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Abstract

Tunnels are essential components of contemporary infrastructure, yet guaran-
teeing their safety, longevity, and efficiency remains a persistent challenge. Recent
breakthroughs in artificial intelligence (AI) and digital twin (DT) technology
provide innovative solutions for the real-time monitoring of tunnel systems,
suggesting proactive maintenance tactics and improved safety protocols. This
review paper offers a comprehensive examination of the application of Al and DT
methodologies in tunnel surveillance. We explore the core concepts of Al and
DT and their applicability to structural monitoring, encompassing machine
learning, computer vision, and sensor integration. Through the utilization of these
Al-powered technologies, engineers are equipped with unparalleled insights into
the state and behavior of tunnels, facilitating the early identification of irregu-
larities and the optimization of maintenance timelines. We discuss the array of Al
techniques utilized for the immediate monitoring of tunnel systems, emphasizing
their foundations, benefits, and practical uses. Numerous studies have showcased
the effectiveness and adaptability of Al-based monitoring systems in various
tunnel settings. Moreover, we address the hurdles and constraints inherent in Al
and DT methodologies and suggest strategies for overcoming them, such as data
augmentation, interpretable Al, edge computing, and continuous monitoring.
Ultimately, the incorporation of Al and DT technologies into tunnel surveillance
signifies a paradigm shift, offering substantial advantages over conventional
techniques. By adopting Al-driven monitoring systems, tunnel operators can
augment safety, prolong the lifespan of infrastructure, and decrease operational
expenses, molding the future of subterranean infrastructure management.
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» Comprehensive examination of artificial intelligence (Al) and digital twin (DT)
methodologies specifically tailored for tunnel surveillance.

* Emphasis on the transformative potential of Al and DT in revolutionizing
tunnel monitoring, addressing the challenges of conventional methods.

* Detailed exploration of core Al concepts like machine learning and computer
vision, highlighting their applicability in real-time monitoring.

* Discussion of practical uses, benefits, and challenges of Al-based monitoring
systems in tunnel settings.

* Comparing and explaining the DT method in detail and its practical applica-
tions in tunneling.

* Suggestions for overcoming hurdles through strategies such as data augmen-
tation, interpretable Al, edge computing, and continuous monitoring, paving
the way for improved infrastructure management.
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1 | INTRODUCTION

Tunnels are indispensable components of modern infra-
structure, acting as crucial pathways for transportation
networks, underground utilities, and communication
systems. They are essential for facilitating the movement
of people and goods through urban areas and enabling the
transmission of essential services across vast distances,
playing a critical role in societal functioning (Huat
et al., 2023; Shahrour et al., 2021). Therefore, ensuring the
safety, durability, and efficiency of these underground
passageways is of paramount importance. Traditionally,
the monitoring of tunnels and other underground struc-
tures has depended on periodic inspections by human
inspectors, complemented by manual data collection and
analysis (Farahani et al., 2020; Xu & Yang, 2020; Yang &
Xu, 2021). While these methods have been adequate in
the past, they are inherently limited by factors such as
subjectivity, labor intensity, and the potential for human
error. Moreover, the intermittent nature of these inspec-
tions means that issues may go undetected for extended
periods, increasing the risk of structural deterioration and
potential hazards.

In the context of tunneling, artificial intelligence (AI)
includes a wide range of technologies and methodologies
designed to enable systems to perform tasks that typically
require human intelligence. Machine learning (ML), a
subset of Al focuses on developing algorithms that can
learn from data and make predictions or decisions without
being explicitly programmed. ML techniques are widely
used in tunnel monitoring for tasks such as anomaly
detection, predictive maintenance, and pattern recognition
based on historical sensor data. Deep learning (DL), a
subfield of ML, uses neural networks with multiple layers
to learn hierarchical representations of data (Barkhordari,
Fattahi, et al., 2024). In tunneling applications, DL al-
gorithms, such as convolutional neural networks (CNNs),
are often employed for image analysis tasks, such as crack
detection and defect classification in tunnel structures
based on visual data captured by cameras. While Al en-
compasses a broader range of techniques beyond ML

Artificial intelligence: computer process that imitates

human skills and activities.

Machine learning: subset of artificial intelligence that
robots learn to do a task better by analyzing a dataset.

Deep learning: a subset of machine learning, which is the

and DL, these subsets play pivotal roles in enhancing
safety, efficiency, and maintenance practices within tun-
neling infrastructure (Afrazi et al., 2022; Tan et al., 2025).
The following figure illustrates the differences between
these three approaches (Figure 1).

In recent years, Al has significantly advanced the
fields of tunneling and structural monitoring (Ali
et al., 2023; Asteris et al., 2022; Wang et al., 2023). It
offers real-time evaluations, predictive analytics, and
strategies for proactive maintenance. Utilizing Al algo-
rithms like ML (Xu et al., 2019), computer vision (Chen
et al., 2020), and sensor fusion, engineers and stake-
holders can obtain unique insights into the state and
behavior of tunnel structures. These Al-powered mon-
itoring systems facilitate ongoing data collection, analy-
sis, and interpretation, enabling the early identification of
anomalies, the recognition of potential risks, and the
enhancement of maintenance schedules.

The incorporation of Al technologies into tunnel
monitoring marks a significant shift, providing a multi-
tude of advantages over conventional approaches. Real-
time monitoring capabilities equip decision-makers with
immediate data, allowing for rapid responses to emerging
problems and the mitigation of risks to tunnel safety and
functionality (Afrazi & Yazdani, 2021; Zeng et al., 2020).
Moreover, Al-powered systems can utilize extensive
data from sensors, cameras, and other monitoring tools
to create predictive models and refine maintenance
strategies, significantly extending the lifespan of tunnel
infrastructure and lowering operational expenses.

In parallel, a digital twin (DT) acts as a dynamic
virtual replica of physical objects, processes, or systems,
utilizing real-time data from sensors and Internet
of Things (IoT) devices to simulate behavior, monitor
performance, and forecast future conditions. In the
context of tunneling, DTs are crucial for improving
design, construction, maintenance, and operational
processes. They allow engineers to simulate tunnels and
underground structures, optimizing designs for safety,
efficiency, and cost-effectiveness before construction.
During the construction phase, DTs support project

use of multilayered neural networks with enormous amounts

of data to enable self-improvement.

