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ABSTRACT

Transition zones in railway systems, where properties of the track foundation change abruptly, are known to increase dynamic

loads, track deterioration, and passenger discomfort. As such, it is of particular importance to study railway transition zones with

abrupt changes in foundation properties to minimize these railway problems. This paper presents a closed-form solution for the

long-term deformation of an Euler-Bernoulli beam on an elastic foundation with multiple abrupt changes in foundation stiffness

and under multiple applied stationary point loads. The solutions are obtained by dividing the beam into segments and applying the

method of undetermined coefficients. This exact analytical solution constitutes an improvement upon an approximate solution,

which is presented in the literature as a recent method for modeling rail infrastructure at transition zones. A limitation of the

approximate solution is its inability to account for the changed behavior of the beam close to a transition zone. The closed-form

solution overcomes this limitation and can be used to assess the suitability of the approximate solution.

1 | Introduction

The need for increasingly efficient railway systems, driven in part
by rising populations, is ever present and continuously driving
innovation and improvement [1]. This is no less true for Aus-
tralia and its approximately 30,000km long rail network [2]. In
some areas, Australia is playing a leading role, for instance with
heavy haul rail networks [3] but is lacking in other areas, such
as the uptake of high-speed networks (Australia’s trains being
limited to a maximum of 160km/h) [4]. In either case, this moti-
vates research into methods for analyzing and improving railway
infrastructure.

Infinite beam-on-elastic-foundation models have been used to
study railway tracks since at least 1888 [5], having also been

applied in a variety of other fields [6-8]. In classical formulations,
the foundation is assumed to be homogeneous under the entire
length of the beam, however, in practice this is frequently an over-
simplification and more recent work has also considered inhomo-
geneous foundations. A rail line, for instance, may experience an
abrupt change in foundation stiffness when moving between a
soil subgrade and a concrete foundation associated with a bridge
or culvert. Inhomogeneities such as these are commonly referred
to as “transition zones” [7, 9-11]. Plastic deformations accumu-
late at different rates across the transition zone creating differ-
ential settlements, which increase dynamic loads on the track,
track deterioration, and passenger discomfort, thereby necessitat-
ing more frequent maintenance 7, 12]. Research into approaches
for mitigating the differential settlement across transition zones is
ongoing and motivates a better understanding of the mechanics
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of the system [7, 12-20]. For a detailed review of the literature
surrounding transition zones, we refer the reader to works by
Saniudo et al. [16], Indraratna et al. [21], and Fortunato et al. [22].

Experimental work has established methods for determin-
ing foundation properties [23-26] and investigating expected
behaviours of the track at transition zones [9, 25, 27, 28], however,
beyond this, investigations have largely been limited to numerical
modeling [21] such as spectral Galerkin methods [29] and finite
element methods, many of which are validated against empiri-
cal data. Finite element approaches have been particularly widely
used, as they are effective at modeling the basic one dimensional
case [10, 30], as well as more general two [31-33] and (most effec-
tively) three [10-12, 27, 34-40] dimensional cases. Additionally,
they can be more easily extended to non-linear theories, involv-
ing considerations of plastic deformations [34, 40, 41]. The most
significant limitation of numerical methods is large computation
times, which become particularly problematic when attempting
to optimize track parameters. Recent research has worked to
address this problem through the use of surrogate-assisted meth-
ods [30, 42, 43].

Although analytical solutions to some models do also exist
[44-46], many are limited to finite beams [47-49], though others
leverage a periodic track structure [33, 50-53]. In the absence of
a transition zone, the steady-state deformation of the beam may
easily be found using general solutions [44]. This is the basis for
the approach taken by Sajjad et al. [7], who attempt to solve for
the beam deformation around transition zones by superimpos-
ing solutions from multiple beams, each with a different uniform
foundation stiffness. The recovered deformations are then used to
inform the iterative design of multi-step transition zones. Whilst
this approach is validated against numerical modeling for the
cases considered in Reference [7], the solution obtained is only
an approximate solution to the proposed model so it may not be
valid under different conditions or changes to parameters. Also,
it is important to note that the model only considers stationary
loads. Dynamic amplification, which is considered to be impor-
tant to the analysis of transition zones [19], is not directly present
in this model. However, Sajjad et al. [7] multiply deformations by
a dynamic amplification factor to account for this limitation.

The purposes of this paper are two-fold. The first is to respond
to an absence in the literature of readily available, closed-form
solutions for the steady-state deformation of an Euler-Bernoulli
beam on a piece-wise homogeneous foundation with an arbitrary
number of static point forces and foundation discontinuities (the
model considered by Sajjad et al. [7], details of which are given in
Section 2.1). Secondly, to apply the analytical solution to investi-
gate the accuracy of the approximate solution proposed by Sajjad
et al., which is summarized here in Section 2.2.

The derivation of the analytical solution is given in Section 2.3,
wherein we divide the solution domain into homogeneous seg-
ments to which we can apply the method of undetermined coef-
ficients. We then combine individual solutions by enforcing con-
tinuity conditions at the boundaries. Notably, this is similar to the
method used in Reference [6] for a sinusoidal applied load in the
context of subterranean tunnel design and the classical methods
in Reference [5].

Enforcing the boundary conditions leads to a linear system of
4(n — 1) variables for the coefficients of the general solution,
where 7 is the number of beam segments (MATLAB code for con-
structing this matrix and solving for the deformation of the beam
is provided in the Supporting Information). Recovering the solu-
tion to the system is then reduced to solving the linear system.
Notably, for large systems, the matrices may be close to singu-
lar, and more advanced solution techniques may be required to
improve accuracy. This is an avenue of further research and is
not treated here.

A comparison between the approximate and analytical solutions
is presented in Section 3. First, the effect of varying placement of
point forces relative to transition zones is considered, specifically
to highlight a limitation of the approximate solution. Following
this, a comparison is also presented between the approximate and
analytical solutions within the context of the graduated transi-
tion zones considered in Sajjad et al. [7]. Concluding statements
are given in Section 4, followed by some remarks concerning the
model itself in Section 5.

2 | Governing Equations and Solutions

2.1 | Governing Equations

The movement of an Euler-Bernoulli beam on a visco-elastic
foundation with variable foundation stiffness is given by the par-
tial differential equation

4 2
E1 %Y e m®2 e

M+ O k() = F() &)

where x (m) is the position along the axis of the beam, 7 (s) is time,
y (m) is the vertical beam deformation, E (N/m?) is the Young’s
modulus of the beam, I (m*) is the moment of inertia of the beam,
m (kg/m) is the mass per unit length of the beam, C (Ns/m?) is
a damping coefficient, k(x) (N/m?) is the stiffness of the founda-
tion, and F(x) (N/m) is an applied transverse load. Notably, this
model ignores the effects of in-plane loads.

