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ABSTRACT Fibromyalgia syndrome (FMS) is a long-lasting medical condition that poses signicant
challenges for diagnosis and management because of its complex and poorly understood nature. It affects
millions of people around the globe, predominantly women, causing widespread pain, fatigue, cognitive
impairments, and mood disturbances. The lack of objective measures to address FMS complicates its
assessment, often leading to delayed or misdiagnosed cases. By hindering daily activities and productivity,
FMS negatively impacts the quality of the patient’s life. Innovative approaches that use medical data,
such as bio-signals and bioimaging, combined with machine learning techniques, hold the promise of
deepening our knowledge of FMS, which might in turn lead to systems that offer efcient, precise, and
personalized physician support. Furthermore, articial intelligence-driven identication of biomarkers and
patient subgroups could improve FMSmanagement. In this systematic review, we explore the role of articial
intelligence in understanding FMS pathophysiology, discuss the present limitations, and shed light on future
research avenues, aiming to translate ndings into improved clinical outcomes.

INDEX TERMS Articial intelligence, bromyalgia, FMS detection, machine learning, pain assessment.

I. INTRODUCTION
Fibromyalgia syndrome (FMS) is a chronic medical condi-
tion which causes widespread muscle and joint pain (Fig. 1),
cognitive impairment, tiredness, sleep issues, and mood
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disturbance, like depression and anxiety [1], [2]. It affects
2-4% of the global population, with most of them being
women [3], [4]. FMS takes a toll on a person’s mental
well-being and quality of life. Many FMS patients suffer
from sleeplessness, hypersensitivity, and nd it difcult to
perform their daily activities [5]. This functional limitation,
decreased efciency, and productivity affects both the
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FIGURE 1. Clinical presentation, diagnosis and management of FMS. Red
dots indicate the nine pain locations associated with FMS defined by the
american pain society [13].

physical and emotional health [6]. Despite being prevalent
and signicantly affecting one’s quality of life, the underlying
biological and neurological mechanisms of FMS are still not
well understood [7]. There is no denitive laboratory test or
imaging study available to conrm FMS [8]. After excluding
the possibility of other medical conditions, FMS is usually
diagnosed based on patient-reported symptoms, which can
be highly subjective [9], [10]. Additionally, the complex
and variable nature of the disease, such as overlapping
symptoms with other conditions and the absence objective
biomarkers, makes it challenging for healthcare experts to
provide an accurate diagnosis [11]. This often results in late or
missed diagnoses [12]. More robust and accurate diagnostic
approaches are the need of the hour to improve the outcomes
in FMS, so that therapeutic interventions can be implemented
at an early stage.

There is a lack of objective assessment measures for
disease severity, progression, and treatment response in FMS.
Hence, it is crucial to discover biomarkers beyond patient
symptoms which are often subjective and variable [14].
Recent progress in the areas of articial intelligence (AI) and
machine learning (ML) [15], [16] enable efcient analysis
of complex patient data with several parameters or features.
They also allow the extraction of meaningful insights and pat-
terns from the data that may not be obvious to humans [17].
These could be exploited not only for FMS diagnoses but also
to facilitate personalized treatment selection and outcome
monitoring. For example, multi-parametric data readouts of
wearable devices (e.g., Fitbit, smartwatch) and medical imag-
ing contain rich physiological and/or anatomical information
that may associate with FMS and be useful for diagnostic
classication [18], [19], [20]. ML-based models have the
potential to identify biomarkers to discriminate and diagnose
FMS [21] and standardize evaluation and clinical decision-
making. Additionally, ML can detect clinically relevant
subgroupswithin the FMS population based on shared feature
patterns, which can enable targeted precision medicine
strategies to address the individualized needs of patients with

FMS [22]. Especially when gathered longitudinally from
sizable FMS/control cohorts, the application of AI to medical
data can offer clues to understanding the clinical behavior
and trajectory of FMS, which may prove useful for clinical
decision-making.

In this work, we comprehensively reviewed the literature
in the past decade (2013-2023) on the diagnosis of FMS—
with a focus on AI approaches—using various physiological
signals and medical images as well as state-of-the-art disease
understanding. In addition, we have identied gaps and
provided researchers with a roadmap by highlighting areas
that require further investigation. Past reviews mostly had
a narrow focus with limited modality or lacked systematic
analysis of ML applications. In this study, we performed
a comprehensive synthesis of AI-driven diagnostic methods
spanning multiple clinical endpoints and data types like EEG,
MRI, and ultrasound. By highlighting robust patterns and
emerging research gaps from 2013–2023, we bridge the gap
between current FMS diagnostic challenges and the promise
of next-generation AI solutions tailored for FMS detection
and personalized treatment.

