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Abstract

Towards Comprehensive Visual Understanding via Deep

Neural Networks

by

Mu Chen

Deep neural networks (DNNs) have made significant advancements in visual scene un-

derstanding, demonstrating great potential for applications in downstream tasks such as

autonomous driving, robotic navigation, and human-computer interaction. Despite these

successes, generalization ability remains a major obstacle on the path to comprehensive

visual understanding, particularly when dealing with i) diverse scenes, as well as ii) diverse

semantic structures within those scenes. Existing work typically requires extensive annota-

tion for different scenes (domains) and separates the understanding of semantic targets

into distinct tasks, designing meticulous networks and corresponding optimization for each.

This poses challenges from two perspectives: i) generalizing from one domain to another,

and ii) generalizing from one task to another. To adapt an existing model to various

domains (challenge i)), this thesis proposes a self-supervised learning framework to learn

generalizable structural representations, and a multi-task learning framework to extract

transferable knowledge from multi-modalities. To enhance a model’s ability to process

various semantic structures (challenge ii)), this thesis introduces a holistic disentanglement

and modeling for segment targets under an identical framework. Extensive experiments are

conducted to verify the effectiveness of the proposed methods on scene understanding tasks,

including Unsupervised Domain Adaptation (UDA), Exemplar-guided Video Segmentation

(EVS), Video Instance Segmentation (VIS), Video Semantic Segmentation (VSS), Video

Panoptic Segmentation (VPS), and Human-Object Interaction Detection (HOI Detection).

Dissertation directed by Professor Yi Yang

School of Computer Science

https://scholar.google.com/citations?user=eyBlZUUAAAAJ&hl=zh-CN
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Chapter 1

Introduction

Visual understanding is the perception of objects, actions, and the semantic relationships

between them [13–18]. It emphasizes recognition, learning, and reasoning and can benefit a

wide range of downstream tasks, such as autonomous driving, robotics, video surveillance,

and augmented reality. Deep neural networks (DNNs) have revolutionized visual under-

standing, achieving groundbreaking advancements in both academic research and practical

applications. Despite these successes, the generalization capability of DNNs remains a

significant challenge. In practical applications, DNNs often exhibit poor generalization

when confronted with varying data distributions and complex environments. Current

research typically ❶ annotates large amounts of data for specific scenarios and ❷ designs

specific network architectures for the semantic structures of particular interest within those

scenarios to achieve high-precision scene parsing. For ❶, it is common practice to annotate

datasets for scenarios such as nighttime [19], adverse weather conditions [20], or different

cities [21]. However, DNNs are data-hungry, and meeting the annotation requirements

is challenging. For instance, annotating a single static scene for pixel-level tasks in the

Cityscapes dataset [22] takes 1.5 hours, while annotating images under adverse weather

conditions can take up to 3.3 hours [20]. The situation is even more difficult for dynamic

scene [1], making it impractical in real-world applications. For ❷, existing work designs

visual understanding tasks such as semantic segmentation, instance segmentation, and

panoptic segmentation based on different semantic targets. This allows for a multi-level un-

derstanding of the same scene, but these tasks employ distinct architectures, loss functions,

and training procedures, leading to duplicate research and repeated optimization efforts.

1
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To address these limitations, this thesis conducts an in-depth study from two critical per-

spectives, seeking for comprehensive scene understanding: ❶ enhancing the generalization

of the learned model to other domains, and ❷ faclitating research endeavors devoting on

one task to another.

For ❶ generalization from one domain to another: this thesis investigates the under-

explored intra-domain knowledge, and extracts the domain-invariant representation under

a multi-grained self-supervised learning framework. Additionally, it further minines the

domain-invariant feature learing with the help of information from other modalities,

ultimately achieving a multi-task learning framework.

For ❷ generalization from one task to another: this thesis recognizes the key factors that

constitute segment targets and leavrage these key factors to build an identical model,

enabling seamless accommodation of task-specific properties into a generalist framework.

The contributions of the thesis are listed as follows:

• This thesis explores the learning of domain-invariant representation through a pixel-

and patch-level self-supervised learning framework. Taking a step further, it leverages

rich depth information and proposes a depth-aware multi-task learning framework to

improve the model’s generalization across different domains. Extensive experiments on

unsupervised domain adaptation benchmarks verify the effectiveness of the proposed

methods.

• This thesis conducts an in-depth analysis of inherent properties of moving targets

within scenes and proposes task-oriented property accommodation to handle various

video tasks under a unified architecture. Experiments across multiple video segmen-

tation benchmarks demonstrate its generalization ability and superior performance.

• This thesis dynamically adjusts confidence thresholds via uncertainty prediction to

handle complex interactions, achieving a more robust visual scene understanding for

more high-level semantic understanding tasks.

The following introduces the background, motivation and developed methodologies for

comprehensive visual understanding.
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1.1 Generalize from One Domain to Another

Generalizing from one domain to another is one of the major challenges in achieving com-

prehensive visual understanding using deep neural networks (DNNs). DNNs are proficient

in feature extraction and representation learning, capturing rich feature representations

through multiple layers of non-linear transformations. This capability gives DNNs a

substantial advantage in handling complex visual tasks, fundamentally revolutionizing

traditional methods of visual understanding. However, these networks are notoriously

data-hungry, typically requiring extensive training datasets with pixel-level annotations,

which are challenging to obtain in real-world scenarios. This limitation is particularly

pronounced in segmentation tasks that necessitate pixel-level annotations. To address the

scarcity of training data, one effective strategy is to utilize synthetic data with annotations

generated via computer graphics. Nonetheless, significant domain discrepancies exist

between synthetic and real-world images, particularly concerning illumination, weather

conditions, and camera parameters. To overcome these discrepancies, researchers employ

unsupervised domain adaptation (UDA) techniques, which transfer knowledge from labeled

source domains to unlabeled target domains.

Chapter 3 delves into unsupervised domain adaptation (UDA) for semantic segmentation

and proposes a novel self-supervised learning framework. Semantic segmentation serves as

a foundational task for visual understanding, which enables detailed scene interpretation

by classifying each pixel in an image into a predefined category. This granular level of

understanding is crucial for accurately perceiving the structure and composition of visual

scenes, facilitating higher-level reasoning and decision-making processes. The analysis of

existing self-supervised learning UDA methods reveals two key issues: i) the high-level

representations they produce lack sufficient contextual information, which is vital for scene

understanding; and ii) self-sueprvised learning at the patch level can prevent the model

from ignoring context entirely. Based on these insights, this chapter investigates prediction

consistency across different regions. Specifically, incorporating patch-level contrastive

learning leads to larger receptive field, making the approach more suitable for segmentation

tasks that demand robust contextual information. Consequently, this chapter introduces

a multi-grained Pixel- and Patch-wise self-supervised learning framework. Experiments

are conducted using synthetic datasets SYNTHIA [23] and GTA-5 [24] as source domains

and Cityscapes [22] as target domain. The proposed framework demonstrates superior

performance compared to existing UDA methods.
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Chapter 4 delves deeper into Unsupervised Domain Adaptation (UDA) through a multi-

task learning approach. The key insight is derived from the observation that existing

work typically employs the well-known class-mix technique to address the domain shift

problem. In particular, cross-domain mixing involves copying regions corresponding to

certain categories from a source domain image and pasting them onto an unlabeled target

domain image. However, this straightforward strategy often results in placing a large

number of objects at unrealistic depth positions. This issue arises because each category

has its own positional distribution. Such artificially crafted training data compromise

contextual learning, leading to sub-optimal performance, especially for small objects.

Semantic categories can be effectively separated using depth maps. By introducing depth

information, it is possible to ensure that the cross-domain mix conforms to the realistic

distribution of categories, thereby improving performance. Additionally, multi-modal data

can enhance the learning of deep representations. Thus, a multi-task learning framework

is proposed that encourages the network to optimize fused multi-task features in an end-

to-end manner. This method achieves competitive accuracy on two commonly used scene

adaptation benchmarks, with particularly notable improvements in minor categories.

1.2 Generalize from One Task to Another

Generalizing from one task to another is also a major challenge in achieving comprehensive

scene understanding. Depending on the objects of interest within the scene, existing scene

understanding research often defines different task settings, breaking down the complex issue

of scene understanding into smaller sub-tasks. While optimizing models for specific tasks

can improve their performance on those tasks, such optimizations often fail to generalize

across different tasks, leading to redundant research efforts.

Chapter 5 analyzes key factors that constitute segmentation targets and explores how to

leverage these factors to make a generalizable model more sensitive to specific tasks, thus

remaining competitive in each task. A generalist video segmentation framework is proposed

that achieves holistic disentanglement and modeling of segmentation targets. This approach

allows network optimization techniques to be effective across different tasks, substantially

elevating both accuracy and robustness in several video segmentation benchmarks.

The above three chapters address the fundamental aspects (e.g., individual entities) of

visual understanding.
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Chapter 6 further investigates the interaction between these entities to achieve a higher-level

and more holistic understanding of the scene. This chapter emphasizes Human-Object

Interaction Detection (HOI Detection), which extends from the detection of objects to

include their relationships, prompting a deeper understanding of high-level semantic com-

prehension. UAHOI (Uncertainty-aware Robust Human-Object Interaction Learning) is

introduced as a novel method that leverages uncertainty estimation to dynamically adjust

interaction prediction thresholds in HOI detection tasks. This approach incorporates uncer-

tainty modeling to refine decision-making processes, enabling the model to set confidence

thresholds based on predicted uncertainty for each interaction. Specifically, the variance in

predictions is used as an uncertainty measure for both human/object bounding boxes and

interactions, reflecting the model’s confidence in its outputs. This variance is integrated

into the optimization target, improving bounding box accuracy and ensuring significant

interactions are not missed due to artificially low confidence thresholds. Comprehensive

evaluations on two standard human-object interaction datasets, HICO-DET and V-COCO,

demonstrate that this method significantly outperforms existing state-of-the-art approaches.

1.3 Thesis Outline

The thesis is organized as follows:

Chapter 2 presents a comprehensive literature review of related topics.

Chapter 3 and Chapter 4 sequentially explore the generalization problem from one domain

to another for more comprehensive visual understanding. Chapter 3 focuses on domain

adaptation and proposes a multi-grained self-supervised framework. Chapter 4 further

investigates semantic segmentation domain adaptation and introduces a depth-aware

multi-task leraning framework.

Chapter 5 shifts the investigation towards the generalization problem from one task to

another and proposes a generalist video segmentation framework.

Chapter 6 investigates more high-level semantic understanding task HOI Detection and

proposes an uncertainty-aware framework.

Finally, 7 summerizes the contributions and discusses potential future directions.



Chapter 2

Literature Review

This chapter provides a thorough literature review of related work in comprehensive visual

understanding, encompassing various methodologies and advancements in image-level

and video-level tasks, as well as domain adaptive scene understanding, highlighting the

significant progress and ongoing challenges in the field.

2.1 Image-level Visual Understanding

Image-level visual understanding typically encompasses various tasks, ranging from funda-

mental segmentation which segments meaningful parts of a scene to more high-level and

complex tasks such as human-object interaction detection which recognizes and localizes

the interaction between human and objects inside a scene.

2.1.1 Image segmentation

Traditional image segmentation. Traditional image segmentation tasks are typically

categorized based on the segmentation targets within a scene. These categories include

semantic segmentation, instance segmentation, and panoptic segmentation. Semantic

segmentation [25–28] assigns a class label to each pixel in the image, grouping pixels with

the same label into regions. Instance segmentation [29–32] identifies and delineates each

distinct object instance within the image, assigning unique labels to different instances of the

same class. Panoptic segmentation [33–37] combines semantic and instance segmentation,

providing both class labels for each pixel and instance labels for each object.

6
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Query-based image segmentation. Image segmentation has witnessed substantial

progress with top-performing approaches [32, 38–41] primarily falling into the query-

based paradigm. Such paradigm directly models targets by introducing a set of learnable

embeddings as queries to search for objects of interest and subsequently decode masks from

image features. Inspired by DETR [42], the latest research [40, 41, 43] takes this paradigm

a step further by harnessing the Transformer architecture. With a series of studies on

query-based segmentation, recent works [39, 41, 44, 45] are moving towards universal image

segmentation, which aims to develop a unified architecture to address various segmentation

tasks.

2.1.2 Human-Object Interaction (HOI) Detection

Traditional HOI Detection. Human-Object Interaction (HOI) detection provides

numerous high-level intricate relationships between humans and objects, gradually serving

as the foundation of many computer vision applications [16, 46]. Traditional Human-Object

Interaction (HOI) detection methods can typically be divided into two categories: two-stage

methods [47–59] and one-stage methods [60–63]. Two-stage HOI detection methods rely on

an off-the-shelf object detector to extract bounding boxes and class labels for humans and

objects in the first stage. In the second stage, they model interactions for each human-object

pair via a multi-stream network. For example, [47] propose leveraging the Graph Parsing

Neural Network (GPNN) to incorporate structural knowledge into HOI detection. Similarly,

[48] introduces a streamlined factorized model that utilizes insights from pre-trained

object detectors. Subsequent research often involves integrating additional contextual and

relational information to enhance performance further. However, two-stage methods find

it challenging to identify human-object pairs among a large number of permutations and

heavily rely on the detection results, suffering from low efficiency and effectiveness.[64–

68]. By introducing anchor points to associate humans and objects, single-stage methods

detect pairs likely to interact and their interactions simultaneously. This approach, which

handles instance detection and interaction point prediction branches in parallel, has made

impressive progress in HOI detection. For instance, [60] utilizes a union-level detector to

directly capture the region of interaction, enhancing focus on interaction-specific areas.

Meanwhile, [61] employs point detection branches that concurrently predict points for both

the human/object and their interactions. This method not only implicitly provides context



8

but also offers regularization for the detection of humans and objects, improving overall

accuracy and context relevance.

End-to-End HOI Detection. Inspired by DETR [42], recent work [69–80] modify HOI

as a set-prediction problem by generating a set of HOI triplets. Early approaches [71, 72]

simply migrated the Transformer decoder to HOI tasks, using a single decoder to couple

human-object detection and interaction classification, achieving end-to-end training. [71]

replaces manually defined location-of-interest with a transformer-based feature extractor,

enhancing feature representation capabilities. [72] addresses HOI detection using an end-to-

end approach, which eliminates the reliance on hand-designed components, streamlining the

detection process. However, due to the significant differences between the two tasks, learning

a unified instance-interaction representation proved challenging. Therefore, subsequent

works [69, 70, 73] gradually shifted towards using separate decoders for instance prediction

and interaction prediction, allowing the model to fully focus on the differences between

instance and interaction prediction areas. To further enhance performance, other methods

have introduced language [81, 82] and logic-reasoning [83] to explore the relationships

between humans, objects, and their interactions more deeply. Moreover, scene graph

generation (SGG) is another high-level semantic understanding task closely related to HOI

detection, which is advanecd with the help of techniques such as noisy label correction [84],

LLMs [85] and compositional augmentation [86]. Both HOI Detection and SGG aim to

capture and understand complex relationships between objects within a scene, but scene

graph generation focuses on identifying objects and their pairwise relationships to create

a structured graph representation, while HOI detection specifically targets interactions

between humans and objects.

2.2 Video-level Visual Understanding

2.2.1 Task-specific Video Segmentation

Traditional video segmentation methods, similar to image-level segmentation, typically

design separate frameworks for each task and are divided into independent tasks based on

the different segmentation targets in the video scene.

Exemplar-guided Video Segmentation (EVS). Exemplar-guided VideoSegmentation

(EVS). Given the hint which can be mask, bounding box, or point at one video frame, EVS
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aims to propagate the mask-level predictions to subsequent frames [9, 87]. Therefore, the

standard video object segmentation (VOS) task can be viewed as a specific instance of EVS

– mask-guided video segmentation. Recent promising solutions for the mask-guided task

mainly implemented in a matching-based manner which classifies pixels in current frame

according to the feature similarities of target objects in reference frames [88–93, 93–106].

To solve the bounding box and point-guided tasks, current solutions typically have to

regress a pseudo ground-truth mask via pre-processing [9, 87].

Video Instance Segmentation (VIS). Extending beyond detecting and segmenting

instances within images, VIS further engages in the active tracking of individual objects

across video frames. According to the process of video sequences, existing solutions for

VIS fall into three categories [107]: online, semi-online, and offline. The online methods

take each frame as inputs and associate instances through hand-designed rules [2, 108–

110], integrating learnable matching algorithms [111–116], or deploying query matching

frameworks [117–122]. The semi-online solutions typically divide long videos into clips and

model the representations of instances by leveraging rich spatio-temporal information [123–

126]. Conversely, offline methods predict the instance sequence for an entire video in a

single step [116, 127–131] which require a growing amount of GPU memory as the video

length extends, limiting their application in real-world scenarios.

Video Semantic Segmentation (VSS). Building upon the principle of semantic seg-

mentation [16, 132–138], VSS extends this concept to video sequences, so as to capture the

evolution of scenes and objects over time. Existing solutions can generally be classified into

two main paradigms. The motion-based approaches [139–143] employ optical flow to model

dynamic scenes. Though workable in certain scenarios, they rely heavily on the accuracy of

flow maps and are prone to error accumulation [144]. On the other hand, the attention-based

methods take advantage of the attention mechanism [145–147] or Transformer [148, 149]

to aggregate temporal cues. This contributes to improved coherence among predictions of

individual frames.

Video Panoptic Segmentation (VPS). With the emergence of seminal work [150], there

has been a research trend [151–157] dedicated to unifying video instance and semantic

segmentation. Though showing the promise of general video segmentation, the early

work [151–153] utilizes task-specific heads to handle instance and semantic segmentation
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separately, and assembles the panoptic predictions through post-processing. Recent algo-

rithms typically leverage unified queries for the detection and tracking of both thing and

stuff objects [154–157].

2.2.2 General Video Segmentation (GVS)

In order to address the limitations of task-specific models that lack the flexibility to

generalize across different tasks and result in redundant research efforts, GVS aims at

an all-inclusive solution for multiple video segmentation tasks. A limited number of

studies [39, 87, 126, 158–161] have ventured in this direction. However, [39, 126, 158]

exhibits inferior performance compared to dedicated, task-specific methods. [87] achieves

remarkable results but requires extensive pre-training on various large-scale, pixel-level

annotated datasets.

2.3 Domain Adaptive Scene Understanding

2.3.1 Unsupervised Domain Adaptation

Unsupervised domain adaptation (UDA) aims to train a model on a label-rich source

domain and adapt the model to a label-scarce target domain. Some methods propose

learning the domain-invariant knowledge by aligning the source and target distribution

at different levels. For instance, AdaptSegNet [162], ADVENT [163], and CLAN [164]

adversarially align the distributions in the feature space. CyCADA [165] diminishes the

domain shift at both pixel-level and feature-level representation. DALN [166] proposes a

discriminator-free adversarial learning network and leverages the predicted discriminative

information for feature alignment. Both Wu et al.[167] and Yue et al. [168] learn domain-

invariant features by transferring the input images into different styles, such as rainy and

foggy, while Zhao et al. [169] and Zhang et al. [170] diversify the feature distribution

via normalization and adding noise respectively. Another line of work refines pseudo-

labels gradually under the iterative self-training framework, yielding competitive results.

Following the motivation of generating highly reliable pseudo labels for further model

optimization, CBST [171] adopts class-specific thresholds on top of self-training to improve

the generated labels. Feng et al.[172] acquire pseudo labels with high precision by leveraging

the group information. PyCDA [173] constructs pseudo-labels in various scales to further
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improve the training. Zheng et al.[174] introduce memory regularization to generate

consistent pseudo labels. Other works propose either confidence regularization [175, 176]

or category-aware rectification [177, 178] to improve the quality of pseudo labels. DACS

[179] proposes a domain-mixed self-training pipeline to mix cross-domain images during

training, avoiding training instabilities. Kim et al.[180], Li et al.[181] and Wang et al.[182]

combine adversarial and self-training for further improvement. Chen et al.[183] establish a

deliberated domain bridging (DDB) that aligns and interacts with the source and target

domain in the intermediate space. SePiCo [184] and PiPa [16] adopt contrastive learning to

align the domains. Liu et al.[185] addresses the label shift problem by adopting class-level

feature alignment for conditional distribution alignment. Researchers also attempted to

perform entropy minimization [163, 186], and image translation [187, 188]. consistency

regularization[189–192]. Recent multi-target domain adaptation (MTDA) methods enable

a single model to adapt a labeled source domain to multiple unlabeled target domains [193–

195].

2.3.2 Self-supervised Learning

Self-supervised learning is a method where models learn from unlabeled data by predicting

parts of the input from other parts. It leverages data’s intrinsic structure to generate

labels. Contrastive learning,a subset of self-supervised learning, is one of the most promi-

nent self-supervised representation learning methods [196–200], which contrasts similar

(positive) data pairs against dissimilar (negative) pairs, thus learning discriminative feature

representations. For instance, Wu et al. [197] learn feature representations at the instance

level. He et al. [200] match encoded features to a dynamic dictionary which is updated

with a momentum strategy. Chen et al.[199] proposes to engender negative samples from

large mini-batches. In the domain adaptative image classification, contrastive learning is

utilized to align feature space of different domains [201, 202].

A few recent studies utilize contrastive learning to improve the performance of semantic

segmentation task [184, 203–207]. For example, Wang et al.[203] have designed and

optimized a self-supervised learning framework for better visual pre-training. Gansbeke

et al.[204] applies contrastive learning between features from different saliency masks in

an unsupervised setting. Recently, Huang et al.[208] tackles UDA by considering instance
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contrastive learning as a dictionary look-up operation, allowing learning of category-

discriminative feature representations. Xie et al.[209] presents a semantic prototype-

based contrastive learning method for fine-grained class alignment. Other works explore

contrastive learning either in a fully supervised manner [184, 205] or in a semi-supervised

manner [210–212]. For example, Wang et al.[205] uses pixel contrast in a fully supervised

manner in semantic segmentation. But most methods above either target image-wise

instance separation or tend to learn pixel correspondence alone.