In this paper, we are concerned only with the static deformation
of the beam. As such, Equation (1) reduces to an ordinary differ-
ential equation for the deformation of an infinite Euler-Bernoulli
beam on an elastic foundation with variable stiffness:

4

d*y _
Elm + k(x)y = F(x) )

To represent transition zones on the track, we model the beam
stiffness as a step function of the form

ko x <z,
k, z1 < X £ zy,
k(x) =4 (©)
ki zpy <X < zg,
ki Z; < X

where k; represent the stiffness of each beam segment, and z;
represent the locations of the transition zones. In this paper, we
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TABLE1 | Definition of variables used in this paper.

X Position along the axis of the beam. (m)
y Vertical deformation of the beam. (m)
Va Approximate vertical deformation. (m)
E Young’s modulus of Elasticity. (N/m?)
I Moment of Inertia. (m*)

k(x) Foundation stiffness. (N/m?)

P Strength of applied load. (N/m)

X, Position of applied load. (m)

n Number of beam segments.

n Number of boundaries.

L Length of graduated transition zone. (m)
X; Starting position of ith gradation in graduated

transition zone. (m)

Ak Total change in foundation stiffness across the
graduated transition zone. (N/m?)

consider an applied load of the form
F(x) = ZP,.(S(x -x,,) 4)
i=1

where P, are the strengths of the point forces, 6(x) is the Dirac
delta, and x,,; are the locations of the point forcesfori =1, ..., m.
However, since (2) is linear, we can solve for a single point
force,

F(x) = P6(x = x,,) )

and superimpose the solutions. For clarity, we describe the solu-
tion for a single point force of strength P at position x,, which
may be coincident with the transition zones z;, giving rise to the
governing equation

&y

EI
dx*

+k(x)y = Pé(x —x,) (6)
We note that a summary of variables used in this paper is pre-
sented in Table 1.

2.2 | Approximate Solution

Previous work by Sajjad et al. [7] presents an “analytical
approach” to determining the deformation of a beam in the model
specified in Section 2.1. Their approach leverages superposition
and existing general solutions of (6) to solve for the effect of each
point force independently. Importantly, their solution is only an
approximation to the model. Sajjad et al. [ 7] assume that the beam
deformation depends only on the stiffness of the beam section on
which the point force lies. They then solve for the beam defor-
mation using a homogeneous foundation. A minor problem with
this approach is that it is undefined for a point force that rests on
a transition zone. A more significant problem is that the solution
does not satisfy the governing equation in at least one (possibly

semi-infinite) section of the beam. The particular form of the
solution used is written in Reference [7] as

N
P
w(x) = Zz—fe‘ﬁ("‘dr) [cos (B(x —d,)) +sin (p(x —d,))] (7)
p=1

where N is the number of point forces, d,is the location of the
point force and is equivalent to the notation x, used in this paper,
w is the deformation of the beam and is equivalent to y, and g =

V/kJEI.

Whilst (7) is the solution as written in Reference [7], it cannot be
the correct form of the derived solution nor the form used for the
calculations in Reference [7]. Firstly, it gives no indication of the
changing stiffness. Secondly, in the development of the solution,
Sajjad et al. [7] assume that the solution goes to zero in the limit
as |x| — oo and is symmetrical for a single point force. We suggest
here the accurate form of Equation (7), namely

N P
w(x) = Zz—f"e""x‘%kcos(m»c —d,))+sin(flx—d,])) (8)
p=1 p
where k, is the beam stiffness associated with the point force at
x,. and f, = {/k,/ EI. This form satisfies the boundary and sym-
metry conditions that (7) does not and produces results that are
at least qualitatively indistinguishable from those produced and
verified by Sajjad et al. [7].

2.3 | Analytical Solution

To solve Equation (6), we make the observation that it is a lin-
ear and piece-wise constant coefficient. Hence, by dividing the
domain into (possibly semi-infinite) segments, whose boundaries
are prescribed by the coordinates of the transition zones and
point force, we can reduce the problem to an ordinary differen-
tial equation with constant coefficients. Then, we can apply the
method of undetermined coefficients and create a full solution by
enforcing continuity conditions at the boundaries between each
segment.

By enforcing zero deformation in the limit as x goes to +oo, the
general solution to (6) (see Appendix A) is given by

4 4
ce ko/E1m1x+cze\/k0/E1m2x X < X,
4
{/kyJEIm;x
Z:lcj+2e ELm; X, < x < Xy,
j=
y(x) =3 i 9
4
Ye e V1 /ETmx X, 1 <Xx<X
P n—4+j n-1 n
j=
Car e4k,,/EIm3x+c e(‘/k”/Elm4x X <x
| "4n—-1 4n n

where x;,i =1, ...,n,are thelocations of the boundaries between
segments, k; are the stiffnesses in these segments, ¢y J=

1, ...,4m, are complex valued coefficients, and where i = \/—_1
Clearly, there are two possibilities for the number of boundaries,
n. Either  is one greater than the number of transition zones (the
positions of the transition zones and point force, z; and x,, are
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distinct for all i) or # is equal to the number of transition zones
(z; = x,, for some i, in which case the point force sits directly on
a transition zone).

From this, it remains to solve for the coefficients ¢ which is
simply done by implementing boundary conditions at positions
x; and forming a system of linear equations. At transition zones
that do not coincide with a point force, we enforce the continu-
ity of the solution and its first three derivatives. At a point force
(on a transition zone or otherwise) we enforce the continuity of
the function and its first two derivatives. Continuity of the func-
tion at a point force implies a discontinuity of the third derivative
proportional to the strength of the point force (see Appendix B).
The equations arising from implementing these conditions can
be found in Appendix C.

Implementing these boundary conditions gives a matrix equation
of the form Ac = b. The column vector b is a vector of zeroes
except at b, if x; is the location of the point force, in which case
b,; = P/EI. For example, if the system is composed of a point
force of strength P at x; and a transition zone stepping from k, to
k, at x,, then, in such case, the column vector b would be found
to be

b= (10)

The column vector ¢ = (¢, ..., ¢,,)", is formed directly from the
unknown coefficients, and A is a matrix of the form

A/-B, 0.0 0 ... 0
0 A, -B, 0 0 ... 0
A= . . . . .~ . (11)
0 . 0 A_ -B_, 0
K 0 A, -B,

where the 0 are zero-valued submatrices of appropriate size,

Similarly, B, € My,, and B; € My,,, i=1...,n—1 are
complex-valued matrices given by
943
B =[] 13a
=10 e (13a)
23
B, = [b’L] o (13b)
J&lj=1=0

_ t
b= ({'/k,. /EIm;) o VETETx, (13¢)

Figure 1 shows the general structure of the matrix A for five
boundaries, that is, = 5.

We note that the construction of the matrix A and the
right-hand-side vector b within a computer program is not a triv-
ial process. This is especially true if the goal is to be able to quickly
input an arbitrary set of transition zones and point forces. The
provided MATLAB code, in the Supporting Information, includes
a purpose-built class that contains all the methods we expect to
be commonly required.