FIGURE 1 Relationship between artificial intelligence (Al), machine learning (ML), and deep learning (DL).
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management by offering real-time monitoring of progress,
resource usage, and adherence to timelines, ensuring suc-
cessful project completion through data-driven decision-
making.

Moreover, DTs facilitate ongoing monitoring of
tunnel infrastructure, identifying anomalies and
potential hazards early to extend the structure's lifespan
(Sakr et al., 2024). By amalgamating data from various
sensors, including strain gauges and accelerometers,
DTs offer insights into the health of the structure
and forecast maintenance requirements. They also
enhance tunnel operations by simulating scenarios
and evaluating data from IoT devices to boost energy
efficiency, traffic flow, and overall safety within
the tunnel environment. In emergency situations,
DTs bolster response efforts by offering real-time
situational awareness, simulating evacuation scenar-
ios, and assisting decision-making for emergency
responders, thereby improving resilience and reducing
risks to human safety (Omrany et al., 2023).

This review paper offers a thorough examination of
the methods and progress in real-time monitoring
of tunnel structures utilizing Al and DT. Through a
detailed review of existing research, we will explore the
array of Al and DT-based methodologies used for
structural monitoring, their applications across diverse
tunnel settings, and their capacity to revolutionize the
management and maintenance of underground infra-
structure. Our objective is to underscore the advantages,
constraints, and future prospects of AI- and DT-driven
tunnel monitoring systems. Due to the emerging nature
of DT applications in this field, specific case studies and
datasets are currently scarce but represent a critical
avenue for future research.

2 | TRADITIONAL METHODS
OF TUNNEL MONITORING

Tunnel monitoring has historically depended on a range
of conventional techniques to evaluate structural integrity
and guarantee the safety of underground infrastructures.
These techniques commonly encompass manual inspec-
tions (Sjolander et al., 2023), visual surveys (Sjolander
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et al., 2023), and the application of instrumentation like
inclinometers, crack gauges, and strain gauges. Manual
inspections involve visual examinations conducted by
trained individuals who scrutinize tunnel surfaces
for indications of stress, fracturing, or deformation.
Instrumentation-based monitoring hinges on sensors
strategically positioned within the tunnel to gauge
parameters such as deformation, strain, and groundwater
levels (Afrazi et al., 2024; Armaghani & Azizi, 2021; He,
Armaghani, Bhatawdekar, et al., 2021). The subsequent
figure illustrates the traditional approach to tunnel mon-
itoring (Figure 2).

While these traditional methods have played a
crucial role in identifying structural issues and directing
maintenance efforts, they are not without their limita-
tions and challenges. Initially, manual inspections are
laborious, time-consuming, and prone to human error.
The subjective aspect of visual assessments can result in
variations in data interpretation, potentially missing
early indicators of deterioration. Moreover, reaching
certain areas of the tunnel for inspection can be diffi-
cult, especially in extensive or intricate underground
networks.

Instrumentation-based monitoring, although more
objective and accurate than manual inspections,
encounters its own array of challenges. Traditional
sensors often have limited reach and may not offer a
complete understanding of the tunnel system's struc-
tural health. Furthermore, these sensors necessitate
regular maintenance and calibration, which can be
expensive and disruptive to tunnel operations. In some
instances, sensor malfunctions or data inaccuracies
may occur, leading to unreliable monitoring outcomes
and potential safety risks (Flah et al., 2021; Ramirez
et al., 2022).

Moreover, conventional monitoring techniques are
primarily reactive, meaning they are structured to detect
issues only after they have manifested. This reactive
strategy can lead to delays in identifying structural
problems, potentially jeopardizing the safety and integ-
rity of tunnel structures. Additionally, the data gathered
from traditional monitoring methods may not offer real-
time insights, complicating the ability to respond swiftly
to emerging threats or anomalies.

Tunnel monitoring

[ Manual inspections ]

[ Visual surveys ]

[ Use of instruments ]

FIGURE 2 Traditional tunnel monitoring.
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3 | FUNDAMENTAL PRINCIPLES
OF AI AND DT

3.1 | Introduction to AI and its relevance to
structural monitoring

AT has emerged as a pivotal force in the field of structural
monitoring, marking a significant shift in our approach
to evaluating and managing tunnel infrastructures (Dong
et al., 2022; Putra, 2021; Sofi et al.,, 2022; Zinno
et al., 2022). Its ability to process and interpret vast
quantities of data in real-time, identifying patterns that
might not be immediately discernible to human opera-
tors, holds the promise to significantly improve our
capacity to forecast, prevent, and address structural
challenges (He et al., 2023, 2024; Zhou et al., 2022).

In the sphere of tunnel monitoring, Al systems can
act as intelligent aids, persistently analyzing sensor data
to identify anomalies, forecast potential failures, and
refine maintenance schedules (Blasch et al., 2021; Coccia
et al., 2021; Mukhopadhyay et al., 2021). This transition
allows tunnel operators to transition from reactive to
proactive maintenance strategies, prioritizing safety,
efficiency, and cost-effectiveness by leveraging Al.

The reactive approach involves reacting to observed
damage after it has occurred, providing a limited window
for the formulation of mitigation strategies before
the damage escalates to unacceptable levels. This time
constraint often results in rushed or incomplete mitiga-
tion efforts, driven by the urgency of the situation.
In contrast, the proactive approach is defined by the
anticipation of potential sources of degradation and
the preemptive execution of measures designed to either
prevent or mitigate damage before it begins. The dis-
tinction between reactive and proactive methods is
illustrated in the subsequent figure.

3.2 | Basic principles of Al technologies

32.1 | ML

ML is central to many Al-driven tunnel monitoring
systems, offering the ability to derive valuable insights
from extensive datasets without the need for explicit
programming. ML algorithms can be trained on histor-
ical sensor data to identify patterns that signal structural
deterioration, enabling the early identification of poten-
tial problems before they escalate into expensive repairs
or safety risks (Armaghani et al., 2024; Barkhordari,
Barkhordari et al., 2024; Chopra et al., 2018).

Supervised learning algorithms, for example, can be
utilized to predict tunnel behavior based on labeled data,
such as historical instances of structural damage and
corresponding sensor readings. Conversely, unsupervised
learning techniques can uncover hidden patterns in
unlabeled data, potentially unveiling emerging threats
or vulnerabilities that were not previously recognized.
Reinforcement learning approaches can enhance main-
tenance strategies by learning from past actions and their
results, iteratively refining decision-making processes to
ensure long-term structural integrity.

3.2.2 | Computer vision

Computer vision is crucial in tunnel monitoring, enabling
automated analysis of visual data captured by cameras
within tunnel environments (Attard et al., 2018; Chen
et al., 2021). By employing computer vision techniques,
such as object detection, image segmentation, and
anomaly detection, Al systems can identify and locate
structural defects, cracks, or deformations in real-time,
facilitating quick response and intervention (Chi
et al., 2013; Koch et al., 2015; Li, Li, Chen, et al., 2024;
Wu et al., 2021).

Object detection algorithms can identify specific
features of interest within images, such as cracks or dis-
placement joints, allowing for precise identification and
characterization of structural anomalies. Image segmen-
tation techniques can divide images into meaningful
sections, enabling detailed analysis of structural compo-
nents and their condition. Anomaly detection methods
can highlight deviations from normal visual patterns,
alerting operators to potential safety hazards or struc-
tural issues that demand immediate attention.

3.2.3 | Sensor fusion

A crucial aspect of Al-driven tunnel monitoring systems is
sensor fusion, which enables the integration of data from
multiple sensors to offer a comprehensive view of struc-
tural health and performance. By combining data from
various sources, such as accelerometers, strain gauges,
temperature sensors, and environmental sensors, Al sys-
tems can overcome the limitations of individual sensors
and enhance overall monitoring capabilities (Das
et al., 2021; Fakharian et al., 2024; Li et al., 2021; Shaffiee
Haghshenas et al., 2022; Zhang et al., 2022).

For instance, merging data from accelerometers and
strain gauges can provide insights into structural defor-
mation and dynamic behavior during tunnel excavation or
operation. Similarly, integrating temperature and humid-
ity measurements with structural data can help evaluate
the influence of environmental factors on tunnel integrity.
Sensor fusion techniques can enhance the reliability and
robustness of monitoring systems by cross-validating
sensor outputs, mitigating sensor failures or inaccuracies,
and providing a more accurate representation of the
monitored environment.

3.3 | Basic principles of DT technologies
DT technologies transform tunnel monitoring by creat-
ing virtual counterparts of physical structures. These
counterparts are continuously updated with real-time
sensor data, offering a dynamic simulation of structural
behavior and performance (Baghalzadeh Shishehgar-
khaneh et al., 2022; Huat et al., 2024; Pang et al., 2024).
DTs incorporate physics-based models, real-time sensor
data, and historical records to provide a comprehensive
understanding of tunnel conditions.

DTs enable predictive maintenance by forecasting
potential issues based on real-time and historical data,
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facilitating proactive interventions to prevent structural
failures. They optimize tunnel performance by analyzing
data to enhance operational efficiency and extend infra-
structure lifespan. Additionally, DTs serve as decision
support tools, aiding operators, engineers, and stake-
holders in making informed decisions regarding mainte-
nance, repairs, and upgrades.

The integration of AI technologies enhances the
intelligence of DTs, enabling advanced analytics for
predictive modeling, visual inspection, and comprehen-
sive data analysis. This synergy improves the accuracy of
structural health assessments and predictive capabilities,
advancing safety, efficiency, and sustainability in tunnel
management. In summary, DT technologies offer a
holistic approach to tunnel monitoring, merging real-
time data integration, physics-based modeling, and
advanced analytics to revolutionize infrastructure man-
agement practices.

4 | AI TECHNIQUES FOR
REAL-TIME MONITORING

4.1 | Interpretability in Al for tunnel
monitoring

Interpretability in AI models is essential for ensuring
trust and wusability, particularly in safety-critical
applications like tunnel monitoring. This involves
elucidating how models reach their predictions, which
is vital for nonspecialist stakeholders such as mainte-
nance personnel and policymakers. Techniques like
SHAP (Shapley Additive Explanations) and LIME
(Local Interpretable Model-agnostic Explanations) are
employed to explain model outputs. For example,
SHAP assigns importance scores to input features,
helping operators understand which parameters (e.g.,
strain gauge data, temperature variations) significantly
influence anomaly detection. Similarly, feature visual-
ization in CNNs allows the identification of patterns
leading to defect classification. Such approaches
enhance transparency and foster trust in Al-driven
systems.

4.2 | Detailed exploration of Al techniques
utilized for tunnel monitoring

Al techniques have become pivotal tools in the realm of
real-time monitoring for tunnel structures, providing
a sophisticated range of methods to guarantee the
safety, reliability, and efficiency of underground infra-
structures (Chen et al., 2023; Hajihassani et al., 2014;
Jahed Armaghani & Azizi, 2021a, 2021b). These
Al-powered systems utilize sophisticated algorithms
and data analytics to continuously process sensor data
streams, identify anomalies, forecast potential struc-
tural problems before they worsen, and refine mainte-
nance strategies. This section offers a thorough analysis
of numerous AI methods employed for tunnel mon-
itoring, discussing their advantages, mechanisms, and
foundational principles (Eng et al., 2023).
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4.3 | Utilization of ML algorithms

ML algorithms are a vital part of Al-powered tunnel
monitoring systems. These algorithms are adept at
autonomously learning patterns, relationships, and trends
from historical sensor data, enabling the creation of pre-
dictive models and intelligent decision-making processes.
In tunnel monitoring applications, ML techniques
such as supervised learning, unsupervised learning, and
reinforcement learning are commonly applied, as depicted
in Figure 3.