The rest of this paper is structured as follows: In
Section II, we summarize related review articles and explain
our literature search strategy. Section III details the results,
focusing on studies that address FMS detection and diag-
nosis, pain assessment, and brain connectivity. Section IV
provides an in-depth discussion of current challenges and
opportunities for AI-driven FMS research, while Section V
offers concluding remarks and outlines promising future
directions.

II. METHODS
A. RELATED REVIEWS
In this section (Fig. 2), we discuss ve recent reviews on FMS
along with their focus and limitations.

Glombiewski et al. [23] reviewed the application of using
electromyographic and electroencephalographic feedback,
and their effect on the efcacy of biofeedback in FMS treat-
ment. Adler-Neal and Zeidan [24] focused on mindfulness
meditation and its effects on FMS outcomes. Once again,
other treatment strategies were not considered in the review.
Next, Jones et al. [25] examined the prevalence of FMS in
axial spondyloarthritis (axSpA), but did not address broader
topics like detection, diagnosis, and pain. Ricci et al. [26]
and De Melo et al. [27] on the other hand, focused on one
particular data modality. Ricci et al. [26] concentrated on
imaging aspects, particularly molecular and neuroimaging
techniques like fMRI and PET in clinical trials. DeMelo et al.
[27] examined studies that used EEG signals to assess FMS
patients. However, neither of the studies covers a diverse
list of data or imaging modalities and the use of AI for
FMS detection and diagnosis. Notably, none of these studies
also covered the use of ultrasound in FMS, which has
gained popularity in recent years. Additionally, there is a
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FIGURE 2. Comparison of the focus and coverage of our work with five
recent FMS reviews.

lack of discussion on ML-related approaches in these review
papers.

B. LITERATURE SEARCH STRATEGY
We conducted a literature survey across Scopus, PubMed,
Web of Science, and the IEEE databases in January 2024
searching for full-text studies published in peer-reviewed
conferences and journals between 2013 and 2023 (inclusive)
using the following search term and their combinations:
‘‘bromyalgia’’, ‘‘detection’’, ’’identication’’, ‘‘classi-
cation’’, ‘‘diagnosis’’, ‘‘EEG’’, ‘‘ECG’’, ‘‘EMG’’, ‘‘ultra-
sound’’, ‘‘MRI’’, ‘‘fMRI’’ (Fig. 3).

We excluded review studies, preprints, and unrelated
articles (articles that didn’t deal with FMS or its detection)
along with papers that weren’t written in English. The
initial search returned 152 articles, which was reduced to
a nal set of 58 studies for analysis as per the PRISMA
guidelines.

Of the 58 selected papers, 47 studies disclosed the
location from which the data was collected, while 11 studies
did not. Among these, 21 studies were based in Europe,
16 in North America, 8 in Asia, and 2 in South America.
Within the Americas, 4 studies were from Canada, 2 from
Brazil, and the rest from the USA. In Asia, the studies
were distributed across India (2), China (1), Israel (2),
Japan (1), Korea (1), and Taiwan (1). Among the European
countries, Spain, Italy, and the UK accounted for 17 studies,
while the remaining studies were from Denmark, Germany,
Hungary, and Switzerland. This demographic distribution
highlights a lack of representation from continents such
as Africa and Australia. Additionally, the majority of
studies rely on private datasets with fewer than 100 female

FIGURE 3. PRISMA guidelines for database search.

FIGURE 4. Distribution of articles by publication year.

participants, indicating the scarcity of large publicly available
datasets.

III. RESULTS
Fig. 4 shows the publication trend of the 58 reviewed articles.
Among them, 14 papers are AI-based studies, which have all
been published after 2015 (Fig. 5). This suggests a growing
trend in the use of AI methodologies in FMS diagnosis.

Among the 58 studies, most studies have concentrated on
analyzing functional information through MRI/fMRI images
(n= 21), with ultrasound surprisingly being the second most
prevalent data type (n = 18). The most frequently utilized
biosignal is EEG (n = 13), while studies utilizing ECG and
EMG numbers 4 and 3, respectively. Fig. 6 illustrates the
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FIGURE 5. Distribution of AI-based articles by publication year.