It is also worth noting that each additional boundary (i.e., point
force, transition zone, or coinciding transition zone and point
force) adds four rows and columns to matrix A. In this way, solv-
ing for each point force and then superimposing serves to limit
the size of the matrices that need to be inverted. The described
method may be easily extended to calculate the displacement for
all point forces simultaneously, if that is desired, or for abrupt
changes in beam stiffness E 1. These cases, however, are not dealt
with in this paper nor are they implemented in the MATLAB code
in the Supporting Information.

3 | Comparison Between Analytical
and Approximate Solutions

In this section, we compare the beam deformations as predicted
by the approximate solution to those of the closed-form solution.
This is with the goal of providing insight into the behavior of the
approximate solution.

The broad behavior of the approximate solution was presented
in Reference [7] and validated against numerical models for the
relevant use cases. Here we consider cases chosen to display sit-
uations in which the approximate solution may not approximate
the model. Specifically, we look at the case of a single point force
placed close to a transition zone (Section 3.1), and the behavior of
the approximate solution as the number of gradations is increased
for a graduated transition zone as in Equation (14) (Section 3.2).
Notably, throughout this section, we choose to report the absolute
errors or strict differences between the analytic and approximate
deformations |y — y,| in preference over relative errors. This is
done to give a sense of the scale of the errors to the dimensions of
the track infrastructure.

The parameters used for the analysis in this section are chosen
to correspond to those for which the approximate method was
validated in Reference [7]. The Young’s modulus of the beam is

and A, € M,,, and A, € M,,,, i=2,...,n are submatrices
given by
L 143
A =[ ] , 12a
1= %8 j=3.=0 (122)
143
A= [ ] , 12b
=] (12b)
. g
di, = (ki /ETm; ) eVRalel (120)
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FIGURE1 | Example of structure of matrix A for five boundaries. Non-zero elements are marked in green, and zero elements are marked in white.
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12 F 17 (&7
-14 | Closed form 18
Approximate
-16 ! '
-10 5 5 10107
Beam coordinate x (m)
FIGURE2 | Point force applied away from transition zone, at x = —4, gives good match between closed-form and approximate solution.

givenas E = 2.1 X 10! N/m?, the moment of inertia can be calcu-
lated from the geometry of the beam cross-section as I = 3.42 x
1073 m*, chosen to correspond to UIC60 rail [7], and the strength
of the applied load can be calculated to be P = —9.8 x 10* N/m
which corresponds to a 10 t load. The values of the foundation
stiffness k vary throughout the section and are given as used.

3.1 | One Transition Zone

In the absence of transition zones, the approximate solution
developed in Reference [7] gives results that are algebraically

equivalent to the method described in this paper, as a conse-
quence of both methods being an implementation of preexisting
general solutions. The results begin to differ, however, as transi-
tion zones are introduced. In this section, we analyze the discrep-
ancy between the closed-form solution and approximate solu-
tion for varying placements of a point force and with a transition
zone at x = 0, over which the foundation stiffness changes from
80 x 10° N/m” to 5 x 10° N/m”.

Figure 2 shows the closed-form solution plotted against the
approximate solution for a point forced placed 4 meters from the
transition zone. The two approaches match well over the entire
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FIGURE4 |
tion zone at x = 0 and a point force at x = 0.1 (shown with vertical line).

Closed-form vs. approximate solution for a single transi-

plot, differing most significantly near the transition zone. Given
that the approximate solution only uses the stiffness where the
point force is applied, and hence does not consider the transition
zone, this behavior is expected.

Following this argument, it is expected that the two solutions
will differ most significantly when the point force is close to
the transition zone. Furthermore, a small change in the place-
ment of the point force across a transition zone should cause
only a small change in the displacement of the closed-form
solution but will result in abrupt and significant changes in
the approximate solution. This phenomenon is demonstrated in
Figures 3 and 4, where significant differences between the two
approaches are readily observed (approximately 1-6 mm). To the
left of the transition zone, the maximum deformation is signifi-
cantly underestimated by the approximate solution as it fails to
take into account the nearby region of low stiffness and con-
versely to the right of the transition zone. This is illustrated more

Closed-form vs. approximate solution for a single transition zone at x = 0 and a point force at x = —0.1 (shown with vertical line).

precisely in Figure 5, which shows the most extreme value of
the difference between the analytical solution and approximate
solution, y — y,, for various values of the position of the point
force x,, and with a transition zone at x = 0. As previously men-
tioned, away from the transition zone, the difference between the
two approaches is negligible. The difference gradually increases
closer to the transition zone before abruptly changing as the
point force moves from being applied on the stiffer beam seg-
ment to the less rigid segment. Around the transition zone, the
error reaches a high of approximately 5mm, close to 2.5 times
the predicted deformation from the analytical solution. There are
also smaller abrupt changes present at x ~ —1 and 3 which are
associated with a change in sign when the most extreme value
changes between being associated with an under-approximation
(over-approximation) at the transition zone and being associ-
ated with an over-approximation (under-approximation) at the
point force. Another observation we can make here is that, for
the approximate solution, the maximum deformation occurs pre-
cisely at the point force. For the analytical solution however,
the maximum deformation is offset, which aligns more closely
to the behavior of 3D finite element models, as can be seen in
Reference [35].

3.2 | Graduated Transition Zone
Using the same distribution of point forces as in Reference [7]
(see Table 2) we investigate the behavior of the approximate
and closed-form solutions for graduated transition zones. As
proposed in Reference [7], graduated transition zones replace
a single transition zone with multiple, equal-length segments
(referred to in this paper as “gradations”) of decreasing stiffness.
The stiffness of these sections is given by the formula
k, = Ak x (71074 L=0.1)X; Kppr (14)
where k;, i =0, ..., n, is the stiffness to the left of the ith transi-
tion zone, k., is the stiffness to the right of the graduated tran-
sition zone, Ak = k,,; — k, is the total stiffness change across
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Most extreme value of difference y — y, (m)

1 1 1 1 1

2 ! ! ! !
0 -8 6 -4 -2

0 2 4 6 8 10

Position of point force z, (m)

FIGURE5 | Mostextreme difference in deformation between closed-form and approximate solution plotted against the position of a single point

force with a transition zone at x = 0.

