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Abstract 
Current genome-wide association studies provide valuable insights into the genetic basis of ischaemic stroke (IS) risk. However, 
polygenic risk scores, the most widely used method for genetic risk prediction, have notable limitations due to their linear nature 
and inability to capture complex, nonlinear interactions among genetic variants. While deep neural networks offer advantages in 
modeling these complex relationships, the multifactorial nature of IS and the influence of modifiable risk factors present additional 
challenges for genetic risk prediction. To address these challenges, we propose a Chromosome-wise Multi-task Genomic (MetaGeno) 
framework that utilizes genetic data from IS and five related diseases. The framework includes a chromosome-based embedding layer 
to model local and global interactions among adjacent variants, enabling a biologically informed approach. Incorporating multi-disease 
learning further enhances predictive accuracy by leveraging shared genetic information. Among various sequential models tested, the 
Transformer demonstrated superior performance, and outperformed other machine learning models and PRS baselines, achieving an 
AUROC of 0.809 on the UK Biobank dataset. Risk stratifi cation identified a two-fold increased stroke risk (HR, 2.14; 95% CI: 1.81–2.46) in
the top 1% risk group, with a nearly five-fold increase in those with modifiable risk factors such as atrial fibrillation and hypertension.
Finally, the model was validated on the diverse All of Us dataset (AUROC = 0.764), highlighting ancestry and population differences
while demonstrating effective generalization. This study introduces a predictive framework that identifies high-risk individuals and
informs targeted prevention strategies, offering potential as a clinical decision-support tool.

Keywords: genomics and bioinformatics; deep learning; transformers; stroke risk prediction

Introduction 
Genome-wide association studies (GWAS) have identified numer-
ous genetic loci associated with ischaemic stroke (IS) and its 
subtypes, leading to the d evelopment of methods that use genetic
information for IS risk prediction [1–3]. Genetic-based prediction 
approaches offer advantages over traditional risk assessment 
tools, such as the Framingham Stroke Risk Profile, which pri-
marily focuses on c onventional factors like age, blood pressure,
and medical history [4]. By incorporating genetic information, 
these approaches can identify high-risk individuals who might 
otherwise be misclassified as low-risk due to the absence of
conventional risk factors [5, 6]. Among these genetic-based meth-
ods, polygenic risk scores (PRS) are widely employed. PRS mod-
els estimate an individual’s genetic risk for IS by calculating a 
weighted sum of single nucleotide poly morphisms (SNPs) identi-
fied in GWAS, where each SNP is weighted by its effect size [7]. This 
approach has shown potential in stratifying individuals by their
stroke risk [8–10]. For instance, Malik et al. [8] showed that PRS 
could effectively stratify individuals by their risk of IS, with indi-
viduals in the highest decile of PRS having significantly higher risk 

compared with those in the lowest decile. Li et al. [9], illustrated 
how PRS can enhance stroke subtyping and improve risk predic-
tion accuracy by incorporating ancestry-specific genetic variants 
and integrating data from multiple large-scale GWAS. Addition-
ally, Neumann et al. [10] applied PRS to predict the risk of IS in a 
healthy older population, utilizing a comprehensive model that 
combined genetic risk scores (GRSs) with traditional risk factors, 
demonstrating the broad applicability of PRS. These studies have 
collectively highlighted the potential of PRS in improving IS risk 
prediction. However, the predictive power of PRS can be limited 
b y the model’s linear nature and the lack of consideration for
potential nonlinear relationships or epistatic interactions among
SNPs, which is crucial for understanding the genetic architecture
of complex diseases like IS.

To enhance the performance of PRS, several studies have 
expanded the phenotypes to include stroke-related diseases
[11–13]. For example, O’Sullivan et al. [11] combined clinical 
risk factors and PRS to improve stroke-risk assessment among 
individuals with atrial fibrillation (AF). Their results showed a
significant performance improvement compared with models
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using genetic data for IS alone. Similarly, Jung et al. [12] developed 
a combined PRS model that utilized risk factors such as hyper-
tension (HT) and type 2 diabetes (T2D). This integrated approach 
demonstrated enhanced prediction performance, highlighting the 
benefit of considering multiple related phenotypes in stroke risk
prediction. Apart from this, incorporating genotype information
with lifestyle factors has also been a research focus. Khera et al.
[13] combined GRSs with lifestyle factors like diet and physical 
activity, demonstrating improved predictive accuracy. Likewise,
Elliott et al. [14] integrated genetic data with smoking and alcohol 
consumption history, further enhancing the robustness of PRS 
models. Additionally, incorporating multi-omics data, including 
transcriptomics and proteomics, has also been shown to provide
a more comprehensive risk assessment [15–17]. However, each of 
these methods has limitations. While incorporating variants from 
IS-related diseases can enhance risk stratification by leveraging 
shared genetic information, simply increasing the number of 
variants without optimizing the model may not significantly 
improve risk prediction. Instead, it introduces a large number 
of features, potentially increasing computational complexity and 
reducing efficiency. For methods combining genetic and lifestyle 
factors, the linear nature of these models is not fundamentally
addressed, nor is the predictive performance of the genetic com-
ponent significantly enhanced. Lastly, multi-omics approaches
often have limited data availability, making them more suitable
for model validation rather than primary prediction.

Deep neural networks (DNNs) can model complex interactions 
between multiple input features [18], making them particularly 
suited for tasks like genetic risk prediction, where the nonlin-
ear nature of human gene product interactions plays a crucial
role [19, 20]. Moreover, DNNs can extract hierarchical features 
from the genetic data, capturing local and global dependencies
among genetic variants [21]. This hierarchical feature extraction 
is essential for understanding the multifaceted nature of genetic 
contributions to diseases like IS, hence improving predictive per-
formance. In the biomedical field, DNNs have shown success
in various prediction tasks [22–24]. Nonetheless, current DNN 
methods and PRS models often have limited clinical interpretabil-
ity because stroke is a multifactorial disease influenced by a 
wide range of modifiable risk factors (MRFs), including related 
conditions, lifestyle choices, and environmental exposures. These 
MRFs, such as HT and AF, can also be analyzed from a genetic 
perspective to better assess str oke risk. Therefore, clinical risk
analysis models should not only enhance genetic risk assessment
but also identify optimal strategies for controlling these MRFs.
For example, a recent study by Abraham et al. [25] developed 
a meta-PRS approach incorporating 19 GRSs and utilized over 3 
million SNPs. This approach achieved a hazard ratio (HR) of 1.26 
per standard deviation increase in the meta-PRS (95% CI 1.22– 
1.31), significantly outperforming most current individual GRSs. 
However, the reliance on such a large number of features presents 
several limitations. First, it significantly increases computational 
complexity and resource requirements, making the model less 
practical for clinical settings where rapid and efficient risk assess-
ment is needed. More importantly, this approach still adheres to 
a linear model framework, which does not fully capture the com-
plex, nonlinear interactions between genetic variants, nor does it 
account for the interplay between these variants and other stroke-
related risk factors. Additionally, accurately allocating stroke ver-
sus non-stroke labels in long-term risk prediction using genomic 
data poses a significant challenge in stroke risk prediction, as 
stroke is often influenced by latent factors that may not manifest 
as observable symptoms until later stages, potentially leading 

to the misclassification of individuals as low-risk despite having
significant underlying genetic risk. Therefore, there is a need to
develop a model that effectively handles a manageable number
of features while capturing the nonlinear interactions between
genetic variants. Moreover, beyond improved model accuracy, it
is more important to understand how MRFs interact with the
genetic predispositions of IS. This will enable a more compre-
hensive risk analysis and provide actionable insights for targeted
interventions and personalized stroke prevention strategies.

In this study, we propose a chromoso Me-wise Multi-task 
Genomic (MetaGeno) framework for IS risk prediction that con-
siders underlying interactions among multiple MRFs related to IS, 
including AF, HT, hypercholesterolemia (HCL), T2D, and coronary 
artery disease (CAD). We introduce a chromosome-based feature 
extractor designed to capture local and global dependencies 
among genetic variants within the same chromosome by 
categorizing SNPs based on their chromosomal locations. This
design aligns with the biological principle that genetic variants
are more likely to interact when located in the same proximity,
such as through linkage disequilibrium (LD) [26, 27]. Moreover, 
structuring features according to chromosomal organization 
reflects the inherent architecture of the genome, enabling the 
model to effectively capture both localized regulatory effects and 
broader chromosome-level contributions to IS risk. Next, we test
several DNN models, including Convolutional Neural Network
(CNN) [28], Long Short-Term Memory (LSTM) [29], Gated Recurrent 
Unit (GRU) [30], Transformer [31], and Temporal Convolutional 
Network (TCN) [32], each leveraging unique capabilities to capture 
the intricate relationships between genetic variants across 
different MRFs. The performance of these models is evaluated 
using the area under the receiver operating characteristic curve 
(AUROC) for each MRF prediction, and the best-performing 
model is compared with baseline methods, such as PRS and 
traditional machine learning approaches. We further assess the
model’s discriminatory power using the concordance index (C-
index) and perform cumulative incidence analyses to evaluate its
effectiveness in stratifying individuals by IS risk.

Material and method
This section outlines our study’s methodology, including the 
dataset description, preprocessing steps, chromosome-wise 
embedding la yers, baseline comparisons, and model architecture.

Overall design of MetaGeno
In this study, as shown in Fig. 1, we proposed the MetaGeno 
framework for predicting the risk of IS by leveraging genetic vari-
ants associated with IS and five related MRFs. First, GWAS were 
selected for each condition, and SNPs were extracted from VCF 
files. These SNPs were then encoded to represent genetic variants 
and segmented according to their respective chromosomes. A 
c hromosome-wise embedding layer was utilized for each condi-
tion to capture the complex, nonlinear interactions within each
chromosome and between adjacent SNPs, enabling the model to
recognize key genetic patterns.

Next, we employed a multi-task learning approach to predict 
IS and five related MRFs: AF, CAD, T2D, HT, and HCL. This multi-
task setup utilized the shared genetic information among these 
conditions, allowing the model to learn from overlapping genetic 
traits and thereby improve IS prediction accuracy. Various sequen-
tial prediction models, including Transformer, LSTM, GRU, CNN,
and TCN, were tested to identify the most effective model for this
framework.
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Figure 1. Overall structure of MetaGeno framew ork for IS risk prediction.

The performance of each model was evaluated using the 
AUROC metric, which measures the model’s ability to distinguish 
between positive and negative classes. We then extracted the 
output from the final layer of each model and normalized 
these outputs according to the distribution of the validation 
population. This enabled us to stratify the predicted IS risk 
into tertiles, reflecting low, medium, and high-risk groups. 
For a more refined analysis, we also performed percentile-
based stratification to evaluate the risk across finer divisions 
of the predicted risk distribution. This allowed for a detailed 
understanding of risk gradations and the model’s discriminative 
capability. To further investigate the relationship between the 
MRF and assess the model’s performance in capturing the shared 
genetic underpinnings, we calculated the C-index for various 
combinations of MRF. This analysis helped us to quantify the
concordance between predicted and observed outcomes across
different disease combinations, thereby understanding which
genetic overlaps among these conditions could enhance the
prediction of IS risk. Next, to validate the identified disease
associations and the model’s effectiveness, we evaluated the
cumulative incidence of IS by using age as a timeline to generate
incidence curves across different MRF combinations and family
history. Finally, we validated the model’s performance on an
independent dataset to assess its generalizability.

Datasets and data prepar ation
The dataset used in this study is derived from the UK Biobank, a 
large-scale biomedical database and research resource containing 

genetic, lifestyle, and health information from UK participants
[33]. The UK Biobank cohort consists of ∼500 000 participants 
aged 40–69 years who were recruited between 2006 and 2010. To 
train and test the model, we included 11 584 cases of ischemic 
stroke and 460 985 control participants without a history of stroke. 
IS patients were selected based on the source of the ischemic 
stroke report. Specifically, we included cases reported through 
hospital admissions, hospital primary diagnoses, hospital sec-
ondary diagnoses, stroke-related deaths (either as the primary 
cause or a contributory factor), and cases where stroke was the 
sole cause of death, where cases that were solely self-reported 
were removed. We included all stroke patients with both incident 
and recurrent strokes, as well as fatal and nonfatal cases. The 
rationale behind this inclusive approach is that our study aims to 
identify genetic risk factors for IS, which are relevant regardless of 
whether the stroke is a first-time event or a recurrence. Transient 
ischemic attacks were excluded from the analysis as they do 
not meet the full clinical definition of stroke. We included only 
participants of Eur opean ancestry (EUR) to minimize population
stratification and ensure the reliability of our genetic analysis and
risk prediction model. Our primary goal was to predict ischemic
stroke risk based on an individual’s germline genome, which is
inherently static and remains unchanged throughout life. As such,
during the selection of samples and the training of our prediction
model, we did not incorporate time-dependent variables, such
as follow-up time, as these factors are not directly relevant to
the genetic predisposition we aim to assess. We employed k-fold
cross-validation with k = 5 to ensure robust model evaluation
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Table 1. Baseline characteristics of the study population. Age is reported a s mean ± SD. Family history of IS is reported as n (%) of the 
total population

Characteristic (UKBB) Incident IS (n = 11 584) Healthy controls (n = 460 985) Total (n = 472 569) 

Age, years (mean ± SD) 62.1 ± 6.5 56.8 ± 8.0 57.0 ± 8.0 
Male, n (%) 7011 (60.5) 208 195 (45.2) 215 206 (45.5) 
Female, n (%) 4573 (39.5) 252 790 (54.8) 257 363 (54.5) 
Family history of IS , n (%)

No 7754 (66.9) 340 111 (73.8) 347 865 (73.6) 
Yes 3830 (33.1) 120 874 (26.2) 124 704 (26.4) 

Characteristic (AoU) Incident IS (n = 7942) Healthy controls (n = 8000) Total (n = 15 942) 

Age, years (mean ± SD) 70.5 ± 6.8 68.4 ± 7.5 69.4 ± 7.6 
Male, n (%) 3577 (45.1) 3205 (40.1) 6782 (42.5) 
Female, n (%) 4365 (54.9) 4795 (59.9) 9160 (57.5) 
Family history of IS , n (%)

No 5104 (64.3) 5892 (73.7) 10 996 (69.0) 
Yes 2838 (35.7) 2108 (26.3) 4946 (31.0) 

and minimize variance introduced by a single train-test split. In 
each fold, the dataset was divided into 80% training and 20% 
validation. To maintain class balance during training, we applied 
stratified sampling within each fold, ensuring that the number 
of positive and negative samples remained equal. Specifically, 
in each training fold, we randomly selected a subset of healthy
individuals, matching the number of positive samples (7500). The
remaining samples in each validation fold were used for model
testing and analysis.

To further validate the model, we used an independent dataset 
from the All of Us (AoU) program [34]. The AoU program, an ini-
tiative led by the National Institutes of Health in the USA, aimed 
to enhance healthcare by facilitating precision medicine research 
through comprehensive data collection, including genetic, envi-
ronmental, and health information, to define clinical features and 
outcomes for prediction model development. The AoU program 
began in May 2018 and recruited individuals aged 18 or older 
from over 340 recruitment sites across the United States. For this 
validation, we selected 7936 positive cases of IS and 8000 healthy 
control participants. The selection criteria mirrored those applied
to the UKBB cohort, ensuring consistency in case definition and
control exclusion. However, to evaluate the generalizability of our
model, we included participants of diverse ancestries in the AoU
dataset. Baseline characteristics of the two datasets used in this
study are summarized in Table 1. 

The target variable was a set of binary classifications repre-
senting the condition of experiencing IS and related phenotypes, 
including AF, HT, HCL, T2D, and CAD. Each disease was associated
with a set of GWAS results obtained from the PGS Catalog [35], 
including CAD: PGS002262, including 540 SNPs, AF: PGS000035, 
including 1168 SNPs, HT: PGS003012, including 361 SNPs, T2D: 
PGS003107, including 995 SNPs, HCL: PGS002274, including 279 
SNPs, and IS: PGS000665, including 32 SNPs. The primary objective 
of this study is to develop an effective framework for IS risk predic-
tion. To avoid data leakage, GWAS datasets were specifically cho-
sen to exclude any data derived from the UK Biobank. The targeted 
selection of these datasets was guided by their relevance to IS and 
its major risk factors, the adequate number of SNPs available for 
robust modeling, their publication in high-quality journals, and
their general applicability to populations comparable with the UK
Biobank cohort. SNPs identified from these GWAS datasets were

used exclusively as input features in our model, independent of
GWAS-reported P-values or effect sizes, allowing the predictive 
power to naturally emerge from our chromosome-wise multi-task 
learning framework. Additionally, our model integrates polygenic 
risk factors across multiple MRFs , ensuring a more comprehensive
risk stratification rather than single-trait genetic prediction.

Baseline models 
This study employed three categories of baseline methods to 
evaluate the predictive performance of our framework: PRS-based 
methods, machine learning-based methods, and deep learning-
based methods. Detailed model configurations and hyperparam-
eter settings are provided in the appendix. 

The first category includes PRS-based methods, which esti-
mate individual disease risk using genetic data. Traditional PRS, 
a widely used approach in genetic epidemiology, aggregates the 
effects of multiple genetic variants through a linear model, lim-
iting its ability to capture complex genetic interactions. There-
fore, we included two advanced PRS methods: LDpred2 [36]  and  
Lassosum [37]. LDpred2 incorporates LD information to adjust 
SNP effect sizes, enabling the modeling of genetic dependencies 
among variants. Lassosum integrates Lasso regression with GWAS
data, using L1 regularization for efficient feature selection and 
weight optimization.

The second category includes machine learning-based meth-
ods, which model complex and nonlinear relationships in genetic 
data. These methods include Lasso Regression (LR), Random For-
est (RF), Support Vector Machine (SVM), and LightGBM (LGBM). LR
applies L1 regularization for feature selection, while RF constructs 
ensemble decision trees to model nonlinear interactions. SVM 
leverages kernel functions to handle high-dimensional spaces, 
and LGBM uses gradient boosting to achieve high accuracy in 
large-scale genetic data anal ysis. Hyperparameters for these mod-
els were optimized using cross-validation to ensure robust perfor-
mance.

The third category consists of deep learning-based methods, 
which leverage neural networks to model complex genetic inter-
actions beyond conventional ML approaches. We included two
deep learning models, DeepRisk [38] and GenNet [39], to compare 
with our proposed framework. DeepRisk employs a BiLSTM-based 
architecture to capture long-range dependencies between SNPs,
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allowing for the modeling of nonlinear genetic interactions. This 
enables it to improve upon traditional PRS methods by account-
ing for complex LD patterns. GenNet, on the other hand, uti-
lizes a neural network architecture that establishes connections 
between input SNPs and corre sponding genes based on gene
annotations and further links these genes to relevant biological
pathways using pathway annotations to improve interpretability.