Supervised learning, as depicted in Figure 4, is an
ML approach where the algorithm learns from labeled
data, linking inputs with their corresponding outputs.
This enables the algorithm to generalize patterns and
relationships, making predictions or classifications on
unseen data. Common algorithms encompass regression
for continuous outputs and classification for discrete
ones. Supervised learning algorithms, including support
vector machines (Jahed Armaghani et al., 2023), decision
trees (He, Armaghani, Masoumnezhad, et al., 2021),
random forests (Zhou et al., 2019), and neural networks
(Asteris et al., 2019), as shown in Figure 4, are employed
to classify sensor data and identify patterns indicative of
structural anomalies. By training these algorithms on
labeled historical data, tunnel operators can develop
predictive models capable of detecting deviations from
normal operating conditions in real-time. Supervised
learning methods learn from examples, where the input
data (e.g., sensor readings) are associated with corre-
sponding output labels (e.g., normal or anomalous con-
ditions) (Figure 5).

Unsupervised learning is a subset of ML where
algorithms analyze data without the need for labeled
examples. Its goal is to uncover patterns and structures
within data to offer insights. The primary methods
include outlier detection (identifying unusual data
points), clustering (grouping similar data points), and
dimensionality reduction (simplifying data visualization).
In the field of geotechnical engineering, these techniques
assist in monitoring works, classifying rock types, and
enhancing data analysis. Unsupervised learning tech-
niques, such as clustering algorithms and anomaly
detection methods, allow for the identification of hidden
patterns or outliers in unlabeled sensor data, enabling the
discovery of previously unknown structural issues or

Damage

Reactive | | [Proactive actions |

Structural
integrity limit

FIGURE 3 Comparing reactive and proactive methods in
structural integrity. Adopted from NUREG/CR-6923.
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( Supervised learning ) (Unsupervised learning> ( Reinforced learning )

FIGURE 4 The fields of artificial intelligence (Al), machine learning (ML), and deep learning (DL) in a specific context, adopted from Marcher

et al. (2021).
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FIGURE 5 Principle of supervised learning, adopted from Marcher
et al. (2021).
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FIGURE 6 Principle of unsupervised learning, adopted from
Marcher et al. (2021).

Environment
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FIGURE 7 Principle of reinforcement learning, adopted from
Marcher et al. (2021).

abnormal behaviors. The subsequent figure illustrates the
principles of unsupervised learning.

Reinforcement learning approaches enable Al sys-
tems to autonomously learn optimal control policies
through trial-and-error interactions with the tunnel
environment, facilitating adaptive and proactive main-
tenance strategies, as depicted in Figures 6 and 7).

4.4 | Computer vision methods

Computer vision techniques are essential for visual mon-
itoring systems in tunnels, utilizing cameras to capture

images or videos of the tunnel's surroundings. Sophisti-
cated image processing methods, such as CNNs (Tuama
et al., 2016), feature extraction algorithms, and image
segmentation techniques, are used to analyze visual data
and extract valuable information about the structural
condition and integrity. CNNs, especially, have shown
remarkable effectiveness in tasks like object detection,
image classification, and semantic segmentation in tunnel
monitoring scenarios. These DL architectures can
automatically detect and locate structural flaws, cracks, or
distortions in images, facilitating quick identification and
evaluation of anomalies. Moreover, feature extraction
algorithms can extract key features or attributes from
images, enabling the quantification and analysis of struc-
tural characteristics such as displacement, distortion, or
corrosion. Image segmentation techniques further divide
images into separate areas, aiding in detailed examination
and interpretation of structural elements and flaws.

4.5 | Integrating sensor data for enhanced
monitoring

Sensor fusion methods are crucial for merging data from
various sensors placed within tunnel structures, offering a
thorough understanding of their health and performance.
By merging information from a range of sensor types,
including accelerometers, strain gauges, temperature sen-
sors, and environmental sensors, Al-powered systems can
evaluate structural conditions in real-time and identify
deviations from expected performance (Ding et al., 2024;
Jiang et al., 2022). The combination of data from different
sensors enhances monitoring capabilities, allowing tunnel
operators to gain a more complete understanding of
structural health and integrity. For example, integrating
accelerometer data with strain gauge readings can offer
insights into structural deformation and dynamic behavior
during tunnel excavation or operation (Fakharian
et al., 2023; Ghanizadeh et al., 2023; Mao et al., 2024).
Similarly, merging temperature and humidity data with
structural information can help assess the influence of
environmental factors on tunnel integrity. Sensor fusion
methods enable Al-powered monitoring systems to pin-
point potential risks, optimize maintenance schedules, and
more effectively mitigate safety hazards by cross-verifying
sensor data, compensating for sensor failures or inaccu-
racies, and providing a more accurate depiction of the
monitored environment (Ding et al., 2024).

In applications, Al technologies for tunnel monitor-
ing are frequently implemented as unified systems that
integrate ML algorithms, computer vision techniques,
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and sensor fusion strategies. These unified systems har-
ness the synergistic capabilities of different Al technol-
ogies to deliver robust and comprehensive monitoring
solutions tailored to the specific needs of underground
infrastructure. Tunnel operators can ensure the long-
term safety and reliability of tunnel structures, enhance
maintenance processes, and gain actionable insights into
the structural health of their tunnels by employing Al

5 | DT TECHNIQUES FOR
REAL-TIME MONITORING
5.1 | Overview of DT technology

DT technology has emerged as a potent instrument for
the immediate monitoring of tunnel infrastructure, pro-
viding a virtual depiction of physical assets that reflects
their state and performance. A DT comprises three main
elements: a virtual replica of the actual tunnel structure,
the immediate incorporation of data from sensors and
IoT devices, and sophisticated analytics for evaluating

performance and facilitating decision-making (Hu
et al., 2021; Li, Li, Rui, et al., 2024; Wu et al., 2022).

5.2 | Components of a DT system
A DT system for tunnel monitoring typically consists of
the following components.

5.2.1 | Virtual model

The virtual model acts as the digital counterpart to the
physical tunnel structure, encompassing its geometry,
materials, and structural characteristics. Sophisticated
modeling methods, including finite element analysis (FEA)
and computational fluid dynamics (CFD), are utilized to
generate precise simulations of how the tunnel behaves
under different loadings and environmental conditions.

5.2.2 | Real-time data integration

Data from sensors positioned within the tunnel, such as
strain gauges, accelerometers, temperature sensors, and
environmental monitors, are persistently transmitted into
the DT system. [oT devices ensure smooth integration of
this sensor data, allowing for thorough monitoring of the
structural health and performance.

5.2.3 | Advanced analytics

Complex analytics algorithms within the DT framework
process the collected sensor data, scrutinizing patterns,
identifying anomalies, and forecasting possible problems.
Techniques like ML, statistical modeling, and data
fusion are used to derive practical insights from the ex-
tensive sensor data, facilitating proactive maintenance
plans and informed decision-making.
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5.3 | Applications of DT in tunnel monitoring
DT technology offers several applications in tunnel
monitoring, including the following.

5.3.1 | Predictive maintenance

By virtually replicating the behavior of tunnel structures in
real-time and comparing it with sensor data, DTs can an-
ticipate maintenance requirements before problems worsen.
Predictive maintenance models utilize historical data and
sophisticated analytics to foresee possible breakdowns,
streamline maintenance schedules, and reduce downtime.

5.3.2 | Performance optimization

DTs facilitate performance enhancement by simulating
various operational scenarios and evaluating their effects
on tunnel behavior. By examining sensor data and sim-
ulating alterations in operational conditions, operators
can pinpoint opportunities for efficiency enhancements,
energy conservation, and risk reduction.

533 |
support

Scenario analysis and decision

DTs support scenario analysis and decision-making by
offering a virtual space for hypothesis testing and
assessing alternative approaches. Operators can simulate
the outcomes of maintenance activities, environmental
adjustments, or emergency situations, facilitating in-
formed choices and efficient risk management.

6 | AI AND DT APPLICATIONS IN
REAL-TIME TUNNEL STRUCTURE
MONITORING

6.1 | Structural health monitoring

Ensuring the structural integrity and safety of tunnel
constructions/structures is crucial. AI-powered methods
enable proactive maintenance strategies, offering inno-
vative solutions for early detection of structural problems
and continuous monitoring. Two primary facets of
structural health monitoring supported by Al include the
following.

6.1.1 | Detecting deformations, cracks,
and other structural issues

Al algorithms, particularly those based on computer
vision and ML, are adept at scrutinizing sensor data to
spot minute deformations, fractures, and other structural
irregularities in tunnel infrastructure. By evaluating data
from sensors like strain gauges, accelerometers, and
cameras, Al systems can spot alterations in structural
behavior that might signal potential problems. These
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algorithms can autonomously analyze sensor data flows,
discern patterns that suggest structural deterioration,
and notify operators about anomalies instantly. Through
ongoing surveillance and examination, Al-powered
systems facilitate the early identification of structural
flaws, enabling prompt intervention and maintenance
(Dang et al., 2022; Liu et al., 2023; Sharma et al., 2021).

6.1.2 |
analysis

Predictive maintenance through Al

Al-powered predictive maintenance models leverage his-
torical sensor data and ML algorithms to forecast the
future state of tunnel structures. By scrutinizing patterns
in sensor data and relating them to historical instances of
structural deterioration or failure, these models can fore-
cast upcoming maintenance requirements before they
evolve into serious problems. Predictive maintenance al-
gorithms can pinpoint trends in structural decline, esti-
mate the remaining service life, and fine-tune maintenance
schedules to lessen downtime and cut repair expenses. By
incorporating Al-powered predictive maintenance tactics
into tunnel management processes, operators can antici-
pate maintenance needs, prolong asset lifespans, and
boost the overall safety and dependability of tunnels.

6.2 | Geotechnical monitoring

Geotechnical monitoring is vital for evaluating soil stability
and displacement around tunnel structures, reducing geo-
technical hazards, and guarantecing the long-term stability
of underground infrastructure. Al technologies provide
sophisticated geotechnical monitoring solutions that facili-
tate immediate assessment and risk mitigation (Baghbani
et al., 2022). Two primary facets of geotechnical monitoring
improved by Al include the following.

6.2.1 | Soil stability and movement detection
Al-powered geotechnical monitoring systems employ data
from devices like inclinometers, piezometers, and tiltmeters
to evaluate soil stability and monitor movement around
tunnel structures. By scrutinizing data feeds from these
sensors through ML algorithms, Al systems can spot
patterns that suggest ground displacement, settlement, or
slope instability. These algorithms can discern minor shifts
in ground conditions, evaluate the extent and speed
of movement, and issue early alerts about potential
geotechnical risks. Through ongoing surveillance and ex-
amination, Al-driven geotechnical monitoring systems
facilitate proactive actions to reduce risks and maintain the
stability of tunnel infrastructure (Bardhan & Samui, 2022).

6.2.2 | Risk assessment using Al algorithms
Al-powered risk assessment frameworks merge geotechnical
data with ML methodologies to gauge the potential and
impacts of geotechnical hazards near tunnel structures.

These frameworks scrutinize elements such as soil char-
acteristics, groundwater levels, seismic activity, and past
geotechnical occurrences to evaluate the risk landscape
of tunnel environments (Haque, 2023; Qi et al., 2023). By
determining the likelihood of geotechnical hazards like
landslides, subsidence, or groundwater infiltration,
Al-driven risk assessment models empower informed
decision-making and prioritization of mitigation strategies.
By incorporating Al-based risk assessment into tunnel
management protocols, operators can proactively identify
and mitigate potential geotechnical risks, safeguarding the
safety and adaptability of tunnel infrastructure across vari-
ous geological contexts (Afzal et al., 2021; Lin et al., 2021).

6.3 | DT applications in real-time monitoring
of tunnel structure

In the domain of infrastructure management, the impor-
tance of real-time monitoring for ensuring safety and
durability cannot be overstated. DT technology has
become a formidable instrument in this area, providing
unmatched insights into the state and performance of a
wide range of structures, including tunnels. The imple-
mentation of DTs in real-time monitoring of tunnel struc-
tures marks a significant leap forward, transforming how
engineers and regulatory bodies oversee these vital assets.

Real-time monitoring of tunnel structures involves
the ongoing gathering of data from sensors strategically
positioned within the tunnel infrastructure. These sensors
can monitor a variety of parameters, including temper-
ature, humidity, structural strain, vibration, and air
quality. By coupling these sensors with a DT framework,
engineers can construct a virtual model of the tunnel and
its surrounding environment.

A major advantage of employing DTs in tunnel
monitoring is the capacity to simulate different scenarios
and foresee potential problems before they become crit-
ical. For example, by examining data gathered from
sensors embedded in tunnel walls, engineers can evaluate
the structural integrity and pinpoint areas susceptible to
deterioration or collapse. This forward-thinking strategy
allows maintenance teams to act swiftly, minimizing the
risk of accidents and costly repairs (Machado & Fu-
tai, 2024; Yu et al., 2021, 2023).

Moreover, DTs support predictive maintenance
strategies by utilizing ML algorithms to scrutinize his-
torical data and predict future trends. By recognizing
patterns and anomalies in the data, maintenance sched-
ules can be refined, reducing downtime and enhancing
operational efficiency.

Another significant use of DTs in tunnel monitoring
is in emergency response planning. By simulating various
emergency situations, such as fires or natural disasters,
engineers can devise comprehensive evacuation plans
and evaluate the effectiveness of safety measures.
This proactive method bolsters the resilience of tunnel
infrastructure and elevates safety for both users and
emergency personnel (Ye et al., 2023).

Beyond safety and maintenance advantages, DTs also
provide valuable insights for long-term planning and
design optimization. By regularly updating the DT with
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real-time data, engineers can assess the performance of
different design options and make informed decisions for
future infrastructure projects.

Both AI and DT methods are widely used in tunnel
infrastructure monitoring. Al is particularly effective in
detecting anomalies, such as structural deformations, and in
predictive analytics to forecast maintenance needs and ex-
tend the life of infrastructure. DTs are applied in optimizing
tunnel designs for safety and efficiency, as well as in real-
time operational management, such as controlling ventila-
tion or improving traffic flow within tunnels. Together,
these technologies offer comprehensive monitoring solu-
tions that enhance safety, operational efficiency, and cost-
effectiveness in the management of tunnel infrastructure.

7 | ADVANTAGES AND
DISADVANTAGES OF DT AND Al
MONITORING METHODS

DT and AI monitoring methods offer several advantages
and disadvantages. DT enables real-time monitoring and
predictive maintenance by continuously analyzing data
from tunnel infrastructure, allowing for early detection
of potential issues and proactive maintenance, which
helps reduce downtime and avoid unexpected failures.
DT also allows scenario simulations, providing valuable
insights into risk management and operational optimi-
zation. Additionally, DT enhances decision-making by
offering real-time data and simulations that support
informed choices in project management and long-term
planning (Gao et al.,, 2021). However, implementing
DT systems comes with high initial costs, as they require
significant investments in sensors, data integration
platforms, and computational resources. The quality and
integration of data can also be challenging, as DTs rely
on accurate data from multiple sources. Moreover,
managing and updating DT models to reflect changes in
physical infrastructure is complex and requires robust
maintenance systems (Jiang et al., 2021).

Al-based monitoring methods also bring numerous
advantages, including improved efficiency and speed, as Al
algorithms can quickly analyze large datasets to identify
structural anomalies and predict potential failures. Al
improves the accuracy of monitoring by reducing subjec-
tivity, particularly in detecting cracks, deformations, or
other structural issues (Armaghani & Azizi, 2021). Addi-
tionally, Al systems are adaptable, learning from changing
environmental conditions and infrastructure behavior to
enhance monitoring processes. However, Al systems are
heavily dependent on data, and their effectiveness relies on
the availability and quality of the input data. Furthermore,
Al algorithms, especially DL models, can be difficult to
interpret, leading to challenges in transparency and trust,
especially in critical applications. Al systems also require
significant computational resources, which can be a limi-
tation for real-time monitoring in large-scale infrastructure
networks (Mahdevari et al., 2012).

However, it should be mentioned that the future of
real-time tunnel monitoring with DT and AI will bring
advancements in accuracy, efficiency, and predictive
maintenance. As sensor technologies evolve, Al models
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will become better at detecting structural issues
and predicting failures before they happen. DTs will
enhance operational decision-making through advanced
simulations, while edge computing will solve scalability
challenges. There will also be a stronger focus on
sustainability, with monitoring systems assessing environ-
mental impacts, and cybersecurity will be critical to
ensuring infrastructure protection. These developments will
result in smarter, more autonomous, and secure tunnel
monitoring systems, enhancing safety and sustainability.

8 | CHALLENGES AND
LIMITATIONS

8.1 | Examination of challenges and
limitations associated with current Al-driven
approaches

Despite the numerous benefits of Al-driven approaches
for tunnel monitoring, there are several challenges that
need to be addressed before they can be effectively im-
plemented and operated.

The primary obstacle is securing and sustaining high-
quality data. Al algorithms, for training and validation
purposes, heavily rely on extensive, high-quality datasets.
However, in the context of tunnel monitoring, acquiring
adequate labeled data for training ML models can
be difficult due to the scarcity of historical sensor data
and the intricate nature of underground environments.
Moreover, the data quality can fluctuate because of en-
vironmental factors, sensor malfunctions, or calibration
problems, resulting in noisy or untrustworthy input data
for Al systems (Kuang et al., 2022; Marcher et al., 2020;
Zhang et al., 2023, 2024).

A critical challenge in applying Al to tunnel mon-
itoring is the “black-box” nature of many models,
especially DL algorithms. This lack of transparency can
hinder stakeholders' trust and the practical adoption of
these systems. Furthermore, nonspecialists often find it
challenging to interpret Al results, which poses a barrier
to actionable decision-making. Addressing this issue
requires the integration of interpretability tools, enabling
users to understand the rationale behind predictions and
recommendations.

Another hurdle is the interpretability and explainability
of AI models. Although AI algorithms can frequently
achieve remarkable outcomes in identifying anomalies or
forecasting structural problems, the mechanisms behind
these models can be obscure and hard for human operators
to understand. This lack of transparency could diminish
trust in Al-powered monitoring systems, especially in
critical areas like tunnel infrastructure, where safety is
paramount. Furthermore, the obscurity of AI models
might hinder the identification of potential biases or errors
in the decision-making process, raising concerns about
accountability and ethical considerations (Chakraborty
et al., 2017; Nandi & Pal, 2021; Vishwarupe et al., 2022).

Moreover, the scalability and computational demands
of deploying Al-driven tunnel monitoring systems in ex-
tensive infrastructure networks present substantial
challenges. ML algorithms, especially DL models,
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typically demand substantial computational power for
training and inference, making the real-time processing
and analysis of sensor data computationally demanding.
Adapting Al systems to manage the intricacies of vast
tunnel networks while ensuring acceptable performance
and responsiveness is a formidable task, necessitating
meticulous optimization of algorithms, hardware infra-
structure, and deployment strategies.

8.2 | Strategies for overcoming these
challenges and enhancing the effectiveness
of Al-based tunnel monitoring systems

To overcome the obstacles and constraints inherent in
current Al-driven methodologies for tunnel monitoring,
several strategies can be implemented.

8.2.1 | Data augmentation and synthesis
This strategy addresses the shortage of labeled training
data by utilizing techniques such as data augmentation
and synthesis to produce additional training samples.
Techniques for synthetic data generation, including
generative adversarial networks (GANs) or physics-
based simulations, can augment limited datasets and
enhance the resilience of AI models.

8.2.2 | Explainable Al (XAI)

This approach aims to improve the interpretability and
explainability of Al models by integrating methods from
the field of XAI. Techniques like feature attribution, model
visualization, and rule extraction can offer insights into the
decision-making process of Al systems, facilitating human
operators' understanding and trust in these models.

8.2.3 | Edge computing and distributed Al

This strategy tackles scalability and computational
complexity challenges by employing edge computing
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and distributed AI architectures. Edge computing
platforms enable real-time processing and analysis of
sensor data at the network edge, minimizing latency and
bandwidth needs. Distributed Al frameworks, such as
federated learning or ensemble methods, distribute
computation across multiple devices or nodes, allowing
for efficient training and inference on decentralized
infrastructure.

8.2.4 |
learning

Continuous monitoring and adaptive

This involves establishing a framework for continuous
monitoring and adaptive learning, where AI models
are continuously updated and refined based on
real-time sensor data and feedback from human
operators. Incorporating mechanisms for model adap-
tation and retraining enables Al-driven monitoring
systems to adapt to changing environmental condi-
tions, sensor characteristics, and structural dynamics
over time.

8.2.5 | Standards and regulations

This strategy involves establishing standards and
regulations for the development, deployment, and
evaluation of Al-driven tunnel monitoring systems to
ensure transparency, reliability, and safety. Regulatory
frameworks can address concerns related to data pri-
vacy, model accountability, and ethical considerations,
promoting trust and confidence in Al technologies
among stakeholders (Figure §).

8.3 | Challenges and limitations of DT
technology

DT technology, which involves creating virtual repli-
cas of physical assets or systems, presents both
opportunities and challenges in the field of tunnel
monitoring. Several challenges and limitations need to
be addressed.

Interpretability Scalability
Explainable Distributed
Al Al

FIGURE 8 Challenges and potential solutions to artificial intelligence (Al) problems.
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8.3.1 | Data integration and interoperability
One of the primary challenges is integrating data from
multiple sources into the DT environment. Tunnel
infrastructure typically includes a range of systems and
sensors, each generating data in different formats and at
varying frequencies. Ensuring interoperability and
seamless integration of data from different sources is
crucial for the accuracy and reliability of the DT.

8.3.2 | Model accuracy and validation

The accuracy of DT models significantly relies on the
quality of the data used for their development and cali-
bration. Ensuring that DT models accurately represent the
complex behavior of tunnel infrastructure requires thor-
ough validation against real-world data. However, vali-
dating these models can be challenging due to the limited
availability of comprehensive and high-fidelity datasets.

8.3.3 | Computational complexity and
resource requirements

Building and maintaining DTs for large-scale tunnel
networks can be computationally intensive, requiring
significant computational resources and storage capacity.
Ensuring real-time or near-real-time performance of
DTs, particularly for dynamic monitoring and predictive
analytics, necessitates efficient algorithms and robust
infrastructure.

8.3.4 | Security and privacy concerns

DTs store and process sensitive data related to tunnel
infrastructure, making them potential targets for
cyberattacks or unauthorized access. Ensuring the
security and privacy of data within the DT environment
is paramount to safeguarding critical infrastructure
assets and preventing unauthorized manipulation or
exploitation.

8.3.5 | Lifecycle management and
maintenance

Over time, the physical assets represented by DTs may
undergo changes due to aging, maintenance activities,
or structural modifications. Ensuring the continuous
synchronization and updating of DTs to reflect these
changes requires robust lifecycle management processes
and mechanisms for maintaining the fidelity and rele-
vance of the virtual replicas.

8.4 | Strategies for overcoming challenges in
DT implementation

To tackle the challenges and constraints inherent in DT
technology for tunnel monitoring, several strategies can
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be implemented (Hu et al., 2021; Rathore et al., 2021;
Shahzad et al., 2022).

8.4.1 |
interfaces

Standardized data formats and

Establishing standardized data formats and interfaces for
data exchange between different systems and sensors can
facilitate seamless integration into the DT environment.
Adopting industry-standard protocols and metadata
schemas enhances interoperability and simplifies the
aggregation, processing, and visualization of heteroge-
neous data sources.

8.4.2 | Advanced modeling techniques and
validation methods

Utilizing advanced modeling techniques, such as physics-
based simulations and ML algorithms, can improve the
accuracy and fidelity of DT models. Moreover, employing
robust validation methods, including cross-validation against
historical data and real-world validation through field testing
and monitoring, ensures that DTs accurately represent the
behavior of tunnel infrastructure under various conditions.

8.4.3 | Cloud computing and edge analytics
Leveraging the scalability and computational power of
cloud computing platforms can mitigate the computational
complexity and resource requirements associated with DT
implementation. Cloud-based solutions allow flexible
scaling of computational resources and storage capacity,
enabling efficient processing and analysis of large data
volumes. Additionally, utilizing edge analytics capabilities
enables real-time processing and decision-making at the
network edge, reducing latency and enhancing respon-
siveness for time-critical monitoring tasks.

8.4.4 | Cybersecurity measures and data
governance

Implementing strong cybersecurity measures and data gov-
ernance practices is crucial for protecting DT environments
against cyber threats and ensuring the integrity, confiden-
tiality, and availability of data. This includes deploying en-
cryption techniques, access control mechanisms, intrusion
detection systems, and regular security audits to detect and
mitigate potential vulnerabilities or breaches. Furthermore,
establishing clear data governance policies and procedures
ensures compliance with regulatory requirements and ethical
standards for data handling and usage.

8.4.5 | Dynamic update and maintenance
mechanisms

Developing dynamic update and maintenance mecha-
nisms enables the continuous synchronization and
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FIGURE 9 Challenges and potential solutions to digital twin (DT) problems.

evolution of DTs to reflect changes in the physical
infrastructure. This involves establishing automated
workflows for data ingestion, model recalibration, and
scenario analysis, allowing DTs to adapt to evolving
conditions and operational requirements. Additionally,
integrating feedback loops and anomaly detection algo-
rithms enables proactive identification of discrepancies
between DT predictions and observed behavior, facili-
tating timely adjustments and improvements (Figure 9).

9 | FUTURE RESEARCH
DIRECTIONS

9.1 | Advanced AI algorithms

Future research should explore advanced Al algorithms,
such as graph neural networks (GNNs) for spatially cor-
related data analysis in tunnel systems, and Transformer
models for time-series forecasting in structural health

monitoring. These algorithms can offer improved accu-
racy and adaptability compared to traditional methods.

9.2 | Sensor innovations

Emerging sensor technologies, such as self-powered IoT
devices and quantum sensors, could enable more precise,
energy-efficient, and reliable monitoring of structural
health and environmental conditions. Multimodal sen-
sors that capture a broader range of tunnel parameters,
including strain, vibration, temperature, and humidity,
are critical for next-generation monitoring systems.

9.3 | Enhanced data fusion techniques

Enhanced data fusion techniques, such as Bayesian infer-
ence and advanced multisensor fusion frameworks, are
needed to combine heterogeneous data (e.g., from strain
gauges, accelerometers, and environmental sensors) for a
holistic assessment of tunnel performance. Real-time fusion
algorithms could help address the challenges of missing or
noisy data in dynamic monitoring environments.

9.4 | DT integration strategies

Dynamic DTs that incorporate real-time Al analytics,
physics-based simulations, and adaptive models could
significantly improve predictive maintenance and opera-
tional efficiency. Integration strategies, such as utilizing
edge computing for decentralized data processing or
blockchain for secure data sharing, should be explored to
enhance scalability and reliability.

9.5 | Sustainability and resilience

Future work should emphasize sustainable monitoring
systems by incorporating energy-efficient sensors
and green Al techniques that minimize computational
overhead. Additionally, resilience-focused research can
address the adaptation of monitoring systems to extreme
conditions, such as earthquakes or flooding.

10 | CONCLUSION

This review highlights the limitations of conventional
tunnel monitoring methods, such as labor-intensive man-
ual inspections and the restricted scope of instrumentation-
based approaches. These challenges underscore the need
for advanced technologies that offer real-time insights into
tunnel health. AI technologies, including ML, computer
vision, and sensor fusion, provide effective solutions. ML
autonomously detects structural anomalies and predicts
maintenance needs, while computer vision automates the
identification of structural defects. Sensor fusion integrates
data from various sources to provide a comprehensive
understanding of tunnel performance.

Simultaneously, DT technology offers a digital
reflection of tunnel structures, seamlessly incorporating
real-time sensor data and enabling thorough monitoring
and performance assessment. By simulating various sce-
narios and predicting potential issues, DTs equip en-
gineers with the ability to make informed decisions and
improve operational efficiency, thereby enhancing safety
and resilience across numerous aspects of tunnel mon-
itoring and maintenance.

5UB01 SUOLLILLIOD) 2AIEBID @]t ddke aU) Aq pauiA0B 21 SDPILE YO 88N J0 SBINI 10} ARIIT BUIIUO ABIM UO (SUO1IPUOD-PUR-SLLLIBLLIOY" A3 A ARG 1[oU JUO//STL) SUONIPUOD) PUE SIS | 3U 885 *[S202/20/42] U0 ATIGIT aUIIUO AB1IA *[1UnD) YoJessay [eIIPRIN PUY LRH [BUOTIEN AQ 6200, Z6Np/200T OT/10p/LIc" Ao v AReIq1puluo//'sdiy o1 pepeojumod ‘0 ‘8ZET0LLE



DEEP UNDERGROUND SCIENCE AND ENGINEERING

However, the implementation of Al-driven and DT
methodologies in tunnel monitoring is not without its
challenges. Concerns such as data quality, AI model
interpretability, scalability, and computational complexity
need to be addressed to fully leverage these technologies.
Approaches like data augmentation, explainable Al,
edge computing, continuous monitoring, and regulatory
frameworks provide avenues to overcome these obstacles
and enhance the efficacy of Al-based monitoring systems.

Future research in tunnel monitoring should priori-
tize the development of cutting-edge data collection
methods, such as advanced sensors and IoT integration,
to improve data quality and reliability. Enhancing the
interpretability of AI models remains critical for foster-
ing trust and usability, particularly for nonspecialist
stakeholders. Sophisticated Al algorithms tailored for
real-time decision-making, autonomous inspection, and
predictive maintenance can enable proactive manage-
ment of tunnel integrity. Integrating dynamic DT tech-
nology provides opportunities for real-time virtual
modeling and system optimization, while addressing
challenges such as resilience and cybersecurity. Collab-
oration between humans and Al through user-friendly
systems will further enhance monitoring effectiveness.
Lastly, incorporating sustainable practices, such as
energy-efficient sensors and green AI techniques, will
pave the way for smarter, safer, and more en-
vironmentally conscious tunnel infrastructure.
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