TABLE2 | Positions of point forces as used in [7] and investigated in Section 3.2.
x; X, X3 X4 X5 Xg x; Xg
—29.75 —27.25 —-15.25 -12.75 —8.75 —6.25 5.75 8.25
X9 X10 *11 X12 x13 X14 x15 X16
12.25 14.75 26.75 29.25 33.25 35.75 47.75 50.25

the graduated transition zone, L is the length of the graduated
transition zone, and X, is the location of the ith transition zone.
In particular, we take L =40 m, k, = 80 x 10° N/m?, k, = 5 x
10° N/m?, and space all transition zone locations, X;, evenly
between x =0 and x = L. We do, however, make one notable
exception in our analysis. The formula for k;, as written, leaves
a significant gap between the stiffness k, and k,,, that does
not smooth out as the number of transition zones increases. We
believe that this is an unintended effect and since it overshadows
errors associated with the graduated transition zones, we choose
to modify the formula, even if it is at a minor loss in accordance
with the physical context. To this end, we set the furthest right
stiffness to

Ak X X0 LD/ g (15)
rather than k,, ;.

Figures 6-8 show the deformation of the beam as the number of
gradations in the graduated transition zone is increased. Notably,
we see similar behavior as occurred with a single point force and
transition zone. That is, the most significant differences occur
at the transition zones, especially when a point force is close to
the transition zone. A markedly higher deformation at approx-
imately x = 50m is related only to the closer proximity of the
point forces at x;5 and x;4, as compared with the other point
forces.

Comparing Figures 6 and 8, the agreement between the two
approaches appears to improve as the number of transition zones
increases. At certain points, however, the difference may increase
significantly, as illustrated by Figure 7, specifically at x =~ 12
and 27. Figure 9, which graphs the most extreme absolute dif-
ference between the closed-form and approximate solutions for
an increasing number of transition zones, shows this trend for
the system described here. As the number of additional transi-
tion zones (i.e., gradations) is increased, the absolute difference
between the analytical and approximate solutions is unstable,
but generally decreases. After adding approximately 25 transition
zones, the instability is no longer observable, and the difference
begins to converge to and oscillate around, approximately 0.2 X
10~*m. The early erratic behavior of this graph can be attributed
to the proximity of transition zones and point forces. Due to the
process by which transition zones are added, the positions of
all but the first transition zone change. As such, the difference
between the two approaches may increase sharply if a transition
zone moves close to or is added near a point force. This effect
is most notable when there are few transition zones, and relative
positions change by larger amounts to fit evenly within the space.
On the other hand, the gradual decrease in error is associated
with the gradual decrease in the difference in stiffness across each
transition zone. As the change in stiffness becomes spread over a
larger area, so too do the errors associated with the approximate
solution. This reduction holds only to a point, however. More
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research is necessary before a conclusion can be made, although
it would appear that, in the limiting case, the analytical solution
approaches the correct value for a smooth transition (as opposed
to piece-wise), while the approximate solution does not.

The approximate threshold value of 25 transition zones and lim-
iting error of 0.2 x 10~*m are dependent on the parameters of
the model and hence cannot be used as rules. While specific
results relating to convergence properties are beyond the scope
of this paper, some general comments can still be made. The
broad properties displayed in Figure 9 and discussed above hold
for small changes to the position of the point forces and signifi-
cant changes to the magnitudes of the parameters E and I with

deformation magnitudes scaling at approximately the order of the
fourth derivative of the parameters in this latter case. For the axle
load P, the deformations and errors both scale directly—that is,
a doubling of the axle load will result in a doubling of all defor-
mations. Rigorous analysis of the convergence properties of the
approximate solution to the closed-form solution under varying
conditions is an avenue for future study.

4 | Conclusion

Abrupt changes in foundation stiffness underneath rail track can
create differential plastic settlements, which increase dynamic
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loads, track deterioration, and passenger discomfort, thereby
necessitating more frequent maintenance [7, 12]. This motivates
research into the deformation of rail tracks around these transi-
tion zones. Responding to an absence in the literature of read-
ily available closed-form solutions for the steady-state deforma-
tion of an Euler-Bernoulli beam on a visco-elastic foundation,
with multiple abrupt changes in stiffness and point forces, we
developed such a solution. The deformation is found in terms of
the solution of a linear system by splitting the beam into homo-
geneous segments and enforcing continuity conditions at the

boundary. Using this solution, we carried out an analysis of a
previously published technique [7], and drew particular atten-
tion to situations in which it may have larger errors. Specifically,
this was found to be when point forces are close to transition
zones and is highest when a point force is placed on the less stiff
side of the transition zone where the error was observed to reach
a high of approximately 5mm, close to 2.5 times the predicted
deformation from the analytical solution. The error in the approx-
imate solution was also assessed as it related to the use of the
graduated transition zones for which it was used in the original
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publication [7]. For low numbers of intermediary transition zones
(i.e., approximately 0-10), the errors fluctuate but stayed below
2.5 x 10~*m, before decaying in an oscillatory manner to less than
0.27 x 10~*m.

Ultimately, the approximation technique presented by [7] is an
effective method for rapidly estimating the beam deformation,
but may not adequately approximate the model under certain
conditions and should be applied with careful consideration. The
closed-form solution improves the solution method used by Saj-
jad et al. [7] in that it provides more accurate results to the model
studied in this paper.

5 | Remarks on Current Model

Mathematically, the closed-form solution presented in this paper
is derived based on analysis of stresses and motion equations
coupled with elastic behavior. Even though it provides a more
accurate solution in attempts to model railway tracks and tran-
sition zones compared to [7], there are limitations of the model
(i.e., Euler-Bernoulli beam theory) in capturing the properties
at the transition zones. The Euler-Bernoulli beam equation with
visco-elastic foundation, and the related static equation, are
dependent on elastic theories whereas the constitutive behavior
of materials in transition zones is not. As the settlement in
transition zones is elasto-plastic and dependent on the behav-
ior of materials used to fill the zones, the deformation may
be irrecoverable under the heavy axle loads of freight trains.
The analysis in this paper complies only with small-strain and
small-displacement theories, while, in reality, the deformations
conform more accurately to large-strain and large-displacements
theories. The treatment of more accurate elasto-plastic models
for analytical progress is a subject of future research. Never-
theless, we refer the reader to recent work in this space using
finite element methods such as [27, 32], and also to [21], which
presents a review of research into the modeling and improvement
of transition zones.

Author Contributions

Josiah Murray: investigation; conceptualization; writing - original
draft; writing - review and editing; visualization; validation; method-
ology; software; formal analysis; data curation. Michael H. Meylan:
conceptualization; investigation; methodology; formal analysis; supervi-
sion; software; validation; visualization. Trung Ngo: conceptualization;
writing - original draft; data curation; resources; software; methodology;
validation; funding acquisition; visualization. Ngamta Thamwattana:
conceptualization; writing — original draft; writing — review and editing;
funding acquisition; visualization; project administration; supervision;
resources; formal analysis. Buddhima Indraratna: writing — original
draft; resources; project administration; funding acquisition; conceptual-
ization; validation; methodology; visualization.

Acknowledgments

The authors are grateful to the Australian Research Council for the fund-
ing of Discovery Project DP220102862.

Conflicts of Interest

The authors declare no conflicts of interest.