Chromosome-specific embedding la yer
Several studies suggest that the spatial organization of the 
genome plays a critical role in gene regulation and disease 
susceptibility. Genetic variants located on the same chromosome, 
especially those in close proximity, tend to exhibit stronger
interactions due to LD and co-regulation of gene expression
[40, 41]. These interactions contribute to complex phenotypes, 
including the development of diseases such as IS. Grouping SNPs 
by chromosome helps preserve these local genetic interactions 
while enabling the exploration of broader, chromosome-wide 
effects. Additionally, chromosomal structur es align with the
biological principle that certain SNPs co-occur within functionally
related genomic regions, such as enhancers, promoters, or
noncoding regulatory elements [42]. Prior studies have demon-
strated the value of structure-aware embedding in modeling 
complex biological or network data [43], hence this design 
enables our model to capture both local dependencies and 
global influences within the same chromosome, enhancing 
interpretability while addressing the limitations of conventional
PRS, which fail to account for nonlinear interactions between
SNPs.

Let D =  {D1, D2, .  .  . , Dk} represent the set of diseases consid-
ered in this study, where k is the total number of diseases. For
each disease Di ∈ D, we extract relevant SNPs from GWAS and 
integrate them into a unified feature space, after which they are 
categorized according to their respective chromosomes. The set of 
chromosomes is denoted as

C = {C1, C2, .  .  .  , C22},

which includes 22 autosomes as sex chromosomes are not
included in this analysis.

For a given chromosome Cj, the set of SNPs located on Cj is 
represented as 

sj = {sj1, sj2, .  .  .  , sjm} ,

where m is the total number of SNPs on chromosome Cj aggre-
gated across all diseases. Each SNP sjk is encoded as 

xjk ∈ {0, 1, 2}V , 

where V represents the number of possible allele states: 
homozygous reference (0), heterozygous (1), and homozygous
alternative (2).

To capture the shared genetic architecture across related MRFs, 
we use a single embedding matrix for all diseases. This enables 
learning common genetic representations for IS and each MRF 
while preserving chromosome-specific interactions. Embedding 
all SNPs in a unified space ensures that relevant disease comor-
bidities information, such as the genetic interplay between IS and
its MRFs, is retained for downstream modeling. A single shared

embedding matrix is therefore defined as

E ∈ RV× d,

where d is the embedding dimension. The embedding re presenta-
tion for SNP sjk in chromosome Cj is given b y

ejk = Ex jk.

Thus, the embedded sequence for chromosome Cj is repre-
sented as 

E(sj) = {ej1, ej2, .  .  .  , ejm}.

To capture intra-chromosomal dependencies, we use the self-
attention mechanism on each chromosome, allowing SNPs within 
the same chromosome to interact dynamically:

hjk = 
m∑

l=1 

αjklvjl,  where  αjkl = 
exp

(
q�

jkkjl√
d

)

∑m 
l′=1 exp

(
q�

jkkjl′√
d

) ,

where hjk represents the final contextualized embedding of SNP
sjk on chromosome Cj, incorporating information from all other 
SNPs on the same chromosome. The attention weight αjkl quanti-
fies the influence of SNP sjl on sjk,  wi  th qjk = WQ ejk, kjl = WK ejl, 
and vjl = WVe jl representing the query, key, and value embeddings, 
respectively. He re, j indexes the chromosome, k indexes the SNP 
receiving attention, and l indexes the SNP contributing informa-
tion. The projection matrices WQ , WK,  and WV are learnable 
parameters, and d is the embedding dimension with

√
d serving 

as a scaling factor to stabilize training.
To obtain a chromosome-level representation, we apply mean 

pooling across all SNP embeddings within each chromosome:

hj = 
1 
m 

m∑
k= 1

hjk,

where hj represents the aggregated embedding of chromosome
Cj, summarizing the intra-chromosomal interactions among all 
SNPs. This attention-based mechanism enables the model to 
dynamically capture dependencies among SNPs within the same
chromosome while reducing dimensionality for downstream
analysis.

Once chromosome-level embeddings are obtained, we con-
catenate embeddings from all chromosomes to form a single 
chromosome-aware re presentation:

Z = concat(h1, h2, .  .   . , h22),

where Z ∈ R
22 ×d serves as the final chromosome-aware 

embedding representation that is dynamically updated through-
out the training process via end-to-end optimization through 
backpropagation, ensuring that both SNP-level and chromosome-
level embeddings capture disease-relevant genetic interactions.

DNN prediction models
We fed the combined embeddings Zfinal into various DNN models 
to predict the risk of IS and its five related phenotypes. Each model
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Table 2. Performance comparison of deep learning models for multi-task classification of IS and related MRFs. Shown are the AUROC 
scores for the multi-task classification in the validation set of IS and f ive related MRFs using various deep learning models, including 
Transformer , LSTM, GRU, CNN, and TCN

MRFs Transformer LSTM GRU CNN TCN Average 

IS 0.809 0.789 0.769 0.776 0.761 0.781 
AF 0.800 0.786 0.762 0.770 0.751 0.774 
CAD 0.790 0.774 0.757 0.763 0.741 0.765 
T2D 0.768 0.753 0.735 0.740 0.722 0.744 
HT 0.803 0.789 0.770 0.777 0.755 0.779 
HCL 0.780 0.767 0.752 0.758 0.745 0.760 
Average 0.792 0.773 0.758 0.764 0.746 

leverages unique architectures to capture complex interactions 
and dependencies within the sequential data.

The 1D CNN model extracts local patterns and hierarchical 
features from genetic sequences through convolutional layers. 
Pooling layers reduce dimensionality, and the r esulting features
are passed to fully connected layers for classification [18]. 

The LSTM model effectively captures temporal dependencies 
with memory cell structures that maintain long-range informa-
tion. Multiple stacked LSTM layers sequentially process inputs,
with final hidden states used for classification [44]. GRUs, a 
simplified variant of LSTMs, reduce computational complexity by 
combining forget and input gates into a single update gate while
retaining similar performance [45]. 

The transformer model uses self-attention mechanisms to cap-
ture global dependencies in genetic data. Its multi-head attention 
enables the model to jointly attend to information from differ-
ent re presentation subspaces, making it particularly effective for
long-range interactions [46]. 

TCNs leverage dilated convolutions to efficiently capture long-
range dependencies, maintaining sequence length through input
padding [47]. This architecture makes TCNs suitable for modeling 
potential inter actions between genetic variants.

Results 
In this section, we present the performance of our deep learning 
models compared with baseline methods. We also detail the risk 
stratification analysis, C-index evaluation for disease combina-
tions, and cumulative risk assessment by age.

Model selection for genomic chromosome-wise 
m ulti-task framework
We evaluated several sequential models to identify the most 
suitable architecture for the MetaGeno framework to capture 
the genetic information and interactions in multi-task settings
of IS and related MRFs (Table 2). The transformer model con-
sistently outperformed other architectures across all diseases, 
with an average AUROC of 0.792 and a peak of 0.809 for IS. 
This strong performance highlights the Transformer’s ability to 
capture long-range de pendencies and leverage inter-disease inter-
actions, which are crucial for understanding polygenic traits like
stroke.

LSTM and CNN models showed comparable results, with 
average AUROCs of 0.777 and 0.764, respectively. LSTMs per-
formed well on IS (0.789) and HT (0.789), effectively handling 
short- to medium-range dependencies. CNNs, traditionally strong 
in spatial data processing, achieved AUROCs of 0.776 for IS 
and 0.777 for HT. In contrast, GRU and TCN models exhibited

lower performance, with average AUROCs of 0.758 and 0.746,
likely due to their limited ability to capture broader genomic
interactions.

Performance varied across diseases. IS consistently showed the 
highest AUROCs, benefiting from its prioritization in the multi-
task framework and shared genetic interactions with related con-
ditions. AF and HT also demonstrated strong results (AUROCs of 
0.800 and 0.803), reflecting their strong genetic basis. Conversely, 
CAD , T2D, and HCL had lower AUROCs, particularly with GRU and
TCN models, due to the multifactorial nature of these diseases
and weaker genetic signals.

Overall, the transformer model’s superiority across diseases 
underscores its robustness in capturing complex genetic interac-
tions, making it the optimal choice for our framework.

Capturing local and global dependencies of
genetic variants
To assess the ability of our proposed chromosome-wise embed-
ding layer to capture genetic interactions and improve model 
performance, we conducted a comparison using the same trans-
former model with different input representations: one using our 
chromosome-wise embedding layer, another employing a simple 
one-hot encoding of SNPs, and two additional approac hes with a
global SNP embedding where all SNPs share the same embedding
space, and another adopting an independent SNP embedding
where each SNP has its own embedding layer.

As shown in Fig. 2, the AUROC curves illustrate that the 
chromosome-wise embedding layer (blue curve) achieved the 
highest AUROC of 0.809, outperforming the global SNP embedding 
(green curve, AUROC = 0.791), the independent SNP embedding 
(purple curve, AUROC = 0.780), and the one-hot encoding (red 
dotted curve, AUROC = 0.776). These results suggest that while 
deep learning-based embedding strategies gener ally improve
over traditional one-hot encoding, incorporating the hierarchical
genetic structure into the embeddings, particularly by grouping
SNPs at the chromosome level, could further enhance model
performance.

The performance gap between chromosome-wise and global 
SNP embeddings highlights the importance of maintaining struc-
tural genomic information, as global embedding loses the local 
dependencies between SNPs within the same chromosome. Addi-
tionally, the lower AUROC of the independent SNP embedding 
method suggests that failing to capture any SNP–SNP interac-
tions weakens the predictive power, despite allowing individual
SNPs to be represented in a lower dimensional space. These
findings support our hypothesis that incorporating both local and
global genetic dependencies through chromosome-wise embed-
dings contributes to better disease risk prediction.
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Table 3. Performance metrics for the proposed MetaGeno framework against baselines. Shown are the AUROC, F1 Score, Precision, and 
Recall metrics comparing the performance of the MetaGeno framework with the tra nsformer model against traditional baselines,
including PRS, LDpred, Lassosum, LR, RF, SVM, and LGBM for the prediction of IS

Method AUROC (95% CI) F1 Score Precision Recall 

MetaGeno (Ours) 0.809 (0.800–0.816) 0.790 0.780 0.778 
LDpred 0.690 (0.680–0.700) 0.675 0.680 0.670 
Lassosum 0.670 (0.660–0.680) 0.655 0.660 0.650 
PRS 0.650 (0.640–0.660) 0.635 0.640 0.630 
DeepRisk 0.792 (0.784–0.800) 0.778 0.780 0.773 
GenNet 0.787 (0.779–0.795) 0.774 0.775 0.770 
LR 0.734 (0.726–0.745) 0.720 0.730 0.712 
RF 0.761 (0.753–0.772) 0.755 0.760 0.750 
SVM 0.746 (0.738–0.752) 0.736 0.745 0.726 
LGBM 0.778 (0.770–0.789) 0.770 0.778 0.765 

Figure 2. AUROC comparison between different SNP embedding strate-
gies in the transformer model. Shown are the AUROC curves for the 
same transformer model using different input representations. The blue 
curve represents the chromosome-wise embedding layer, achieving the 
highest AUROC of 0.809. The green curve corresponds to the global SNP 
embedding, resulting in an A UROC of 0.791. The purple curve represents
the independent SNP embedding, yielding an AUROC of 0.78. The red
curve denotes the one-hot encoding baseline which achieved an AUROC
of 0.776.

Comparison of IS prediction performance with
baselines
Table 3 compares the performance of the proposed MetaGeno 
framework with several baseline models for IS prediction. 
MetaGeno achieved the highest AUROC score of 0.809, demon-
strating its ability to capture complex, nonlinear interactions 
within chromosomes and leverage shared genetic information 
across related diseases. This was followed by LGBM (AUROC
= 0.778) and RF (AUROC = 0.761), which performed well but
lacked the ability to utilize multi-task learning and cross-disease
interactions, limiting their effectiveness.

The traditional PRS model showed lower performance (AUROC 
= 0.650, F1 Score = 0.635), reflecting its inability to capture non-
linear interactions or include non-genetic factors. LDpred (AUROC 
= 0.690, F1 Score = 0.675) and Lassosum (AUROC = 0.670, F1 
Score = 0.655) improved upon PRS by leveraging LD informa-
tion and Lasso-based regularization, but their predictive power
remained limited. LR and SVM demonstrated moderate perfor-
mance (AUROC = 0.734 to 0.746), handling linear and simple
nonlinear patterns but struggling with high-dimensional genomic
interactions.

Finally, the two deep learning-based methods, DeepRisk 
and GenNet, achieved higher performance than traditional ML 

models by effectively capturing complex nonlinear genetic inter-
actions. DeepRisk (AUROC = 0.792) used BiLSTM architectures to 
model intricate SNP dependencies, while GenNet (AUROC = 0.787) 
integrated biologically informed neural network structures by 
grouping SNPs according to their corresponding genes, improving 
model interpretability. These models demonstrate the potential 
of deep learning in genomic risk prediction beyond traditional 
PRS approaches. However , their performance may be constrained
by the lack of interaction modeling across multiple MRFs,
which share heritability information crucial to IS risk, and the
insufficient representation of cross-chromosomal effects, which
are essential for capturing long-range genetic dependencies.

IS risk stratification by MetaGeno framework
The MetaGeno framework successfully stratifies individuals into 
distinct risk categories for IS by employing a multi-level HR anal y-
sis based on the putout from the final layer of the model. Figure 3 
shows two panels illustrating the risk distributions and their 
corr esponding HRs for IS in the validation set.

The HRs are first calculated and presented for different bins 
stratified by tertiles: HR = 1.14 (95% CI: 1.07–1.20) for the second 
tertile (33%–67%), and HR = 1.22 (95% CI: 1.14–1.29) for the highest 
tertile (67%–100%), using the lowest tertile (0%–33%) as the ref-
erence group. This stratification demonstrates a clear gradation 
of stroke risk as the risk score increases. The HRs indicate that
individuals in the highest tertile have a 22% higher risk of stroke
compared with the reference group, while those in the middle
tertile exhibit a 14% higher risk.

Furthermore, a more detailed stratification of risk scores across 
multiple percentiles in the higher IS risk region is provided: HR 
= 1.26 (95% CI: 1.18–1.33) for the 55%–100% group, HR = 1.39 
(95% CI: 1.26–1.51) for the 80%–100% group, HR = 1.47 (95% CI: 
1.31–1.63) for the 90%–100% group, HR = 1.53 (95% CI: 1.36–1.71) 
for the 95%–100% group, and HR = 2.14 (95% CI: 1.81–2.46) for 
the 99%–100% group. This more specific stratification shows that 
individuals in the top 1% have more than double the risk of 
str oke compared with those in the reference group. The increasing
HRs across percentiles confirm that the MetaGeno framework
can differentiate individuals with varying degrees of IS risk, with
statistically significant differences between groups as indicated
by their respective confidence intervals.

IS prediction of different combina tions of MRFs
To validate the effectiveness of the MetaGeno framework in 
identifying the genetic risk of IS, we assessed its predictive
performance using the C-index, a metric that measures a model’s
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Figure 3. The MetaGeno framework identifies individuals at different risk levels of IS. Shown is the distribution of the risk distributions for IS in the 
validation set and their corresponding HRs. The left panel displays the HRs for the top risk bins stratified by tertiles: Reference (0%–33%), HR = 1.14 
(33%–67%), and HR = 1.22 (67%–100%), with the lowest tertile serving as the reference group. The right panel illustrates a more detailed stratification of 
risk scores across multiple percentiles: Low Risk (0%–45%), Reference (45%–55%), HR = 1.26 (55%–100%), HR = 1.39 (80%–100%), HR = 1.47 (90%–100%), 
HR = 1.53 (95%–100%), and HR = 2.14 (99%–100%). These distributions reflect the varying levels of IS risk across different groups.

Figure 4. C-Index of Different MRF combinations for IS Prediction. The left panel displays the C-index values for predicting IS using individual GWAS of 
each related MRF: HT, AF, CAD, T2D, and HCL. The right panel illustrates the C-index values for various combinations of these conditions’ GWAS data 
with IS. The ”All MRFs” combination represents the integration of GWAS data for all related MRF with IS, yielding the highest C-index.

ability to distinguish between different risk levels. By testing the 
C-index for each related MRF individually, we aimed to determine 
how much eac h MRF contributes to the overall risk prediction
for IS within a multi-task learning setting. Figure 4 shows that 
HT achieved the highest C-index of 0.661, followed by AF with 
a C-index of 0.646. These findings suggest that HT and AF 
have a strong genetic association with IS, likely due to shared 
pathophysiological mechanisms contributing to both conditions. 
In contrast, diseases like CAD, T2D, and HCL had lo wer C-index
values of 0.630, 0.619, and 0.608, respectively, reflecting these
conditions’ more complex, multifactorial nature where genetic
factors alone are less predictive for the risk of IS.

Subsequently, we evaluated the performance of the MetaGeno 
framework when combining IS with each related disease. The 
results demonstrated that integrating multiple diseases signifi-
cantly enhances predictive accuracy. This suggests that integrat-
ing direct and indirect genetic influences across related condi-
tions can capture complex disease interactions, providing a more 
comprehensive understanding of IS risk. Among the individual 
combinations, the model combining HT and IS achieved a C-
index of 0.685, while AF and IS had a C-index of 0.676, further 
validating the relevance of these conditions in the context of IS

risk prediction. The combinations of CAD + IS, T2D + IS, and HCL
+ IS also showed improved performance with C-index values of
0.659, 0.648, and 0.636, respectively. Finally, combining all MRFs
achieved the highest C-index of 0.698.

Risk stratification based on genetic factors and 
family history across age subgroups
To further explore the combined effects of HT and AF with IS, 
given their high correlation observed in the previous sections, we 
conducted a series of analyses to examine the cumulative proba-
bility of IS across m ultiple risk subgroups stratified by HT, AF, and
family history of stroke. The results are shown in Fig. 5, illustrating 
how stroke risk accumulates across different subgroups as indi-
viduals age. For this analysis, we stratified individuals based on 
their predicted IS risk scores, selecting the top 10% of individuals
with the highest predicted risk and the bottom 10% with the
lowest predicted risk.

We first assessed the effect of HT and AF in the overall pop-
ulation. For individuals in the top 10% risk group with both HT 
and AF , the cumulative risk of IS by age 80 reached 4.0% (95% CI:
3.7%–4.4%) (Fig. 5a). In contrast, the cumulative stroke probability 
was significantly lower for individuals in the bottom 10% group
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Figure 5. Cumulative probability of stroke by risk subgroups stratified by HT, AF, and family history, across age. Shown are the cumulative probability of 
stroke across various risk subgroups stratified by HT, AF, and family history, presented as Kaplan–Meier curves across different age groups. The top 10% 
and bottom 10% genetic risk groups were defined based on the predicted risk scores obtained from the MetaGeno framework. (a) shows the cumulative 
stroke risk for individuals with HT and AF in the top 10% genetic risk group compared with those without HT and AF in the bottom 10% genetic risk 
group. (b) compares the stroke risk between individuals with both HT and AF and a family history of stroke in the top 10% genetic risk group versus 
those without HT and AF and no family history in the bottom 10% genetic risk group. (c) depicts the stroke risk for individuals with HT and AF in the top 
10% genetic risk group compared with those without HT and AF within the same top 10% genetic risk group. (d) presents the stroke risk for individuals 
with both HT and AF and a family history of stroke in the top 10% genetic risk group against those without HT and AF and no family history within the
same top 10% genetic risk group.

without HT and AF, around 1.2% (95% CI: 1.0%–1.3%), indicating a 
more than three-fold increase. Next, we compared the risk within 
the top 10% group; the cumulative str oke probability by age 80
for those without HT and AF increased to 1.9% (95% CI: 1.6%–
2.2%) (Fig. 5b), suggesting more than a two-fold increase in stroke 
risk for those with HT and AF, even within the same high-risk 
percentile. We then analyzed the impact of having a family history 
of IS on stroke risk among individuals in the risk distribution. 
Among individuals in the top 10% with both HT and AF who also
had a family history of IS, the cumulative probability of stroke
by age 80 reached 4.9% (95% CI: 4.3%–5.1%) (Fig. 5c). Meanwhile, 
those without HT and AF and family history in the bottom 10% 
group had the lowest cumulative stroke risk of around 1.0% (95% 
CI: 0.9%–1.2%), showing a nearly five-fold increase in risk for 
individuals with both conditions and family history. Finally, for 
individuals in the bottom 10% risk group and without all three
factors (HT+AF, family history), cumulative stroke probability
was around 1.8% (95% CI: 1.6%–2.1%) (Fig. 5d). This comparison 
highlights nearly a three-fold increase in stroke risk for high-risk 
indi viduals with all three high-risk characteristics.

These findings underscore the importance of considering mul-
tiple interacting risk factors, including HT, AF, and family history, 
as these risk factors substantially elevate the cumulative risk of 
stroke, particularl y for those within the highest risk groups, with
significant increases in risk observed across all comparisons.

Integration of chromosome-wise attention scores 
for IS prediction
To further understand the contribution of different chromosomes 
in IS risk prediction, we analyzed the attention scores derived 
from our transformer-based MetaGeno model. Specifically, we 
analyzed SNP-level importance scores derived from the atten-
tion weights of our transformer model. By aggregating and nor-
malizing the attention assigned to individual SNPs within high-
ranked chromosomes, we identified key variants contributing to
IS prediction. Figure 6 presents the chromosome-wise attention 
distribution, where each chromosome’s importance was com-
puted by summing the attention scores across all SNPs within 
that chromosome and normalizing them to a 0–1 scale. As shown, 
c hromosomes 1, 4, 6, 7, 9, and 12 exhibit higher attention scores,
while others contribute to varying degrees.

From a biological perspective, these results align well with-
known genetic contributors to IS and its MRFs. Chromosome 1 
includes key IS-associated variants such as rs7529229, which has 
been strongly linked to CAD and AF. Chromosome 4 contains 
the ZFHX3 gene, which is also associated with AF, further rein-
forcing its role in IS susceptibility. Chromosome 6 is enriched in 
genes related to the immune system and inflammation, rs9349379
within the PHACTR1 gene is located here and has been linked
to arterial function and vascular integrity. Similarly, rs2107595
in Chromosome 7 has been highly ranked, consistent with prior
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Figure 6. Chromosome-wise attention score distribution. The figure illus-
trates the normalized attention scores assigned to each chromosome by 
the transformer model within the MetaGeno framework. Attention scores 
were computed by a ggregating SNP-level attention values within each 
chromosome and normalizing them to a scale of 0 to 1.

studies linking this gene to CAD and AF. Chromosome 9 contains 
another key variant, rs10757274, a well-established locus for CAD, 
associated with both IS and AF . Chromosome 12 contains the
SH2B3 gene, associated with HT and other cardiovascular dis-
eases.

Conversely, chromosomes with lower attention scores, such 
as Chromosomes 5, 14, and 15, may still contain IS-associated 
SNPs while their contribution to the model is relatively weaker 
compared with highly ranked chromosomes. Specifically, Chro-
mosome 5 is largely implicated in immune-related and develop-
mental disorders, with limited direct links to IS and its related 
MRFs. Chromosomes 14 and 15 have been associated with neu-
rodevelopmental and metabolic syndromes but lack significant 
cardiovascular risk loci. This observation supports our model’s 
prioritization of chromosomes with well-established genetic links 
to IS and its MRFs. These SNPs reflect distinct but interconnected 
mechanisms contributing to IS risk. Variants in ZFHX3 influ-
ence cardiac electrical activity, predisposing individuals to AF and 
subsequent cardioembolic stroke. The identification of SNPs in 
PHACTR1 suggests an important role in arterial wall remodel-
ing and blood pressure regulation. Ad ditionally, SH2B3 encodes
the lymphocyte adaptor protein LNK, which negatively regulates
cytokine signaling and immune cell proliferation. Variants in
SH2B3 have been associated with increased inflammation and HT,
further reinforcing the role of immune dysregulation and elevated
blood pressure in IS pathogenesis. Collectively, these findings val-
idate our model’s ability to capture functionally relevant genetic
interactions and highlight the interplay between AF, HT, and other
MRFs in IS risk.

Model validation using the AoU dataset
To further evaluate the robustness and generalizability of our 
model, we validated its performance on an independent dataset
from the AoU program. The ROC curves in Fig. 7 compare the 
performance of the model on the UK Biobank dataset (train-
ing/validation data) and the AoU dataset (external validation). 
For the AoU validation dataset, the model achieved an AUROC 
of 0.762, indicating satisfactory generalization to a completely
independent cohort with varying demographic and clinical char-
acteristics.

The slightly lower AUROC on the AoU dataset than the 
UKBB dataset (AUROC = 0.811) may primarily be attributed to 
differences in ancestry composition and population distribution 
between the two cohorts. The UK Biobank dataset predominantly 
consists of individuals of European ancestry, whereas the AoU 

Figure 7. ROC curves for stroke risk prediction on UKBB and AoU datasets. 
ROC curves comparing the performance of the model on the UK Biobank 
dataset (AUROC = 0.809) and the AoU v alidation dataset (AUROC = 0.764).

dataset represents a more diverse population with varying 
genetic backgrounds. Such differences can introduce additional
variability, impacting model performance when applied to a
heterogeneous cohort. Despite these challenges, the model
achieved an AUROC of 0.762 on the AoU dataset, demonstrating its
ability to generalize effectively to completely independent data.

Discussion 
In this study, we proposed a MetaGeno framework for predict-
ing the risk of IS by integrating genetic data from IS and five 
related MRFs (AF, HT, HCL, T2D, and CAD). Using the proposed 
chromosome-based embedding layer, we aimed to capture both 
local and global genetic interactions within the same chromo-
some. To identify the most effective model for our framework, 
we explored various deep learning models, including Transformer, 
LSTM, GRU, CNN, and TCN. The results demonstrated that the 
transformer model, incorporated into the MetaGeno framework, 
achieved the highest predictive performance with an AUROC of 
0.811, outperforming PRS and machine learning methods. Addi-
tionally, the MetaGeno framework effectively stratified individ-
uals into different risk groups. For example, when stratifying by 
tertiles, individuals in the highest risk group (67%–100%) showe d
a 1.23-fold increase in IS risk compared with the reference group
(0%–33%). The more detailed risk stratification, which divided
the population into multiple percentiles, identified individuals in
the top 1% (99%–100%) had over a 2.13-fold increased risk of IS
compared with the reference group (45%–55%). This demonstrates
that the MetaGeno framework can identify individuals at signif-
icantly varying risk levels, with the highest risk groups showing
substantially elevated stroke risk.

The C-index analysis further highlighted the effectiveness of 
the MetaGeno framework in utilizing multi-task learning to incor-
porate information from multiple MRFs. Combining all related 
diseases yielded the highest C-index of 0.701, suggesting that 
incorporating genetic data from all these conditions provides a 
comprehensive understanding of IS risk. Notably, the combination 
of HT and AF with IS yielded a C-index of 0.685 and 0.677, further 
supporting the close genetic association of these conditions with 
IS. To validate the potential relevance of HT and AF in predicting IS 
risk, we conducted additional survival analyses focusing on these
two MRFs. The results indicated that individuals with both HT
and AF in the top 10% risk group exhibited more than a two-fold
increase in IS risk compared with those without these conditions
(4.1% and 1.9%). More importantly, when family history was also
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considered, individuals with both HT and AF and positive family 
history in the top 10% risk group had an even greater cumulative 
stroke risk of 4.9% by age 80. This represents nearly a five-fold
increase compared with those without these conditions in the
bottom risk group, with a risk of ∼1.0%, further underscoring the 
impact of combining IS-related risk factors and family history on 
effectiv ely stratifying individuals by their risk levels.

When comparing our findings with previous studies , Marston
et al. [48] observed that incorporating data from cardiovascular 
clinical trials enhanced the prediction of IS risk, with HRs of 
1.15 (95% CI: 0.98–1.36) for the middle genetic risk tertile and 
1.24 (95% CI: 1.05–1.45) for the high genetic risk tertile. Simi-
larly, research by O’Sullivan et al. [11]  showed  improved  stroke  
prediction accuracy among AF patients by using over 500 000 
SNPs. Their comprehensive GRS notably increased the net re clas-
sification index (2.3% [95% CI: 1.3%–3.0%]) and improved predic-
tive accuracy (χ2P = 0.002), achieving a C-index of 0.63 (95% 
CI: 0.61–0.65). Moreover, Abraham et al. [25] developed a meta-
PRS strategy that combines 19 GRSs for IS-related SNPs, encom-
passing over 3 million SNPs, resulting in an HR of 1.26 (95% 
CI: 1.22–1.31) per standard deviation, which outperformed many 
existing individual GRS methods. While the results from these 
studies may appear comparable, our approach offers distinct 
advancements that address the underlying limitations of their 
methodologies. These methods often depend on a vast num-
ber of SNPs—ranging from 500 000 to over 3 million, which, 
although potentially improving predictive power, do not funda-
mentally resolve the nonlinearity issues inherent in traditional 
PRS approaches. Furthermore, including such extensive feature 
sets makes their application in DNNs less feasible due to com-
putational constraints and the risk of overfitting. In contrast, 
our MetaGeno framework achieves similar or improved predictive 
accuracy using substantially fewer variants, mitigating the lim-
itations of high-dimensional data through a chromosome-based
embedding layer that effectively captures local and global nonlin-
ear interactions among genetic variants. Furthermore, by incorpo-
rating related diseases through a multitask learning approach, our
model leverages shared genetic information, enhancing predic-
tive performance while maintaining a more manageable feature
set. Thus, our framework provides a more streamlined, scalable,
and clinically applicable solution compared with conventional
methods that rely on extensive genomic data and linear PRS
models.

Clinically, current stroke risk assessment methods largely 
emphasize phenotypic risk factors and lifestyle characteristics, 
such as blood pressure, glucose , and cholesterol levels, even
though genetic factors contribute to ∼37.9% of IS heritability. This 
focus can lead to an underestimation of risk in genetically predis-
posed individuals who appear to be at low risk based on clinical 
factors alone. Our model bridges this gap by integrating genetic 
data to offer a more comprehensive risk assessment, allowing for 
the identification of high-risk individuals who may be overlooked 
by traditional methods. While family history highlights a strong 
connection with the genetic factors we previously focused on, 
this framework also demonstrates that managing other MRFs 
can significantly reduce the risk of developing IS. Additionally, 
providing numerical evidence from a large population study 
for clinically actionable measures could assist clinicians in 
providing pr evention strategies, early intervention, and targeted
lifestyle modifications. This would help manage the likelihood
of developing IS proactively, hence promoting more efficient
healthcare resource allocation by offering clinicians critical
insights into a patient’s genetic predisposition to stroke, along

with a timeline for risk, supporting more informed decisions
regarding preventive medication and lifestyle modifications.

Despite the enhanced predictive accuracy achieved by employ-
ing a chromosome-wise embedding layer to capture nonlinear 
interactions among genetic variants and identifying the impact 
of AF and HT on stroke risk across different subgroups, there 
remains room for improvement. Notably, imaging data play a criti-
cal role in clinical settings, particularly in the diagnosis, prognosis, 
and rehabilitation of stroke patients. Imaging biomarkers, such 
as MRI findings in chronic small vessel disease or intracranial 
atherosclerosis, are essential for understanding the complete 
scope of stroke pathology and patient outcomes. Future studies 
should aim to incorporate imaging data, along with clinical 
and biomarker information, to explore the interactions and 
relationships between genetic factors and imaging phenotypes .
This multimodal approach would provide a more comprehensive
assessment of IS risk and enable personalized treatment plans
considering both genetic predisposition and clinical imaging
findings. Furthermore, such integration could deepen our
understanding of the mechanisms underlying IS, leading to
more effective strategies for stroke prevention and outcome
analysis.

Key P oints

• This study proposed a genomic variant-based model 
integrating five modifiable risk factors (AF, HT, HCL, T2D, 
CAD) and considering disease interactions for IS risk
prediction.

• A biologically informed chromosome-based embedding 
layer was designed to capture complex interactions 
between variants on the same chromosome, outper-
forming one-hot encoding.

• We compared several sequential models, with the trans-
former model showing the best performance and out-
performing baseline methods, including traditional and 
conv entional PRS models.

• Risk stratification analysis identified a 1.23-fold risk 
increase in the top 67%–100% tertile and a 2.13-fold 
increase in the top 1%, with nearly five-fold higher risk 
in indi viduals influenced by AF, HT, and family history 
compared with the lowest risk group.
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