FIGURE 6. Distribution of articles by publication year and data modalities
used.

usage of various data types in studies analyzing FMS during
the examined period (2013-2023). It is evident that there
has been a consistently high utilization of MRI/fMRI from
the beginning. Notably, EMG was employed only between
2017 and 2018. Similarly, EEG has been used since 2013,
but a noticeable upward trend is observed starting from 2020.

The 58 studies were categorized into four main groups
based on their aims: (1) detection/diagnosis of FMS (n= 28);
(2) brain connectivity (n= 7); (3) pain detection (n= 13); and
(4) miscellaneous applications (n= 10). For each application,
we also identied the most utilized data modality, which
included bio-signals such as EEG, Electrocardiography
(ECG), and Electromyography (EMG), and medical imaging
modalities such as MRI, fMRI, and Ultrasound. Additionally,
we examined whether ML techniques were employed in
the studies. The detection/diagnosis category centered on
studies aiming to identify and diagnose FMS. Various
medical data modalities were utilized, with EEG being
the predominant bio-signal modality, while MRI and fMRI
were primary in medical imaging. ML techniques were
frequently employed to enhance the accuracy of detection
and diagnosis. The brain connectivity category encompassed
studies investigating connectivity patterns and networks
within the brains of individuals with FMS, predominantly
using EEG and fMRI. In pain detection studies, the focus

was on identifying markers of pain in individuals with
FMS, and ultrasound imaging emerged as a widely used
technique for pain detection and classication. Finally, in the
miscellaneous applications category, studies explored various
other applications related to FMS, such as examining the
relationship between heart rate variability, anxiety stress, and
FMS or studying sleep patterns in FMS-affected patients.

A. FMS DETECTION AND DIAGNOSIS
Table 1 summarizes the works reported in this section.
Among the 28 papers considered in this section, 16 papers
do not use any AI-based technique, while 12 papers use some
AI-based technique, and a trend of more researchers using AI
for their studies over the last few years can be seen in Fig. 5.

1) STUDIES THAT DO NOT USE AI-BASED METHODS
While the use of ECG and EMG signals has not been
very common among researchers for the detection and
diagnosis of FM, Elmas et al. [28] investigate potential
diagnostic markers and physiological signals like protein
levels, respiration rate, and temperature for FMS diagnosis
along with ECG signals. Higher body temperature and
platelet count in FMS patients compared to controls were
observed, with ST height differences observed in ECGs.
These ndings suggest that these diagnostic markers could
serve as predictive markers for FM, potentially shedding
light on its underlying pathophysiology related to hormonal,
circulatory, and inammatory factors. EMG biofeedback
in the context of FMS prediction was studied using a
randomized controlled clinical trial by Baumueller et al.
[30]. Thirty-six patients received either usual care, or
14 additional sessions of EMG biofeedback across 8 weeks.
While EMG biofeedback failed to ameliorate the patients’
health measured by the Fibromyalgia Impact Questionnaire,
it signicantly improved the threshold of pressure-pain in
the trapezius muscles. Thus, the study concludes that EMG
biofeedback does not improve health status in FMS patients,
although it may have some localized pain-relieving effects.
On the contrary, Losert-Bruggner et al. [31] conducted a
study on 555 patients using EMG signals from patients with
FMS and craniomandibular dysfunction or craniocervical
dysfunction and highlighting, highlighting the importance
of interdisciplinary treatment for patients with synchronous
conditions. EEG datasets appear more popular for detecting
FMS than ECG and EMG signals. Objective EEG indicators
can be used to diagnose and assess FMS severity and
their correlation with psychological and neuropsychiatric
tests [33]. The paper highlights the potential of EEG
indicators, particularly frequency ratios, in diagnosing and
assessing FMS severity, warranting further validation and
investigation. Similarly, cognitive-emotional dysregulation
can also be used to study FMS and its severity. FMS
patients showed a reduced ability to distinguish emotions
and prolonged attention to negative distractors compared
to healthy controls, along with decreased frontal-occipital
EEG connectivity [36]. In chronic pain pathophysiology, the
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TABLE 1. Summary of studies involving FMS detection and/or diagnosis stratified by signals used.
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TABLE 1. (Continued.) Summary of studies involving FMS detection and/or diagnosis stratified by signals used.