Data Availability Statement

The data that supports the findings of this study are available in the Sup-
porting Information of this article.

References

1. B. Indraratna, P. Baral, Y. Qi, T. Ngo, C. Rujikiatkamjorn, and F. Ferreia,
“Advances in Ground Improvement and Principles of Track Geomechan-
ics for Future Railways,” in Proceedings of the 17th African Regional
Conference on Soil Mechanics and Geotechnical Engineering, (2020),
1-16.

2. BITRE, “Trainline 10,” Canberra, May, 2023.

3. B. Indraratna, Q. Sun, N. T. Ngo, and C. Rujikiatkamjorn, “Current
Research Into Ballasted Rail Tracks: Model Tests and Their Practical
Implications,” Australian Journal of Structural Engineering 18, no. 3
(2017): 204-220, https://doi.org/10.1080/13287982.2017.1359398.

4. B. Indraratna, Y. Qi, R. S. Malisetty, S. K. Navaratnarajah, F. Mehmood,
and M. Tawk, “Recycled Materials in Railroad Substructure: An Energy
Perspective,” Railway Engineering Science 30, no. 3 (2022): 304-322,
https://doi.org/10.1007/s40534-021-00267-6.

5. M. Hetenyi, Beams on Elastic Foundation: Theory With Applications
in the Fields of Civil and Mechanical Engineering, vol. 1, 4th ed., ed.
G. Cumberlege (Oxford University Press, 1955), 1-255.

6. H. Yu, Z. Zhang, J. Chen, A. Bobet, M. Zhao, and Y. Yuan, “Analytical
Solution for Longitudinal Seismic Response of Tunnel Liners With Sharp
Stiffness Transition,” Tunnelling and Underground Space Technology 77
(2018): 103-114, https://doi.org/10.1016/j.tust.2018.04.001.

7. M. B. Sajjad, B. Indraratna, T. Ngo, R. Kelly, and C. Rujikiatkamjorn,
“A Computational Approach to Smoothen the Abrupt Stiffness Varia-
tion Along Railway Transitions,” Journal of Geotechnical and Geoenviron-
mental Engineering 149, no. 8 (2023): 04023063, https://doi.org/10.1061/
JGGEFK.GTENG, https://orcid.org/0000-0002-9676-3728.

8.S. Narendar, S. S. Gupta, and S. Gopalakrishnan, “Wave Propagation
in Single-Walled Carbon Nanotube Under Longitudinal Magnetic Field
Using Nonlocal Euler-Bernoulli Beam Theory,” Applied Mathematical
Modelling 36, n0.9 (2012): 4529-4538 0307904X, https://doi.org/10.1016/
j-apm.2011.11.073.

9.C. Qu, X. Tan, Y. Xiao, Z. Wang, and L. Wei, “Subgrade Vibrations
and Long-Term Stability of an Embankment-Bridge Transition Zone
in Non-Ballasted High-Speed Railway,” Transportation Geotechnics 45
(2024): 101199, https://doi.org/10.1016/].trgeo.2024.101199.

10.J. N. Varandas, P. Holscher, and M. A. G. Silva, “Dynamic Behaviour
of Railway Tracks on Transitions Zones,” Computers & Structures 89, no.
13-14 (2011): 1468-1479, https://doi.org/10.1016/j.compstruc.2011.02.
013.

11. Z. Jabbar-Ali and V. Ghorbani, “Investigation on Dynamic Behav-
ior of Railway Track in Transition Zone,” Journal of Mechanical Sci-
ence and Technology 25, no. 2 (2011): 287-292, https://doi.org/10.1007/
$12206-010-1202-x.

12. M. Labrado Palomo, F. Roca Barcel9, F. Ribes Llario, and J. Real Her-
raiz, “Effect of Vehicle Speed on the Dynamics of Track Transitions,”
Journal of Vibration and Control 24, no. 21 (2017): 107754631774525,
https://doi.org/10.1177/1077546317745254.

13. T. Xin, Y. Ding, P. Wang, and L. Gao, “Application of Rubber Mats in
Transition Zone Between Two Different Slab Tracks in High-Speed Rail-
way,” Construction and Building Materials 243 (2020): 118219, https://doi.
org/10.1016/j.conbuildmat.2020.118219.

14. A.Jain, A. V. Metrikine, M. J. M. M. Steenbergen, and K. N. van Dalen,
“Railway Transition Zones: Evaluation of Existing Transition Structures
and a Newly Proposed Transition Structure,” International Journal of
Rail Transportation 12, no. 6 (2024): 979-999, https://doi.org/10.1080/
23248378.2023.2272668.

10 of 13

Engineering Reports, 2025

85US017 SUOWIWIOD BA1TE1D) 9{cedl|dde sy Ag peusenob a2 sejole YO 8sn J0 SaIn1 10} AIq1T8UIIUO ABIM UO (SUOIPUD-PUE-SWISIAL0 A8 | Im Ake.q 1 Ul |uo//:Sdny) SUORIPUOD pue SWis | 8U1 89S *[6202/20/v2] Uo ArigiTauliuo A|IM ‘[10UnoD Yolesssy [EIIBBIN PUY UesH [euotieN Aq 90TOL ZBUS/Z00T 0T/I0p/woo" A im Atelq jput|uoy/sdny Wwo.y pepeojumod 'S 'Sz0z '96T8LLST


https://doi.org/10.1080/13287982.2017.1359398
https://doi.org/10.1080/13287982.2017.1359398
https://doi.org/10.1007/s40534-021-00267-6
https://doi.org/10.1007/s40534-021-00267-6
https://doi.org/10.1016/j.tust.2018.04.001
https://doi.org/10.1016/j.tust.2018.04.001
https://doi.org/10.1061/JGGEFK.GTENG
https://doi.org/10.1061/JGGEFK.GTENG
https://doi.org/10.1061/JGGEFK.GTENG
https://orcid.org/0000-0002-9676-3728
https://orcid.org/0000-0002-9676-3728
https://doi.org/10.1016/j.apm.2011.11.073
https://doi.org/10.1016/j.apm.2011.11.073
https://doi.org/10.1016/j.apm.2011.11.073
https://doi.org/10.1016/j.trgeo.2024.101199
https://doi.org/10.1016/j.trgeo.2024.101199
https://doi.org/10.1016/j.compstruc.2011.02.013
https://doi.org/10.1016/j.compstruc.2011.02.013
https://doi.org/10.1016/j.compstruc.2011.02.013
https://doi.org/10.1007/s12206-010-1202-x
https://doi.org/10.1007/s12206-010-1202-x
https://doi.org/10.1007/s12206-010-1202-x
https://doi.org/10.1177/1077546317745254
https://doi.org/10.1177/1077546317745254
https://doi.org/10.1016/j.conbuildmat.2020.118219
https://doi.org/10.1016/j.conbuildmat.2020.118219
https://doi.org/10.1016/j.conbuildmat.2020.118219
https://doi.org/10.1080/23248378.2023.2272668
https://doi.org/10.1080/23248378.2023.2272668
https://doi.org/10.1080/23248378.2023.2272668

15. A. Ramos, R. Calgada, and A. G. Correia, “Influence of Train Speed
and Its Mitigation Measures in the Short- and Long-Term Performance
of a Ballastless Transition Zone,” Railway Engineering Science 31, no. 4
(2023): 309-324, https://doi.org/10.1007/s40534-023-00314-4.

16. R. Sa nudo, L. dell’Olio, J. A. Casado, I. A. Carrascal, and S. Diego,
“Track Transitions in Railways: A Review,” Construction and Building
Materials 112 (2016): 140-157, https://doi.org/10.1016/j.conbuildmat.
2016.02.084.

17. R. Sa nudo, I. Jardi, J.-C. Martinez, et al., “Monitoring Track Transi-
tion Zones in Railways,” Sensors 22, no. 1 (2021): 76, https://doi.org/10.
3390/s22010076.

18. A.Jain, A. V. Metrikine, M. J. M. M. Steenbergen, and K. N. van Dalen,
“Design of Railway Transition Zones: A Novel Energy-Based Criterion,”
Transportation Geotechnics 46 (2024): 101223, https://doi.org/10.1016/].
trgeo.2024.101223.

19. A.Jain, K. N. van Dalen, M. J. M. M. Steenbergen, and A. V. Metrikine,
“Dynamic Amplifications in Railway Transition Zones: Investigation of
Key Phenomena,” Journal of Physics: Conference Series 2647, no. 15
(2024): 152002, https://doi.org/10.1088/1742-6596/2647/15/152002.

20. B. Indraratna, S. Nimbalkar, and S. K. Navaratnarajah, “Use of Shock
Mats for Mitigating Degradation of Railroad Ballast,” Sri Lankan Geotech-
nical Journal - Special Issue on Ground Improvement 6, no. 1 (2014):
32-41.

21. B. Indraratna, M. B. Sajjad, T. Ngo, A. G. Correia, and R. Kelly, “Im-
proved Performance of Ballasted Tracks at Transition Zones: A Review of
Experimental and Modelling Approaches,” Transportation Geotechnics 21
(2019): 100260, https://doi.org/10.1016/j.trge0.2019.100260.

22. E. Fortunato, A. Paixao, and R. Cal¢ada, “Railway Track Transition
Zones: Design, Construction, Monitoring and Numerical Modelling,”
International Journal of Railway Technology 2, no. 4 (2013): 33-58,
https://doi.org/10.4203/ijrt.2.4.3.

23. F. Lamas-Lopez, Y.-J. Cui, N. Calon, S. Costa D’Aguiar, and T. Zhang,
“Impact of Train Speed on the Mechanical Behaviours of Track-Bed Mate-
rials,” Journal of Rock Mechanics and Geotechnical Engineering 9, no. 5
(2017): 818-829, https://doi.org/10.1016/jjrmge.2017.03.018.

24.T. W. Zhang, F. Lamas-Lopez, Y.-J. Cui, N. Calon, and S. Costa
D’Aguiar, “Development of a Simple 2D Model for Railway Track-Bed
Mechanical Behaviour Based on Field Data,” Soil Dynamics and Earth-
quake Engineering 99 (2017): 203-212, https://doi.org/10.1016/j.soildyn.
2017.05.005.

25.T. W. Zhang, Y. J. Cui, F. Lamas-Lopez, N. Calon, and S. Costa
D’Aguiar, “Modelling Stress Distribution in Substructure of French Con-
ventional Railway Tracks,” Construction and Building Materials 116
(2016): 326-334, https://doi.org/10.1016/j.conbuildmat.2016.04.137.

26. Z. Cai, G. P. Raymond, and R. J. Bathurst, “Estimate of Static Track
Modulus Using Elastic Foundation Models,” Transportation Research
Record 1470 (1994): 65.

27. G.Jing, M. Siahkouhi, H. Wang, and M. Esmaeili, “The Improvement
of the Dynamic Behavior of Railway Bridge Transition Zone Using Fur-
nace Slag Reinforcement: A Numerical and Experimental Study,” Pro-
ceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail
and Rapid Transit 236, no. 4 (2022): 362-374, https://doi.org/10.1177/
09544097211020603.

28. F. Lamas-Lopez, Y.-J. Cui, N. Calon, S. Costa D’Aguiar, M. De Peixoto
Oliveira, and T. Zhang, “Track-Bed Mechanical Behaviour Under the
Impact of Train at Different Speeds,” Soils and Foundations 56, no. 4
(2016): 627-639, https://doi.org/10.1016/j.sandf.2016.07.004.

29. R. T. R. Walker and B. Indraratna, “Moving Loads on a Viscoelastic
Foundation With Special Reference to Railway Transition Zones,” Inter-
national Journal of Geomechanics 18, no. 11 (2018): 04018145, https://doi.
0rg/10.1061/(ASCE)GM.1943-5622.0001274.

30.Y. Shang, M. Nogal, R. Teixeira, and A. R. R. M. Wolfert, “Optimal
Design of Rail Level Crossings and Associated Transition Zones Using
Adaptive Surrogate-Assisted Optimization,” Engineering Structures 282
(2023): 115740, https://doi.org/10.1016/j.engstruct.2023.115740.

31. K. Nasrollahi, J. C. Nielsen, E. Aggestam, J. Dijkstra, and M. Ekh,
“Prediction of Differential Track Settlement in Transition Zones Using a
Non-Linear Track Model,” in Advances in Dynamics of Vehicles on Roads
and Tracks II, 1st ed., ed. A. Orlova and D. Cole (Springer Cham, 2022),
282-292, https://doi.org/10.1007/978-3-031-07305-2_29.

32. K. Nasrollahi, J. C. O. Nielsen, E. Aggestam, J. Dijkstra, and M. Ekh,
“Prediction of Long-Term Differential Track Settlement in a Transition
Zone Using an Iterative Approach,” Engineering Structures 283 (2023):
115830, https://doi.org/10.1016/j.engstruct.2023.115830.

33.X. Zhang, D. Thompson, and X. Sheng, “Differences Between
Euler-Bernoulli and Timoshenko Beam Formulations for Calculating the
Effects of Moving Loads on a Periodically Supported Beam,” Journal
of Sound and Vibration 481 (2020): 115432, https://doi.org/10.1016/j.jsv.
2020.115432.

34. J. Bronsert, M. Baefiler, P. Cuéllar, and W. Riicker, “Numerical Mod-
eling of Train-Track-Interaction at Bridge Transition Zones Considering
the Long-Term Behaviour,” in Proceedings of the 11th International Con-
ference on Vibration Problems, ed. Z. Dimitrovova and A. Bracciali (AMP-
TAC, 2013).

35. A. Jain, A. V. Metrikine, and K. N. van Dalen, “Energy Redistribu-
tion in Railway Transition Zones by Geometric Optimisation of a Novel
Transition Structure,” Transportation Geotechnics 49 (2024): 101383,
https://doi.org/10.1016/j.trgeo.2024.101383.

36. H. Heydari-Noghabi, J. N. Varandas, J. A. Zakeri, and M. Esmaeili,
“Performance Evaluation of a Combined Transition System in
Slab-Ballasted Railway Track Using a Vehicle-Track-Substructure
Interaction Model,” KSCE Journal of Civil Engineering 27, no. 9 (2023):
3848-3860, https://doi.org/10.1007/s12205-023-1273-8.

37.Q. Sun, B. Indraratna, and J. Grant, “Numerical Simulation of
the Dynamic Response of Ballasted Track Overlying a Tire-Reinforced
Capping Layer,” Frontiers in Built Environment 6 (2020): 2297-3362,
https://doi.org/10.3389/fbuil.2020.00006.

38. A. Paixdo, J. N. Varandas, E. Fortunato, and R. Calcada, “Numeri-
cal Simulations to Improve the Use of Under Sleeper Pads at Transition
Zones to Railway Bridges,” Engineering Structures 164 (2018): 169-182,
https://doi.org/10.1016/j.engstruct.2018.03.005.

39. A. Paixo, J. N. Varandas, and E. Fortunato, “Dynamic Behavior in
Transition Zones and Long-Term Railway Track Performance,” Frontiers
in Built Environment 7 (2021): 2297-3362, https://doi.org/10.3389/fbuil.
2021.6589009.

40. A. Tucho, B. Indraratna, and T. Ngo, “Stress-Deformation Analysis of
Rail Substructure Under Moving Wheel Load,” Transportation Geotech-
nics 36 (2022): 100805, https://doi.org/10.1016/j.trgeo.2022.100805.

41. S. Yao, Y. Shan, S. Zhou, B. Wang, and C. L. Ho, “Differential Settle-
ment Prediction of Ballasted Tracks in Bridge—- Embankment Transition
Zones,” Journal of Geotechnical and Geoenvironmental Engineering 146,
no. 9 (2020): 04020075, https://doi.org/10.1061/(ASCE)GT.1943-5606.
0002307.

42. A. Jain, Y. Marykovskiy, A. V. Metrikine, and K. N. van Dalen, “Quan-
tifying the Impact of Stiffness Distributions on the Dynamic Behaviour of
Railway Transition Zones,” Transportation Geotechnics 45 (2024): 101211,
https://doi.org/10.1016/j.trgeo.2024.101211.

43. A. Ramos, A. Castanheira-Pinto, A. Colaco, J. Ferndndez-Ruiz, and
P. Alves Costa, “Predicting Critical Speed of Railway Tracks Using
Artificial Intelligence Algorithms,” Vibration 6, no. 4 (2023): 895-916,
https://doi.org/10.3390/vibration6040053.

44. L. Fryba, Vibrations of Solids and Structures Under Moving Loads
(Noordhoff International Publishing, 1972), 9001324202.

11 0f 13

85US017 SUOWIWIOD BA1TE1D) 9{cedl|dde sy Ag peusenob a2 sejole YO 8sn J0 SaIn1 10} AIq1T8UIIUO ABIM UO (SUOIPUD-PUE-SWISIAL0 A8 | Im Ake.q 1 Ul |uo//:Sdny) SUORIPUOD pue SWis | 8U1 89S *[6202/20/v2] Uo ArigiTauliuo A|IM ‘[10UnoD Yolesssy [EIIBBIN PUY UesH [euotieN Aq 90TOL ZBUS/Z00T 0T/I0p/woo" A im Atelq jput|uoy/sdny Wwo.y pepeojumod 'S 'Sz0z '96T8LLST


https://doi.org/10.1007/s40534-023-00314-4
https://doi.org/10.1007/s40534-023-00314-4
https://doi.org/10.1016/j.conbuildmat.2016.02.084
https://doi.org/10.1016/j.conbuildmat.2016.02.084
https://doi.org/10.1016/j.conbuildmat.2016.02.084
https://doi.org/10.3390/s22010076
https://doi.org/10.3390/s22010076
https://doi.org/10.3390/s22010076
https://doi.org/10.1016/j.trgeo.2024.101223
https://doi.org/10.1016/j.trgeo.2024.101223
https://doi.org/10.1016/j.trgeo.2024.101223
https://doi.org/10.1088/1742-6596/2647/15/152002
https://doi.org/10.1088/1742-6596/2647/15/152002
https://doi.org/10.1016/j.trgeo.2019.100260
https://doi.org/10.1016/j.trgeo.2019.100260
https://doi.org/10.4203/ijrt.2.4.3
https://doi.org/10.4203/ijrt.2.4.3
https://doi.org/10.1016/j.jrmge.2017.03.018
https://doi.org/10.1016/j.jrmge.2017.03.018
https://doi.org/10.1016/j.soildyn.2017.05.005
https://doi.org/10.1016/j.soildyn.2017.05.005
https://doi.org/10.1016/j.soildyn.2017.05.005
https://doi.org/10.1016/j.conbuildmat.2016.04.137
https://doi.org/10.1016/j.conbuildmat.2016.04.137
https://doi.org/10.1177/09544097211020603
https://doi.org/10.1177/09544097211020603
https://doi.org/10.1177/09544097211020603
https://doi.org/10.1016/j.sandf.2016.07.004
https://doi.org/10.1016/j.sandf.2016.07.004
https://doi.org/10.1061/(ASCE)GM.1943-5622.0001274
https://doi.org/10.1061/(ASCE)GM.1943-5622.0001274
https://doi.org/10.1061/(ASCE)GM.1943-5622.0001274
https://doi.org/10.1016/j.engstruct.2023.115740
https://doi.org/10.1016/j.engstruct.2023.115740
https://doi.org/10.1007/978-3-031-07305-2_29
https://doi.org/10.1007/978-3-031-07305-2_29
https://doi.org/10.1016/j.engstruct.2023.115830
https://doi.org/10.1016/j.engstruct.2023.115830
https://doi.org/10.1016/j.jsv.2020.115432
https://doi.org/10.1016/j.jsv.2020.115432
https://doi.org/10.1016/j.jsv.2020.115432
https://doi.org/10.1016/j.trgeo.2024.101383
https://doi.org/10.1016/j.trgeo.2024.101383
https://doi.org/10.1007/s12205-023-1273-8
https://doi.org/10.1007/s12205-023-1273-8
https://doi.org/10.3389/fbuil.2020.00006
https://doi.org/10.3389/fbuil.2020.00006
https://doi.org/10.1016/j.engstruct.2018.03.005
https://doi.org/10.1016/j.engstruct.2018.03.005
https://doi.org/10.3389/fbuil.2021.658909
https://doi.org/10.3389/fbuil.2021.658909
https://doi.org/10.3389/fbuil.2021.658909
https://doi.org/10.1016/j.trgeo.2022.100805
https://doi.org/10.1016/j.trgeo.2022.100805
https://doi.org/10.1061/(ASCE)GT.1943-5606.0002307
https://doi.org/10.1061/(ASCE)GT.1943-5606.0002307
https://doi.org/10.1061/(ASCE)GT.1943-5606.0002307
https://doi.org/10.1016/j.trgeo.2024.101211
https://doi.org/10.1016/j.trgeo.2024.101211
https://doi.org/10.3390/vibration6040053
https://doi.org/10.3390/vibration6040053

45.Z. Cai, G. P. Raymond, and R. J. Bathurst, “Natural Vibration Analysis
of Rail Track as a System of Elastically Coupled Beam Structures on Win-
kler Foundation,” Computers & Structures 53, no. 6 (1994): 1427-1436,
https://doi.org/10.1016/0045-7949(94)90408-1.

46. P. Koziol and D. Kudla, “Vertical Vibrations of Rail Track Gener-
ated by Random Irregularities of Rail Head Rolling Surface,” Journal of
Physics: Conference Series 1106 (2018): 012007, https://doi.org/10.1088/
1742-6596/1106/1/012007.

47. D. Adair, A. Ibrayev, J. R. Kim, and M. Jaeger, “Application of the Ado-
mian Modified Decomposition Method for a Beam With a Single Section
Discontinuity Resting on an Elastic Foundation,” in 26th International
Congress of Sound and Vibration, ed. M. J. Crocker (Canadian Acoustical
Association, 2019).

48.H. Yu, Y. Yang, and Y. Yuan, “Analytical Solution for a Finite
Euler-Bernoulli Beam With Single Discontinuity in Section Under
Arbitrary Dynamic Loads,” Applied Mathematical Modelling 60 (2018):
571-580, https://doi.org/10.1016/j.apm.2018.03.046.

49. B. Biondi and S. Caddemi, “Euler-Bernoulli Beams With Multiple
Singularities in the Flexural Stiffness,” European Journal of Mechan-
ics - A/Solids 26, no. 5 (2007): 789-809, https://doi.org/10.1016/].
euromechsol.2006.12.005.

50.T. Hoang, D. Duhamel, G. Forét, et al., “Response of a Periodi-
cally Supported Beam on a Non-Uniform Viscoelastic Foundation Sub-
ject to Moving Loads,” in Proceedings of the Third International Confer-
ence on Railway Technology: Research, Development and Maintenance, ed.
J. Pombo and S. Cagliari (Civil-Comp Press, 2016).

51. T. Hoang, D. Duhamel, G. Foret, H. P. Yin, P. Joyez, and R. Caby,
“Calculation of Force Distribution for a Periodically Supported Beam
Subjected to Moving Loads,” Journal of Sound and Vibration 388 (2017):
327-338, hitps://doi.org/10.1016/j.jsv.2016.10.031.

52.L.-H. Tran, T. Hoang, G. Foret, and D. Duhamel, “Calculation of
the Dynamic Responses of a Railway Track on a Non-Uniform Founda-
tion,” Journal of Vibration and Control 29, no. 15-16 (2023): 3544-3553,
https://doi.org/10.1177/10775463221099353.

53. P. Koziol, “Analytical Modelling of Rail Track to Account for Non-
linear Properties of Structure,” in MATEC Web of Conferences, vol.
262 (EDP Sciences, 2019), 11005, https://doi.org/10.1051/matecconf/
201926211005.

Supporting Information

Additional supporting information can be found online in the Supporting
Information section.

Appendix A

For an Euler-Bernoulli beam on a (possibly unbounded) interval (a, b),
with constant foundation stiffness k, we have the ordinary differential
equation for the static deformation

d*y

— +ky=0 Al
Tt TRy (A1)

EI

A general solution to this equation can be found using the method of
undetermined coefficients.

We begin by assuming a solution of the form y=e'™. Substitut-
ing into (Al), and comparing coefficients gives the characteristic
equation

EI*+k=0 (A2)
which has four solutions
r=\4/k/Eij,j=1,2,3,4 (A3)

where

m o= L1+ (Ada)

2
m = =11 (Adb)

2

1 .

my, = — (=1 +1i) (Adc)

V2
my = - (<1-1) (A4d)

V2
andi= \/—_1

Since (Al) is linear, we construct the general solution by superposition.
Doing so gives the general solution

y= cle\"/k/Elml + Cze\“/k/EImz + 036\“/1(/51»11 + C4e(’/k/Elm (A5)

The undetermined complex coefficients ¢; can then be found by enforc-
ing boundary conditions. Most notably, in the context of this paper, if
the interval (a, b) is unbounded below, then to prevent the deformation y
becoming unbounded, we must have c; = ¢, = 0. Likewise, if the interval
is unbounded above, we must have ¢; = ¢, = 0.

We form the general solution across the entire beam by combining dis-
joint sub-intervals. Doing so, and relabelling indices, yields

cle4k0/Elm3x + cze\4lk0/E1m4x X < xq,
4
4
_Zlc/-”e Vki/ETm;x X, <X <Xy,
=
y(x) =4 : (A6)

4

Yk, JETm;x
ch—4+je " / X, <X <X,
J=1

Yk, JEIm x {/k, JEImyx
Capre V" & +c4ﬂe n X, <x

where x;, i =1, ...,n, are the locations of the boundaries between seg-
ments, and k; are the stiffnesses in these segments.

Appendix B

Consider a beam, as set up in this paper, with a point force at x, and also
a transition zone, from k; to k, at this point. Integrating the governing
equation, (6), across this point gives

X; d4y X;
EI— + k(x)ydx = Pé(x —x,)dx (Bla)
x> d'x4 X; r
d4y Xp Xp Xp
Ell—| + kyydx + kyydx = P (B1b)
dx4 X7 X; X
» P

By the continuity of y, we can reduce this to simply

d3y
dx3

-
=57 (B2)

*p

which, noting that this extends to the case of no transition zone by taking
k, = k,, completes the boundary conditions at a point-force.

Appendix C
The equations arising from the implementation of boundary conditions
described in this paper are as follows. At boundaries x; fori =2, ..., 5 —
1, we have
4 4
4 4
ZC4[76+je\/k'7l/E1m/Xl _ Zc4i—2+/‘e ki/EIm;x; _ 0 (BSa)
Jj=1 j=1
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j=1
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- 0, otherwise
4 (B3c)
2
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4 - In the case that there is only one boundary, that is, # = 1, the system of
3 L
Zc4f—6+j< v ki—l/EImj) o Vi [ETmx, equations is given by
j=1 2 2
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At the final boundary, x,,, we have
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