2.3.3 Multi-task Learning

Semantic segmentation and geometric information are shown to be highly correlated [213–

219]. Recently depth estimation has been increasingly used to improve the learning of

semantics within the context of multi-task learning, but the depth information should be

exploited more precisely to help the domain adaptation. SPIGAN [220] pioneered the use

of geometric information as an additional supervision by regularizing the generator with an

auxiliary depth regression task. DADA [221] introduces an adversarial training framework

based on the fusion of semantic and depth predictions to facilitate the adaptation. GIO-Ada

[222] leverages the geometric information on both the input level and output level to reduce

domain shift. CTRL [223] encodes task dependencies between the semantic and depth

predictions to capture the cross-task relationships. CorDA [224] bridges the domain gap

by utilizing self-supervised depth estimation on both domains. Wu et al. [225] propose to

further support semantic segmentation by depth distribution density.



Chapter 3

PiPa: Pixel- and Patch-wise

Self-supervised Learning for

Domain Adaptative Semantic

Segmentation

3.1 Introduction

Unsupervised Domain Adaptation (UDA) aims to enhance the generalization of the learned

model to other domains. The domain-invariant knowledge is transferred from the model

trained on labeled source domain, e.g., video game, to unlabeled target domains, e.g.,

real-world scenarios, saving annotation expenses. Prevailing models, e.g., Convolutional

Neural Networks (CNNs) [226, 227] and Visual Transformers [228, 229], have achieved

significant progress in computer vision applications [230–232]. But such networks are data-

hungry, which usually require large-scale training datasets with pixel-level annotations. The

annotation prerequisites are hard to meet in real-world scenarios. To address the shortage

in the training data, one straightforward idea is to access the abundant synthetic data

and the corresponding pixel-level annotations generated by computer graphics [233, 234].

However, there exist domain gaps between synthetic images and real-world images in terms

of illumination, weather, and camera hyper-parameters [167, 235, 235, 236]. To minimize

such a gap, researchers resort to unsupervised domain adaptation (UDA) to transfer the

knowledge from labeled source-domain data to the unlabeled target-domain environment.

13
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The key idea underpinning UDA is to learn the shared domain-invariant knowledge.

One line of works, therefore, investigates techniques to mitigate the discrepancy of data

distribution between source domain and target domain at different levels, such as pixel

level [165, 167, 181, 237], feature level [238, 239], and prediction level [162, 163, 240, 241].

These inter-domain alignment approaches have achieved significant improvement compared

to basic source-only methods, but usually overlook the intra-domain knowledge.

Another potential paradigm to address the lack of training data is self-supervised learning,

which mines the visual knowledge from unlabeled data. One common optimization objective

is to learn invariant representation against various augmentations, such as rotation [242],

colorization [243], mixup [244] and random erasing [245]. Prior UDA works [174, 176]

explored self-supervised methods to mine the domain-invariant knowledge, but the pipelines

are relatively simple and only consider the prediction consistency against dropout or different

network depths. Recent Segmentation and UDA work [184, 205] adopt contrastive learning

methods, showing great performance. However, they focus only on pixel-level contrast

without a context-aware design. We analyze existing contrastive learning methods and

observe that (1) the high-level representation produced by them does not capture enough

contextual information which is crucial in segmentation tasks. (2) performing contrastive

learning at patch-level could prevent the model from degrading into totally ignoring the

contexts. In light of the above observation, we explore the prediction consistency and

contrastive learning at different effect regions. The consideration of patch-level has resulted

in a larger receptive field, which makes it more suitable for segmentation tasks that require

stronger contextual information. Therefore, we introduce a multi-grained Pixel- and

Patch-wise self-supervised learning framework.

As the name implies, PiPa explores the pixel-to-pixel and patch-to-patch relation for

regularizing the segmentation feature space. Our approach is based on two implicit priors:

(1) the feature of the same-class pixels should be kept consistent with the category prototype;

and (2) the feature within a patch should maintain robustness against different contexts.

As shown in Figure 3.1, image pixels are mapped into an embedding space (Figure 3.1

(b) and (d)). For the pixel-wise contrast, we explicitly facilitate discriminative feature

learning by pulling pixel embeddings of the same category closer while pushing those of

different categories away (Figure 3.1 (b)).

Considering the patch-wise contrast, we randomly crop two image patches with an

overlapping region (the yellow region in Figure 3.1 (c) and (d)) from an unlabeled image.



15

Figure 3.1: Different from existing works, we focus on mining the intra-domain

knowledge, and argue that the contextual structure between pixels and patches can

facilitate the model learning the domain-invariant knowledge in a self-supervised

manner. In particular, our proposed training framework: (1) motivates intra-class

compactness and inter-class dispersion by pulling closer the pixel-wise intra-class

features and pushing away inter-class features within the image (see a,b at the

top row); and (2) maintains the local patch consistency against different contexts,

such as the yellow local patch in the green and the blue patch (see the bottom

row c,d). Albeit simple, the proposed learning method is compatible with other

existing methods to further boost performance.

The overlapping region of the two patches should not lose its spatial information and

maintain the prediction consistency even against two different contexts. The proposed

method is orthogonal to other existing domain-alignment works. We re-implement two

competitive baselines, and show that our framework consistently improves the segmentation

accuracy over other existing works. Our contributions are as follows:

(1) Different from existing works on inter-domain alignment, we focus on mining domain-

invariant knowledge from the original domain in a self-supervised manner. We propose

a unified Pixel- and Patch-wise self-supervised learning framework to harness both pixel-

and patch-wise consistency against different contexts, which is well-aligned with the

segmentation task.

(2) Our self-supervised learning method does not require extra annotations, and is com-

patible with other existing UDA frameworks. The effectiveness of PiPa has been tested
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by extensive ablation studies, and it achieves competitive accuracy on two commonly

used UDA benchmarks, namely 75.6 mIoU on GTA→Cityscapes and 68.2 mIoU on

Synthia→Cityscapes.

3.2 Methodology

We first introduce the problem definition and conventional segmentation losses for semantic

segmentation domain adaptation. Then we shed light on the proposed component of our

framework PiPa, i.e., Pixel-wise Contrast and Patch-wise Contrast, both of which work on

local regions to mine the inherent contextual structures. We finally also raise a discussion

on the mechanism of the proposed method.

3.2.1 Problem Statement

As shown in Figure 3.2, given the source-domain synthetic data XS =
{
xSu

}U

u=1
labeled by

Y S =
{
ySu

}U

u=1
and the unlabelled target-domain real-world data XT =

{
xTv

}V

v=1
, where

U and V are the numbers of images in the source and target domain, respectively. The

label Y S belongs to C categories. Domain adaptive semantic segmentation intends to learn

a mapping function that projects the input data XT to the segmentation prediction Y T in

the target domain.

Basic Segmentation Losses. Similar to existing works [174, 175], we learn the basic

source-domain knowledge by adopting the segmentation loss on the source domain as:

LSce = E
[
−pSu log hcls(gθ

(
xSu

)
)
]
, (3.1)

where pSu is the one-hot vector of the label ySu , and the value pSu(c) equals to 1 if c == ySu

otherwise 0. We harness the visual backbone gθ, and 2-layer multilayer perceptrons (MLPs)

hcls for segmentation category prediction.

To mine the knowledge from the target domain, we generate pseudo labels Ȳ T = {ȳvT } for

the target domain data XT by a teacher network gθ̄ [179, 192], where ȳv
T = argmax(hclsgθ̄(x

T
v )).

In practice, the teacher network gθ̄ is set as the exponential moving average of the weights

of the student network gθ after each training iteration [246, 247]. Considering that there

are no labels for the target-domain data, the network gθ is trained on the pseudo label ȳv
T
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Figure 3.2: A brief illustration of our unified multi-grained self-supervised learning

Framework (PiPa). Overall, PiPa is based on a teacher-student architecture. The

teacher network is randomly initialized and the student network is pretrained on

ImageNet1k. Then the teacher network is utilized to generate target pseudo labels

Ȳ T and the weights are updated by the weights of the student network. Given

the labeled source data
{(

xS , yS
)}

, we calculate the segmentation prediction ŷS

with the backbone gθ and the classification head hcls, supervised by the basic

segmentation loss LS
ce. During training, we leverage the moving averaged model

gθ̄ to estimate the pseudo label ȳT to craft the mixed label ȳMix based on the

category. According to the mixed label, we copy the corresponding regions as the

mixed data xMix. We also deploy the model gθ and the head hcls to obtain the

mixed prediction ŷMix supervised by LT
ce. Except for the above-mentioned basic

segmentation losses, we revisit current pixel contrast and propose a unified multi-

grained Contrast. In (a), we regularize the pixel embedding space by computing

pixel-to-pixel contrast: impelling positive-pair embeddings closer, and pushing

away the negative embeddings. In (b), we regularize the patch-wise consistency

between projected patch O1 and O2. Similarly, we harness the patch-wise contrast,

which pulls positive pair, i.e., two features at the same location of O1 and O2

closer, while pushing negative pairs apart, i.e., any two features in M1 ∪M2 at

different locations. During inference, we drop the two projection heads hpatch and

hpixel and only keep gθ and hcls.
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generated by the teacher model gθ̄. Therefore, the segmentation loss can be formulated as:

LTce = E
[
−p̄vT log hcls(gθ

(
xTv

)
)
]
, (3.2)

where p̄v
T is the one-hot vector of the pseudo label ȳv

T . We observe that pseudo labels

inevitably introduce noise considering the data distribution discrepancy between two

domains. Therefore, we set a threshold that only the pixels whose prediction confidence is

higher than the threshold are accounted for the loss. In practice, we also follow [179, 248]

to mix images from both domains to facilitate stable training. Specifically, the label ȳMix

is generated by copying the random 50% categories in yS and pasting such class areas to

the target-domain pseudo label ȳT . Similarly, we also paste the corresponding pixel area in

xS to the target-domain input xT as xMix. Therefore, the target-domain segmentation loss

is updated as:

LTce = E
[
−p̄vMix log hcls(gθ

(
xMix
v

)
)
]
, (3.3)

where p̄v
Mix is the probability vector of the mixed label ȳv

Mix. Since we deploy the

copy-and-paste strategy instead of the conventional mixup [249], the mixed labels are still

one-hot.

3.2.2 Multi-grained Contrast in different effect regions.

We note that the above-mentioned segmentation loss does not explicitly consider the

inherent context within the image, which is crucial to the local-focused segmentation

task. Therefore, we study the feasibility of self-supervised learning in mining intra-domain

knowledge for domain adaptive semantic segmentation tasks. In this chapter, we revisit the

current pixel-wise contrast in semantic segmentation [205] and explore the joint training

mechanism of contrastive learning on both pixel- and patch-level effect regions. To this

end, we introduce a unified multi-grained contrast including patch-wise contrast to enhance

the consistency within a local patch.

In the pixel-wise effect region, given the labels of each pixel yS , we regard image pixels

of the same class C as positive samples and the rest pixels in xS belonging to the other

classes are the negative samples. The pixel-wise contrastive loss can be derived as:

LPixel = −
∑

C(i)=C(j)

log
r (ei, ej)∑Npixel

k=1 r (ei, ek)
, (3.4)
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where e is the feature map extracted by the projection head e = hpixelgθ(x), and Npixel

is the number of pixels. ei denotes the i-th feature on the feature map e. r denotes

the similarity between the two pixel features. In particular, we deploy the exponential

cosine similarity r (ei, ej) = exp (s (ei, ej) /τ), where s is cosine similarity between two pixel

features ei and ej , and τ is the temperature. As shown in Figure 3.2, with the guide of

pixel-wise contrastive loss, the pixel embeddings of the same class are pulled close and

those of the other classes are pushed apart, which promotes intra-class compactness and

inter-class separability.

In the patch-wise effect region, in particular, given unlabeled target image xT , we also

leverage the network gθ to extract the feature map of two partially overlapping patches.

The cropped examples are shown at the bottom of Figure 3.2. We deploy an independent

head hpatch with 2-layer MLPs to further project the output feature maps to the embedding

space for comparison. As shown in Figure 2 module (b), overlapping region O1 and O2

denote the same green area in the original image. In practice, we first randomly select the

region O and then sample two neighbor patches M covering O. We use M to denote the

entire patch including O. We argue that the output features of the overlapping region

should be invariant to the contexts. Therefore, we encourage that each feature in O1 to be

consistent with the corresponding feature of the same location in O2. Similar to pixel-wise

contrast, as shown in Figure 3.2 module (b), we regard two features at the same position

of O1 and O2 as positive pair, and any two features in M1 and M2 at different positions

of the original image are treated as a negative pair. Given a target-domain input xT , the

patch-wise contrast loss can be formulated as:

LPatch = −
∑

O1(i)=O2(j)

log
r (fi, fj)∑Npatch

k=1 r (fi, fk)
, (3.5)

where f is the feature map extracted by the projection head f = hpatchgθ(x), and Npatch

is the number of pixels in M1 ∪M2. i is the pixel index in the patch M1, and j is for

M2. O1(i) denotes the location in the overlapping region O1. O1(i) = O2(j) denotes i

and j are the same pixel (location) in the original image, as shown in Figure 3.4(b). fi

denotes i-th feature in the map. Similarly, r denotes the exponential function of the cosine

similarity as the one in pixel contrast. It is worth noting that we also enlarge the negative

sample pool. In practice, the rest feature fk not only comes from the union set M1 ∪M2,

but also from other training images within the current batch.
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Algorithm 1 PiPa algorithm

Input: Source-domain data XS , Source-domain labels Y S , Target

domain data XT , segmentation network that contains segmen-

tation encoder дθ , classification head hcls, pixel projection head

hpixel, patch projection head hpatch, the total iteration number

Ttotal.

1: Initialize network parameter θ with ImageNet pre-trained pa-

rameters. Initialize teacher network θ̄ randomly

2: for iteration = 1 to Ttotal do

3:

4:

5:

xS , yS ∼ U .
xT ∼ V .

ȳT ← arдmax
(
hcls

(
д
θ̄

(
xT

)))
.

6: xMix , ȳMix ←Augmentation and pseudo label frommixing

xS ,yS ,xT and ȳT .
7: iCompute predidictc

ŷS ← arдmax
(
hcls

(
дθ

(
xS

)))
,

hcls дθ xMixŷMix ← arдmax
( ( ( )))

.

8: Compute loss for the mini-batch:

9:

10:

11:

Ltotal = Lce + LPixel + LPatch.

Compute ∇θLtotal by backpropagation.

Perform stochastic gradient descent.

Update teacher network θ̄ with θ .
12: end for

13: return student network дθ and classification head hcls .

3.2.3 Total Loss.

The overall training objective is the combination of pixel-level cross-entropy loss and the

proposed PiPa:

Ltotal = LS
ce + Lc

T
e + αLPixel + βLPatch, (3.6)

where α and β are the weights for pixel-wise contrast LPixel and patch-wise contrast LPatch,

respectively. We summarize the pipeline of PiPa via an Algorithm below.

3.2.4 Discussion.

1. Correlation between Pixel and Patch Contrast. Both pixel and patch contrast

are derived from instance-level contrastive learning and share a common underlying idea,
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i.e., contrast, but they work at different effect regions, i.e., pixel-wise and patch-wise. The

pixel contrast explores the pixel-to-pixel category correlation over the whole image, while

patch-wise contrast imposes regularization on the semantic patches from a local perspective.

Therefore, the two kinds of contrast are complementary and can work in a unified way to

mine the intra-domain inherent context within the data.

2. What is the advantage of the proposed framework? Traditional UDA methods

focus on learning shared inter-domain knowledge. Differently, we are motivated by the

objectives of UDA semantic segmentation in a bottom-up manner, and thus leverage rich

pixel correlations in the training data to facilitate intra-domain knowledge learning. By

explicitly regularizing the feature space via PiPa, we enable the model to explore the

inherent intra-domain context in a self-supervised setting, i.e., pixel-wise and patch-wise,

without extra parameters or annotations. Therefore, PiPa could be effortlessly incorporated

into existing UDA approaches to achieve better results without extra overhead during

testing.

3. Difference from conventional contrastive learning. Conventional contrastive

learning methods typically tend to perform contrast in the instance or pixel level alone

[197, 205, 208]. We formulate pixel- and patch-wise contrast in a similar format but focus

on the local effect regions within the images, which is well aligned with the local-focused

segmentation task. We show that the proposed local contrast, i.e., pixel- and patch-wise

contrasts, regularizes the domain adaptation training and guides the model to shed more

light on the intra-domain context. Our experiment also verifies this point that pixel- and

patch-wise contrast facilitates smooth edges between different categories and yields a higher

accuracy on small objects.

3.3 Experiment

3.3.1 Experimental Setup

Datasets. We evaluate the proposed method on GTA → Cityscapes and SYNTHIA →
Cityscapes, following common UDA protocols [5, 179, 189, 224, 248]. The target dataset

Cityscapes, collected from the real-world street-view images, contains 2,975 unlabeled

images for training, 500 images for validation, and 1525 images for testing. We report the

results on Cityscapes validation set for comparisons.
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Structure Details. Following recent SOTA UDA setting [184, 192, 248], our network

consists of a SegFormer MiT-B5 backbone [248, 250] pretrained on ImageNet-1k [251] and

several MLP-based heads, i.e., hcls , hpixel and hpatch , which contains two fully-connected

(fc) layers and ReLU activation between two fc layers. Note that the self-supervised

projection heads hpixel and hpatch are only applied at training time and are removed

during inference, which does not introduce extra computational costs in deployment.

Implementation details. We train the network with batch size 2 for 60k iterations with

a single NVIDIA RTX 6000 GPU. We adopt AdamW [252] as the optimizer, a learning rate

of 6× 10−5, a linear learning rate warmup of 1.5k iterations and the weight decay of 0.01.

Following [184, 192], the input image is resized to 1280 × 720 for GTA and 1280 × 760 for

SYNTHIA, with a random crop size of 640 × 640. For the patch-wise contrast, we randomly

resize the input images by a ratio between 0.5 and 2, and then randomly crop two patches

of the size 720× 720 from the resized image and ensure the Intersection-over-Union(IoU)

value of the two patches between 0.1 and 1. We utilize the same data augmentation e.g.,

color jitter, Gaussian blur and ClassMix [253] and empirically set pseudo labels threshold

0.968 following [179]. The exponential moving average parameter of the teacher network is

0.999. The hyperparameters of the loss function are chosen empirically α = β = 0.1. The

code is based on Pytorch [254].

3.3.2 Results Comparison

We compare PiPa with several competitive UDA methods on GTA → Cityscapes and

SYNTHIA→ Cityscapes, respectively. The quantitative comparisons are shown in Table 3.1

and Table 3.2, respectively. We also show the visual difference between the proposed method

and the other two strong Transformer-based methods [5, 248] in Figure 3.3.

GTA → Cityscapes. Generally, our PiPa yields a significant improvement over the

transformer-based models DAFormer[248] and HRDA[5], as shown in Table 3.1. Particularly,

PiPa achieves 71.7 mIoU, which outperforms DAFormer by a considerable margin of +3.4

mIoU (with the trasformer backbone). Additionally, when applying PiPa to HRDA, which

is a strong baseline that adopts high-resolution crops, we increase +1.8 mIoU and achieve

the state-of-the-art performance of 75.6 mIoU, verifying the effectiveness of the proposed

method that introduces a unified and multi-grained self-supervised learning algorithm

in UDA task. Furthermore, PiPa achieves leading IoU of almost all classes on GTA →
Cityscapes, including several small-scale objectives such as Fence, Pole, Wall and Training
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Figure 3.3: Qualitative results on GTA → Cityscapes and SYNTHIA →
Cityscapes. From left to right: Target Image, Ground Truth, the visual re-

sults predicted by DAFormer, DAFormer + Ours (PiPa), HRDA, HRDA + Ours

(PiPa). We deploy the white dash boxes to highlight different prediction parts.

Sign. Particularly, we increase the IoU of the Fence by +6.2 from 51.5 to 57.7 IoU. The IoU

performance of PiPa verifies our motivation that the exploration of the inherent structures

of intra-domain images indeed helps category recognition, especially for challenging small

objectives. It is worth noting that CLUDA combines cross-domain contrastive learning

with class-specific enhancement, which helps it better capture inter-class differences and

achieve superior performance in several sub-categories.

SYNTHIA → Cityscapes. As revealed in Table 3.2, PiPa also achieves remarkable

mIoU and mIoU* (13 most common categories) performance on SYNTHIA → Cityscapes,

increasing +2.5 and +2.4 mIoU compared with DAFormer [248] and HRDA [5], respectively.

Qualitative results. In Figure 3.3, we visualize the segmentation results and the

comparison with previous strong methods DAFormer [248], HRDA [5], and the ground

truth on both GTA → Cityscapes and SYNTHIA → Cityscapes benchmarks. The results

highlighted by white dash boxes show that PiPa is capable of segmenting minor categories

such as ‘wall’, ‘traffic sign’ and ‘traffic light’. It is also noticeable that PiPa predicts

smoother edges between different categories, e.g., ‘person’ in the fourth row of Figure 3.3.

We think it is because the proposed method explicitly encourages patch-wise consistency

against different contexts, which facilitates the prediction robustness on edges.
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Table 3.1: [

Quantitative comparison with previous UDA methods on GTA →
Cityscapes.]Quantitative comparison with previous UDA methods on GTA → Cityscapes.