modulation of maladaptive affective attention predicts pain
severity, while impaired frontal-occipital connectivity corre-
lates with poor sleep quality, highlighting the signicance of
cognitive-emotional dysregulation. In another similar study,
Navarro et al. [32] attempted to identify specic indicators
that contributed to the diagnosis and severity assessment
of FMS. They also studied the relationship of these
indicators with psychological and neuropsychiatric tests.
Patients with a higher clinical severity were seen to exhibit
higher prefrontal cordances in the theta band. Meanwhile,
a notable decrease in cordance was observed in the prefrontal
regions after therapy. This indicates that cordance has the
potential utility to diagnose FMS and other neuropsychiatric
disorders. Next, Martí-Brufau et al. [35] used Fast Fourier
Transforms on brain activity from EEG images to detect
FMS. They compared the EEG recordings of 23 FMS patients
23 healthy control, and observed a signicant difference
in brain activity and connectivity. A high discriminative
capacity (91.3–100%) between FMS patients and controls,
suggested a distinct neurophysiological pattern associated
with FMS.

Initial studies that attempted to use MRI/fMRI to detect
or distinguish FMS from other pain-related diseases were
not very successful. Achieving an accuracy of around 78%,
Sundermann et al. [39] conclude that fMRIs cannot be
used to distinguish between FMS and RA successfully.
However, this trend changed over the last few years with
advancements in technology. In 2017, Jarrahi et al. [41] and
Sayılır and Çullu [42] presented works on MRI images to
successfully understand different aspects of FM. Jarrahi et al.
[41] conducted a multivariate statistical analysis of fMRI
data to investigate brain network connectivity and spectral
power changes in response to stressors. They focused on
areas related to pain processing. In contrast, [42] used
structural MRI (sMRI) to measure olfactory bulb volumes
in FMS patients. Their study offered insights into sensory
dysfunction in FMS and indicated that impaired olfactory
function could be a symptom of FMS. While [41] used
network dynamics and functional connectivity alterations
in the brain, [42] concentrated on structural abnormalities
in specic regions related to sensory processing. Finally,
Tokumasu et al. [43] presented one of the latest works
to detect FMS using MRI images. They asked physicians
to consider the possibility of adrenocorticotropin hormone
deciency while treating patients with tiredness and general

fatigue. The case study indicated that growth hormone
and adrenocorticotropin hormone levels could be used to
diagnose chronic fatigue syndrome (CFS) and FMS.

Ultrasound has been widely used to detect FMS. One
of the rst studies involved the development of MASEI to
identify FMS patients with ill-dened symptoms [47]. Such
a setup would help prevent misdiagnosis and mistreatment.
Compared to 48 healthy controls, 38 FMS patients showed
signicantly higher MASEI scores. An ultrasound score of
3.5 was identied as the optimal threshold for differentiation.
Polachek et al. [50] and Marchesoni et al. [52] conducted
similar studies to investigate the utility of ultrasound in
distinguishing between psoriatic arthritis (PsA) and FMS
in patients with overlapping symptoms. Polachek et al.
[50] focused on evaluating disease activity by comparing
clinical and ultrasound scores in PsA patients who may or
may not have been affected by FMS. Ultrasound scores
were signicantly related to clinical indices in PsA patients
without FMS alone. This meant that ultrasound is more useful
to assess disease activity in PsA without FMS. On the other
hand, Marchesoni et al. [52] concentrated on distinguishing
between PsA enthesitis and FMS using ultrasound examina-
tion of entheseal sites. They found that PsA patients exhibited
more ultrasound-detected entheseal changes compared to
FMS patients in Achilles and proximal patellar tendon
entheses. Hence, they concluded that ultrasound evaluation
of entheses might help distinguish chronic widespread pain
in PsA and FMS.

2) STUDIES THAT USE AI-BASED METHODS
The last ve years saw the surge of AI-based techniques in
FMS detection and diagnosis. Barua et al. [29] developed
a lightweight ML algorithm for FMS diagnosis using
single-lead ECG signals that were recorded when patients
were asleep. Their cohort comprised FMS patients and
healthy individuals. Achieving over 92% accuracy, their
results suggested that measures across different sleep stages
could have clinical applications in detecting FMS. Compared
to ECG, a more commonly used data source was EEG
signals [34], [37], [38]. These works also focused on studying
different sleep stages and used different ML algorithms.
First, Paul et al. [34] used a support vector machine (SVM)
classier to analyze various nonlinear parameters from sleep
stage 2 EEG signals. Achieving accuracy, sensitivity, and
specicity scores of over 95%, the paper suggested the
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use of sleep abnormalities as a clinical feature to diagnose
FMS. Karabey Aksalli et al. [37] introduced a novel,
efcient feature extraction technique called GluPat and used
it to train SVM and k-nearest neighbor classiers. Their
model achieved an accuracy of 91.83% in both tenfold
cross-validation and leave-one-record-out strategies. Finally,
Rushbrooke et al. [38] introduced multivariate time series
classication to avoid dataset-specic feature selection. They
found that theta and alpha EEG frequency bands were
potentially discriminative. These results are believed to open
up new avenues for FMS research.

MRIs and fMRIs have also been widely used to diagnose
FMS and to distinguish it from different pain disorders [21],
[40]. Boissoneault et al. [21] addressed the broader challenge
of classifying various chronic pain conditions, emphasizing
the weak correlation between clinical pain and tissue
abnormalities. On the other hand, Sevel et al. [40] used
sMRI data along with self-reports to distinguish healthy
controls from FMS and CFS patients, and to differentiate
between CFS and FMS patients. Their stacked ML model
with LASSO-weighted features obtained an accuracy of over
90% in identifying unique neural mechanisms of FMS and
CFS. These results also proved that sMRI performed better
than self-report measures in distinguishing CFS and FMS.
Finally, Thanh Nhu et al. [45] compared the effectiveness
of resting-state functional connectivity (rs-FC) and brain
structural features from MRI data to distinguish between
FMS patients and healthy controls. A combined and structural
MLmodel achieved the best diagnostic performance, yielding
accuracy and area under the curve of 95%. The rs-FC-
based ML model alone showed superior performance to
the structural model and also revealed correlations with
clinical symptoms of FMS. Finally, Liang et al. [46]
introduced an innovative automatic diagnosis model for
FMS that integrated low-rank Brain Functional Connec-
tivity Networks (BFCNs) from resting state fMRI (rs-
fMRI) with graph convolutional networks (GCNs). Using
Pearson’s correlation along with BFCN, they effectively
constructed informative and less redundant networks, which
were then enhanced with non-image patient data to build
an attention-informed graph. This graph was processed
through the GCN layer to diagnose FMS, achieving an
accuracy of 82.48%.

Ali et al. [49], Behr et al. [19], and Marchesoni et al.
[52] explored the application of ultrasound imaging to dif-
ferentiate FMS from arthritis, including rheumatoid arthritis
(RA) and PsA. While Ali et al. [49] and Marchesoni et al.
[52] emphasized the diagnostic capability of ultrasound in
differentiating FMS from specic types of arthritis through
clinical and imaging features, Behr et al. [19] introduced
a novel application of ML models for diagnosis based
on quantitative image analysis. Ali et al. [49] conducted
a case study where musculoskeletal ultrasound (MSKUS)
effectively distinguished low-intensity and antibody-negative
RA from FMS. Marchesoni et al. [52] attempted to differ-
entiate FMS from pain caused by PsA enthesitis. To this

end, they examined entheseal sites and found signicant
differences in enthesitis between PsA and FMS patients using
gray-scale and power Doppler ultrasound. To diagnose FMS,
Behr et al. [19] employed quantitative ultrasound techniques
using image texture analysis from ultrasound videos of the
trapezius muscle. They compared the performance of SVM
with a logistic regression model and showed that SVMs
achieved a higher accuracy (84.1%) in differentiating healthy
controls from FMS patients.

3) COMPARISON BETWEEN MODELS THAT USE AI AND
THOSE THAT DON’T
Research on diagnosing FMS without particularly using AI
has explored a variety of methods. These include the use
of ECG, EMG, and EEG signals, clinical trials on EMG
biofeedback, studies on the effectiveness of MRI/fMRI, and
the development of new ultrasound techniques like MASEI.
Such methods have given us potential diagnostic markers,
helped us understand the effectiveness of certain therapies,
and aided the differentiation of FMS from other conditions.
However, they have seen a varied range of success rates
and diagnostic accuracy. AI approaches for detecting FMS
have utilized advanced algorithms and diverse data types,
including ECG signals, EEG signals, MRI/fMRI images,
and ultrasound imaging. By developing previous works,
researchers have come up with lightweight ML models
for ECG analysis, complex algorithms for EEG signal
processing, methods to exploit structural and functional
MRI to distinguish FMS from other conditions, and ML
models that work in conjunction with ultrasound imaging to
differentiate FMS from arthritis. Such studies have generally
achieved high accuracy, indicating the growing potential of
AI in FMS diagnosis.

The shift from traditional diagnostic methods to ML-based
techniques in FMS research indicates that these models
are more accurate and faster in processing large amounts
of data. While traditional methods have provided valuable
insights and established a foundation for understanding FMS
pathophysiology and prognosis, ML-based methods have
shown their ability to handle complex data sets and reveal
intricate patterns linked to FMS. Distinguishing FMS from
conditions like arthritis is an example where AI models
have outperformed traditional approaches. Ultrasound was
traditionally used to distinguish between patients with FMS
and arthritis. They were known for being able to identify
physical markers. However, ML-based approaches have
boosted their performance further. By analyzing ultrasound
images, alongside ECG, EEG, and MRI/fMRI data, they
extract and classify subtle features that may not be obvious
to humans.

In summary, the application of AI in FMS promises excel-
lent advances by using computational power to overcome
the limitations of traditional diagnostic methods. Driven
by advances in state-of-the-art ML models, the use AI
to assist clinicians in medical diagnosis is expected to
increase.
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TABLE 2. Summary of studies on brain connectivity in FMS stratified by signals used.

B. BRAIN CONNECTIVITY
Understanding functional and structural brain connectivity
are crucial to understand the pathophysiology of FMS
(Table 1). While functional connectivity refers to time-based
correlations between distant brain regions, structural connec-
tivity refers to physical pathways that enable communication
between these regions [60]. Alterations in connectivity
between regions involved in affective processing may con-
tribute to the emotional dysregulation commonly observed
in FMS patients. Understanding these alterations in regions
like the amygdala and prefrontal cortex could provide insights
into the underlying neurobiology of FMS and might aid the
development of targeted interventions. Further, studying and
understanding intricate network dynamics within the brain
plays a crucial role in identifying biomarkers and therapeutic
targets for improving the management of FMS.

In one of the initial studies, Jensen et al. [55] compared
brain connectivity and structure in FMS patients and healthy
controls using MRI data. In the rostral anterior cingulate
cortex, FMS patients exhibited lower levels of cortical
thickness, brain volumes, as well as functional regional
coherence. Moreover, patients with longer exposure to FMS
pain showed higher levels of these changes. They also
observed a correlation between structural and functional
alterations in mesolimbic brain regions and the extent
of depression in patients with FMS. This work created
opportunities for early detection and prognosis of FMS,
paving the way for future studies.

Ichesco et al. [56] and Truini et al. [57] used rs-fMRI
to study alterations in brain connectivity related to chronic
pain in FMS patients. First, Ichesco et al. [56] investigated
the changes following acute pressure pain. Their results
indicated an increase in the connectivity of the insula and
anterior cingulate/hippocampus following pain as well as the
thalamic connectivity to the precuneus/posterior cingulate
cortex in patients. This positive correlation indicated that
acute pain may inuence the neural signature of chronic pain.
Truini et al. [57] studied functional connectivity changes in
the periaqueductal gray (PAG), a component of the endoge-
nous pain modulatory system, in FMS patients compared
to healthy controls. A higher connectivity between PAG
and areas like insula, anterior cingulate cortex, and anterior
prefrontal cortex in FMS patients, suggested dysfunction
in the pain modulatory system. Additionally, correlations
between PAG connectivity and clinical variables like the
extent of pain, duration of the disease, and depressive
personality behavior, indicated a potential link between
altered PAG functioning and the chronic pain experienced by
FMS patients. Cheng et al. [58] andGonzález-Villar et al. [53]
demonstrated changes in brain connectivity and organization
in FMS patients compared to healthy controls, suggesting
underlying neurobiological mechanisms contributing to pain
perception. Cheng et al. [58] investigated dynamic changes
in functional brain connectivity during temporal summation
of pain (TSP) in FMS patients against healthy controls.
Analyzing fMRI scans, they observed that FMS patients
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exhibit greater TSP than healthy controls. They also noticed
alterations in brain organization dynamics during pain
processing, particularly in the primary somatosensory cortex
and salience network regions. González-Villar et al. [53]
explored variations in instantaneous brain oscillations in FMS
patients using EEG recordings during the resting state. They
showed a rise in beta band connectivity between various brain
networks and changes in EEGmicrostates. This suggested the
dominance of endogenous top-down inuences and potential
implications for cognitive control in FMS.

Attentional bias in FMS was rst examined by Car-
doso et al. [54] using a dot-probe task on EEG recordings.
They studied 30 female participants including FMS patients
and healthy controls. While behavioral differences were not
observed, they found a complex interplay between attention
and emotional processing in FMS patients. FMS patients
exhibited reduced attentional resource allocation and larger
late positive potentials, suggesting heightened emotional
processing.

Trials involving predictable painful stimuli and no stimulus
were used to investigate differences in pain processing
between FMS patients and healthy controls [59]. Results from
the t-test of the two cohorts indicated signicant differences
in the connectivity of the brainstem and spinal cord network,
including regions, such as the hypothalamus, PAG, and
PBN. These were regions that are primarily associated with
autonomic regulation, and reveal an important link between
sensory and autonomic systems in FMS. Additionally,
FMS patients exhibited signicantly higher pain scores and
measures of depression when compared to healthy controls.
There were no statistically signicant differences between the
groups demographically.

In summary, recent studies have highlighted the impact
of chronic pain on the brain by studying distinctive
brain connectivity and structural changes in FMS patients
against healthy people. MRI and fMRI-based studies reveal
decreased cortical thickness and altered functional connec-
tivity in key brain regions that are related to pain processing.
These include the rostral anterior cingulate cortex, insula, and
periaqueductal gray, which correlate with clinical symptoms,
including pain severity and depression. Dynamic changes
in brain activity following acute pain and during pain
processing tasks suggest a maladaptive neural signature
in FM, highlighting alterations in the pain modulatory
system and the potential for neurobiological mechanisms to
contribute to the perception of pain. Furthermore, investiga-
tions into spontaneous brain oscillations, attentional biases,
and pain processing reveal signicant differences in the
connectivity of the brainstem and spinal cord network and
cognitive-emotional interplay in FMS patients. This suggests
that FMS pain involves complex interactions between
sensory, cognitive, and autonomic systems.

C. PAIN DETECTION
Pain detection plays an important role in the diagnosis and
management of FMS. Detecting and quantifying pain in

individuals with FMS is challenging due to its subjective
nature and variable symptoms. However, recent advance-
ments in medical imaging and digital health technologies
have provided new avenues for objective pain assessment in
FMS patients (Table 2).

Analyzing data from chronic FMS patients and healthy
controls, Segning et al. [61] presented a proof-of-concept
study establishing the feasibility of objectively identifying
pain using EEG signals. They hypothesized that EEG-based
signals could be used irrespective of pain intensity and
task performance. coefcient of variation of the upper
envelope (CVUE) of EEG signals from specic electrodes
and frequency bands were used as the main measures
for pain identication. In the beta frequency band, they
observed a rise in CVUE during pain conditions, which
supported their hypothesis. Rifbjerg-Madsen et al. [62]
used the painDETECT questionnaire (PDQ) to assess the
prognostic importance of pain classication in RA at
treatment initiation. While patients with high PDQ scores
showed greater improvement in DAS28-CRP, no independent
association existed between PDQ pain classication and
changes in DAS28-CRP, RAMRIS score, or VAS pain.
However, they noticed that patients with high baseline PDQ
scores tended to change pain classication groups. This
suggested variability in pain mechanisms among RA patients.
Using an electro-pneumatic circuit coupled with fMRI,
Papuga et al. [63] introduced a novel method for objectively
assessing pressure pain sensitivity in chronic lower back
pain. They set up a test-retest experimental design [64]
to demonstrate consistent and reliable results for pressure
pain thresholds of the lumbar spine, with high interclass-
correlation coefcients. Cankurtaran et al. [65] studied
patients with chronic neck pain (NP) and myofascial pain
syndrome to investigate if ultrasonography can detect trigger
points successfully. They found that pain intensity, disability
levels, and myofascial trigger points (MTPs) had signicant
correlations in various muscles. Within the muscles, they also
observed hypoechoic variations along with decreased thick-
ness in association with MTPs. This established the potential
of ultrasound in assessing pain severity and disability in
chronic NP.

To provide good FMS treatment, understanding what
causes pain in specic body parts is very important. First,
Andrade et al. [73] studied if baroreex function is connected
to pain in female FMS patients using blood pressure and
ECG data. They discovered positive correlations between
pressure pain threshold and coherence between systolic
arterial pressure and RR interval variability. This implied
that orthostatic posture was closely associated with the
pressure required for FMS participants to perceive pain. Next,
Cojocaru et al. [68] investigated the relationship between
ultrasound results and thermal patterns of trigger points in
muscle pain syndromes. Higher temperatures within trigger
points surrounded by cooler areas in lower back thermogra-
phy indicated potential blood ow decits. These ndings
also suggest that infrared thermography could be a valuable
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TABLE 3. Summary of studies on miscellaneous applications in FMS stratified by signals used.

tool to monitor neuromusculoskeletal disorders and aid early
treatment of conditions linked to changes in the temperature
of tissues. Deutsch et al. [66] studied if FMS and interstitial
cystitis/bladder pain are related. Subjects with both interstitial
cystitis and FMS were found to be more hypersensitive
in sensory measures compared to those without FMS and
healthy controls. They responded better to any variations
in bladder fullness in brain perfusion studies. The ndings
suggest distinct phenotypes of interstitial cystitis patients
based on the presence of FMS, which could impact treatment
responsiveness and support the need for stratication based
on co-morbidities. Song et al. [72] studied joint pain in
systemic lupus erythematosus (SLE) in the context of FMS.
The study found that ultrasound-detected inammatory and
co-existing FMS diagnosis had no signicant relationship.
In fact, ultrasound-guided intra-articular steroid injection
was found to be crucial in predicting reduced joint pain

at follow-up visits. This veries its ability in pain relief
treatment for SLE patients irrespective of whether they’re
affected by FMS.

Tarnoki et al. [67] conducted experiments to understand
the relationship between obstructive sleep apnea (OSA) and
lumbar disc degeneration. OSA patients exhibited higher
numbers of disc bulges, anterior spondylophytes, increased
disc degeneration, and vertebral fatty degeneration compared
to non-OSA controls. Oxygen desaturation index and plasma
levels of klotho were used as measures of OSA severity.
These scores correlated with disc bulges and anterior
spondylophytes, suggesting a potential link between OSA
and lumbar spondylosis.

Polat et al. [71] compared musculoskeletal ultrasonogra-
phy ndings in RA patients with concomitant FMS based
on the 1990 American College of Rheumatology (ACR)
FMS classication or the 2016 ACR FMS diagnostic criteria.
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Compared to the former, the latter showed a higher prevalence
of concomitant FMS in RA patients. While musculoskeletal
US ndings were similar between RA patients with FMS,
those meeting only the 2016 criteria exhibited higher
synovitis scores, suggesting a prominent role of synovial
inammation in FMS diagnosis based on the 2016 criteria.
While none of the above papers use ML-related techniques,
Ahmed et al. [69] and Correa-Rodríguez et al. [70] use
ML-based methods for pain detection. They also achieved
superior results compared to previous papers, as seen in
Tables 2. Ahmed et al. [69] assessed whether ultrasound
texture features could distinguish chronic pain patients with
different degrees of central sensitization (CS). Thirty people
suffering from chronic pain were evaluated using the CS
inventory and B-mode ultrasound imaging of the upper
trapezius muscle. Results indicated that texture features could
differentiate between patients with mild, moderate, severe,
or extreme CS, suggesting the potential of texture analysis
as a diagnostic marker for chronic widespread pain severity
and progression. Correa-Rodríguez et al. [70] studied if FMS
impacted bone mass and determined if the bone mass status
was associated with thresholds of pressure pain. Results
showed signicantly lower sound speed and broadband
ultrasound attenuation (BUA) in FMS patients compared
to controls. Lower pain thresholds and a higher number of
tender points were linked to lower calcaneal BUA values in
FMS women. This suggests that low pain thresholds may
independently predict low bone mass in this population.

D. MISCELLANEOUS APPLICATIONS
Several miscellaneous studies related to FMS were reviewed
(Table 3). