the values of αMP and σMP
2 cannot be calculated

directly, an iterative estimation approach is employed,
which is summarized as

α
α

μ
=

− Σ1
,i

i ii

i

new
2 (10)

Φ
σ

μ

α
=

ǁ − ǁ

− ∑ − Σ=

t

N
( )

(1 )
,

i
N

i ii

2 new
2

0
(11)

where Σii is the i‐th diagonal element of Σ.
Based on the given approximate values of α and σ2,

the approximations of αMP and σMP
2 are obtained by

updating Equations (10) and (11).

2.1.2 | Particle swarm optimization

PSO is recognized as a straightforward yet effective optimi-
zation technique. Within an n‐dimensional search space, a
fixed number of particles, determined by the algorithm's
configuration, explore potential permutations. Each particle
encapsulates a specific permutation and assesses its fitness
based on current position evaluations (Eberhart &
Shi, 1998). The model's search space is repeatedly traversed
by the particles. The particles within the model continuously
explore the search space, influenced by their individual cur-
rent positions and optimal positions, as well as those of other
particles (Poli et al., 2007). Each particle gradually traverses

DEEP UNDERGROUND SCIENCE AND ENGINEERING | 3
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the search space and exchanges information with other
particles. The updating rules for velocity and position are
specified in Equations (12) and (13), respectively.

β= + − + −+v v M p x M g x( ) ( ),i
k

i
k

i
k

i
k

i
k

i
k1

1 2 (12)

= ++ +x x v ,i
k

i
k

i
k1 1 (13)

where k represents the iteration number; vi represents the
velocity; xi is the position of each particle; p and g are the
best place of the singular molecule and the best situation
among all particles in the multitude, separately; and M1

andM2 are hyper‐boundaries inside the reach [0, 4]. β is a
dormancy factor from 0.4 to 0.9 to control the verifiable
change in speed for the ongoing effect.

2.1.3 | Kernel function and hyperparameters

To mitigate the computational challenges posed by high‐
dimensional feature spaces, kernel functions often utilize
inner product operations as an efficient alternative to more
complex computations. This approach dictates how samples
are mapped from lower‐dimensional to higher‐dimensional
spaces based on the selected kernel function type. Moreover,
the parameters chosen for the kernel function critically
influence the predictive performance of machine learning
models.

The prevalent kernel functions in use include the
following: (1) Local kernels, such as Gaussian kernels,
known for their robust local interpolation capabilities
and (2) global kernels, such as polynomial kernels, rec-
ognized for their strong generalization capabilities (Ma
et al., 2020). Considering the characteristics of intact
rocks, the primary principal stress is influenced by mul-
tiple factors, with minor variations in each factor
potentially resulting in significant changes in magnitude.
Therefore, the model requires specific local interpolation
capabilities. At the same time, the wide range of values
associated with each factor highlights the need for the
model to possess sufficient generalization capabilities. To
integrate the advantageous features of both local inter-
polation and generalization into the kernel function, a
hybrid kernel function is proposed as defined by

θ

θ

= −ǁ − ǁ

+ − +

K x x x x c
xx

( , ) exp( / )
(1 )( 1) ,

i i

i
q

2 2

(14)

where c is the Gaussian kernel parameter (bandwidth
parameter); q is the polynomial kernel parameter; and θ is
the proportional parameter of the hybrid kernel function.

Given its notable capabilities, the Gaussian‐polynomial
hybrid kernel function is incorporated into the proposed
PSO‐RVM model. This hybrid kernel function incorpo-
rates three parameters: θ, c, and q. While the specific values
of these parameters are not explicitly defined, they are
closely linked to the model's predictive accuracy. The PSO
algorithm is utilized to optimize these parameters within the
hybrid kernel function framework, thereby establishing a
strength prediction model based on PSO‐RVM using the
hybrid kernel.

2.2 | Input parameters selection

The prediction of true‐triaxial compressive strength in
intact rocks essentially entails forecasting the major prin-
cipal stress. Input parameters are selected in accordance
with the H–B strength criterion, which has been ex-
tensively validated across a diverse array of true‐triaxial
experiments and remains a cornerstone in geotechnical
engineering (Hoek & Brown, 1980a, 1980b, 2019).
The mathematical expression for the H–B criterion is
expressed by

σ σ σ
σ

σ
= + +m 1 ,1 3 c i

3

c
(15)

where σ1 and σ3 are the major and minor principal stres-
ses, respectively; σc is the unconfined compressive strength;
and mi is the material constant for the intact rock.

Thus, the compiled data set comprises five variables:
intermediate principal stress σ2, minor principal stress σ3,
unconfined compression strength σc, and material con-
stant mi as input parameters, with major principal stress
σ1 designated as the model output.

2.3 | Data set preparation and k‐fold
cross‐validation

The models were developed using data derived from 408
true‐triaxial experiments compiled from various previous
studies (Chang & Haimson, 2000; Gao et al., 2018;
Haimson & Chang, 2000; Mogi, 1971b; Takahashi &
Koide, 1989; Wang & Kemeny, 1995; Xu et al., 2017;
Zhao et al., 2018). This data set encompasses 12 distinct
rock types and spans a wide range of major principal
stresses, significantly enhancing the robustness of the
proposed models.

To assess the model's predictive performance across
various rock types, the data set is stratified into three
groups based on the material constant mi range. Each
group comprises over 100 data points encompassing at
least three distinct rock types. Detailed specifics of each
prediction group are outlined in Table 1.

To derive more insightful insights from the limited
data sets, this study employed k‐fold cross‐validation,
with k set to 5. For each prediction group, 30 data points
were randomly allocated to form the test set, while the
remaining data comprised the training set. The training
set for each group is divided into five equal parts. In each
iteration, the model is trained on four parts, while the
remaining part is used to evaluate the model's accuracy.
This process is repeated five times, with a different subset
used for validation in each round. The model's optimal
parameters are determined based on the highest average
accuracy across these five training sessions.

2.4 | Data normalization and model
performance evaluation method

To reduce the model accuracy loss and accelerate the
algorithm learning speed, the input and output data are

4 | ZHANG ET AL.
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normalized using min–max normalization. All data are
normalized to the range of 0–1 by

′ =
−

−
z

z z
z z

,i
i min

max min
(16)

where zi' is the data after normalization; zi is the original
data; and zmax and zmin are the maximum and minimum
values of the original data, respectively. Different pre-
dictions may have different parameter requirements.
Therefore, the optimization of the model structure is
essential to minimize the uncertainty of model
misspecifications.

To comprehensively evaluate the prediction model
performance, several statistical indices are applied
including coefficient of determination (R2), mean abso-
lute percentage error (MAPE), mean absolute error
(MAE), and root mean square error (RMSE). The
mathematical expressions of the above statistical index
are expressed by

‐ ‐ ‐

‐

σ σ σ σ

σ σ
=
∑ − − ∑ −

∑ −
= =

=

R
( ) ( )

( )
,i

n
i i

n
i i

i
n

i

2 1 1,ob mean
2

1 1,ob 1,pr
2

1 1,ob mean
2

(17)

‐ ‐

‐
∑

σ σ

σ
=

−

=

MAPE
n

100%
,

i

n
i i

i1

1,pr 1,ob

1,ob
(18)

‐ ‐∑ σ σ= −
=

MAE
n
1

,
i

n

i i
1

1,ob 1,pr (19)

‐ ‐∑ σ σ= −
=

RMSE
n
1

( ) ,
i

n

i i
1

1,ob 1,pr
2 (20)

where σ1,ob−i and σ1,pr−i represent the observed and pre-
dicted major principal stress data, respectively. σmean is the
mean of the observed values, and n is the number of the

sample in the data set under consideration. Theoretically,
for an excellent statistical model, the R2 is 100%, while
MAE, MAPE, and RMSE are 0 (Yagiz et al., 2012).

2.5 | Application of the PSO‐RVM model

The RVM model serves as the primary approach for pre-
dicting the major principal stress, with the PSO algorithm
utilized to optimize kernel function parameters for RVM.
The algorithmic flowchart depicting the proposed improved
PSO‐RVM model is illustrated in Figure 1. An extensive
data set comprising a significant volume of experimental
true‐triaxial data is compiled, and the primary variables
for the RVM model are organized according to the H–B
criterion. All data undergo normalization, and subse-
quently, the data set is stratified into three groups encom-
passing both training and testing sets based on the material
constant mi of the rock specimens. Following iterative
optimization and model training phases, the PSO algorithm
identified optimal kernel function parameters for con-
structing the PSO‐RVM model. Comparative analysis with
two alternative machine learning models validated the
superior predictive accuracy of the PSO‐RVM approach.
Furthermore, an improved PSO algorithmic method was
introduced. Finally, the improved model's performance was
validated against five three‐dimensional H–B type criteria
to assess its efficacy.

3 | VALIDATION OF THE PSO‐RVM
MODEL

3.1 | Validation of the PSO‐RVM model
based on data sets

Utilizing the three data set groups, the PSO algorithm
was employed to optimize kernel function parameters for
the RVM model. In this study's PSO algorithm, the
particle count was configured to 60, with 100 iterations

TABLE 1 Data amount and rock types in each prediction group.

Group label Range of mi Group data amount Rock type mi Sample amount Source

#mi‐low 0 < mi ≤ 15 143 Yuubari shale 6 26 Takahashi and Koide (1989)

Dunham dolomite 10 53 Mogi (1971b)

Mizuho trachyte 11 31 Mogi (1971b)

Jinping marble A 11 20 Zhao et al. (2018)

Jinping marble B 13 13 Gao et al. (2018)

#mi‐medium 15 < mi ≤ 25 119 Shirahama sandstone 16 43 Takahashi and Koide (1989)

Apache leap tuff 17 49 Wang and Kemeny (1995)

Pakistan sandstone 19 27 Gao et al. (2018)

#mi‐high mi > 25 146 Linhai granite 29 51 Xu et al. (2017)

KTB amphibolite 29 40 Chang and Haimson (2000)

Beishan granite 30 10 Gao et al. (2018)

Westerly granite 32 45 Haimson and Chang (2000)

DEEP UNDERGROUND SCIENCE AND ENGINEERING | 5

 27701328, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/dug2.70007 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [24/07/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



performed, and initial parameters β, M1, and M2 set to
0.8, 1.6, and 1.2, respectively. Upon achieving the mini-
mum RMSE, the optimal kernel function parameters for
the RVM model are conclusively identified. The rela-
tionship between fitness and iterations during PSO
operation is visually depicted in Figure 2. The figure
illustrates that fitness stabilizes as the number of itera-
tions increases. Variations in the final fitness among the
three groups are attributed to differences in the quantity
and characteristics of the rocks within each group.
Table 2 presents the optimized kernel function parame-
ters. The parameter θ ranges from 0.20 to 0.50, c ranges
from 0.30 to 1.00, and q ranges from 1.00 to 2.50. These
parameter values are crucial for developing future mod-
els under uncertain conditions.

Figure 3 illustrates the prediction results of the PSO‐
RVM model for three groups based on the testing set.
The prediction error of σ1 is represented by the distance
from each data point to the 1:1 diagonal line. The results
indicate that the predicted values in the testing sets

closely align with the diagonal line. Across the three data
set groups, the R2 values are 0.978, 0.914, and 0.940, with
corresponding RMSE values of 29.736, 23.127, and
67.610, respectively. These results demonstrate that all
three models effectively predict the major principal stress
σ1, exhibiting high R2 and low RMSE values. They
notably capture the intricate relationship between input
and output parameters.

3.2 | Testing set result comparison between
machine learning models

To assess the efficacy of RVM relative to other intelligent
algorithms, support vector machine (SVM) and random
forest (RF) algorithms were incorporated into the pre-
diction process. SVM and RF are widely recognized for
their robust generalization capabilities in machine
learning. The PSO algorithm was employed to optimize
parameters for both SVM and RF models. Specifically,
for SVM, a radial basis function was utilized, and PSO
was applied to determine optimal values for the penalty
coefficient (cp) and loss coefficient (cl). For RF, the PSO
algorithm was employed to optimize the number of
decision trees. The data set to train and test the machine
learning models is identical to RVM, which includes
three divided groups of training set and testing set.
Table 3 presents the optimized parameters of SVM
and RF.

FIGURE 1 Flowchart of the proposed model for probabilistic prediction of true‐triaxial compressive strength.

FIGURE 2 Relationship of fitness and iterations during particle
swarm optimization (PSO) operation.

TABLE 2 Optimized parameters of the kernel function.

Group θ c q

#mi‐low 0.473 0.601 1.849

#mi‐medium 0.477 0.426 2.367

#mi‐high 0.239 0.497 2.288

6 | ZHANG ET AL.
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The comparison of prediction results between PSO‐
RVM, PSO‐SVM, and PSO‐RF models is shown in
Figure 4. As illustrated in Figure 4, the PSO‐RVMmodel
demonstrates the highest prediction accuracy across all
three groups. These findings underscore the PSO‐RVM
model's superiority over the other two machine learning
models.

4 | IMPROVED PSO ALGORITHM
APPLIED TO THE MODEL AND
PROBABILITY PREDICTION

4.1 | Improvement of the PSO algorithm

The inertia weight (β) serves as a crucial parameter in the
PSO algorithm, determining a particle's ability to maintain
its previous velocity. Higher values of inertia weight facilitate
global search, whereas lower values promote local search.
Hence, exploring enhancements to the PSO algorithm by
investigating inertia weights holds substantial significance.

To achieve an optimal balance between global and local
search capabilities, this study introduces a novel approach
for dynamically updating the inertia weight (β):

Improved method (a): The initial inertia weight is ini-
tialized at 0.9, gradually decreasing to a final value of 0.4. To
mitigate the risk of converging to local optima, it is essential
to maintain a relatively high inertia weight (β) during the
early stages of optimization. As the optimization process
advances, prioritizing local search becomes increasingly
crucial to achieve more precise search outcomes. To oper-
ationalize this approach, Equation (21) introduces a cubic
decreasing function for the inertia weight (β), dynamically
adjusting it based on the number of iterations.








 


 


 









β β β β= − −

× − +
i

T
i

T
i

T

( )

2.5 2.2 0.7 ,

max max min

2 3 (21)

where i represents the number of iterations and T rep-
resents the maximum number of iterations.

To validate the advantages of improved method (a),
it was compared with three commonly used dynamic
adjustment methods for inertia weight. Similar to
method (a), the initial inertia weight for these three
methods was set to 0.9 and eventually reduced to 0.4.

Improved method (b): The inertia weight decreases in a
linear fashion (Shi & Eberhart, 1999) as defined by

β β β= − −
i

T
w( ).max max min (22)

FIGURE 3 PSO‐RVM model prediction results of three groups in the testing set. (a) Group #mi‐low; (b) Group #mi‐medium; and (c) Group
#mi‐high.

TABLE 3 Optimized parameters of SVM and RF.

SVM RF

Group cp cl Trees

#mi‐low 191.475 0.0306 22

#mi‐medium 187.442 0.0526 23

#mi‐high 10.627 0.0067 45

DEEP UNDERGROUND SCIENCE AND ENGINEERING | 7
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Improved method (c): The inertia weight decreases
following a quadratic function form as defined by








 







β β β β= − − × −

i
T

i
T

( )
2

.max max min

2

(23)

Improved method (d): The inertia weight decreases
according to an alternative quadratic function form
(Yang et al., 2015) as defined by



 


β β β β= − − ×

i
T

( ) .max max min

2

(24)

4.2 | Comparison of the improved
PSO‐RVM results

On the Group #mi‐low data set, all four improvement
methods yielded significant results. However, on the
datasets of Group #mi‐medium and Group #mi‐high,
the prediction accuracy of improvement methods (b)
and (c) did not surpass that of the original PSO
algorithm. As illustrated in Figure 5, the improved
method (a) proposed in this study achieved the high-
est prediction accuracy across all three groups. Fur-
thermore, a comparison of the computation times
for each method revealed that method (a) had the
shortest computation time. Therefore, it is justified
to optimize the PSO algorithm using improved
method (a).

4.3 | Testing set results comparison between
empirical criteria

Research on the mechanical response of rocks under true‐
triaxial stress combinations has been extensively investi-
gated (Pan &Hudson, 1988; Priest, 2005; Single et al., 1998;
Zhang, 2008; Zhang & Zhu, 2007). Utilizing data derived
from true‐triaxial experiments, this study proposes a set of
three‐dimensional H–B type rock strength criteria, which
are succinctly summarized in Table 4.

To further verify the predictive accuracy of the im-
proved PSO‐RVM model for major principal stress, its
predictions are juxtaposed against established criteria
including the Generalized Pan–Hudson criterion (GPH),
Generalized Singh criterion (GS), Generalized Priest
criterion (GP), Simplified Priest criterion (SP), and
Generalized Zhang–Zhu criterion (GZZ). The predicted
outcomes using H–B type criteria and the improved PSO‐
RVM model are presented in Table 5. Statistical metrics
including MAPE, MAE, and RMSE are utilized as eva-
luative indices for prediction accuracy. The mean MAPE
value for the proposed improved PSO‐RVM model
across three groups is notably low at 6.262%, demon-
strating a significant improvement compared to the
GPH, GS, GP, and SP criteria and marginally better
than the GZZ criterion. With the exception of the GZZ
criterion, the performance of the remaining criteria is
markedly inferior to that of the proposed model. These
findings conclusively highlight the superior predictive

FIGURE 4 Comparison of prediction results between PSO‐RVM, PSO‐SVM, and PSO‐RF models. (a) Group #mi‐low; (b) Group #mi‐medium;
and (c) Group #mi‐high.

8 | ZHANG ET AL.
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accuracy of the improved PSO‐RVM model over the
three‐dimensional H–B type criteria.

Due to inherent rock variability and experimental un-
certainties, prediction errors are inevitable. These discrep-
ancies between criterion‐predicted outcomes and observed
values illustrate such uncertainties. The probability density
function (PDF) depicting the prediction errors across three
testing sets is presented in Figure 6. The prediction error
quantifies the discrepancy between predicted and actual
values. Across all three testing sets, it is evident that the
improved PSO‐RVMmodel exhibits a mean prediction error
close to zero. Furthermore, the variance of its predictions is
comparatively lower than that of other models, indicating a
closer alignment with true‐triaxial experimental data. The
error distribution observed in the improved PSO‐RVM

model closely resembles that of the GZZ criterion, which
exhibits superior prediction accuracy among the five criteria
evaluated. This similarity underscores the improved PSO‐
RVMmodel's robust capability in characterizing uncertainty
associated with true‐triaxial compressive strength prediction.

4.4 | Probability prediction of the improved
PSO‐RVM model

By integrating optimized kernel function parameters with
model training on the training sets, the improved PSO‐
RVMmodel has been successfully developed. The output
parameter, major principal stress σ1, is hypothesized to
follow a Gaussian distribution. The model's probability

FIGURE 5 Comparison of the prediction results of four different improved PSO‐RVM models. (a) Prediction accuracy, (b) computation time.

TABLE 4 Hoek–Brown (H–B)‐type strength criteria.

Strength criterion Expression formula

Generalized Pan–Hudson criterion (GPH) (Pan & Hudson, 1988) 





σ

σ

τ τ
= + −−s

m
m

I1 3

2

3

2 2 3a

a

c
c
1/ 1

oct
1/

b oct
b

1

τ σ σ σ σ σ σ= − + − + −
1
3

( ) ( ) ( )oct 1 2
2

2 3
2

3 1
2

σ σ σ= + +I1 1 2 3

Singh criterion (Singh) (Single et al., 1998)






σ σ σ

σ σ

σ
= +

+
+

m
s

( )
2

a

1 3 c
b 2 3

c

Generalized Priest criterion (GP) (Priest, 2005)








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Simplified Priest criterion (SP) (Priest, 2005)






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(1 ) , , 0.153hb 2 3 3

Generalized Zhang–Zhu criterion (GZZ) (Zhang & Zhu, 2007) 





σ

σ

τ τ σ σ
= + −

+
−s

m
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1 3

2
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2 2 2a

a

c
c
1/ 1
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1/
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b

1 3

a and s represent rock material constants; I1 represents first stress invariant; σ3hb represents assumed stress in Priest strength criterion; τoct represents octahedral shear
stress.
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prediction is subsequently verified using the testing set
results. Utilizing the mean and variance of the model's
prediction results, the upper and lower bounds of the
95% confidence interval were determined for the im-
proved PSO‐RVM model. Figure 7 presents the predic-
tion results of the improved PSO‐RVM model for the
three groups within the testing set. In Figure 7, the red
stars represent the predicted mean values, while the yel-
low triangles denote the actual values. The blue shaded

area indicates the 95% confidence interval for the pre-
diction results. The minor discrepancy between the pre-
dicted mean values and the actual values, with the actual
values largely falling within the 95% confidence interval,
suggests that the prediction results are both stable and
reliable. For various rock types, the prediction error of
the improved PSO‐RVM model exhibits minimal fluc-
tuation, indicating that the model's prediction accuracy is
largely unaffected by rock type. Nonetheless, several

TABLE 5 Comparison of the prediction results between empirical criteria and the improved PSO‐RVM model.

Group Index GPH Singh GP SP GZZ PSO‐RVM

#mi‐low MAPE (%) 21.723 6.666 11.093 7.702 3.686 4.276

MAE 98.539 30.691 56.097 38.763 17.049 16.630

RMSE 109.615 42.091 74.399 48.014 21.108 24.176

#mi‐medium MAPE (%) 35.739 15.313 19.494 16.837 9.027 7.108

MAE 98.704 42.977 54.442 46.499 25.940 16.582

RMSE 112.941 75.047 89.605 74.690 42.465 20.423

#mi‐high MAPE (%) 32.258 24.630 30.301 15.883 7.619 7.403

MAE 221.916 136.423 173.977 81.001 48.383 41.310

RMSE 252.195 202.763 247.937 111.780 59.663 59.756

Mean value MAPE (%) 29.907 15.536 20.296 13.474 6.777 6.262

MAE 139.720 70.030 94.839 55.421 30.457 24.841

RMSE 158.250 106.634 137.314 78.161 41.079 34.785

FIGURE 6 Improved PSO‐RVM model prediction error of the three groups in the testing set. (a) Group #mi‐low, (b) Group #mi‐medium,
and (c) Group #mi‐high.

10 | ZHANG ET AL.
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prediction points in Group #mi‐low slightly deviate from
the predicted confidence interval. The predicted results
from the H–B type criteria also exhibit fluctuations. This
deviation may stem from the inherent uncertainty of the
rock or errors during the experimental process. Conse-
quently, given sufficient data, the trained model can be
effectively utilized to predict the behavior of various rock
types.

5 | DISCUSSION ON SAMPLE
SELECTION FOR COMBINED
TESTS BASED ON TTA
EXPERIMENTS AND THE
IMPROVED PSO ‐RVM MODEL

Statistical analysis of the aforementioned rock strength
data reveals that the proposed improved PSO‐RVM
model demonstrates high predictive accuracy and
robust performance compared to both three‐dimensional
H–B type criteria and other machine learning models.
For accurate characterization of a rock material's stress
response under true‐triaxial conditions, it is essential to
conduct true‐triaxial experiments. As shown in Table 1,
characterizing the triaxial properties of rocks, particu-
larly those with a high mi value, typically necessitates a
substantial data set, averaging approximately 40 data
sets. Acquiring sufficient true‐triaxial data through
numerous experiments is time‐consuming. Therefore, it is
crucial to develop methods that reduce the number of
required TTA experiments while effectively increasing

the data volume. The ratio of true‐triaxial experimental
data to data generated by the improved PSO‐RVM
model is crucial, as it influences the credibility of the
experimental findings. The improved PSO‐RVM model
can reliably generate substantial amounts of data.
Consequently, the model is employed to explore sample
selection in combined test scenarios.

In the subsequent testing phase, the data set is par-
titioned into training and testing sets according to a
specified proportion. For instance, KTB Amphibolite
(Chang & Haimson, 2000) features 40 rock data sets with
a uniaxial compressive strength of 165MPa and a mi

range of 27–32. The parameter settings for the improved
PSO‐RVM model align with those of the prediction
model for the group #mi‐high. The detailed implemen-
tation process is outlined as follows:

1. The original data of KTB Amphibolite were normal-
ized using min–max normalization. The parameter
settings for the improved PSO‐RVM model were
determined based on the material constant mi.

2. The data set was partitioned into training and testing
sets using various ratios, ranging from 1:3 to 4:1.
Specifically, the partition ratios used were 0.33:1.00,
0.6:1.00, 1:1, 1.22:1.00, 1.67:1.00, 2.33:1.00, 3:1.00,
and 4:1.00.

3. Building upon the training outcomes detailed in Sec-
tion 4.2, the parameters of the improved PSO‐RVM
model were utilized to forecast the results. The pre-
diction results were compared across different sample
selections.

FIGURE 7 Improved PSO‐RVM model probability prediction results of the three groups in the testing set. (a) Group #mi‐low, (b) Group #mi‐
medium, and (c) Group #mi‐high.

DEEP UNDERGROUND SCIENCE AND ENGINEERING | 11
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Table 6 and Figure 8 were generated through statisti-
cal analysis of the collected data. Table 6 presents the
predicted outcomes corresponding to different ratios of
the training set sample size to the testing set sample size.
Notably, the RMSE values for ratios 1.67:1.00 and
2.33:1.00 exhibit close proximity. Figure 8 illustrates a
clear downward trend in RMSE. Clearly observed is the
decline in RMSE as the size of the training set increases
and that of the testing set decreases. This trend shows a
pronounced initial decrease followed by a more gradual
decline. RMSE reaches its minimum and stabilizes
between ratios of 1.5 and 2.0, exhibiting minimal fluctu-
ation. As the ratio increases, RMSE exhibits an upward
trend. This phenomenon arises due to the reduced amount
of data in the testing sample group, resulting in increased
result variance. Based on the aforementioned analysis, a
ratio of 1.67:1.00 is recommended for sample selection in
combined tests. This implies that only 62.5% of the nec-
essary data needs to be acquired through experimentation,
with the remaining 37.5% obtainable from the proposed
improved PSO‐RVM prediction model. The results
obtained from the improved PSO‐RVMmodel sufficiently
support and supplement the data set. This approach serves
as a robust machine learning tool capable of potentially
replacing some true‐triaxial experiments without com-
promising prediction accuracy.

6 | CONCLUSION

This study introduces an improved approach for the PSO
algorithm and subsequently develops a RVM model
based on this improved method for predicting intact rock
strength. To assess the effectiveness of the proposed
model, the outcomes of the improved PSO‐RVM model
are compared with those derived from two other machine
learning models, three established PSO‐improved techniques,
and five empirical H–B type criteria. The training and testing

of the improved PSO‐RVM model utilize three datasets of
true‐triaxial compression strength, each covering varying
ranges of the material constant mi. To assess prediction
performance, metrics including R2, MAPE, MAE, and
RMSE are selected for comparative evaluation.

In the three datasets, the PSO‐RVM model exhibited a
more balanced performance in comparison to the PSO‐
SVM and PSO‐RF models. The proposed method of
reducing inertia weights through a cubic function in this
study demonstrated improved prediction accuracy and
reduced computation time compared to conventional PSO‐
improved methods. The improved PSO‐RVM model
demonstrates superior performance over three‐dimensional
H–B type criteria across various rock types. The incorpo-
ration of hybrid kernel functions and enhancements to the
PSO algorithm contribute to its high prediction accuracy
and robustness. The model's outputs adhere to a Gaussian
distribution, allowing for the estimation and acquisition of
optimal prediction variances. Moreover, the prediction
results allow for the estimation of confidence intervals,
enhancing reliability. The similarity in prediction error
distribution with the GZZ criterion suggests that the im-
proved PSO‐RVM model effectively captures uncertainties
associated with rock characterization.

Furthermore, the proposed improved PSO‐RVM
model has been demonstrated as an effective machine
learning tool capable of generating credible datasets.
Through analysis across multiple research groups, the
ratio of true‐triaxial experimental data to data generated
by the improved PSO‐RVM model in combined tests is
established at 1.67:1.00. The model's predictions are suf-
ficiently persuasive to potentially substitute for certain
true‐triaxial experiments without compromising accuracy.
The improved PSO‐RVM model introduced in this study
offers precise predictions of rock strength, providing a
significant advantage over traditional true triaxial tests by
reducing the time required without impeding construction
progress. The model's accurate predictions facilitate in-
formed decision‐making in deep engineering projects,
helping to determine supporting structures while ensuring
the safety of the construction.
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TABLE 6 Predicted results for different ratios of the training set sample amount to the testing set sample amount.

Ratio 10:30 (0.33:1.00) 15:25 (0.6:1.00) 20:20 (1:1) 22:18 (1.22:1.00) 25:15 (1.67:1.00) 28:12 (2.33:1.00) 30:10 (3:1) 32:8 (4:1)

RMSE 129.70 119.87 98.44 93.45 91.16 91.67 93.43 100.24

FIGURE 8 Relationship between the sample selection ratio and
root mean square error (RMSE).

12 | ZHANG ET AL.

 27701328, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/dug2.70007 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [24/07/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



DATA AVAILABILITY STATEMENT
The data that support the findings of this study are
available from the corresponding author upon reason-
able request.

REFERENCES
Azoor R, Deo R, Shannon B, Fu G, Ji J, Kodikara J. Predicting

pipeline corrosion in heterogeneous soils using numerical model-
ling and artificial neural networks. Acta Geotechnica. 2022;17(4):
1463‐1476. doi:10.1007/s11440-021-01385-5

Babanajad SK, Gandomi AH, Alavi AH. New prediction models
for concrete ultimate strength under true‐triaxial stress states: an
evolutionary approach. Adv Eng Softw. 2017;110(Aug):55‐68.
doi:10.1016/jadvengsoft201703011

Babanouri N, Karimi Nasab S, Sarafrazi S. A hybrid particle swarm
optimization and multi‐layer perceptron algorithm for bivariate
fractal analysis of rock fractures roughness. Int J Rock Mech Min
Sci. 2013;60:66‐74. doi:10.1016/j.ijrmms.2012.12.028

Benz T, Schwab R. A quantitative comparison of six rock failure
criteria. Int J Rock Mech Min Sci. 2008;45(7):1176‐1186. doi:10.
1016/j.ijrmms.2008.01.007

Bozorgzadeh N, Escobar MD, Harrison JP. Comprehensive statistical
analysis of intact rock strength for reliability‐based design. Int
J Rock Mech Min Sci. 2018;106:374‐387. doi:10.1016/j.ijrmms.
2018.03.005

Ceryan N. Application of support vector machines and relevance
vector machines in predicting uniaxial compressive strength of
volcanic rocks. J Afr Earth Sci. 2014;100:634‐644. doi:10.1016/j.
jafrearsci.2014.08.006

Chang C, Haimson B. True triaxial strength and deformability of the
German continental deep drilling program (KTB) deep hole
amphibolite. J Geophys Res: Solid Earth. 2000;105(B8):18999‐19013.
doi:10.1029/2000JB900184

Contreras LF, Brown ET, Ruest M. Bayesian data analysis to quantify
the uncertainty of intact rock strength. J Rock Mech Geotech Eng.
2018;10(1):11‐31. doi:10.1016/j.jrmge.2017.07.008

Deng S, Zheng Y, Yue C, Tuan LV. Numerical investigation and analysis
of intermediate principal stress effects on rock failure behaviors. Adv
Civ Eng. 2020;2020(B10):1‐11. doi:10.1155/2020/8861732

Eberhart RC, Shi Y. Comparison between genetic algorithms and
particle swarm optimization. In: Proto VW, Saravanan N,
Waagen D, Eiben AE, eds. International Conference on Evolu-
tionary Programming. Springer; 1998:611‐616.

Feng XT, Zhang X, Kong R, Wang G. A novel mogi type true triaxial
testing apparatus and its use to obtain complete stress–strain
curves of hard rocks. Rock Mech Rock Eng. 2015;49(5):
1649‐1662.

Gao YH, Feng XT, Zhang XW, Feng GL, Jiang Q, Qiu SL. Characteristic
stress levels and brittle fracturing of hard rocks subjected to true
triaxial compression with low minimum principal stress. Rock Mech
Rock Eng. 2018;51(12):3681‐3697. doi:10.1007/s00603-018-1548-4

Haimson B, Chang C. A new true triaxial cell for testing mechanical
properties of rock, and its use to determine rock strength and
deformability of Westerly granite. Int J Rock Mech Min Sci. 2000;
37(1/2):285‐296. doi:10.1016/S1365-1609(99)00106-9

Hoek E, Brown ET.Underground Excavations in Rock. CRC Press; 1980a.
Hoek E, Brown ET. Empirical strength criterion for rock masses.

J Geotech Eng Div. 1980b;106:1013‐1035.
Hoek E, Brown ET. The Hoek–Brown criterion—a 1988 update. In:

Curran JH, ed. Proceedings of the 15th Canada Rock Mechanics
Symposium. University of Toronto; 1988:31‐38.

Hoek E, Brown ET. The Hoek‐Brown failure criterion and GSI‐2018
edition. J Rock Mech Geotech Eng. 2019;11(3):445‐463. doi:10.
1016/j.jrmge.2018.08.001

Jahed Armaghani D, Shoib RSNSBR, Faizi K, Rashid ASA. Devel-
oping a hybrid PSO–ANN model for estimating the ultimate
bearing capacity of rock‐socketed piles. Neural Comput Appl.
2015;28(2):391‐405. doi:10.1002/ceat.201100437

Karimi H, McAuley KB. Bayesian estimation in stochastic differential
equation models via laplace approximation. IFAC‐Pap. 2016;
49(7):1109‐1114. doi:10.1016/j.ifacol.2016.07.351

Kennedy J, Eberhart RC. Particle swarm optimization. In: Proceedings
of ICNN’95‐International Conference on Neural Networks. Vol 4.
IEEE; 1995:1942‐1948.

Li W, Tan Z. Research on rock strength prediction based on least
squares support vector machine. Geotech Geol Eng. 2016;35(1):
385‐393. doi:10.1007/s10706-016-0114-7

Liu Z, Shao J, Xu W, Wu Q. Indirect estimation of unconfined com-
pressive strength of carbonate rocks using extreme learning
machine. Acta Geotechnica. 2015;10:651‐663. doi:10.1007/s11440-
014-0316-1

Ma C, Yang J, Cheng L, Ran L. Adaptive parameter inversion analysis
method of rockfill dam based on harmony search algorithm and
mixed multi‐output relevance vector machine. Engineering
Computations. 2020;37(7):2229‐2249. doi:10.1108/EC-09-2019-0429

Miah MI, Ahmed S, Zendehboudi S, Butt S. Machine learning
approach to model rock strength: prediction and variable
selection with aid of log data. Rock Mech Rock Eng. 2020;53(10):
4691‐4715. doi:10.1007/s00603-020-02184-2

Michelis P. Polyaxial yielding of granular rock. J Eng Mech.
1985;111(8):1049‐1066. doi:10.1061/(ASCE)0733-9399(1985)
111:8(1049)

Michelis P. True triaxial cyclic behavior of concrete and rock in com-
pression. Int J Plast. 1987;3(3):249‐270. doi:10.1016/0749-6419(87)
90022-2

Miranda T, Gomes Correia A, Ribeiro e Sousa L. Bayesian method-
ology for updating geomechanical parameters and uncertainty
quantification. Int J Rock Mech Min Sci. 2009;46(7):1144‐1153.
doi:10.1016/j.ijrmms.2009.03.008

Mogi K. Pressure dependence of rock strength and transition from
brittle fracture to ductile flow. Bull Earthq Res Inst. 1966;44:
215‐232.

Mogi K. Effect of the triaxial stress system on the failure of dolomite
and limestone. Tectonophysics. 1971a;11(2):111‐127.

Mogi K. Fracture and flow of rocks under high triaxial compression.
J Geophys Res. 1971b;76(5):1255‐1269. doi:10.1029/JB076i005
p01255

Mogi K. Effect of the triaxial stress system on fracture and flow of
rocks. Phys Earth Planet Inter. 1972;5:318‐324.

Pan X, Hudson JA. A Simplified Three Dimensional Hoek–Brown Yield
Criterion. Rock Mechanics and Power Plants. Balkema; 1988.

Poli R, Kennedy J, Blackwell T. Particle swarm optimization. Swarm
Intell. 2007;1(1):33‐57. doi:10.1007/s11721-007-0002-0

Priest SD. Determination of shear strength and three‐dimensional yield
strength for the hoek‐brown criterion. Rock Mech Rock Eng.
2005;38(4):299‐327. doi:10.1007/s00603-005-0056-5

Ren Q, Wang G, Li M, Han S. Prediction of rock compressive strength
using machine learning algorithms based on spectrum analysis of
geological hammer. Geotech Geol Eng. 2018;37(1):475‐489. doi:10.
1007/s10706-018-0624-6

Shi Y, Eberhart RC. Empirical study of particle swarm optimization. In:
Proceedings of the 1999 Congress on Evolutionary Computation‐
CEC99 (Cat. No. 99TH8406). IEEE; 1999:1945‐1950. doi:10.1109/
CEC.1999.785511

Shinoda M, Miyata Y. PSO‐based stability analysis of unreinforced
and reinforced soil slopes using non‐circular slip surface. Acta
Geotechnica. 2019;14:907‐919. doi:10.1007/s11440-018-0678-x

Single B, Goel RK, Mehrotra VK, Garg SK, Allu MR. Effect of
intermediate principal stress on strength of anisotropic rock mass.
Tunnel Undergr Space Technol. 1998;13(1):71‐79. doi:10.1016/
s0886-7798(98)00023-6

Smart BGD. A true triaxial cell for testing cylindrical rock specimens.
Int J Rock Mech Min Sci Geomech Abst. 1995;32(3):269‐275.
doi:10.1016/0148-9062(94)00042-2

Song Z, Yin G, Ranjith PG, Li M, Huang J, Liu C. Influence of the
intermediate principal stress on sandstone failure. Rock Mech
Rock Eng. 2019;52(9):3033‐3046. doi:10.1007/s00603-019-01756-1

Sun XM, He MC, Liu CY, et al. Development of nonlinear triaxial
mechanical experiment system for soft rock specimen. Chin
J Rock Mech Eng. 2005;24(16):2870‐2874.

Takahashi M, Koide H. Effect of the intermediate principal stress on
strength and deformation behavior of sedimentary rocks at the
depth shallower than 2000 m. In: ISRM International Symposium:
International Society for Rock Mechanics. OnePetro; 1989.

DEEP UNDERGROUND SCIENCE AND ENGINEERING | 13

 27701328, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/dug2.70007 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [24/07/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1007/s11440-021-01385-5
https://doi.org/10.1016/jadvengsoft201703011
https://doi.org/10.1016/j.ijrmms.2012.12.028
https://doi.org/10.1016/j.ijrmms.2008.01.007
https://doi.org/10.1016/j.ijrmms.2008.01.007
https://doi.org/10.1016/j.ijrmms.2018.03.005
https://doi.org/10.1016/j.ijrmms.2018.03.005
https://doi.org/10.1016/j.jafrearsci.2014.08.006
https://doi.org/10.1016/j.jafrearsci.2014.08.006
https://doi.org/10.1029/2000JB900184
https://doi.org/10.1016/j.jrmge.2017.07.008
https://doi.org/10.1155/2020/8861732
https://doi.org/10.1007/s00603-018-1548-4
https://doi.org/10.1016/S1365-1609(99)00106-9
https://doi.org/10.1016/j.jrmge.2018.08.001
https://doi.org/10.1016/j.jrmge.2018.08.001
https://doi.org/10.1002/ceat.201100437
https://doi.org/10.1016/j.ifacol.2016.07.351
https://doi.org/10.1007/s10706-016-0114-7
https://doi.org/10.1007/s11440-014-0316-1
https://doi.org/10.1007/s11440-014-0316-1
https://doi.org/10.1108/EC-09-2019-0429
https://doi.org/10.1007/s00603-020-02184-2
https://doi.org/10.1061/(ASCE)0733-9399(1985)111:8(1049)
https://doi.org/10.1061/(ASCE)0733-9399(1985)111:8(1049)
https://doi.org/10.1016/0749-6419(87)90022-2
https://doi.org/10.1016/0749-6419(87)90022-2
https://doi.org/10.1016/j.ijrmms.2009.03.008
https://doi.org/10.1029/JB076i005p01255
https://doi.org/10.1029/JB076i005p01255
https://doi.org/10.1007/s11721-007-0002-0
https://doi.org/10.1007/s00603-005-0056-5
https://doi.org/10.1007/s10706-018-0624-6
https://doi.org/10.1007/s10706-018-0624-6
https://doi.org/10.1109/CEC.1999.785511
https://doi.org/10.1109/CEC.1999.785511
https://doi.org/10.1007/s11440-018-0678-x
https://doi.org/10.1016/s0886-7798(98)00023-6
https://doi.org/10.1016/s0886-7798(98)00023-6
https://doi.org/10.1016/0148-9062(94)00042-2
https://doi.org/10.1007/s00603-019-01756-1


Tipping ME. The Relevance vector machine. In: Solla SA, Leen TK,
Müller K, eds. NIPS’99: Proceedings of the 12th International
Conference on Neural Information Processing Systems. MIT Press;
1999:652‐658.

Tipping ME. Sparse Bayesian learning and relevance vector machine.
J Mach Learn Res. 2000;1:211‐244.

Tiwari RP, Rao KS. Physical modeling of a rock mass under a true
triaxial stress state. Int J Rock Mech Min Sci. 2004;41(3):433‐434.
doi:10.1016/j.ijrmms.2003.12.073

Wang R, Kemeny JM. A new empirical criterion for rock under
polyaxial compressive stresses. In: Daemen JJK, Schultz RA, eds.
Rock Mechanics. Balkema; 1995:453‐458.

Wang Y, Aladejare AE. Bayesian characterization of correlation
between uniaxial compressive strength and Young's modulus of
rock. Int J Rock Mech Min Sci. 2016;85:10‐19. doi:10.1016/j.
ijrmms.2016.02.010

Xu YH, Cai M, Zhang XW, Feng XT. Influence of end effect on rock
strength in true triaxial compression test. Can Geotech J. 2017;
54(6):862‐880. doi:10.1139/cgj-2016-0393

Yagiz S, Sezer EA, Gokceoglu C. Artificial neural networks and non-
linear regression techniques to assess the influence of slake dura-
bility cycles on the prediction of uniaxial compressive strength and
modulus of elasticity for carbonate rocks. Int J Num Anal
Methods Geomech. 2012;36:1636‐1650. doi:10.1002/nag.1066

Yang C, Gao W, Liu N, Song C. Low‐discrepancy sequence initialized
particle swarm optimization algorithm with high‐order nonlinear
time‐varying inertia weight. Appl Soft Comput. 2015;29:386‐394.
doi:10.1016/j.asoc.2015.01.004

Yu Z, Shi X, Miao X, et al. Intelligent modeling of blast‐induced rock
movement prediction using dimensional analysis and optimized
artificial neural network technique. Int J Rock Mech Min Sci.
2021;143:104794. doi:10.1016/j.ijrmms.2021.104794

Zhang L, Zhu H. Three‐dimensional Hoek‐Brown strength criterion for
rocks. J Geotech Geoenviron Eng. 2007;133(9):1128‐1135. doi:10.
1061/(ASCE)1090-0241(2007)133:9(1128)

Zhang Q, Liu Z, Tan J. Prediction of geological conditions for a tunnel
boring machine using big operational data. Automat Constr.
2019;100:73‐83. doi:10.1016/j.autcon.2018.12.022

Zhang Q, Zhu H, Zhang L. Modification of a generalized three‐
dimensional Hoek–Brown strength criterion. Int J Rock Mech
Min Sci. 2013;59:80‐96. doi:10.1016/j.ijrmms.2012.12.009

Zhao J, Feng XT, Zhang X, Yang C, Zhou Y. Time‐dependent beha-
viour and modeling of jinping marble under true triaxial com-
pression. Int J Rock Mech Min Sci. 2018;110:218‐230. doi:10.1016/
j.ijrmms.2018.08.009

Zhao XG, Wang J, Cai M, Su GS. Influence of intermediate principal
stress on the strainburst characteristics of beishan granite with
consideration of end effect. Rock Mech Rock Eng. 2021;54(9):
4771‐4791. doi:10.1007/s00603-021-02526-8

AUTHOR BIOGRAPHY

Qi Zhang is a professor who works
in Southeast University, China. He
obtained a doctoral degree in Tongji
University in 2008–2013, and studied as
a visiting scholar in the Department of
Civil Engineering and Mechanics at the

University of Arizona for 2 years in 2009–2010 and
2012–2013. His research interests focus in three‐
dimensional strength criterion and constitutive model
of rock mass, multi‐source information fusion and
evaluation of mountain tunnels, and inference of
dimensionality of tunnel surrounding rock and twin
modeling. He was awarded the Special Prize of the
12th Science and Technology Award by the China
Society of Rock Mechanics and Engineering, as well
as Future Leaders Program (2023) by ARMA. He
received two doctoral thesis awards by Shanghai
Municipal government and China Rock Mechanics
and Engineering Society respectively. Moreover, he
was appointed as the member of ASCE Rock
Mechanics Committees.

How to cite this article: Zhang Q, Wang M, Wang
N, Shen Y, He X. Probability prediction of true‐
triaxial compressive strength of intact rocks
based on the improved PSO‐RVM model. Deep
Undergr Sci Eng. 2025;1‐14.
doi:10.1002/dug2.70007

14 | ZHANG ET AL.

 27701328, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/dug2.70007 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [24/07/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1016/j.ijrmms.2003.12.073
https://doi.org/10.1016/j.ijrmms.2016.02.010
https://doi.org/10.1016/j.ijrmms.2016.02.010
https://doi.org/10.1139/cgj-2016-0393
https://doi.org/10.1002/nag.1066
https://doi.org/10.1016/j.asoc.2015.01.004
https://doi.org/10.1016/j.ijrmms.2021.104794
https://doi.org/10.1061/(ASCE)1090-0241(2007)133:9(1128)
https://doi.org/10.1061/(ASCE)1090-0241(2007)133:9(1128)
https://doi.org/10.1016/j.autcon.2018.12.022
https://doi.org/10.1016/j.ijrmms.2012.12.009
https://doi.org/10.1016/j.ijrmms.2018.08.009
https://doi.org/10.1016/j.ijrmms.2018.08.009
https://doi.org/10.1007/s00603-021-02526-8
https://doi.org/10.1002/dug2.70007

	Probability prediction of true-triaxial compressive strength of intact rocks based on the improved PSO-RVM model
	1 INTRODUCTION
	2 METHODOLOGY AND APPLICATION OF THE PSO-RVM MODEL
	2.1 Methodology
	2.1.1 Relevance vector machine
	2.1.2 Particle swarm optimization
	2.1.3 Kernel function and hyperparameters

	2.2 Input parameters selection
	2.3 Data set preparation and k-fold cross-validation
	2.4 Data normalization and model performance evaluation method
	2.5 Application of the PSO-RVM model

	3 VALIDATION OF THE PSO-RVM MODEL
	3.1 Validation of the PSO-RVM model based on data sets
	3.2 Testing set result comparison between machine learning models

	4 IMPROVED PSO ALGORITHM APPLIED TO THE MODEL AND PROBABILITY PREDICTION
	4.1 Improvement of the PSO algorithm
	4.2 Comparison of the improved PSO-RVM results
	4.3 Testing set results comparison between empirical criteria
	4.4 Probability prediction of the improved PSO-RVM model

	5 DISCUSSION ON SAMPLE SELECTION FOR COMBINED TESTS BASED ON TTA EXPERIMENTS AND THE IMPROVED PSO-RVM MODEL
	6 CONCLUSION
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT
	REFERENCES