We present pre-class IoU and mIoU. The best accuracy in every column is in bold.
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AdaptSegNet [162] 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4

CyCADA [165] 86.7 35.6 80.1 19.8 17.5 38.0 39.9 41.5 82.7 27.9 73.6 64.9 19.0 65.0 12.0 28.6 4.5 31.1 42.0 42.7

CLAN [164] 87.0 27.1 79.6 27.3 23.3 28.3 35.5 24.2 83.6 27.4 74.2 58.6 28.0 76.2 33.1 36.7 6.7 31.9 31.4 43.2

SP-Adv [255] 86.2 38.4 80.8 25.5 20.5 32.8 33.4 28.2 85.5 36.1 80.2 60.3 28.6 78.7 27.3 36.1 4.6 31.6 28.4 44.3

MaxSquare [186] 88.1 27.7 80.8 28.7 19.8 24.9 34.0 17.8 83.6 34.7 76.0 58.6 28.6 84.1 37.8 43.1 7.2 32.3 34.2 44.3

ASA [256] 89.2 27.8 81.3 25.3 22.7 28.7 36.5 19.6 83.8 31.4 77.1 59.2 29.8 84.3 33.2 45.6 16.9 34.5 30.8 45.1

AdvEnt [163] 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5

MRNet [174] 89.1 23.9 82.2 19.5 20.1 33.5 42.2 39.1 85.3 33.7 76.4 60.2 33.7 86.0 36.1 43.3 5.9 22.8 30.8 45.5

APODA [257] 85.6 32.8 79.0 29.5 25.5 26.8 34.6 19.9 83.7 40.6 77.9 59.2 28.3 84.6 34.6 49.2 8.0 32.6 39.6 45.9

CBST [171] 91.8 53.5 80.5 32.7 21.0 34.0 28.9 20.4 83.9 34.2 80.9 53.1 24.0 82.7 30.3 35.9 16.0 25.9 42.8 45.9

APODA [257] 85.6 32.8 79.0 29.5 25.5 26.8 34.6 19.9 83.7 40.6 77.9 59.2 28.3 84.6 34.6 49.2 8.0 32.6 39.6 45.9

PatchAlign [240] 92.3 51.9 82.1 29.2 25.1 24.5 33.8 33.0 82.4 32.8 82.2 58.6 27.2 84.3 33.4 46.3 2.2 29.5 32.3 46.5

MRKLD [175] 91.0 55.4 80.0 33.7 21.4 37.3 32.9 24.5 85.0 34.1 80.8 57.7 24.6 84.1 27.8 30.1 26.9 26.0 42.3 47.1

BL [181] 91.0 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5

DT [232] 90.6 44.7 84.8 34.3 28.7 31.6 35.0 37.6 84.7 43.3 85.3 57.0 31.5 83.8 42.6 48.5 1.9 30.4 39.0 49.2

FADA [182] 91.0 50.6 86.0 43.4 29.8 36.8 43.4 25.0 86.8 38.3 87.4 64.0 38.0 85.2 31.6 46.1 6.5 25.4 37.1 50.1

Uncertainty [176] 90.4 31.2 85.1 36.9 25.6 37.5 48.8 48.5 85.3 34.8 81.1 64.4 36.8 86.3 34.9 52.2 1.7 29.0 44.6 50.3

FDA [237] 92.5 53.3 82.4 26.5 27.6 36.4 40.6 38.9 82.3 39.8 78.0 62.6 34.4 84.9 34.1 53.1 16.9 27.7 46.4 50.5

Adaboost [247] 90.7 35.9 85.7 40.1 27.8 39.0 49.0 48.4 85.9 35.1 85.1 63.1 34.4 86.8 38.3 49.5 0.2 26.5 45.3 50.9

SPCL [209] 90.3 50.3 85.7 45.3 28.4 36.8 42.2 22.3 85.1 43.6 87.2 62.8 39.0 87.8 41.3 53.9 17.7 35.9 33.8 52.1

DACS [179] 89.9 39.7 87.9 30.7 39.5 38.5 46.4 52.8 88.0 44.0 88.8 67.2 35.8 84.5 45.7 50.2 0.0 27.3 34.0 52.1

CorDA [224] 94.7 63.1 87.6 30.7 40.6 40.2 47.8 51.6 87.6 47.0 89.7 66.7 35.9 90.2 48.9 57.5 0.0 39.8 56.0 56.6

BAPA [258] 94.4 61.0 88.0 26.8 39.9 38.3 46.1 55.3 87.8 46.1 89.4 68.8 40.0 90.2 60.4 59.0 0.0 45.1 54.2 57.4

ProDA [177] 87.8 56.0 79.7 46.3 44.8 45.6 53.5 53.5 88.6 45.2 82.1 70.7 39.2 88.8 45.5 59.4 1.0 48.9 56.4 57.5

CaCo [208] 93.8 64.1 85.7 43.7 42.2 46.1 50.1 54.0 88.7 47.0 86.5 68.1 2.9 88.0 43.4 60.1 31.5 46.1 60.9 58.0

PiPa (CNN) 95.1 71.3 87.7 44.2 42.0 43.5 52.1 63.3 87.8 44.0 87.5 72.3 44.2 89.3 59.9 59.4 2.1 47.2 48.9 60.1

DAFormer [248] 95.7 70.2 89.4 53.5 48.1 49.6 55.8 59.4 89.9 47.9 92.5 72.2 44.7 92.3 74.5 78.2 65.1 55.9 61.8 68.3

CAMix [192] 96.0 73.1 89.5 53.9 50.8 51.7 58.7 64.9 90.0 51.2 92.2 71.8 44.0 92.8 78.7 82.3 70.9 54.1 64.3 70.0

DAFormer [248] + PiPa 96.1 72.0 90.3 56.6 52.0 55.1 61.8 63.7 90.8 52.6 93.6 74.3 43.6 93.5 78.4 84.2 77.3 59.9 66.7 71.7

HRDA [5] 96.4 74.4 91.0 61.6 51.5 57.1 63.9 69.3 91.3 48.4 94.2 79.0 52.9 93.9 84.1 85.7 75.9 63.9 67.5 73.8

CLUDA [259] 97.1 78.0 91.0 60.3 55.3 56.3 64.3 71.5 91.2 51.1 94.7 78.4 52.9 94.5 82.8 86.5 73.0 64.2 69.7 74.4

HRDA [5] + PiPa 96.8 76.3 91.6 63.0 57.7 60.0 65.4 72.6 91.7 51.8 94.8 79.7 56.4 94.4 85.9 88.4 78.9 63.5 67.2 75.6

Effect of Pixel-wise Contrast and Patch-wise Contrast. We evaluate the effectiveness

of the two primary components, i.e., Pixel-wise Contrast and Patch-wise Contrast in the

proposed PiPa and investigate how the combination of two contrasts contributes to the

final performance on GTA → Cityscapes. For a fair comparison, we apply the same

experimental settings and hyperparameters. We first reproduce the baseline DAFormer

[248], which yields a competitive mIoU of 68.4. As shown in the Table 3.3, we could observe:

(1) Both Patch Contrast and Pixel Contrast individually could lead to +1.4 mIoU and

+2.3 mIoU improvement respectively, verifying the effectiveness of exploring the inherent
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Table 3.2: Quantitative comparison with previous UDA methods on SYNTHIA

→ Cityscapes. We present pre-class IoU, mIoU and mIoU*. mIoU and mIoU*

are averaged over 16 and 13 categories, respectively. The best accuracy in every

column is in bold.
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MaxSquare [186] 77.4 34.0 78.7 5.6 0.2 27.7 5.8 9.8 80.7 83.2 58.5 20.5 74.1 32.1 11.0 29.9 45.8 39.3

SIBAN [238] 82.5 24.0 79.4 − − − 16.5 12.7 79.2 82.8 58.3 18.0 79.3 25.3 17.6 25.9 46.3 −
PatchAlign [240] 82.4 38.0 78.6 8.7 0.6 26.0 3.9 11.1 75.5 84.6 53.5 21.6 71.4 32.6 19.3 31.7 46.5 40.0

AdaptSegNet [162] 84.3 42.7 77.5 − − − 4.7 7.0 77.9 82.5 54.3 21.0 72.3 32.2 18.9 32.3 46.7 −
CLAN [164] 81.3 37.0 80.1 − − − 16.1 13.7 78.2 81.5 53.4 21.2 73.0 32.9 22.6 30.7 47.8 −
SP-Adv [255] 84.8 35.8 78.6 − − − 6.2 15.6 80.5 82.0 66.5 22.7 74.3 34.1 19.2 27.3 48.3 −
AdvEnt [163] 85.6 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4 84.1 57.9 23.8 73.3 36.4 14.2 33.0 48.0 41.2

ASA [256] 91.2 48.5 80.4 3.7 0.3 21.7 5.5 5.2 79.5 83.6 56.4 21.0 80.3 36.2 20.0 32.9 49.3 41.7

CBST [171] 68.0 29.9 76.3 10.8 1.4 33.9 22.8 29.5 77.6 78.3 60.6 28.3 81.6 23.5 18.8 39.8 48.9 42.6

DADA [221] 89.2 44.8 81.4 6.8 0.3 26.2 8.6 11.1 81.8 84.0 54.7 19.3 79.7 40.7 14.0 38.8 49.8 42.6

MRNet [174] 82.0 36.5 80.4 4.2 0.4 33.7 18.0 13.4 81.1 80.8 61.3 21.7 84.4 32.4 14.8 45.7 50.2 43.2

MRKLD [175] 67.7 32.2 73.9 10.7 1.6 37.4 22.2 31.2 80.8 80.5 60.8 29.1 82.8 25.0 19.4 45.3 50.1 43.8

CCM [260] 79.6 36.4 80.6 13.3 0.3 25.5 22.4 14.9 81.8 77.4 56.8 25.9 80.7 45.3 29.9 52.0 52.9 45.2

Uncertainty [176] 87.6 41.9 83.1 14.7 1.7 36.2 31.3 19.9 81.6 80.6 63.0 21.8 86.2 40.7 23.6 53.1 54.9 47.9

BL [181] 86.0 46.7 80.3 − − − 14.1 11.6 79.2 81.3 54.1 27.9 73.7 42.2 25.7 45.3 51.4 −
DT [232] 83.0 44.0 80.3 − − − 17.1 15.8 80.5 81.8 59.9 33.1 70.2 37.3 28.5 45.8 52.1 −
APODA [257] 86.4 41.3 79.3 − − − 22.6 17.3 80.3 81.6 56.9 21.0 84.1 49.1 24.6 45.7 53.1 −
Adaboost [247] 85.6 43.9 83.9 19.2 1.7 38.0 37.9 19.6 85.5 88.4 64.1 25.7 86.6 43.9 31.2 51.3 57.5 50.4

DAFormer [248] 84.5 40.7 88.4 41.5 6.5 50.0 55.0 54.6 86.0 89.8 73.2 48.2 87.2 53.2 53.9 61.7 67.4 60.9

CAMix [192] 87.4 47.5 88.8 − − − 55.2 55.4 87.0 91.7 72.0 49.3 86.9 57.0 57.5 63.6 69.2 −
DAFormer [248] + PiPa 87.9 48.9 88.7 45.1 4.5 53.1 59.1 58.8 87.8 92.2 75.7 49.6 88.8 53.5 58.0 62.8 70.1 63.4

HRDA [5] 85.2 47.7 88.8 49.5 4.8 57.2 65.7 60.9 85.3 92.9 79.4 52.8 89.0 64.7 63.9 64.9 72.4 65.8

CLUDA [259] 87.7 46.9 90.2 49.0 7.9 59.5 66.9 58.5 88.3 94.6 80.1 57.1 89.8 68.2 65.5 65.8 73.8 67.2

HRDA [5] + PiPa 88.6 50.1 90.0 53.8 7.7 58.1 67.2 63.1 88.5 94.5 79.7 57.6 90.8 70.2 65.1 66.9 74.8 68.2

contextual knowledge. (2) The two kinds of contrasts are complementary to each other.

The proposed method successfully mines the multi-level knowledge by combining the two

kinds of contrast. When applying both losses, our PiPa further improves the network

performance to 71.7 mIoU, surpassing the model that deploys only one kind of contrast by

a clear margin. The second baseline model is HRDA [5]. The observation is consistent with

DAFormer. Using either pixel or patch loss could increase the performance, but jointly

training them in a unified framework leads to the best results. Since HRDA introduces

High Resolution (HR) and Low Resolution (LR) features, to effectively introduce Pixel-wise

contrast and Patch-wise contrast in HRDA [5], we conducted experiments on both HR and

LR features as shown in Table 3.4. It is shown that training with HR features results in

higher performance.
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Table 3.3: Ablation study on the effect of Pixel-wise Contrast and Patch-wise

Contrast on GTA→ Cityscapes based on two competitive baselines DAFormer[248]

and HRDA[5].

Method LPixel LPatch mIoU ∆mIoU

DAFormer[248] 68.4 −
Patch Contrast ✓ 69.8 +1.4

Pixel Contrast ✓ 70.7 +2.3

PiPa ✓ ✓ 71.7 +3.3

HRDA[5] 73.8 −
Patch Contrast ✓ 74.7 +0.9

Pixel Contrast ✓ 74.9 +1.1

PiPa ✓ ✓ 75.6 +1.8

Figure 3.4: Ablation study on Loss Weights α and β.

Effect of the loss weight. We conduct loss weight sensitivity analysis on GTA →
Cityscapes. Specifically, we change the weights α and β of the two kinds of contrasts in

Eq 3.6, respectively. As shown in Figure 3.4, we can observe that both pixel-wise and

patch-wise contrast are not sensitive to the relative weight. PiPa keeps outperforming the

competitive DAFormer baseline of 68.3 mIoU in all compositions of loss weights. When

applying the proposed method to an unseen environment, α = 0.1, β = 0.1 can be a good

initial weight to start.

Effect of the patch crop size. For the patch contrast, the size of the patch also affects
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the number of negative pixels and training difficulty. As shown in Table 3.5, we gradually

increase the patch size. We observe that larger patch generally obtain better performance

since it contains more diverse contexts. There are two main advantages when increasing

the patch size: (1) In larger patches, we could include more “hard negative” pixels for

contrastive learning; (2) In larger patches, we have a larger receptive field, which could

include contextual cues for bigger objects, such as trains. It is also worth noting that if the

patch size is too large (like 960), the overlapping area can be larger than the non-overlapping

area, which also may compromise the training.

Table 3.4: Effect of different crop types in HRDA [5].

Method mIoU

LR Crops 75.1

HR Crops 75.6

Table 3.5: Effect of the patch crop size.

Crop Size mIoU

480× 480 70.4

600× 600 71.0

720× 720 71.7

900× 900 70.9

Sensitivity of the pseudo label threshold. Since the target annotation is not available in

unsupervised domain adaptation, a hard threshold beta is used to eliminate low-confidence

pixel predictions from the predicted label. We conducted additional experiments on the

threshold and found that within the range of 0.9-0.99, the DAFormer + PiPa results were

not sensitive to the beta in Table 3.6. We set the threshold to 0.968 to obtain optimal

results following previous self-training works [179, 248].

Multi source domain setting. By incorporating multi-source domain data, the model

can be trained to be more robust to the unlabelled target environment [261, 262]. We

first adopt previous work MADAN [261] as our baseline, which reaches 41.4 mIoU on

GTA5 + SYNTHIA → Cityscapes. MADAN + PiPa increases the performance to 44.1

mIoU. Then we adopt a self-training baseline DACS [179], which achieves a mIoU of 52.1

(Only GTA) as shown in Table 3.7. By incorporating additional source-domain data,

the model’s performance improves to 54.2 mIoU. Our proposed method further improves
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Table 3.6: Sensitivity analysis of the pseudo label threshold.

Threshold 0.6 0.7 0.8 0.9 0.95 0.968 0.99

mIoU 66.3 68.9 69.4 70.8 71.2 71.7 71.4

Table 3.7: Results on GTA5 + SYNTHIA → Cityscapes.

Base Multi Src. Multi Src + PiPa

52.1 54.2 56.1

the model’s performance, increasing the mIoU from 54.2 to 56.1 mIoU, demonstrating

consistent improvement over various baselines.

Ablation study on Normal-to-Adverse setting. ACDC is a large dataset with 4,006

images containing four common adverse conditions: fog, nighttime, rain and snow. In

Cityscapes → ACDC, the knowledge is transferred from the source domain under normal

visual conditions, i.e., at daytime and in clear weather to adverse visual conditions. The

quantitative comparisons are shown in Table 3.8. We can observe that our PiPa yields

a significant improvement over the previous methods. Particularly, PiPa achieves 58.6

mIoU, which outperforms DAFormer by +3.2 mIoU, which demonstrates the competitive

generalization ability of PiPa in adverse visual conditions. When plugging on recent works

MIC [263] and Refign [264], PiPa shows consistent improvement.

Oxford RobotCar dataset [6] contains 894 training images with 9 classes and is collected

during rainy and cloudy weather conditions, presenting a challenge due to the noisy variants

introduced by such illumination conditions. We observe that the proposed method also has

achieved the competitive results on Cityscapes → Oxford-Robot based on MRNet [174]

and Uncertainty [176], reaching 1.8 and 2.1 mIoU increase respectively.

Ablation study on CNN-based architectures. In addition to Vision Transformer-

based DA architectures, we also evaluate our PiPa on the DeepLabV2 [227] baseline

with ResNet-101 backbone [10]. We do not pursue the SOTA performance here, but to

demonstrate the relative improvement by plugging PiPa. Therefore, we do not search

optimal hyper-parameters but follow the common setting. In Table 3.10, we show the

adaptation performance of the baseline and our PiPa on GTA5 → Cityscapes. We also

provide the performance of the DeepLabV2 trained merely on the source domain data,

i.e., Src-Only. It can be observed that PiPa improves the UDA baseline performance
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Table 3.8: Quantitative comparison with previous UDA methods on Cityscapes

→ ACDC. The performance is provided as mIoU in % and the best result is in

bold.

Method Architecture mIoU

ADVENT [163] DeepLabv2 32.7

AdaptSegNet [162] DeepLabv2 32.7

BDL [181] DeepLabv2 37.7

CLAN [164] DeepLabv2 39.0

FDA [237] DeepLabv2 45.7

MGCDA [265] DeepLabv2 48.7

DANNet [266] DeepLabv2 50.0

DAFormer [248] Transformer 55.4

DAFormer [248] + PiPa Transformer 58.6 (+3.2)

MIC [263] Transformer 59.2

MIC [263] + PiPa Transformer 61.1 (+1.9)

Refign [264] Transformer 65.5

Refign [264] + PiPa Transformer 66.4 (+0.9)

Table 3.9: Quantitative Results on Cityscapes → Oxford-Robot [6]. The perfor-

mance is provided as mIoU in % and the best result is in bold.
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MRNet [174] 95.9 73.5 86.2 69.3 31.9 87.3 57.9 88.8 61.5 72.5

MRNet + PiPa 96.9 75.1 88.0 69.9 36.5 88.8 61.5 89.1 63.1 74.3

Uncertainty [176] 95.9 73.7 87.4 72.8 43.1 88.6 61.7 89.6 57.0 74.4

Uncertainty + PiPa 96.0 76.2 93.3 73.3 42.5 90.9 65.4 91.1 59.5 76.5

of DeepLabV2 by a large margin from 54.2 mIoU to 60.1 mIoU accuracy, still remains

competitive.

Further experimental results on advanced architecture. We then apply our PiPa

on the advanced method MIC [263]. MIC + PiPa achieves 77.3 mIoU (1.4 higher than

MIC) on GTA-Cityscapes and 68.9 mIoU (1.6 higher than MIC) on SYNTHIA-Cityscapes,

showing consistent improvement. The results are shown in Table 3.11.
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Table 3.10: Quantitative result on a CNN-based architecture. The performance

is provided as mIoU in %.

Src-Only Baseline Baseline+PiPa

34.3 54.2 60.1 (+5.9)

Table 3.11: Further study on advanced architecture. The performance is provided

as mIoU in %.

Dataset GTA-Cityscapes SYNTHIA-Cityscapes

MIC [263] 75.9 67.3

MIC [263] + PiPa 77.3 68.9

3.4 Conclusion

In this chapter, we focus on the exploration of intra-domain knowledge, such as context

correlation inside an image for the semantic segmentation domain adaptation. We target to

learn a feature space that enables discriminative pixel-wise features and the robust feature

learning of the overlapping patch against variant contexts. To this end, we propose PiPa, a

unified pixel- and patch-wise self-supervised learning framework, which introduces pixel-level

and patch-level contrast learning to UDA. PiPa encourages the model to mine the inherent

contextual feature, which is domain invariant. Experiments show that PiPa outperforms

the state-of-the-art approaches and yields a competitive 75.6 mIoU on GTA→Cityscapes

and 67.4 mIoU on Synthia→Cityscapes. Since PiPa does not introduce extra parameters

or annotations, it can be combined with other existing methods to further facilitate the

intra-domain knowledge learning. In the future, we will continue to study the proposed PiPa

on relevant tasks, such as domain adaptive video segmentation and open-set adaptation

etc.



Chapter 4

Transferring to Real-World

Layouts: A Depth-aware

Framework for Scene Adaptation

4.1 Introduction

Semantic segmentation refers to the task of assigning pixel-level category labels in an

image, which has achieved significant progress in the last few years [226, 227, 250, 267]. It

is worth noting that prevailing models usually require large-scale training datasets with

high-quality annotations, such as ADE20K [268], to achieve good performance and but

such pixel-level annotations in real-world are usually unaffordable and time-consuming

[269]. One straightforward idea is to train networks with synthetic data so that the

pixel-level annotations are easier to obtain [23, 233]. However, the network trained with

synthetic data usually results in poor scalability when being deployed to a real-world

environment due to multiple factors, such as weather, illumination, and road design.

Therefore, researchers resort to unsupervised domain adaptation (UDA) to further tackle

the variance between domains. One branch of UDA methods attempts to mitigate the

domain shift by aligning the domain distributions [162, 164, 165, 167, 270]. Another

potential paradigm to heal the domain shift is self-training [171, 175, 176, 237, 271], which

recursively refine the target pseudo-labels. Taking one step further, recent DACS [179] and

follow-up works [5, 16, 184, 207, 224, 248, 272] combine self-training and ClassMix [253] to

mix images from both source and target domain. In this way, these works could craft highly

31
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perturbed samples to assist training by facilitating learning shared knowledge between

two domains. Specifically, cross-domain mixing aims to copy the corresponding regions of

certain categories from a source domain image and paste them onto an unlabelled target

domain image. We note that such a vanilla strategy leads to pasting a large amount of

objects to the unrealistic depth position. It is because that every category has its own

position distribution. For instance, the background classes such as “sky” and “vegetation”

usually appear farther away, while the classes that occupy a small number of pixels such as

“traffic signs” and “pole”, usually appear closer as shown in Figure 4.1 (a). Such crafted

training data compromise contextual learning, leading to sub-optimal location prediction

performance, especially for small objects.

To address these limitations, we observe the real-world depth distribution and find that

semantic categories are easily separated (disentangled) in the depth map since they follow

a similar distribution under certain scenarios, e.g., urban. Therefore, we propose a new

depth-aware framework, which contains Depth Contextual Filter (DCF) and a cross-task

encoder. In particular, DCF removes unrealistic classes mixed with the real-world target

training samples based on the depth information. On the other hand, multi-modal data

could improve the performance of deep representations and the effective use of the deep

multi-task features to facilitate the final predictions is crucial. The proposed cross-task

encoder contains two specific heads to generate intermediate features for each task and an

Adaptive Feature Optimization module (AFO). AFO encourages the network to optimize

the fused multi-task features in an end-to-end manner. Specifically, the proposed AFO

adopts a series of transformer blocks to capture the information that is crucial to distinguish

different categories and assigns high weights to discriminative features and vice versa.

The main contributions are as follows:

(1) We propose a simple Depth-Guided Contextual Filter (DCF) to explicitly leverage the

key semantic categories distribution hidden in the depth map, enhancing the realism of

cross-domain information mixing and refining the cross-domain layout mixing.

(2) We propose an Adaptive Feature Optimization module (AFO) that enables the cross-

task encoder to exploit the discriminative depth information and embed it with the visual

feature which jointly facilitates semantic segmentation and pseudo depth estimation.

(3) Albeit simple, the effectiveness of our proposed methods has been verified by exten-

sive ablation studies. Despite the pseudo depth, our method still achieves competitive



33

Figure 4.1: (a) Considering the driving scenario, we observe that the object

location is relatively stable according to the distance from the camera. Therefore,

we propose a Depth-guided Contextual Filter (DCF) which is aware of the semantic

categories distribution in terms of Near, Middle, and Far view to facilitate cross-

domain mixing. (b) Since we explicitly take the semantic layout into consideration,

our method achieves more realistic mixed samples compared to the competitive MIC

(Vanilla Mixed Sample) [272]. As shown in the red dotted box, “new” buildings

are pasted before the parked cars.
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accuracy on two commonly used scene adaptation benchmarks, namely 77.7 mIoU on

GTA→Cityscapes and 69.3 mIoU on Synthia→Cityscapes.

4.2 Methodology

4.2.1 Problem Statement

In a typical Unsupervised Domain Adaptation (UDA) scenario, we have a source domain,

denoted S, which consists of abundant labeled synthetic data. On the other hand, the

target domain, represented by T , contains unlabeled real-world data. For example, we have

labeled training samples
(
xS ,yS , zS ∼ XS ,YS ,ZS

)
in the source domain, where xS ,yS

are the training image and the corresponding ground truth for semantic segmentation.

zS is the label for the depth estimation task. Similarly, we have unlabeled target images

sampled from target domain data
(
xT , zT ∼ XT ,ZT

)
, where xT is the unlabeled sample in

the target domain and zT is the label for the depth estimation task. Since depth annotation

is not supported by common public datasets, we adopt pseudo depth that can be easily

generated by the off-the-shelf model [273].

4.2.2 Depth-guided Contextual Filter

In UDA, recent works Recent UDA works [5, 16, 224, 248, 253, 272] often employ pixel

mixing to create cross-domain augmented samples. The basic idea is straightforward: take

a portion of pixels from a source domain image and transplant them onto an equivalent

area in a target domain image. However, this simple approach faces challenges due to the

inherent differences in structure and layout between source and target domain data. To

decrease noisy signals and simulate augmented training samples with real-world layouts,

we propose Depth-guided Contextual Filter (DCF) to reduce the noisy pixels that are

naively mixed across domains. The implementation of DCF is represented as pseudo-code

in Algorithm below, where the image xS and the corresponding semantic labels yS are

sampled from source domain data. The image xT and the depth label zT are from target

domain data. Pseudo label ŷT is then generated as ŷT = Fθ

(
xT

)
, where Fθ is a pre-trained

semantic network. In practice, Fθ usually has been trained on the source domain dataset

via supervised learning.
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Figure 4.2: Source domain images xS and xT are mixed together, using the

ground truth label yS . The mixed images are de-noised by our proposed Depth-

guided Contextual Filter (DCF) and then trained by the network. We illustrate

DCF with a set of practical sample. As illustrated, the unrealistic “Building”

pixels from the source image are mixed pasted to the target image, leading to a

noisy mixed sample. The proposed DCF removes these pixels and maintain mixed

pixels of “Traffic Sign” and “Pole” shown in the white dotted boxes, enhancing

the realism of cross-domain mixing. (Best viewed when zooming in.)

Based on the hypothesis that most semantic categories usually fall under a finite depth

range, we introduce DCF, which divides the target depth map zT into a few discrete

depth intervals (∆z1, ...,∆zn). For a given real-world target input image xT combined with

the pseudo label ŷT and target depth map zT , the density value at each depth interval

(∆z1, ...,∆zn) for each class i ∈ (1, . . . , C) can be counted and normalized as a probability.

We denote the density value for class i at the depth interval ∆z1 as pi(∆z1). All the density

values make up the depth distribution in the target domain image. Then we randomly

select half of the categories on the source images to paste on the target domain image.

In practice, we apply a binary mask M to denote the corresponding pixels. Then naive
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Algorithm 1 Depth-guided Contextual Filter Algorithm with Cross-

Image Mixing and Self Training

Input: Source domain: (xS , yS , zS ∼ XS ,YS ,ZS ), Target domain:

(xT , zT ∼ XT ,ZT ). Semantic network Fθ .

1: Initialize network parameters θ randomly.

2: for iteration = 1 to n do
3: ŷT ← Fθ

(
xT

)
, Generate pseudo label

4:

5:

6:

7:

8:

9:

10: 1 −MDCF

Pre-calculate the density value p for each class i at each depth

interval from the target depth map zT ,

ŷM ← M � yS + (1 −M) � ŷT , Randomly select 50% cat-

egories and copy the category ground truth label from the

source image to target pseudo label

xM ← M � xS + (1 −M) � xT , Copy the corresponding

category region from the source image to the target image

Re-calculate the density value p̂ after the mixing,

Calculate the depth density distribution difference before and

after mixing,

Filter the category once the difference exceeds the threshold,

Re-generate the depth-aware binary mask MDCF ,

ŷF ← MDCF � yS +
( )

� ŷT , Generate the

Cfiltered training samples with new D F mask

xF ← MDCF � xS +
(
1 −MDCF

)
� xT ,

11: iCompute predipred c

ȳS ← arдmax
(
Fθ

(
xS

))
,

ȳF ← arдmax
(
Fθ

(
xF

))
,

12: Compute loss for the batch:

13:

14:

� ← L
(
ȳS , yS , ȳF , ŷF

)
.

Compute ∇θ � by backpropagation.

Perform stochastic gradient descent.

15: end for
16: return Fθ

cross-domain mixed image xMix and the mixed label ŷMix can be formulated as:

(4.1)xMix = M� xS + (1−M)� xT ,

ŷMix = M� yS + (1−M)� ŷT , (4.2)

where � denotes the element-wise multiplication of between the mask and the image. The

naively mixed images are visualized in Figure 4.2. It could be observed that due to the

depth distribution difference between two domains, pixels of “Building” category are mixed
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from the source domain to the target domain, creating unrealistic images. Training with

such training samples will compromise contextual learning. Therefore, we propose to filter

the pixels that do not match the depth density distribution in the mixed image. After the

naive mixing, we re-calculate the density value for each class at each depth interval. For

example, the new density value for class i at the depth interval ∆z1 is denoted as p̂i (∆z1).

Then we calculate the depth density distribution difference for each pasted category and

denote the difference for class i at the depth interval ∆z1 as ∆pi(∆z1) = |pi(∆z1)− p̂i(∆z1)|.
Once ∆pi(∆z1) exceeds the threshold of that category i, these pasted pixels are removed.

After performing DCF, we confirm the final realistic pixels to be mixed and construct a

depth-aware binary mask MDCF , which is changed dynamically based on the depth layout

of the current target image.

The filtered mixing samples are then generated. In practice, we directly apply the updated

depth-aware mask to replace the original mask. Therefore, the new mixed sample and the

label are as follows:

xF =MDCF ⊙ xS +
(
1−MDCF)⊙ xT , (4.3)

ŷF =MDCF ⊙ yS +
(
1−MDCF)⊙ ŷT . (4.4)

Because large objects such as “sky” and “terrain” usually aggregate and occupy a large

amount of pixels and small objects only occupy a small amount of pixels in a certain depth

range, we set different filtering thresholds for each category. DCF uses pseudo semantic

labels for the target domain as there is no ground truth available. Since the label prediction

is not stable in the early stage, we apply a warmup strategy to perform DCF after 10,000

iterations. Examples of the input images, naively mixed samples and filtered samples are

presented in Figure 4.2. The sample after the process of the DCF module has the pixels

from the source domain that match the depth distribution of the target domain, helping

the network to better deal with the domain gap.

4.2.3 Multi-task Scene Adaptation Framework

In order to exploit the relation between segmentation and depth learning, we introduce a

multi-task scene adaptation framework including a high resolution semantic encoder, and a

cross-task shared encoder with a feature optimization module, which is depicted in Figure
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Lvis

Ldepth

Lhr

Figure 4.3: The proposed multi-task learning framework. The input images xF

are mixed from the source image xS and target domain xT according to the depth

(Please refer to Figure 4.2). Then we are fed xS and xF into the high resolution

encoder to generate high resolution predictions. To enhance multi-modal learning,

the visual and depth feature created by the cross-task encoder are fused and fed

into the proposed Adaptive Feature Optimization module (AFO) for multimodal

communication. Finally, the multimodal communication via several transformer

blocks incorporates and optimizes the fusion of depth information, improving the

final visual predictions.

4.3. The proposed framework incorporates and optimizes the fusion of depth information

for improving the final semantic predictions.

High Resolution Semantic Prediction. Most supervised methods use high resolution

images for training, but common scene adaptation methods usually use random crops of

the image that is half of the full resolution. To reduce the domain gap between scene

adaptation and supervised learning while maintaining the GPU memory consumption, we

adopt a high-resolution encoder to encode HR image crops into deep HR features. Then a

semantic decoder is used to generate the HR semantic predictions ȳhr. We adopt the cross

entropy loss for semantic segmentation:

LS
hr

(
xS ,yS

)
= E

[
−yS log ȳS

hr

]
, (4.5)

LF
hr

(
xF ,yF

)
= E

[
−ŷF log ȳF

hr

]
, (4.6)

where ȳS
hr and ȳT

hr are high resolution semantic predictions. yS is the one-hot semantic

label for the source domain and ŷF is the one-hot pseudo label for the depth-aware fused
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domain.

Adaptive Feature Optimization. In addition to the high resolution encoder, We use

another cross-task encoder to encode input images which are shared for both tasks. Depth

maps are rich in spatial depth information, but a naive concatenation of depth information

directly to visual information causes some interference, e.g. categories at similar depth

positions are already well distinguished by visual information, and attention mechanisms

can help the network to select the crucial part of the multitask information. In the proposed

multi-task learning framework, the visual semantic feature and depth feature is generated

by a visual head and a depth head, respectively. As shown in Figure 4.3, after applying

batch normalization, an Adaptive Feature Optimization module then concatenates the

normalized input visual feature and the input depth feature to create a fused multi-task

feature by concatenation as f in
fuse = CONCAT

(
f in
vis, f

in
depth

)
. The fused feature is then

fed into a series of transformer blocks to capture the key information between the two

tasks. The attention mechanism adaptively adjusts the extent to which depth features are

embedded in visual features:

fout
fuse =WTrans

(
f in
fuse

)
, (4.7)

where WTrans is the transformer parameter. The learned output of the transformer blocks

is a weight map γ which is multiplied back to the input visual feature and depth feature

resulting in an optimized feature as:

γ = σ
(
WConv ⊗ fout

fuse

)
, (4.8)

where WConv denotes the convolution parameter, ⊗ denotes the convolution operation and

σ represents the sigmoid function. The weight matrix γ performs adaptive optimization

of the muti-task features. Then, the fused feature fout
fuse is fed into different decoders for

predicting different final tasks, i.e., the visual and the depth task. The output features are

essentially multimodal features containing crucial depth information:

fout
vis = f in

vis ⊙ γ, fout
depth = f in

depth ⊙ γ, (4.9)

where ⊙ represents element-wise multiplication. The optimized visual and depth feature is

then fed into the multimodal communication module for further processing. The multimodal

communication module refines the learning of key information between two tasks by iterative
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use of transformer blocks. the inference is merely based on the visual input when the

feature optimization is fished. The final semantic prediction ȳS
vis and depth prediction z̄S

can be generated from the final visual feature ffinal
vis and depth feature ffinal

depth by the visual

head and depth head . Similar to the high resolution predictions, we use the cross entropy

loss for the semantic loss calculation:

LSvis
(
xS ,yS

)
= E

[
−yS log ȳS

vis

]
, (4.10)

LFvis
(
xF ,yF

)
= E

[
−ŷF log ȳF

vis

]
. (4.11)

We also employ the berHu loss for depth regression at source domain:

LSdepth
(
zS

)
= E

[
berHu

(
z̄S − zS

)]
, (4.12)

where z̄ and z are predicted and ground truth semantic maps. Following [221, 223], we

deploy the reversed Huber criterion [274], which is defined as :

berHu (ez) =





|ez| , |ez| ≤ H

(ez)
2+H2

2H , |ez| > H

H = 0.2 max (|ez|) ,

(4.13)

where H is a positive threshold and we set it to 0.2 of the maximum depth residual. Finally,

the overall loss function is:

L = LShr + LSvis + λdepthLSdepth + LFhr + LFvis, (4.14)

where hyperparameter λdepth is the loss weight. Considering that our main task is semantic

segmentation and the depth estimation is the auxiliary task, we empirically λdepth =

0.1× 10−2. We also designed the ablation studies to change the weight of depth task λdepth

to the level of 10−1 or 10−3.
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4.3 Experiment

4.3.1 Experimental Setup

Datasets. We evaluate the proposed framework on two scene adaptation settings, i.e.,

GTA → Cityscapes and SYNTHIA → Cityscapes, following common protocols [5, 179, 189,

224, 248, 272]. Particularly, the GTA5 dataset [233] is the synthetic dataset collected from

a video game, which contains 24,966 images annotated by 19 classes. Following [224], we

adopt depth information generated by Monodepth2 [273] model which is trained merely

on GTA image sequences. SYNTHIA [23] is a synthetic urban scene dataset with 9,400

training images and 16 classes. Simulated depth information provided by SYNTHIA is

adopted. GTA and SYNTHIA serve as source domain datasets. The target domain dataset

is Cityscapes, which is collected from real-world street-view images. Cityscapes contains

2,975 unlabeled training images and 500 validation images. The resolution of Cityscapes is

2048 × 1024 and the common protocol downscales the size to 1024 × 512 to save memory.

Following [224], the stereo depth estimation from [19] is used. We leverage the Intersection

Over Union (IoU) for per-class performance and the mean Intersection over Union (mIoU)

over all classes to report the result. The code is based on Pytorch [254].

Experimental Setup. We adopt DAFormer [248] network with MiT-B5 backbone [250]

for the high resolution encoder and DeepLabV2 network with ResNet-101 backbone for

the cross-task encoder to reduce the memory consumption. All backbones are initialized

with ImageNet pretraining. Our training procedure is based on self-training methods

with cross-domain mixing [5, 179, 248, 272] and enhanced by our proposed Depth-guided

Contextual Filter. Following [5, 179], the input image resolution is half of the full resolution

for the cross-task encoder and full resolution for high resolution encoder. We utilize the

same data augmentation, e.g., color jitter and Gaussian blur and empirically set pseudo

labels threshold 0.968 following [179]. We train the network with batch size 2 for 40k

iterations on a Tesla V100 GPU.

Data Resolution. Our proposed depth-aware multi-task framework contains a high

resolution encoder and a cross-task encoder with an adaptive feature optimization module

(AFO). Previous works [179, 181, 240] downsample Cityscapes to 1024 × and GTA to 1280

× 720. Following [5], for the high resolution encoder, we resize GTA to 2560 × 1440 and

SYNTHIA to 2560 x 1520. Then the crop size is 1024 × 1024. In addition, SegFormer [250]

MLP decoder with an embedding dimension of 256 is used for the high resolution branch.
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For the cross-task encoder branch, we follow common UDA methods [179, 248] to adopt

1024 × 512 pixels (half of the full resolution) for Cityscapes, 1280 × 760 for SYNTHIA

and 1280 × 720 for GTA. In addition, a 512 × 512 random crop is extracted.

4.3.2 Results Comparison

Results on GTA→Cityscapes. We show our results on GTA → Cityscapes in Table

4.1 and highlight the best results in bold. It could be observed that our method yields

significant performance improvement over the state-of-the-art method MIC [272] from 75.9

mIoU to 77.7 mIoU. Usually, classes that occupy a small number of pixels are difficult to

adapt and have a comparably low IoU performance. However, our method demonstrates

competitive IoU improvement on most categories especially on small objects such as +5.7

on “Rider”, +5.4 on “Fence”, +5.2 on “Wall”, +4.4 on “Traffic Sign” and +3.4 on “Pole”.

The result shows the effectiveness of the proposed contextual filter and cross-task learning

framework in the contextual learning. Our method also increases the mIoU performance of

classes that aggregate and occupy a large amount of pixels in an image by a smaller margin

such as +1.8 on “Pedestrain” and +1.1 on “Bike”, probably because the rich texture

and color information contained in the visual feature already has the ability to recognize

these relatively easier classes. The above observations are also qualitatively reflected in

Figure 4.4, where we visualize the segmentation results of the proposed method and the

comparison with previous strong transformer-based methods HRDA [5], and MIC [272].

The qualitative results highlighted by white dash boxes show that the proposed method

largely improved the prediction quality of challenging small object “Traffic Sign” and large

category “Terrain”.

Results on Synthia→Cityscapes. We show our results on SYNTHIA → Cityscapes in

Table 4.2 and the results show the consistent performance improvement of our method,

increasing from 67.3 to 69.3 (+2.0 mIoU) compared to the state-of-the-art method MIC

[272]. Especially, our method significantly increases the IoU performance of the challenging

class “SideWalk” from 50.5 to 63.1 (+12.6 mIoU). It is also noticeable that our method

remains competitive in segmenting most individual classes and yields a significant increase

of +6.8 on “Road”, +6.6 on “Bus”, +3.9 on “Pole”, +3.7 on “Road”, +3.2 on “Wall” and

+2.9 on “Truck”.

Ablation Study on Different Scene Adaptation Frameworks. We combine our

method with different scene adaptation architectures on GTA→Cityscapes. Table 4.3 shows
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Table 4.1: Quantitative comparison with previous UDA methods on GTA →
Cityscapes. We present per-class IoU and mIoU. The best accuracy in every

column is in bold. Our results are averaged over 3 random seeds.
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AdaptSegNet [162] 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4

CyCADA [165] 86.7 35.6 80.1 19.8 17.5 38.0 39.9 41.5 82.7 27.9 73.6 64.9 19.0 65.0 12.0 28.6 4.5 31.1 42.0 42.7

CLAN [164] 87.0 27.1 79.6 27.3 23.3 28.3 35.5 24.2 83.6 27.4 74.2 58.6 28.0 76.2 33.1 36.7 6.7 31.9 31.4 43.2

SP-Adv [255] 86.2 38.4 80.8 25.5 20.5 32.8 33.4 28.2 85.5 36.1 80.2 60.3 28.6 78.7 27.3 36.1 4.6 31.6 28.4 44.3

MaxSquare [186] 88.1 27.7 80.8 28.7 19.8 24.9 34.0 17.8 83.6 34.7 76.0 58.6 28.6 84.1 37.8 43.1 7.2 32.3 34.2 44.3

ASA [256] 89.2 27.8 81.3 25.3 22.7 28.7 36.5 19.6 83.8 31.4 77.1 59.2 29.8 84.3 33.2 45.6 16.9 34.5 30.8 45.1

AdvEnt [163] 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5

MRNet [174] 89.1 23.9 82.2 19.5 20.1 33.5 42.2 39.1 85.3 33.7 76.4 60.2 33.7 86.0 36.1 43.3 5.9 22.8 30.8 45.5

APODA [257] 85.6 32.8 79.0 29.5 25.5 26.8 34.6 19.9 83.7 40.6 77.9 59.2 28.3 84.6 34.6 49.2 8.0 32.6 39.6 45.9

CBST [171] 91.8 53.5 80.5 32.7 21.0 34.0 28.9 20.4 83.9 34.2 80.9 53.1 24.0 82.7 30.3 35.9 16.0 25.9 42.8 45.9

MRKLD [175] 91.0 55.4 80.0 33.7 21.4 37.3 32.9 24.5 85.0 34.1 80.8 57.7 24.6 84.1 27.8 30.1 26.9 26.0 42.3 47.1

FADA [182] 91.0 50.6 86.0 43.4 29.8 36.8 43.4 25.0 86.8 38.3 87.4 64.0 38.0 85.2 31.6 46.1 6.5 25.4 37.1 50.1

Uncertainty [176] 90.4 31.2 85.1 36.9 25.6 37.5 48.8 48.5 85.3 34.8 81.1 64.4 36.8 86.3 34.9 52.2 1.7 29.0 44.6 50.3

FDA [237] 92.5 53.3 82.4 26.5 27.6 36.4 40.6 38.9 82.3 39.8 78.0 62.6 34.4 84.9 34.1 53.1 16.9 27.7 46.4 50.5

Adaboost [247] 90.7 35.9 85.7 40.1 27.8 39.0 49.0 48.4 85.9 35.1 85.1 63.1 34.4 86.8 38.3 49.5 0.2 26.5 45.3 50.9

DACS [179] 89.9 39.7 87.9 30.7 39.5 38.5 46.4 52.8 88.0 44.0 88.8 67.2 35.8 84.5 45.7 50.2 0.0 27.3 34.0 52.1

BAPA [258] 94.4 61.0 88.0 26.8 39.9 38.3 46.1 55.3 87.8 46.1 89.4 68.8 40.0 90.2 60.4 59.0 0.0 45.1 54.2 57.4

ProDA [177] 87.8 56.0 79.7 46.3 44.8 45.6 53.5 53.5 88.6 45.2 82.1 70.7 39.2 88.8 45.5 59.4 1.0 48.9 56.4 57.5

CaCo [208] 93.8 64.1 85.7 43.7 42.2 46.1 50.1 54.0 88.7 47.0 86.5 68.1 2.9 88.0 43.4 60.1 31.5 46.1 60.9 58.0

DAFormer [248] 95.7 70.2 89.4 53.5 48.1 49.6 55.8 59.4 89.9 47.9 92.5 72.2 44.7 92.3 74.5 78.2 65.1 55.9 61.8 68.3

CAMix [192] 96.0 73.1 89.5 53.9 50.8 51.7 58.7 64.9 90.0 51.2 92.2 71.8 44.0 92.8 78.7 82.3 70.9 54.1 64.3 70.0

HRDA [5] 96.4 74.4 91.0 61.6 51.5 57.1 63.9 69.3 91.3 48.4 94.2 79.0 52.9 93.9 84.1 85.7 75.9 63.9 67.5 73.8

MIC [272] 97.4 80.1 91.7 61.2 56.9 59.7 66.0 71.3 91.7 51.4 94.3 79.8 56.1 94.6 85.4 90.3 80.4 64.5 68.5 75.9

CorDA† [224] 94.7 63.1 87.6 30.7 40.6 40.2 47.8 51.6 87.6 47.0 89.7 66.7 35.9 90.2 48.9 57.5 0.0 39.8 56.0 56.6

FAFS† [275] 93.4 60.7 88.0 43.5 32.1 40.3 54.3 53.0 88.2 44.5 90.0 69.5 35.8 88.7 34.1 53.9 41.3 51.7 54.7 58.8

DBST† [275] 94.3 60.0 87.9 50.5 43.0 42.6 50.8 51.3 88.0 45.9 89.7 68.9 41.8 88.0 45.8 63.8 0.0 50.0 55.8 58.8

Ours† 97.5 80.7 92.1 66.4 62.3 63.1 67.7 75.7 91.8 52.4 93.9 81.6 61.8 94.7 88.3 90.0 81.2 65.8 69.6 77.7 ± 0.3

†: Training with depth data.

that our method achieves consistent and significant improvements across different methods

with different network architectures. Firstly, our method improves the state-of-the-art

performance by +1.8 mIoU. Then we evaluate the proposed method on two strong methods

based on transformer backbone, yielding +3.2 mIoU and +2.3 mIoU performance increase

on DAFormer [248] and HRDA [5], respectively. Secondly, we evaluate our method on

DeepLabV2 [227] architecture with ResNet-101 [10] backbone. We show that we improve

the performance of the CNN-based cross-domain mixing method, i.e., DACS by +4.1 mIoU.

The ablation study verifies the effectiveness of our method in leveraging depth information

to enhance cross-domain mixing not only on Transformer-based networks but also on

CNN-based architecture.
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Figure 4.4: Qualitative results on GTA → Cityscapes. From left to right: Target

Image, Ground Truth, the visual results predicted by HRDA, MIC and Ours. We

highlight prediction differences in white dash boxes. The proposed method could

predict clear edges.

Ablation Study on Different Components of the Proposed Method. In order to

verify the effectiveness of our proposed components, we train four different models from

M1 to M4 and show the result in Table 4.4. “ST Base” means the self training baseline

with semantic segmentation branch and depth regression branch. “Naive Mix” denotes the

cross-domain mixing strategy. “DCF” represents the proposed depth-aware mixing (Depth-

guided Contextual Filter). “AFO” denotes the proposed Adaptive Feature Optimization

module and we used two different method to perform AFO. Firstly, we leverage channel

attention (CA) that could select useful information along the channel dimension to perform

the feature optimization. In this method, the fused feature is adaptively optimized by

SENet [277], the output is a weighted vector which is multiplied back to the visual and

depth feature. We leavrage “AFO (CA)” to denote this method. Secondly, we leverage the

iterative use of transformer block to adaptively optimize the multi-task feature. In this case,

the output of the transformer block is a weighted map. The Multimodal Communication

(MMC) module is then used to incorporate rich knowledge from the depth prediction.

We denote this method as “AFO (Trans + MMC)”. M1 is the self training baseline with

depth regression based on DAFormer architecture. M2 adds the cross-domain mixing
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Table 4.2: Quantitative comparison with previous UDA methods on SYNTHIA

→ Cityscapes. We present per-class IoU, mIoU, and mIoU*. mIoU and mIoU*

are averaged over 16 and 13 categories, respectively. The best accuracy in every

column is in bold. Our results are averaged over 3 random seeds.
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MaxSquare [186] 77.4 34.0 78.7 5.6 0.2 27.7 5.8 9.8 80.7 83.2 58.5 20.5 74.1 32.1 11.0 29.9 45.8 39.3

SIBAN [238] 82.5 24.0 79.4 − − − 16.5 12.7 79.2 82.8 58.3 18.0 79.3 25.3 17.6 25.9 46.3 −
PatchAlign [240] 82.4 38.0 78.6 8.7 0.6 26.0 3.9 11.1 75.5 84.6 53.5 21.6 71.4 32.6 19.3 31.7 46.5 40.0

AdaptSegNet [162] 84.3 42.7 77.5 − − − 4.7 7.0 77.9 82.5 54.3 21.0 72.3 32.2 18.9 32.3 46.7 −
CLAN [164] 81.3 37.0 80.1 − − − 16.1 13.7 78.2 81.5 53.4 21.2 73.0 32.9 22.6 30.7 47.8 −
SP-Adv [255] 84.8 35.8 78.6 − − − 6.2 15.6 80.5 82.0 66.5 22.7 74.3 34.1 19.2 27.3 48.3 −
AdvEnt [163] 85.6 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4 84.1 57.9 23.8 73.3 36.4 14.2 33.0 48.0 41.2

ASA [256] 91.2 48.5 80.4 3.7 0.3 21.7 5.5 5.2 79.5 83.6 56.4 21.0 80.3 36.2 20.0 32.9 49.3 41.7

CBST [171] 68.0 29.9 76.3 10.8 1.4 33.9 22.8 29.5 77.6 78.3 60.6 28.3 81.6 23.5 18.8 39.8 48.9 42.6

MRNet [174] 82.0 36.5 80.4 4.2 0.4 33.7 18.0 13.4 81.1 80.8 61.3 21.7 84.4 32.4 14.8 45.7 50.2 43.2

MRKLD [175] 67.7 32.2 73.9 10.7 1.6 37.4 22.2 31.2 80.8 80.5 60.8 29.1 82.8 25.0 19.4 45.3 50.1 43.8

CCM [260] 79.6 36.4 80.6 13.3 0.3 25.5 22.4 14.9 81.8 77.4 56.8 25.9 80.7 45.3 29.9 52.0 52.9 45.2

Uncertainty [176] 87.6 41.9 83.1 14.7 1.7 36.2 31.3 19.9 81.6 80.6 63.0 21.8 86.2 40.7 23.6 53.1 54.9 47.9

BL [181] 86.0 46.7 80.3 − − − 14.1 11.6 79.2 81.3 54.1 27.9 73.7 42.2 25.7 45.3 51.4 −
DT [232] 83.0 44.0 80.3 − − − 17.1 15.8 80.5 81.8 59.9 33.1 70.2 37.3 28.5 45.8 52.1 −
IAST [276] 81.9 41.5 83.3 17.7 4.6 32.3 30.9 28.8 83.4 85.0 65.5 30.8 86.5 38.2 33.1 52.7 49.8 −
DAFormer [248] 84.5 40.7 88.4 41.5 6.5 50.0 55.0 54.6 86.0 89.8 73.2 48.2 87.2 53.2 53.9 61.7 67.4 60.9

CAMix [192] 87.4 47.5 88.8 − − − 55.2 55.4 87.0 91.7 72.0 49.3 86.9 57.0 57.5 63.6 69.2 −
HRDA [5] 85.2 47.7 88.8 49.5 4.8 57.2 65.7 60.9 85.3 92.9 79.4 52.8 89.0 64.7 63.9 64.9 72.4 65.8

MIC [272] 86.6 50.5 89.3 47.9 7.8 59.4 66.7 63.4 87.1 94.6 81.0 58.9 90.1 61.9 67.1 64.3 74.0 67.3

DADA [221] 89.2 44.8 81.4 6.8 0.3 26.2 8.6 11.1 81.8 84.0 54.7 19.3 79.7 40.7 14.0 38.8 49.8 42.6

CorDA† [224] 93.3 61.6 85.3 19.6 5.1 37.8 36.6 42.8 84.9 90.4 69.7 41.8 85.6 38.4 32.6 53.9 62.8 55.0

Ours† 93.4 63.1 89.8 51.1 9.1 61.4 66.9 64.0 88.0 94.5 80.9 56.6 90.9 68.5 63.7 66.6 75.9
65.9
±
0.2

†: Training with depth data.

strategy for improvement and shows a competitive result of 76.0 mIoU. M3 is the model

with the Depth-guided Contextual Filter, increasing the performance from 76.0 to 77.1

mIoU (+1.1 mIoU), which demonstrates the effectiveness of transferring the mixed training

images to real-world layout with the help of the depth information. M4 adds the multi-task

framework that leverages Channel Attention (CA) mechanism to fuse the discriminative

depth feature into the visual feature. The segmentation result is increased by a small

margin (+0.2 mIoU), which means CA could help the network to adaptively learn to

focus or to ignore information from the auxiliary task to some extent. M5 is our proposed

depth-aware multi-task model with both Depth-guided Contextual Filter and Adaptive
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Table 4.3: Compatibility of the proposed method on different UDA methods and

backbones on GTA→Cityscapes. Our results are averaged over 3 random seeds.

Backbone UDA Method w/o w/ Diff.

DeepLabV2 [227] DACS [179] 52.1 56.2 +4.1

DAFormer [248] DAFormer [248] 68.3 71.5 +3.2

DAFormer [248] HRDA [5] 73.8 76.1 +2.3

DAFormer [248] MIC [272] 75.9 77.7 ± 0.3 +1.8

Table 4.4: Ablation study of different components of our proposed framework on

GTA→Cityscapes. The results are averaged over 3 random seeds.

Method ST Base. Naive Mix. DCF. AFO. (CA) AFO. (Trans + MMC) mIoU↑
M1 ✓ 73.1

M2 ✓ ✓ 76.0

M3 ✓ ✓ ✓ 77.1

M4 ✓ ✓ ✓ ✓ 77.3

M5 ✓ ✓ ✓ ✓ 77.7 ± 0.3

Feature Optimization (AFO) module. Compared to M3, M5 has a mIoU increase of +0.6

from 77.1 to 77.7, which shows the effectiveness of multi-modal feature optimization using

transformers to facilitate contextual learning.

Ablation study on GTA+SYNTHIA → Cityscapes. We evaluate the proposed

method on multi-source domains setting and report the quantitative result on GTA+SYNTHIA

→ Cityscapes. With multi-source domain data, the model can be trained more robust to

the unlabelled target environment. We adopt DACS [179] as our baseline with 52.1 mIoU

(Only GTA) performance shown in Table 4.5. With more source-domain data, the model

yields a better result of 54.2 mIoU. Then, we can observe that our method yields a larger

improvement from 54.2 to 56.7 mIoU, demonstrating that the proposed model could adapt

multi-domain depth to the target domain and hence increase performance.
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Table 4.5: Quantitative results on GTA+SYNTHIA → to Cityscapes. The

performance is provided as mIoU in %.

Baseline (Single Source) Multi Source Multi Source + Depth

52.1 54.2 56.7

4.4 Conclusion

In this chapter, we introduce a new depth-aware scene adaptation framework that effectively

leverages the guidance of depth to enhance data augmentation and contextual learning.

The proposed framework not only explicitly refines the cross-domain mixing by stimulating

real-world layouts with the guidance of depth distributions of objects, but also introduced

a cross-task encoder that adaptively optimizes the multi-task feature and focused on the

discriminative depth feature to help contextual learning. By integrating our depth-aware

framework into existing self-training methods based on either transformer or CNN, we

achieve state-of-the-art performance on two widely used benchmarks and a significant

improvement on small-scale categories. Extensive experimental results verify our motivation

to transfer the training images to real-world layouts and demonstrate the effectiveness of

our multi-task framework in improving scene adaptation performance.



Chapter 5

GvSeg: General and Task-oriented

Video Segmentation

5.1 Introduction

Identifying target objects and then inferring their spatial locations over time in a pixel

observation constitute fundamental challenges in computer vision [144]. Depending on dis-

criminating unique instances or semantics associated with targets, exemplary tasks include:

exemplar-guided video segmentation (EVS) that tracks objects with given annotations at

the first frame, video instance segmentation (VIS), video semantic segmentation (VSS),

and video panoptic segmentation (VPS) which entails the delineation of foreground instance

tracklets, while simultaneously assigning semantic labels to each video pixel. Prevalent

work primarily adheres to discrete technical protocols customized for each task, showcasing

promising results [2, 7, 89, 92, 97, 117, 129–131, 145–147, 150, 151, 278–283]. Nevertheless,

these approaches necessitate meticulous architectural designs for each unique task, thereby

posing challenges in facilitating research endeavors devoting on one task to another. Re-

cently, there have been efforts in shifting the above task-specific paradigm to a general

solution that can be applied across multiple distinct tasks [87, 126, 158–160]. However, one

concern naturally arises that such a highly homogenized framework would overlook the

diversity between tasks, potentially leading to suboptimal performance. For instance, the

segmenting and tracking of objects like human prioritize instance discrimination in VIS but

lean towards semantic recognition in VSS. However, prior general approaches adopt exactly

48
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Figure 5.1: (a) We render holistic modeling on segment targets by disentangling

them into appearance, shape and position. (b) By adjusting the involvement of the

above three factors into tracking and segmentation according to task requirement,

GvSeg achieves remarkable improvement compared to prior top-leading general

solutions.

same query initialization, matching and space-time learning strategies [126, 158, 160], lack-

ing tailored differentiation within the algorithm design that caters to the specific properties

of individual tasks.

In this chapter, we present GvSeg, a general video segmentation framework to address

EVS, VIS, VSS, and VPS that can seamlessly accommodate task-oriented properties into

the learning and inference process, while maintaining an identical architectural design.

To achieve this, we rethink video segmentation in two aspects: �what are the key factors

that constitute segment targets (i.e., instance, thing, and stuff ), and � how to leverage

these key factors to build a unique sequential observation for each specific task within a

general model. To address �, we delve deeply into the mechanism of how individuals can

effectively discriminate moving instances or background stuff. The most intuitive answer

in this regard is appearance, aligning with current video solutions where binary masks are

classified solely based on visual representations (i.e., appearance) [107, 117, 119, 284].

However, human perception extends beyond mere appearance [46, 285, 286]. For instance,

we can also recognize moving entities such as cats in low-light conditions by referring

to sketches (i.e., shape), and distinguish distinct instances on the basis of respective

spatial locations (i.e., position), even in fast motion. Therefore, it is noteworthy that the

instances to be segmented usually carry rich cues encompassing not only appearance but

also position and shape characteristics. In light of the analysis above, we could assert three

significant observations that contribute to the resolution of �: First, it becomes evident

that current solutions downplay the importance of position and consistently ignore shape,

in favor of solely appearance-based discrimination. To tackle this, we derive a shape-position
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descriptor for each object, followed by encoding them into the cross-frame query matching

process to enable the participation of three key factors in discriminating corresponding

instances across the entire video. Second, it is crucial to acknowledge that the engagement

of appearance, position, and shape cues should be adjusted in accordance with the task

requirements. In current general solutions, all queries are roughly initialized as empty and

matched in the same manner. However, for semantic classes VSS and background stuff

in VPS, there is no instance discrimination and overly emphasize shape/location cues

would harm the generalization of the model to various targets with the same semantics.

Concerning this, we advocate for a tailored query initialization and object association

strategies for each task by adjusting the relative contribution of three key elements. Third,

owing to the absence of disentanglement on segment targets, the widely used temporal

contrastive learning [117, 118, 158, 160] strategy for object association in current solutions

is deemed suboptimal. Concretely, prior work empirically chooses objects in nearby frames

as positive samples, remaining unaware of why excluding the same instance in distant

frames. In fact, entities moving in long temporal range may display similar appearance, but

undergo strong shape distortion, rendering them unsuitable as positive samples for instance

discrimination. Therefore, we devise a task-oriented sampling strategy that caters to thing

and stuff, where instance examples are selectively sampled from the entire video by referring to

shape similarity and location distance. This not only makes full use of the pre-defined shape-

position descriptors, but also recollects valuable samples that were arbitrarily discarded

in prior work. In a similar spirit, the stuff examples are gathered from the whole dataset

which renders rich semantic description for each semantic class. Through an in-depth

analysis of the essential elements that compose segmentation targets and subsequently

derive task-oriented insights, our work exhibits several compelling facets: First, it not only

recognizes but also effectively harnesses the unique nature of each task, enabling seamless

accommodation of task-specific properties into segmentation models. Second, all of our

designs are architecture-agnostic, preserving a uniform structural to efficiently address

task diversity. Third, GvSeg substantially attains remarkable performance on each task.

Notably, it surpasses existing general solutions by 4.6% HOTA on BURST [9], 1.3% AP

on YouTube-VIS 2021 [2], 4.8% AP on Occluded-VIS [8], 1.1% mIoU on VSPW [3], 4.8%

VPQ on VIPSeg [1], establishing new SOTA.
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5.2 Methodology

5.2.1 Problem Statement

Video segmentation seeks to partition a video clip V ∈RTHW×3 containing T frames of size

H×W into K non-overlap tubes linked along the time axis:

{Yk}Kk=1 = {(Mk, ck)}Kk=1, (5.1)

where each tube mask Mk∈{0, 1}T×H×W is labeled with a category ck ∈{1, · · · , C}. The

value of K varies across tasks: in VSS, it is consistent with the number of predefined

semantic categories; in EVS and VIS, it is adjusted in response to the instance count; and

in VPS, it is the sum of stuff categories and thing entities.

5.2.2 Tracking by Query Matching

Inspired by the success of query-based object detectors, [117, 118, 158] propose to associate

instances based on the query embeddings. Specifically, given a set of N randomly initialized

queries {qtn}Nn=1, we can derive the object-centric representation {q̂tn}Nn=1 for frame V t by:

{q̂tn}Nn=1 = D(E(V t), {qtn}Nn=1), (5.2)

where E and D are the Transformer encoder and decoder. Here q̂tn refines rich appearance

representation for a specific object. The tracking is done by applying Hungarian Matching on

the affinity matrix Sij =cosine(q̂ti , q̂
t+1
j ) computed between q̂ti and q̂t+1

j of two successive

frame V t and V t+1. As such, instances exhibiting identical attributes across the video

sequence are linked automatically.

5.2.3 GvSeg: Task-Oriented Property Accommodation Framework

GvSeg seeks to advance general video segmentation through controllable emphasis on

instance discrimination and semantic comprehension according to task requirements. Con-

cretely, we first devise a new shape-position descriptor to accurately reveal the shape and

location of targets. Then, by adjusting the engagement of above shape-position descriptor

during cross-frame query matching, we could realize controllable association for instance
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Figure 5.2: Illustration of shape-position descriptor.

and background stuff, respectively. Finally, we give an analysis on the limitation of cur-

rent temporal contrastive learning and devise a task-oriented sampling strategy to tackle

encountered issues.

Shape-Position Descriptor. Inspired by shape context [287], a shape-position descriptor

is constructed to represent the spatial distribution and shape of target objects. First, it

describes shape cues by encoding the relative geometric relationships of points in object

contours relative to the object center. As shown in Fig.5.2, given the contour G∈{0, 1}H×W

of a target object which can be easily derived from masks, a set P with M anchor points

(i.e., ) are evenly sampled:

P = {pm = (x, y) |G(x, y) = 1, 1 ≤ m ≤ M}. (5.3)

Above anchor points are transformed into polar coordinates with the central point po of

targets (i.e., ) as the reference point. The polar coordinate is a histogram divided into

a grid of u×v bins with u angle divisions and v radius divisions. Next we calculate the

number of anchor points falling within each bin:

Hi,j =

M∑
m=1

⎧⎨
⎩

√
dmodel

if |θm − θ̂i| ≤ Δθ
2 and |rm − r̂j |≤ Δr

2

0 otherwise

⎫⎬
⎭ , (5.4)

where Δθ, Δr, and (θ̂i, r̂j) are the angle span, ra dius span, and center point of each bin,

(θm, rm) is the polar coordinate of anchor point pm, dmodel is the embedding dimension of

model. As such, H expresses the spatial configuration of contour G relative to center point

(i.e., po) in a compact and robust way. As depicted in Fig. 5.2, instances with different

shapes (i.e., target A and B) present varying distributions of H which demonstrates the
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capability to encode the shape cues of target objects. Moreover, we equip H with the ability

to account for the relative spatial location of target objects by setting Hi,j = −1/
√
dmodel

if the center point of a bin (i.e., ) falls outside of masks. Therefore, instances with similar

shapes but different locations (i.e., target B and C) would yield similar distribution of

positive values, but distinct distribution of negative values, effectively evolving above shape

descriptor into a shape-position descriptor.

Shape- and Position-Aware (SPA) Query Matching. Given the above analysis, a set

of shape-position descriptors {Hk}Kk=1 could be derived from each object k within the mask.

We then aim to facilitate the awareness of shape-position cues for object association between

frames, by integrating such descriptors into the query matching process. To achieve this,

we draw inspiration from the absolute position encoding (APE) which is widely adopted

in Transformer [288]. Specifically, during mask decoding, N query embeddings {qn}Nn=1 is

interacting with the backbone feature F to retrieve object-centric feature in each decoder

layer by:

ql = CrossAttn(ql−1,F ), ql = SelfAttn(ql, ql) (5.5)

Where l is the layer index. Typically, a Hungarian Matching matrix 1
l∈{0, 1}N×K between

N predictions generated from query embeddings and K ground truth objects can be derived

from each decoding layer. Following the principle of APE, where the position encodings P

is integrated into q: q ← q + P, we assign {Hk}Kk=1 to K elements in q that corresponds

to the object described in ground truth by referring to 1
l−1 produced from prior decoding

layer: ql ← ql + 1
l−1 ·H before conducting SelfAttn. Note the K elements in {Hk}Kk=1

are flattened and bilinearly interpolated to size dmodel, and then stacked together to get

H ∈ RK×dmodel . In this way, the query embeddings can i) well attend to and discriminate

corresponding objects by injecting the descriptors into SelfAttn, and ii) be aware to

shape-position cues after mask decoding (i.e., q̂ in Eq. 5.2). To further reinforce the

consideration to shape and position of targets in q̂, we compile H into the affinity-based

query matching between two adjacent frames:

Sij =cosine(q̂ti + Ht
i , q̂

t+1
j + Ht+1

j ). (5.6)

As such, each query embedding is seamlessly incorporated with the unique attributes of

corresponding objects, thereby endowing them with a heightened sensitivity to specific

targets when matching with other frames afterward. The related algorithm is shown below:
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Algorithm 1 Pseudo-code of Shape- and Position-Aware
Query Matching in a PyTorch-like style.

"""
inter_preds: intermediate mask predictions of the

mask decoding process.
output_preds: output mask predictions after the

mask decoding process.
SPD: construction of shape-position descriptor

from mask predictions.
feats: intermediate pixel features from last

transformer encoder layer.
o: object-centric query embedding after mask

decoding process.
o_hat: shape- and position-aware query embedding.
cur_rep: object-centric representation of current

frame.
ref_rep: object-centric representation of previous

frame.
HM_assignment: hungarian matching algorithm.
"""

# Integrating Shape-Position Descriptor to enable
# shape- and position-aware mask decoding.
def transformer decoder layer(feats, inter_preds):

#k x H x W
spd = SPD(inter_preds)
#D x H x W
k = nn.Linear(feats)
#D x H x W
v = nn.Linear(feats)

#compute attention map (Eq. 5)
#N x H x W
A = torch.matmul(q, k.transpose())

#integrate descriptors (Eq. 6)
#N x H x W
A_hat = A + spd

#N x H x W
A_hat = torch.nn.functional.softmax(A_hat)
#N x D
output_q = torch.matmul(A_hat, v)

return output_q
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# Reformulate query update to establish a
# shape- and position-aware object association
def query update(output_preds, o):

#k x D
spd = SPD(output_preds)

#integrate descriptors (Eq. 7)
#N x D
o_hat = o + spd

return updated_o

# Perform query matching process that harness
# appearance, shape, and position
def query match(cur_rep, ref_rep):

#generate shape- and position-aware object-
centric representation

new_cur_rep = query update(cur_rep)
new_ref_rep = query update(ref_rep)

#calculate affinity matrix between
#current frame and last frame
cos_sim = torch.matmul(new_cur_rep, new_ref_rep.

transpose())
C = 1 - cos_sim

#apply hungarian matching on affinity
#matrix and return matching results
indices = HM_assignment(C)

return indices

Task-Oriented Query Initialization & Object Association. To orient the model

towards specific tasks, existing work usually employs dedicated queries (i.e., stuff /thing

query) for semantic/instance segmentation[155, 289], and process them parallel by modifying

the model into a two-path architecture. In contrast, GvSeg smartly addresses this challenge

by dynamically adjusting the involvement of three key constitutes, i.e., appearance,

shape, and position within the query initialization and object association according to

task requirements.

• EVS underscores the utilization of given hints to guide the segmentation of subsequent

frames. To flexibly unleash the potential of different kinds of hints under the track by query

matching paradigm, we propose to initialize the query embeddings from backbone features

sampled within hinted regions. Specifically, for the point-guided task which provides a

single point pk = (x, y) to indicate the target object, the backbone feature at corresponding

location can be sampled by:

fk = sample(F , pk), (5.7)

where the implementation of sample follows PointRent [290]. Then, the query embedding is
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initialized with fk: q̄k = FFN(fk) to fulfill the guidance ability of given exemplars where FFN

is a feed-forward network. For the mask and box guided tasks, we sample multiple fk and

average them to get the feature that comprehensively describe target objects. Finally, SPA

query matching is applied to enhance instance discrimination during the object association

between frames.

• VIS emphasizes the tracking of instances which usually exhibits unique attributes for

discrimination. To encode these instance-specific properties (e.g., location, appearance)

into query embeddings, we follow [32] to initialize q∈ RN×D from the backbone features.

Concretely, we partition the backbone features into S × S grids and flatten them, resulting

in {Fi}S×S
i=1 . We then randomly select N elements from this set for the initialization of

queries and obtain {q̄i}Ni=1:

[q̄0; · · ·; q̄N ] = FFN(F ). (5.8)

As such, queries could involve appearance and location cues for diverse instances present

in the frame. Similarly to EVS, we apply SPA query matching for object association to

enable more precise instance discrimination across the entire video.

• VSS prioritizes semantic understanding of each class. Therefore, to enhance the thorough

grasp of semantics, we continuously collect the query embeddings corresponding to each

semantic class during training. More precisely, given N queries q ∈ RN×D, we gather

K entities from them based on the bipartite matching results 1 ∈ {0, 1}K×N between

predictions generated from q and ground truth:

q̄ = 1⊙ q ∈ RK×D. (5.9)

Here q̄ encodes the semantic-specific properties for each class, and we momentously update

it in each training step to approximate the global representation of semantic classes over

the entire dataset. During inference, we initialize object queries for each frame from q̄.

Note we do not apply SPA query matching for VSS, as shape and location cues would

harm semantic-level tracking.

• VPS integrates both instance-discrimination for foreground thing classes and semantic

interpretation for background stuff categories. We thus combine the query initialization

and association strategies used in VIS and VSS, to facilitate the effective recognition and

tracking for thing and stuff classes, respectively.The related algorithm is shown below:
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Algorithm 2 Task-Smart Query Initialization & Object As-
sociation in a PyTorch-like style.

"""
feats: backbone features
FP: feats processing (partition and flatten)
FFN: feedforward network
global_memory: global representation of the entire

dataset
"""

# VIS Query-Initialization
def initialize queries vis(feats):

#process backbone features
grid_feats = FP(feats)

#initialize queries
init_queries = FFN(grid_feats)

return init_queries

# VSS Query-Initialization
def initialize queries vss(feats):

#initialize queries
init_queries = FFN(global_memory)

return init_queries

Task-Oriented Temporal Contrastive Learning. The performance of current track by

query matching-based solutions depends significantly on the temporal contrastive learning

(TCL) between frames. Given a key frame, prior methods [118, 158, 160] typically select

reference frames from the temporal neighborhood, while ignoring all other frames. This

leads to limited positive/negative samples for effective contrastive learning which relies

on a substantial quantity of samples to achieve optimal performance. To maximize the

usage of these discarded samples, we devise a smart sampling strategy that caters to

individual tasks and addresses the challenge of accurately distinguishing the positive ones

from them. Specifically, for tasks leaning towards instance discrimination (i.e., VIS, EVS

and thing in VPS), it is essential to note that not all identical instances in the same

video are suitable as positive samples. This is due to the strong variations in shape and

spatial location among instances, which can disrupt the local consistency between the same

instance at nearby frames that usually manifest similar shape and position. To tackle

this, in contrast to existing work arbitrarily discards samples in distant frames, we sample

examples across the whole video by measuring the shape and location similarity. The

variation of shape-position descriptors (i.e., ΔH) belonging to the same instance but at
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Figure 5.3: (a) Task-oriented queries initialization. (b) Task-oriented object

association tailored thing and stuff objects. (c) Shape- and position-aware query

matching.

frame V  and V  +n is computed via:

ΔH =
‖H +n −H ‖2

‖H ‖2 . (5.10)

We set a threshold τ = 0.2 and consider the query embedding associated with H +n as

a positive example if ΔH is smaller than τ ; otherwise, it is deemed negative. As such,

we involve distant frames into the reference set which enriches the diversity of samples

and bolsters the robustness of TCL. On the other hand, for VSS and background stuff

classes in VPS, samples are relaxed to select from the whole training set, as larger mount

of entities with diverse appearance, shape, and location will improve the grasp of semantics.

To implement this, we maintain a first-in-first-out queue Q that contains NQ queries for

each pre-defined semantic class. Elements in Q will engage in TCL and be updated with

new samples at each training step. We set NQ to a relatively small number (e.g., 100),

which incurs negotiable cost in training time but considerable improvement in performance.

The related algorithm is shown below:
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Algorithm 3 Task-Smart Temporal Contrastive Learning in
a PyTorch-like style.

"""
q_t: query embeddings for the current frame t
H_t: shape-position descriptor associated with q_t
q_ref: query embeddings for the reference frame

t_ref
H_ref: shape-position descriptor associated with

q_ref
queue: a set of queue embeddings selected from the

whole training set
"""

#computation of Delta_H
def com delta H(H_t, H_ref):

Delta_H = torch.norm(H_t-H_ref,p=2) /
torch.norm(H_t,p=2)

return Delta_H

#task-smart temporal contrastive learning (TCL)
#for vis

#hyperparameter
tau = 0.2

def TCL vis(q_t, q_ref, H_t, H_ref):

Delta_H = com delta H(H_t, H_ref)

if Delta_H < tau
#compute contrastive loss

loss = TCL loss(q_t, q_ref)

return loss

#task-smart temporal contrastive learning (TCL)
#for vss

def TCL vss(q_t, queue):

#compute contrastive loss
loss = TCL loss(q_t, queue)

return loss
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Figure 5.4: Illustration of task-oriented temporal contrastive learning.

Prior work considers solely instance objects, and samples are restricted within

neighbor frames. In UvSeg, instance & thing samples are collected from the whole

video according to shape and location similarity, while semantic & stuff samples

are gathered from the entire training set to capture diver shapes and appearances

of each semantic class.

5.3 Experiment

5.3.1 Experimental Setup

NetworkConfiguration.GvSeg is a semi-online generalist video segmentation framework

built upon the tracking by query matching paradigm [117]. It comprises an image-level seg-

menter to extract frame-level queries, and an object associator to match query embeddings

across frames. The image-level segmenter is implemented as Mask2Former [39] with both

ResNet-50 [10] and Swin-L [229] as the backbone. Given the most recent work typically

adopts clip-level inputs for richer temporal cues [107, 131, 160], in alignment with this trend,

GvSeg takes a clip containing three frames as input each time. The size of points set P
derived from object contour is fixed to 200 to make the shape-position descriptor effectively

characterize objects of varying scales. We employ u = 36 angle divisions and v = 12 radius

divisions to capture point distribution in a finer granularity. GvSeg is implemented on

top of detectorn2 [291]. During training, for YouTube-VIS/VOS, the input frames are

randomly cropped to ensure that the longer side is at most 768p/1024p for ResNet/Swin

backbones, respectively. The shorter side is resized to at least 240p/360p and at most

480p/600p for ResNet/Swin. For OVIS/VSPW/VIPSeg/KITTI/BURST, we resize the
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input frame so that the shorter side is at least 480p and at most 800p and the longer side

is at most 1333p.

Training. Following the standard protocols [43, 100, 126, 131, 160] in video segmentation,

the maximum training iteration is set to 10K for OVIS/VSPW/VIPSeg/KITTI and 15K

for YouTube-VOS18/YouTube-VIS21 with a mini-batch size of 16. The AdamW optimizer

with initial learning rate 0.001 is adopted. The learning rate is scheduled following a step

policy, decayed by a factor of 10 at 7K/11K for 10K/15K total training steps, respectively.

Following existing solutions [107, 118, 119, 130], we generate pseudo videos from MS

COCO [292] as training samples for YouTube-VOS18/YouTube-VIS21 while no additional

data is used for other benchmarks. We use standard data augmentations, i.e., flipping,

random scaling and cropping. The frame segmenter is initialized with weights pre-trained

on MS COCO.

Testing. The evaluation process follows existing work [87, 100, 160, 293] and adopts

no test-time augmentation to ensure a fair comparison. For YouTube-VOS18/YouTube-

VIS21, videos are resized to 360p/480p for ResNet/Swin backbones. For OVIS/VSP-

W/VIPSeg/KITTI/BURST, videos are tested at a resolution of 720p.

5.3.2 Results Comparison

5.3.2.1 Results for Video Panoptic Segmentation

Dataset. VIPSeg [1] provides 2, 806/323 videos in train/test splits which covers 232

real-world scenarios and 58/66 thing/stuff classes. KITTI-STEP [7] is an urban street-view

dataset with 12/9 videos for train/val. It includes 19 semantic classes, with two of them

(pedestrians and cars) having tracking IDs.

Evaluation Metric. Following conventions [1, 7, 126], we adopt VPQ and STQ as metrics.

VPQ computes the average panoptic quality from tube IoU across a span of several

frames. For VIPSeg [1], we further report the VPQ scores for thing and stuff classes (i.e.,

VPQTh and VPQSt). For KITTI-VPS [7], we divide STQ into segmentation quality (SQ)

and association quality (AQ) which evaluate the pixel-level tracking and segmentation

performance in a video clip.

Performance. As illustrated by Table 5.1, GvSeg achieves dominant results on VIPSeg[1],

presenting an improvement up to 6.1%/5.6% in terms of VPQ/STQ over the SOTA [160]
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Table 5.1: Quantitative results for VPS on VIPSeg [1] and KITTI-STEP [7], and

VSS on VSPW [3].

Method Backbone
General VIPSeg val KITTI-STEP val VSPW val

Solution VPQ VPQTh VPQSt STQ VPQ STQ AQ SQ mIoU mVC8 mVC16

VPSNet [150] R-50 ✗ 14.0 14.0 14.2 20.8 0.43 0.56 0.52 0.61 - - -

Mask-Prop [150] R-50 ✗ - - - - - 0.67 0.63 0.71 - - -

MotionLab [7] R-50 ✗ - - - - 0.40 0.58 0.51 0.67 - - -

SiamTrack [151] R-50 ✗ 17.2 17.3 17.3 21.1 - - - - - - -

TCB [3] R-101 ✗ - - - - - - - - 37.5 86.9 82.1

DVIS [161] R-50 ✗ 43.2 43.6 42.8 42.8 - - - - - - -

Mask2Former [39] R-50 ✓ - - - - - - - - 38.4 87.5 82.5

TubeFormer [126] R-50 ✓ 26.9 - - 38.6 0.51 0.70 0.64 0.76 - - -

Video K-Net [158] R-50 ✓ 26.1 - - 31.5 0.46 0.71 0.70 0.71 37.9 87.0 82.1

TarVIS [87] R-50 ✓ 33.5 39.2 28.5 43.1 - 0.70 0.70 0.69 - - -

DEVA [294] R-50 ✓ 38.3 - - 41.5 - - - - - - -

Tube-Link [160] R-50 ✓ 39.2 - - 39.5 0.51 0.68 0.67 0.69 43.4 89.2 85.4

GvSeg R-50 ✓ 45.3 45.7 43.5 46.1 0.53 0.72 0.71 0.73 45.1 90.9 87.0

CFFM [147] MiT-B5 ✗ - - - - - - - - 49.3 90.8 87.1

MRCFA [149] MiT-B2 ✗ - - - - - - - - 49.9 90.9 87.4

DVIS [161] Swin-L ✗ 57.6 59.9 55.5 55.3 - - - - - - -

Video K-Net [158] Swin-B ✓ - - - - - - - - 57.2 90.1 87.8

TarVIS† [87] Swin-L ✓ 48.0 58.2 39.0 52.9 - - - - - - -

DEVA [294] Swin-L ✓ 52.2 - - 52.2 - - - - - - -

Tube-Link [160] Swin-B ✓ 50.4 - - 49.4 0.56 0.72 0.69 0.74 62.3 91.4 89.3

GvSeg Swin-B ✓ 56.4 58.4 53.7 53.5 0.58 0.75 0.75 0.74 63.6 92.1 89.7

GvSeg Swin-L ✓ 58.5 60.2 56.7 56.1 - - - - 65.8 94.2 92.3

with ResNet-50 as backbone. This reinforces our belief that accommodating task-oriented

property into general video segmentation is imperative. Such an assertion gets further

support on KITTI-STEP [7] that GvSeg outperforms all existing solutions by significant

margins in STQ and AQ, which focus more on the coherent association of identical objects.

5.3.2.2 Results for Video Semantic Segmentation

Dataset. VSPW [3] has 2, 806/343 in-the-wild videos with 198, 224/24, 502 frames for

train/val, and provides pixel-level annotations for 124 semantic categories.
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Table 5.2: Quantitative results for VIS on OVIS [8] and YouTube-VIS21 [2].

Method Backbone
General Occluded-VIS val Youtube-VIS21 val

Solution AP AP50 AP75 AR1 AR10 AP AP50 AP75 AR1 AR10

SipMask [108] R-50 ✗ 10.2 24.7 7.8 7.9 15.8 31.7 52.5 34.0 30.8 37.8

InsPro [119] R-50 ✗ - - - - - 37.6 58.7 0.9 32.7 41.4

SeqFormer [130] R-50 ✗ - - - - - 40.5 62.4 43.7 36.1 48.1

VITA [131] R-50 ✗ 19.6 41.2 17.4 11.7 26.0 45.7 67.4 49.5 40.9 53.6

MinVIS [117] R-50 ✗ 25.0 45.5 24.0 13.9 29.7 44.2 66.0 48.1 39.2 51.7

IDOL [118] R-50 ✗ 30.2 51.3 30.0 15.0 37.5 43.9 68.0 49.6 38.0 50.9

MDQE [122] R-50 ✗ 33.0 57.4 32.2 15.4 38.4 44.5 67.1 48.7 37.9 49.8

DVIS [161] R-50 ✗ 34.1 59.8 32.3 15.9 41.1 - - - - -

GenVIS [107] R-50 ✗ 34.5 59.4 35.0 16.6 38.3 47.1 67.5 51.5 41.6 54.7

TCOVIS [295] R-50 ✗ 35.3 60.7 36.6 15.7 39.5 49.5 71.2 53.8 41.3 55.9

CTVIS [296] R-50 ✗ 35.5 60.8 34.9 16.1 41.9 50.1 73.7 54.7 41.8 59.5

TubeFormer [126] R-50 ✓ - - - - - 41.2 60.4 44.7 40.4 54.0

CAROQ [159] R-50 ✓ 25.8 47.9 25.4 14.2 33.9 43.3 64.9 47.1 39.3 52.7

TarVIS [87] R-50 ✓ 31.1 52.5 30.4 15.9 39.9 48.3 69.6 53.2 40.5 55.9

Tube-Link [160] R-50 ✓ 29.5 51.5 30.2 15.5 34.5 47.9 70.0 50.2 42.3 55.2

GvSeg R-50 ✓ 36.9 60.6 38.9 17.1 41.0 50.5 73.0 54.1 43.7 57.8

GenVIS [107] Swin-L ✗ 45.4 69.2 47.8 18.9 49.0 59.6 80.9 65.8 48.7 65.0

TCOVIS [295] Swin-L ✗ 46.7 70.9 49.5 19.1 50.8 61.3 82.9 68.0 48.6 65.1

CTVIS [296] Swin-L ✗ 46.9 71.5 47.5 19.1 52.1 61.2 84.0 68.8 48.0 65.8

CAROQ [159] Swin-L ✓ - - - - - 54.5 75.4 60.5 45.5 61.4

TarVIS [87] Swin-L ✓ 43.2 67.8 44.6 18.0 50.4 60.2 81.4 67.6 47.6 64.8

Tube-Link [160] Swin-L ✓ - - - - - 58.4 79.4 64.3 47.5 63.6

GvSeg Swin-L ✓ 50.8 75.8 53.0 20.1 55.7 61.4 83.4 70.3 48.0 66.6

Evaluation Metric. Following the standard evaluation protocol [3, 160], we adopt the

mean Intersection-over-Union (mIoU), and mean video consistency (mVC) which evaluates

the category consistency among a video clip containing 8/16 frames (i.e., mVC8 and

mVC16) as metrics.

Performance. As shown in Table 5.1, based on ResNet-50, GvSeg outperforms all

competitors and achieves 45.1% mIoU. In particular, the 90.9%/87.0% scores in terms

of mVC8/mVC16 are comparable to MRCFA [149] which utilizes Swin-B as the backbone

and yields much higher mIoU. This suggests that, benefited by task-oriented temporal
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contrast learning, GvSeg can produce more consistent prediction across frames. When

integrated with Swin-B, GvSeg demonstrates 1.3% gains over Tube-Link [160], confirming

the superiority of our approach.

5.3.2.3 Results for Video Instance Segmentation

Dataset.Occluded VIS[8] is specifically designed to tackle the challenging scenario of object

occlusions. It consists of 607/140 long videos with up to 292 frames for train/val and

spans 25 object categories with a high density of instances. YouTube-VIS21 [2] comprises

2, 985/421 high resolution videos for train/val. It extensively covers 40 object classes

with 8, 171 unique instances.

EvaluationMetric. Following the official setup[2, 8], we report the mean average precision

(mAP) by averaging multiple IoU scores with thresholds from 0.5 to 0.95 at step 0.05, and

the average recall (AR) given 1/10 segmented instances per video (i.e., AR1, AR10). AP50

and AP75 with IoU thresholds at 0.5 and 0.75 are also employed for further analysis.

Performance. From Table 5.2 we can observe that GvSeg provides a considerable

performance gain over existing methods on Occluded-VIS [8]. Notably, it outperforms

the prior specalized/general solution SOTA CTVIS [296]/TarVIS [87] by 1.4%/5.8% in

terms of mAP with ResNet-50 as the backbone. When adopting Swin-L, GvSeg showcases

far better performance, achieving up to 50.8% mAP which earns an impressive 3.9%

improvement against CTVIS. Moreover, we report performance on YouTube-VIS21 [2]. As

seen, GvSeg surpasses the main rival (i.e., TarVIS), by 2.2%/1.2% with ResNet-50/Swin-

L as backbone.

Additional Quantitative Results for VIS. We provide additional results on YouTube-

VIS19 in Table 5.3. YouTube-VIS19 consists of 2, 238/343 videos for train/val. Following

official setting [2, 8], we adopt mean average precision (mAP) and average recall (AR) as

evaluation metrics. The training settings remain consistent with those used for YouTube-

VIS21. Our observations indicate that GvSeg consistently outperforms previous state-of-

the-art methods in terms of mAP and AR.
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Method Backbone Gen. Sol mAP AP50 AP75 AR1 AR10

MaskTrack [2] R-50 ✗ 30.3 51.1 32.6 31.0 35.5

SipMask [108] R-50 ✗ 33.7 54.1 35.8 35.4 40.1

CrossVIS [110] R-50 ✗ 36.3 56.8 38.9 35.6 40.7

InsPro [119] R-50 ✗ 37.6 58.7 0.9 32.7 41.4

VISOLO [111] R-50 ✗ 38.6 56.3 43.7 35.7 42.5

InstMove [121] R-50 ✗ 40.6 67.2 45.1 35.0 48.2

SeqFormer [130] R-50 ✗ 47.4 69.8 51.8 45.4 54.8

MinVIS [117] R-50 ✗ 47.4 69.0 52.1 45.7 55.7

IDOL [118] R-50 ✗ 49.5 74.0 52.9 47.7 58.7

VITA [131] R-50 ✗ 49.8 72.6 54.5 49.4 61.0

GenVIS [107] R-50 ✗ 50.0 71.5 54.6 49.5 59.7

TCOVIS [295] R-50 ✗ 49.5 71.2 53.8 41.3 55.9

CTVIS [296] R-50 ✗ 50.1 73.7 54.7 41.8 59.5

Mask2Former [43] R-50 ✓ 46.4 68.0 50.0 - -

CAROQ [159] R-50 ✓ 46.7 70.4 50.9 45.7 55.9

TubeFormer [126] R-50 ✓ 47.5 68.7 52.1 50.2 59.0

Tube-Link [160] R-50 ✓ 52.8 75.4 56.5 49.3 59.9

GvSeg R-50 ✓ 54.9 76.6 60.1 50.6 63.0

Table 5.3: Quantitative results on YouTube-VIS19 [2] val.

5.3.2.4 Results for Exemplar-guided Video Segmentation

Dataset. YouTube-VOS18 [4] includes 3, 471/474 videos for train/val. The videos are

sampled at 30 FPS and annotated per 5 frame with multiple objects. BURST [9] contains

500/993/1, 421 videos for train/val/test. It provides mask/point/bounding box as

exemplars and averages over 1000 frames per video.

Evaluation Metric. For YouTube-VOS18, we report region similarity (J ) and contour

accuracy (F) at seen and unseen classes. For BURST, we assess higher order tracking

accuracy [299] on common (Hcom) and uncommon (Hunc) classes.
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Table 5.4: Quantitative results for EVS on YouTube-VOS18 [4], and BURST [9].

Method Backbone
General YouTube-VOS18 val (Mask-guide) BURST val (Point-guide)

Solution G Js Fs Ju Fu Hall Hcom Hunc

Box Tracker [297] R-50 ✗ - - - - - 12.7 31.7 7.9

STCN [100] R-50 ✗ 83.0 81.9 86.5 77.9 85.7 24.4 44.0 19.5

XMem [101] R-50 ✗ 85.7 84.6 89.3 80.2 88.7 32.3 47.5 28.6

UNINEXT [298] R-50 ✓ 77.0 76.8 81.0 70.8 79.4 - - -

TarVIS [87] R-50 ✓ 79.2 79.7 84.2 72.9 79.9 30.9 43.2 27.8

GvSeg R-50 ✓ 82.5 81.9 87.0 76.4 84.7 36.9 50.6 33.7

UNINEXT [298] ConvNeXt-L ✓ 78.1 79.1 83.5 71.0 78.9 - - -

TarVIS [87] Swin-L ✓ 82.1 82.3 86.5 76.1 83.5 37.5 51.7 34.0

GvSeg Swin-L ✓ 84.8 83.1 88.3 79.5 88.2 41.8 56.5 37.3

Performance. To make fair comparison with existing work which usually tests on BURST

without training, we train GvSeg on YouTube-VOS18 and randomly adopt mask or point

exemplars as the guidance. Then the performance is evaluated with mask exemplar on

YouTube-VOS18 and point exemplar on BURST. As shown in Table 5.4, GvSeg yields

satisfactory performance on YouTube-VOS18, i.e., surpassing the general counterpart

(i.e., TarVIS [87]) by 3.3%/2.7% in terms of G score with ResNet-50/Swin-L as the

backbone. We also provide the point-guided segmentation results on BURST. As seen,

GvSeg surpasses current solutions by a large margin across all metrics. For instance,

When compared with task-specialized approaches (e.g., XMem [101]), our approach still

earns 4.6% improvement. Note existing work has to adopt an additional offline model

for mask prediction with given points, while our method natively supports points as the

exemplar, contributing to the superiority in both efficiency and effectiveness.

5.3.2.5 Qualitative Results

In Fig. 5.5, we visualize the comparisons of GvSeg against the top-leading methods on

four different tasks (i.e., VPS, VIS, VSS, and EVS). As seen, GvSeg gives more precise

and consistent predictions in challenging scenarios.
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TarVIS[13] GvSeg TarVIS[13] GvSeg Tube-Link[14] GvSeg TarVIS[13] GvSeg

Figure 5.5: Visual comparison results on VIPSeg-VPS [1], YouTube-VIS21 [2],

VSPW-VSS [3] and YouTube-VOS18 [4].

5.3.2.6 Diagnostic Experiment

For more detailed analysis, we conduct a set of ablative studies on VIPSeg-VPS [1] with

ResNet-50 as the backbone.

Key Component Analysis. We investigate the improvements brought by each component

of GvSeg in Table 5.5a where ‘SPA’ indicates ‘shape-position aware’. First, it can be

observed that SPA query matching brings a considerable improvement over the Baseline,

i.e., 1.8%/1.2% concerning VPQ and STQ. This verifies our modeling of segment targets

by disentangling them into appearance, shape, and position. Moreover, the adoption of

task-oriented strategies for query initialization, object association, and temporal contrastive

learning (TCL) elevates the results to a new level. Finally, we combine all these designs

together which results in GvSeg and obtains the optimal performance. This confirms the

compatibility of each component and the effectiveness of our whole algorithm.

Matching Threshold & Queue Length. The results with different threshold τ and

queue length NQ utilized in task-oriented TCL are reported in Table 5.5b. Though larger

size of samples in the queue contributes to higher scores, we remain NQ to 100 which gives

nearly no impact in training speed and memory usage.

Histogram Size. In Table 5.5c, we investigate the impact of the number of bins within

the polar-style histogram for building position-shape descriptor. As seen, there is minor

change in performance if u×v is large enough (e.g., > 200) to capture the fine-grained

variation in shape and location.

Task-Oriented Object Association. We probe the impact of integrating distinct cues

into object association in Table 5.5d. By comparing Row #2 to #1 we can observe that
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Table 5.5: A set of ablative studies on VIPSeg-VPS [1] val with ResNet-50 [10]

as the backbone. The adopted settings are marked in red.

(a) Component analysis

Component VPQ ↑ STQ ↑
Baseline 37.3 38.5
+ SPA query matching 39.1 39.7
+ Task-oriented init.&asso. 41.4 41.9
+ Task-oriented TCL 42.5 43.2

GvSeg 45.3 46.1

(b) Task-oriented TCL

τ NQ VPQ ↑ STQ ↑
0.1 100 44.6 45.1

0.2 100 45.3 46.1

0.2 200 45.4 46.3
0.3 100 44.9 45.6
0.3 200 45.0 45.8

(c) Shape-position de-

scriptor

Angle u Radius v VPQ ↑ STQ ↑
12 6 44.4 45.0
24 12 44.9 45.5

36 12 45.3 46.1

36 18 45.2 46.2
48 12 45.3 46.0

(d) Task-oriented query association

#
Thing Stuff

VPQ ↑ STQ ↑
Appear. Shape & Pos. Appear. Shape & Pos.

1 ✓ ✓ 43.4 44.3

2 ✓ ✓ ✓ 45.3 46.1
3 ✓ ✓ ✓ 43.0 44.0
4 ✓ ✓ ✓ ✓ 44.2 44.6

(e) Task-oriented example sam-

pling

#
Thing Stuff

VPQ ↑ STQ ↑
Frame Video Frame Dataset

1 ✓ ✓ 41.4 41.9

2 ✓ ✓ 43.7 44.5
3 ✓ ✓ 44.3 45.1

4 ✓ ✓ 45.3 46.1

considering shape and position can boost the performance for thing objects. In stark

contrast, the inclusion of these cues causes negative impacts and yields less favorable results

for stuff objects. This proves the necessity and urgency to cater to the task-oriented

property which emphasizes more on instance discrimination or semantic understanding.

Task-Oriented Example Sampling. To determine the contribution of our devised

example sampling strategy utilized in TCL, we examine the performance thing and stuff

categories in Table 5.5e where ‘Frame’ refers to selecting samples from nearby frames, ‘Video’

indicates gathering samples across the entire video based on shape-position descriptor for

instance discrimination, and ‘Dataset’ means storing samples in a queue to enhance the

comprehension of semantics. As seen, both ‘Video’ and ‘Dataset’ level sampling for thing

and stuff classes boost the scores significantly. This verifies our core insight that current

sampling strategy in TCL in sub-optimal, and we can improve it by rendering a more

holistic modeling on segment targets to select richer and more suitable samples.

5.4 Discussion

Broader Impact. Understanding of visual scenes is a primary goal of computer vision.

On the positive side, GvSeg represents generalist video segmentation framework for EVS,

VIS, VSS, and VPS which provides insight towards designing a universal model capable of

addressing a broader spectrum of vision-related tasks. The disentanglement of task-specific
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properties of moving objects can benefit the wide application scenarios in video tasks such

as video object detection (VOD) and Multi-Object Tracking and Segmentation (MOTS).

On the negative side, it’s essential to acknowledge potential operational challenges our

method may face in real-world applications. As a proactive step to mitigate any adverse

effects on individuals and society, we advise the establishment of a robust security protocol

which help ensure the safety and well-being of users and the broader community in case of

any unforeseen issues.

5.5 Conclusion

We present GvSeg, the first generalist video segmentation solution that accommodates

task-oriented properties into model learning. To achieve this, we first render a holistic

investigation on segment targets by disentangling them into three essential constitutes:

appearance, shape, and position. Then, by adjusting the involvement of these three key

elements in query initialization and object association, we realize customizable prioritization

of instance discrimination or semantic understanding to address different tasks. Moreover,

task-oriented temporal contrastive learning is proposed to accumulate a diverse range of

informative samples that considers both local consistency and semantic understanding

properties for tracking instances and semantic/background classes, respectively. In this

manner, GvSeg offers tailored consideration for each individual task and consistently

obtains top-leading results in four video segmentation tasks.



Chapter 6

UAHOI: Uncertainty-aware Robust

Interaction Learning for HOI

Detection

6.1 Introduction

Human-Object Interaction Detection (HOI Detection) aims to localize and recognize HOI

triplets in the format of <human, verb, object> from static images [300, 301]. This field

stems from detection of objects to include their relationships, prompting a deeper under-

standing on high-level semantic comprehension. HOI Detection has attracted considerable

attention for its great potential in numerous high-level visual understanding tasks, including

video question answering [302], video captioning [303, 304], activity recognition [305], and

syntia-to-reality translation [137].

Traditional methods [65–68] typically adopt either two-stage or one-stage pipeline, where

the former detects instances first and then enumerates human-object paris to identify

their interactions, and the latter attempts to do both simultaneously. However, these

methods struggle with modeling the complex, long-range dependencies between humans

and objects due to the localized nature of convolutional operations—a limitation that

transformer-based methods address by capturing intricate interrelations across entire

scenes. Recent advancements [69–71, 83] have predominantly embraced the encoder-

decoder framework pioneered by detection transformers (DETR) [42], initializing learnable

queries randomly, and subsequently decode the object queries into detailed triplets of

70
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(a) (b) 

(c) (d) 

Figure 6.1: Common challenges of current HOI Detection methods in complex

scene. The human/object bounding boxes are shown in blue/yellow.

human-object interactions. These methods offer enhanced accuracy by capturing global

contexts and intricate interrelations, and simplify the architecture by eliminating the need

for extra hand-designed components.

Despite the notable advances, several challenges still persist. As shown in Fig 6.1, firstly,

among the wide range of predicates, some interactions may not be directly manifested

through visual signals, often involving subtle movements and non-physical connections. For

example, the interaction looking in a certain direction in (c) may easily be overlooked. And

a man lying on a mortobike could be easily recognized as a man riding a mortobike (b).

Secondly, in a multi-human scene, a person who may be imagining or planning to interact

with an object without yet taking any action can easily be mistaken for having already

performed the action, such as the unselected background individuals in images (a) and (d).

Thirdly, the same type of interaction can appear very differently in different contexts. For

instance, the action of “grabbing” can vary significantly when interacting with different

objects, depending on the object’s size, shape, weight, and other characteristics. In such
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complex scenarios, current models typically assign lower confidence to interactions, which

affect the performance.

To address these issues, conventional two-stage methods involves assisstance from extra

communication signal [94, 134, 306–308], and language [50, 64], but the models still tend

to focus on inaccurate regions. More recent approaches independently process instance

detection and interaction classification using two separate decoders, which operate either in

parallel [76] or cascaded [69, 73] mode. For example, [73] applied two cascade decoders, one

for generating human-object pairs and another for dedicated interaction classification of

each pair, which helps the model to determine which regions inside a scene to concentrate

on. Taking a step further, Unary [75] separately encodes human and object instances,

enhancing the output features with additional transformer layers for more accurate HOI

classification. [76] disentangle both encoder and decoder to enhance the learning process

for two distinct subtasks: identifying human-object instances and accurately classifying

interactions, which necessitates learning representations attentive to varied regions. While

the disentanglement of subtasks allows individual modules to concentrate on their specific

tasks, thereby boosting overall performance, these methods often require additional heuristic

thresholding when deciding which interactions to retain. For simple interactions, it is

relatively easy to obtain good interaction predictions with high confidence scores in their

predicted categories. However, for more complex interactions, confidence scores may be

lower. In such cases, finding a suitable threshold manually to disregard low-confidence

predictions could lead to overlooking correct interactions, representing a persistent challenge

in HOI detection. Specifically, determining the optimal threshold value is challenging

across different categories, and estimiting a value in advance is more complex. For overt

interactions like “riding,” where a person is physically mounted on an object such as a

bicycle or horse, confidence scores are typically high. In contrast, subtle interactions like

“reading”, characterized by the presence of a book and the direction of a person’s gaze,

often yield lower overall confidence scores. A high threshold in such cases might cause the

model to ignore these interactions.

We propose a novel method UAHOI, Uncertainty-aware Robust Human-Object Interaction

Learning that utilizes uncertainty estimation to dynamically adjust the threshold for

interaction predictions in the HOI detection task. This approach integrates uncertainty

modeling to refine the decision-making process, enabling the model to adjust its confidence

thresholds based on the predicted uncertainty associated with each interaction. Specifically,
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we utilize the variance in predictions as a measure of uncertainty for both human/object

bounding boxes and interaction, which reflects the model’s confidence in their outputs. The

variance is directly incorporated into our optimization target, enhancing the accuracy of

bounding box predictions and ensuring that significant interactions are not overlooked due

to artificially low confidence thresholds. Such adaptive handling of complex interactions

increases the robustness of the HOI detection model. UAHOI handles complex interactions

in an adaptive manner, enhancing the accuracy of the bounding box predictions and

preventing important interactions from being overlooked due to artificially low confidence

thresholds, thereby increasing the robustness of HOI Detection model. We conducted

a comprehensive evaluation on two standard human-object interaction datasets HICO-

DET [11] and V-COCO [12], and our experiments demonstrate a significant improvement

over the existing state-of-the-art methods. Specifically, UAHOI achieved 34.19 mAP on

HICO-DET and 62.6 mAP on V-COCO.

6.2 Methodology

6.2.1 Problem Statement

Since DETR [42], object detection has been investigated as a set prediction problem. DETR

employs a transformer encoder-decoder architecture to transform N positional encodings

into N predictions, encompassing both object class and bounding box coordinates. Similar

to object detection, recent advancements[69–80] have adeptly harnessed the Encoder-

Decoder framework, integrating the Transformer architecture to better capture complex

dependencies between humans and objects. This integration significantly enhances model

precision and deepens understanding of interactions within a scene [70, 72]. In our approach,

as is shown in Fig 6.2, we implement an encoder-decoder structure with a shared encoder

alongside two parallel decoders: one for instance localization and another for interaction

recognition. This design helps to eliminate the issue of redundant predictions. [70]. In

detail, the feature f ∈ RD×H×W is extracted from the input image x via a CNN backbone,

where H and W are the size of the input image, and D is the number of channel. Combined

with positional embedding p, the feature f containing semantic concepts is flattened to

construct a sequence of length H ×W and then fed into the image encoder. We adopt

ResNet as our backbone. Each image encoder layer consists of a multi-head self-attention

(MHSA) module and a feed-forward network, which refine the feature representation
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sequentially. After processing by image encoder, the resulting encoded features, denoted as

fen ∈ RD′×H′×W ′
, are split and fed to the instance localization decoder and interaction

recognition decoder. The instance localization decoder identifies and localizes objects

within the scene, and the interaction recognition decoder analyzes the interaction between

detected objects and humans, aiming to understand their mutual interactions. Object

queries Qobj =
{
qi | qi ∈ Rd

}H

i=1
and Interaction queries Qinter =

{
qi | qi ∈ Rd

}H

i=1
are

initialized randomly, and then learnt via cross-attention layers. H is the number of queries

and d is the query dimension. The decoding process for localization and interaction

recognition could be formulated by:

L = Decoderloc (fen,Qobj) ∈ RH×4, (6.1)

I = Decoderinter (fen ,Qinter ) ∈ RH×C . (6.2)

where Qobj and Qinter are sets of initialized queries for object detection and interaction

recognition, respectively, refined through cross-attention mechanism.

With the learned HOI queries, the HOI pair could be decoded by several MLP branches.

Specifically, we adopt three MLP branches designed to output the confidence levels for the

human, object, and their interaction, respectively, each employing a softmax function to

ensure probabilistic outputs. The addition of these branches allows for a more granular

understanding of the HOI dynamics by providing individual confidence scores that reflect

the certainty of each element’s involvement in the interaction. The output embedding is

then decoded into specific HOI instance via several multiple Multi-Layer Perceptron (MLP)

layers. In detail, three separate MLP branches are designed to predict the confidence

levels for the human, object, and interaction, respectively. Each branch employs a softmax

function to generate probabilistic outputs. The human and object branches are denoted by

orange color in Figure 6.2. For human branch, two values with confidence are outputed

to indicate the likelihoods of foreground and background presence. Regarding object

and interaction branches, the output scores including all categories of objects or actions

and another one category for the background. UAHOI adopts two Fully Feed-Forward

Networks (FFN) layers to predict the bounding boxes of the human and the object. The

bounding box consists of four values to represent each coordinate for precise localization

within the visual scene.
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Figure 6.2: Overall framework of our UAHOI. UAHOI consists of three com-

ponents: Visual Feature Extrator, Parallel Decoder and Uncertainty Estimation

module. Visual features are firstly extracted by CNN and shared Transformer

Encoder. Then, the Localization Decoder and Interaction Decoder run n parallelto

extract human/object bounding boxes and interaction class. Lastly, the proposed

Uncertainty-aware Instance Localization and Interaction Refinement module are

used to perform uncertainty regularization.

6.2.2 Uncertainty-aware Instance Localization

Firstly, when estimating localization uncertainty, we consider the bounding boxes for

both humans, denoted by Chuman ∈ (lh, rh, th, bh) and objects, represented as Cobject ∈
(lo, ro, to, bo). This representation allows us to explore inherent uncertainty in the prediction

of bounding box coordinates, which is particularly useful in complex scenes where occlusion

or interaction may obscure part of the subjects. We employ a dedicated network to compute

the standard deviations of these distributions, providing a measurable and quantifiable

uncertainty which enhances the precision in object boundary detection This methodology

not only improves accuracy but also increases the reliability of localizations by effectively

capturing and quantifying the inherent uncertainties associated with positional offsets. To

accurately delineate the object’s boundary, it is essential to account for the four directional

offsets of the human/object bounding box. Adopting the framework outlined by [309], we

implement an uncertainty estimation network tailored to assess the localization uncertainty



76

derived from these regressed box offsets (l, r, t, b), defined as Gaussian distributions:

l ∼ N (µl, σ
2
l ), (6.3)

r ∼ N (µr, σ
2
r ), (6.4)

t ∼ N (µt, σ
2
t ), (6.5)

b ∼ N (µb, σ
2
b ). (6.6)

Here, µ and σ2 signify the mean and variance of the offsets, respectively. To determine

these parameters accurately, we deploy a neural network featuring a dual-head architecture.

One head predicts the mean values while the other calculates the logarithm of the variance

as uncertainty, naming V arbox, ensuring that the variance σbox is always positive:

µbox = MLPµ(fen), (6.7)

σ2
box = log(1 + exp(MLPσ(fen))). (6.8)

Further, [309] introduce a Negative Power Log-Likelihood Loss, which is reformulated to

achieve an uncertainty loss. This uncertainty loss compels the network to output a higher

uncertainty value when the coordinate predictions from the regression branch are off-target:

Lbox = −
∑

c∈{l,r,t,b}

IoU · logPΘ

(
C | µc, σ

2
c

)
. (6.9)

This equation emphasizes the integration of the Intersection over Union (IoU) as a scaling

factor, where IoU measures the overlap between the predicted and actual bounding boxes,

enhancing the training focus on precision. The probability density function PΘ, parame-

terized by network parameters Θ, plays a crucial role in adjusting the model’s certainty

regarding the predicted localizations, thus pushing the boundaries of accuracy in object

detection in highly dynamic and unpredictable scenes.

6.2.3 Uncertainty-aware Interaction Refinement

Secondly, to refine the interaction, we model the uncertainty of the interaction classification

via the prediction variance. Typically, models tend to make less accurate predictions in
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complex interaction areas. By modeling uncertainty, we are able to quantitatively calculate

this uncertainty. Specifically, if there is a significant difference between predictions made

with and without dropout, the variance will be high. This reflects the model’s uncertainty

in predicting interactions. Following previous works [310], we add structured noise to the

interaction feature representation via dropout. We denote ŷi = f
(
x; θ̂i

)
and y = f(x;θ)

as the interaction representation with/without dropout. Following recent works in the field

of uncertainty estimation [176], we predict the interaction variance uncertainty V arinter as

the KL divergence between the two representation:

Dkl = E
[
y log

(
y

ŷi

)]
. (6.10)

Following [176, 311], we regularize the interaction variance by minizing the prediction bias,

thus enabling the learning from inaccurate interaction. The objective could be formulated

as:

Linter = E [exp {−Dkl}Lce + Dkl] . (6.11)

The final loss to be minimized consists of four parts:

Ltotal = Lh
loc + Lo

loc + λoLbox + λaLinter. (6.12)

Here, λ1 and λ2 are the weights of two uncertainty losses, Lh
loc and Lo

loc are computed by

box regression loss. In this situation, during the optimization process, the variance of both

bounding boxes and the interation will be minimized.

6.3 Experiment

6.3.1 Experimental Setup

Network Architecture. To ensure a fair comparison with existing works [69, 70, 72],

we adopt ResNet-50 as our backbone, followed by a six layer transformer encoder as our

visual feature extrator. Both the Localization and Interaction Decoder consist of four

Transformer decoder layers.
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Training. During training, all of the transformer layer weights are initialized with Xavier

init [312]. UAHOI is optimized by AdamW [252] and we set the initial learning rate of

both encoder and decoder to 10−4 and weight decay to 10−4. The weight coeffieicnts λo

and λa are set to 1 and 1. To fairly compare with existing methods, the Backbone, Image

Encoder and both Localization and Interaction Decoder are pretrained in MS-COCO and

frozen during training. All the augmentation are the same as those in DETR [42]. All

experiments are conducted on 8 A40 GPUs with a batch size of 16.

6.3.2 Results Comparison

We comprehensively compare our UAHOI with the recently leading approaches in two

representative human-object interaction datasets, HICO-DET [11] and V-COCO [12].

Additionally, we provide some qualitative results in Figure 6.3.

6.3.2.1 Results for HICO-DET

Dataset. We first assess UAHOI on human-object interaction datasets HICO-DET [11].

HICO-DET has 47, 776 images, with 38, 118 for training and 9, 658 designated for testing.

There are 600 HOI categories (in total) over 117 interactions and 80 object categories. The

interactions are further split into 138 Rare and 462 Non-Rare catorigies. We calculate the

mAP scores using two different setups folowing: (i) the Default Setup, where we compute

the mAP across all test images; and (ii) the Known Object Setup, where we calculate the

Average Precision (AP) for each object separately, only within the subset of images that

contain the specified object.

Evaluation Metric. Following the standard evaluation protocoles [47, 70], we adopt

mean Average Precision (mAP) as metric.

Comparison with State-of-the-Art Methods We first conduct experiments on HICO-

DET [11] with ResNet-50 as the backbone to verify the effectiveness of our proposed

methods, and report result in Table 6.1 and Table 6.2. Compared to most transformer-

based single-decoder works HOITrans [72] and QPIC [71], Our UAHOI achieves better

performance, which validates the effectiveness to adopt multi-decoders for detecting more

accurate Human Object Interaction pair. Comapred to RLIP [79] which introduce language

as additional cues for more accurate HOI detection, our method attains improvements from

32.84 mAP to 34.19 mAP for full evaluation under default setting. Even when comparing
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to the state-of-the-art method GEN-VLKT [77], our UAHOI reaches 34.19/31.54/35.27

mAP on the full/rare/non-rare evaluation under the default setting (The best results are

highlighted in bold). Especially, UAHOI significantly promotes mAP from 29.25 to 31.54

for rare evaluation under default setting. These results substantiate our motivation to

refine the human/object localization and interaction recognition via uncertainty estimation.

For the known objects setting, it could be seen that UAHOI achieves 37.44/34.18/38.65

mAP on the full/rare/non-rare evaluation.

6.3.2.2 Results for V-COCO

Dataset.We next assess UAHOI on a smaller dataset V-COCO [12] which is originates

from COCO [292]. V-COCO has 2, 533/2, 867/4, 946 images for training, validation, and

testing respectively. It consists of 80 objects identical to those in HICO-DET and 29 action

categories in total.

Evaluation Metric. We also adopt Average Precision (AP) to report performance and

compute it under two scenarios to address the challenge of objects missing due to occlusion.

We denote these two scenarios with the subscripts SS1
role and SS2

role. In scenario SS1
role, when an

object is occluded, we predict empty object boxes to consider the detected pair as a match

with the corresponding ground truth. In scenario SS2
role, object boxes are automatically

considered matched in cases of occlusion, without the need to predict empty boxes.

Comparison with State-of-the-Art Methods We next access UAHOI on V-COCO [12]

dataset. Table 6.2 illustrates the results with both Scenario1 and Scenario2. It could

be seen that UAHOI outperforms all existing methods without extra knowledge. We

outperforms state-of-the-art method GEN-VLKT [77] by a large marin of 3.2 mAP under

Scenario2. In addition, Compared to the methods with extra language knowledge, UAHOI

is still competitive.

6.3.2.3 Qualitative Results

Additional qualitative results are presented in this section. As shown in Fig 6.3, we leavrage

red lines to denote the detected HOI pairs and blue/green boxes to represent human/object.

It could be seen that for common interactions such as sitting, riding, lying, reading, etc.,

UAHOI demonstrates robust performance. Furthermore, when tackling more challenging
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Table 6.1: Comparison of detection performance on the HICO-DET [11] test set,

using ResNet50 backbone. The best performance is emphasized in bold.

Default Setup Known Objects Setup

Method Backbone Full Rare Non-rare Full Rare Non-rare

HO-RCNN [11] CaffeNet 7.81 5.37 8.54 10.41 8.94 10.85

InteractNet [67] ResNet-50-FPN 9.94 7.16 10.77 - - -

GPNN [47] ResNet-101 13.11 9.34 14.23 - - -

iCAN [313] ResNet-50 14.84 10.45 16.15 16.26 11.33 17.73

TIN [52] ResNet-50 17.03 13.42 18.11 19.17 15.51 20.26

Gupta et al [48] ResNet-152 17.18 12.17 18.68 - - -

VSGNet [53] ResNet-152 19.80 16.05 20.91 - - -

DJ-RN [59] ResNet-50 21.34 18.53 22.18 23.69 20.64 24.60

PPDM [61] Hourglass-104 21.94 13.97 24.32 24.81 17.09 27.12

VCL [56] ResNet-50 23.63 17.21 25.55 25.98 19.12 28.03

ATL [314] ResNet-50 23.81 17.43 27.42 27.38 22.09 28.96

DRG [55] ResNet-50-FPN 24.53 19.47 26.04 27.98 23.11 29.43

IDN [57] ResNet-50 24.58 20.33 25.86 27.89 23.64 29.16

HOTR [70] ResNet-50 25.10 17.34 27.42 - - -

FCL [315] ResNet-50 25.27 20.57 26.67 27.71 22.34 28.93

HOI-Trans [72] ResNet-101 26.61 19.15 28.84 29.13 20.98 31.57

AS-Net [69] ResNet-50 28.87 24.25 30.25 31.74 27.07 33.14

SCG [66] ResNet-50-FPN 29.26 24.61 30.65 32.87 27.89 34.35

QPIC [71] ResNet-101 29.90 23.92 31.69 32.38 26.06 34.27

MSTR [74] ResNet-50 31.17 25.31 32.92 34.02 28.82 35.57

CDN [73] ResNet-101 32.07 27.19 33.53 34.79 29.48 36.38

UPT [75] ResNet-101-DC5 32.62 28.62 33.81 36.08 31.41 37.47

RLIP [79] ResNet-50 32.84 26.85 34.63 - - -

GEN-VLKT [77] ResNet-50 33.75 29.25 35.10 36.78 32.75 37.99

UAHOI ResNet-50 34.19 31.54 35.27 37.44 34.18 38.65

scenes with an increased number of humans, ranging from 2 to 5 such as (h), (i), (j),

UAHOI continues to perform effectively.
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Table 6.2: Comparison of detection performance on the V-COCO [12] test set,

using ResNet50 backbone. The best performance is emphasized in bold.

Method Backbone APS1
role APS2

role

InteractNet [67] ResNet-50-FPN 40.0 -

GPNN [47] ResNet-101 44.0 -

iCAN [313] ResNet-50 45.3 52.4

TIN [52] ResNet-50 47.8 54.2

VSGNet [53] ResNet-152 51.8 57.0

VCL [56] ResNet-50 48.3 -

DRG [55] ResNet-50-FPN 51.0 -

IDN [57] ResNet-50 53.3 60.3

HOTR [70] ResNet-50 55.2 64.4

FCL [315] ResNet-50 52.4 -

HOI-Trans [72] ResNet-101 52.9 -

AS-Net [69] ResNet-50 53.9 -

SCG [66] ResNet-50-FPN 54.2 60.9

QPIC [71] ResNet-101 58.8 61.0

MSTR [74] ResNet-50 62.0 65.2

CDN [73] ResNet-101 63.9 65.9

UPT [75] ResNet-101-DC5 61.3 67.1

RLIP [79] ResNet-50 61.9 64.2

GEN-VLKT [77] ResNet-50 62.4 64.5

UAHOI ResNet-50 62.6 66.7

6.3.2.4 Diagnostic Experiment

We evaluate the contribution of each component present in our framework. Specifically, we

evaluate UAHOI on the task of HICO-DET [11], with Res-Net 50 backbone.

Major Components Analysis. In this section, we conduct experiments for evaluating

major components in our UAHOI: Uncertainty-aware Instance Localization and Interaction

Refinement. As shown in Table 6.3, our base model, utilizing a traditional handcrafted

threshold, achieved 31.75 mAP. We then modeled the uncertainty of the bounding box

and incorporated the proposed localization refinement module, which improved our results

from 31.75 mAP to 32.52 mAP. Furthermore, to enhance the model accuracy in predicting

complex interactions and prevent the model from discarding uncertain interaction categories
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(a) Sitting on a Bench (b) Riding a Mortobike (c) Riding a Horse (d) Lying on a Sofa

(f) Sitting at a Bed (h) Riding an Elephant (i) Sitting at a Table (j) Watching a TV

(e) Sitting on a Sofa

(g) Reading a Book

Figure 6.3: Visualization results of our UAHOI.

Table 6.3: Major component analysis on the HICO-DET test set. The best

results are averaged across three runs.

Strategy Full Rare Non-Rare

fixed threshold 31.75 29.42 32.50

+ localization refine 32.52 30.48 33.63

+ interaction refine 33.65 31.27 34.88

+ both 34.19 ± 0.09 31.54 ± 0.17 35.27 ± 0.15

due to a fixed threshold, we applied specific regularization to the prediction variance of the

interactions. Using such a dynamic threshold, we optimized interaction uncertainty and

achieved higher performance, reaching 33.65 mAP. Finally, by simultaneously employing

both localization and interaction uncertainty modules, we elevated the results from 31.75

mAP to 33.65 mAP, achieving optimal performance. This validates the effectiveness of our

approach in modeling uncertainty on two levels and integrating uncertainty regularization

into our optimization objectives.

Effect of various uncertainty. Neural networks are theoretically capable of providing

estimates of both confidence, known as aleatoric uncertainty, and model-based uncertainty,

referred to as epistemic uncertainty. Existing literatures [176, 316] employs various strate-

gies to model uncertainty, and we compared our method with two other approaches. The

first approach involves an extra classifier. This method adds another classifier to the
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Figure 6.4: For a more comprehensive validation of the effects of different

uncertainty estimation methods, we further designed our interaction prediction

tests by incorporating MC dropout (b), as well as utilizing architectures of Fully

Feed-Forward Networks (FFN) with varying depths (c). By adding dropout at

different layers, we achieved varying degrees of prediction variance. The results,

comparisons, and further analyses are presented in Table 6.4.

existing network architecture to predict interactions, commonly referred to as the auxiliary

classification head, while the original classifier is termed the primary classification head.

Both classifiers provide predictions, and due to the inherent uncertainty of the model, the

outputs from both classifiers are often more uncertain in challenging scenarios. Through reg-

ularization of both classifiers’ predictions, refinement of interaction predictions is achieved.

As shown in the table, this method reached an accuracy of 33.86 mAP. Subsequently, we
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Table 6.4: The mAP of different uncertainty modeling strategy on the HICO-DET

test set.

Strategy Full Rare Non-Rare

base 32.52 30.48 33.63

+ Additional Classifier 33.86 30.79 34.82

+ MC Dropout 0.5 33.15 33.65 34.79

+ MC Dropout 0.7 33.22 33.71 34.70

+ MC Dropout 0.9 32.97 33.51 34.35

+ Dropout 34.19 31.54 35.27

Table 6.5: The mAP of different dropout depth on the HICO-DET test set.

Strategy Full Rare Non-Rare

base 32.52 30.48 33.63

with one FFN layer 34.19 31.54 35.27

with two FFN layers 34.27 31.60 35.43

compared this with Monte Carlo Dropout (MC-Dropout). MC-Dropout [316–318] is used

as another means to estimate epistemic uncertainty. We implemente different MC-Dropout

rates of 0.5, 0.7, and 0.9 instead of the standard dropout. The results indicate that

MC-Dropout also enhances performance and is not sensitive to the dropout rate.

Effect of dropout depth. According to the experiments presented in the Table 6.4,

our model is not sensitive to changes in the dropout rate. Therefore, in this section,

we perform dropout sampling on models with varying depths of Feed-Forward Networks

(FFNs), with results shown in the Table 6.5. Our base model uses a single layer of FFN

without employing dropout, achieving a result of 32.52 mAP. After implementing dropout

and conducting uncertainty refinement, the score increased to 34.19 mAP. Using two layers

of FFN and applying dropout to each layer further enhanced the performance to 34.27

mAP.

Parameter sensitivity analysis on loss weights. We conduct sensitivity analysis on

the parameters of loss weights to evaluate the sensitivity of UAHOI on HICO-DET test set.

As shown in Table 6.6, we select loss weights λo and λa ∈ {0.01, 0.1, 0.5, 1.0, 2.0}. When
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Table 6.6: Parameter sensitivity analysis on the weight of localization uncertainty

loss on HICO-DET test set.

λo Full Rare Non-Rare λa Full Rare Non-Rare

0.01 32.18 29.45 32.89 0.01 33.65 30.45 34.89

0.1 33.29 30.60 34.06 0.1 33.77 30.86 34.11

0.5 34.09 31.49 35.19 0.5 33.86 31.04 34.55

1.0 34.19 31.54 35.27 1 34.19 31.54 35.27

2.0 32.25 30.22 34.01 2.0 31.95 29.77 33.68

(a) (b) 

Figure 6.5: Visualization results of two failure cases.

λo and λa change significantly, the model exhibits a bit sensitive to the assigned weights.

However, when the changes in the coefficients are relatively small, the model is insensitive

to the weights, and our method has achieved competitive results under various weights.

6.4 Limitations

Our architecture consists of a shared transformer encoder along with two separate decoders,

making it computationally expensive, which could be detrimental in practical applications.

To mitigate this impact, we employ a pre-trained backbone and only fine-tune our network

during training to minimize the consumption of computational resources. Additionally, we
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show failure cases in Fig 6.5. Due to the presence of complex or overlapping objects, the

model is unable to accurately identify all from the visual context.

6.5 Conclusion

In this chapter, we have delved into the application of uncertainty estimation within

Human-Object Interaction (HOI) detection, exploring its integration in two key aspects:

interaction and detection. For interaction, we utilized dropout not only as a regularization

but also as a means for estimating the variance in interaction predictions. This dual-purpose

use of dropout allows our model to assess and adapt to the reliability of its interaction

classifications dynamically. For detection, we treated the bounding box coordinates

as Gaussian-distributed random variables, which enables our system to quantify the

uncertainty of object localizations and integrate this information into the learning process,

thus enhancing prediction confidence and accuracy. Our approach is designed to be

orthogonal to existing methods, allowing it to be seamlessly integrated with other techniques,

thereby augmenting their effectiveness with robust uncertainty modeling capabilities. This

integration capability provides a flexible framework that can be adopted to enhance current

HOI detection systems without requiring extensive modifications to existing architectures.



Chapter 7

Conclusion and Future Works

7.1 Summary of Contributions

This thesis navigates the generalization problem of DNNs from two aspects: ❶ generalization

from one domain to another and ❷ generalization from one task to another.

For ❶, a novel PiPa framework is proposed in Chapter 3, which encourages models to mine

the inherent domain-invariant contextual feature. Since PiPa does not introduce extra

parameters or annotations, it can be combined with other existing methods to further

facilitate the intra-domain knowledge learning. Additionally, a depth-aware multi-task

learning framework is introduced in Chapter 4 that leverages depth guidance to enhance

data augmentation and contextual learning. This framework refines cross-domain mixing by

simulating real-world layouts with depth distributions of objects and introduces a cross-task

encoder that optimizes multi-task features and focuses on discriminative depth features to

aid contextual learning.

For ❷, GvSeg, the generalist video segmentation solution is presented in Chapter 5 that

accommodates task-oriented properties into model learning. GvSeg conducts a holistic

investigation on segment targets by disentangling them into three essential constitutes:

appearance, shape, and position. By adjusting the involvement of these key elements in

query initialization and object association, GvSeg realize customizable prioritization of

instance discrimination or semantic understanding to address different tasks. GvSeg

achieves customizable prioritization of instance discrimination or semantic understanding

to address different tasks. This tailored approach allows GvSeg to consistently achieve

87
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top-leading results in several video segmentation tasks, demonstrating strong generalization

ability. Finally, Chapter 6 explores comprehensive visual understanding by focusing on

a high-level semantic task: HOI Detection. Specifically, it delves into the application

of uncertainty estimation within Human-Object Interaction (HOI) detection, integrating

it in two key aspects: interaction and detection. This integration capability provides a

flexible framework that can be adopted to enhance current HOI detection systems without

requiring extensive modifications to existing architectures.

7.2 Future Works

Understanding visual scenes is a primary goal of computer vision. Future research will

continue to enhance comprehensive visual understanding by expanding and refining the

methods proposed in this thesis. Firstly, further study of the PiPa framework on relevant

tasks, such as domain-adaptive video segmentation and open-set adaptation, is planned.

Additionally, introducing knowledge from more modalities under the multi-task learning

framework, such as LiDAR and 3D point clouds, has the potential to further enhance

contextual learning for scene understanding.

Moreover, the proposed GvSeg framework, which addresses generalist video segmentation

for EVS, VIS, VSS, and VPS, provides insight into designing a universal model capable of

addressing a broader spectrum of vision-related tasks. The disentanglement of task-specific

properties of moving objects can benefit various video tasks, such as Video Object Detection

(VOD) and Multi-Object Tracking and Segmentation (MOTS).

From a social impacts perspective, it is important to note that the methods proposed in this

thesis may face potential operational challenges in practical applications. To proactively

address any adverse effects on individuals and society, a robust security protocol could

be established in the future to ensure the safety and well-being of users and the broader

community in case of any unforeseen issues.

In addition to the aforementioned perspectives, several unresolved challenges and potential

research avenues merit further investigation. While the proposed methods demonstrate

strong performance across multiple domains and tasks, existing solutions for comprehensive

visual understanding still face limitations in handling extreme domain shifts, rare event

detection, and long-term temporal reasoning. Addressing these challenges will require more

robust and adaptable learning frameworks.
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Moreover, there is an emerging trend in the computer vision community towards large-scale

pre-training and the development of foundational models that can generalize across diverse

visual tasks. Integrating insights from this trend into future work could further enhance

the generalization ability and scalability of the proposed methods. Specifically, pre-training

on massive, diverse video datasets and leveraging cross-modal signals, such as language

and audio, could enable the construction of more resilient and versatile vision models.

Exploring these directions may significantly advance the goal of building comprehensive,

flexible, and socially responsible visual understanding systems.
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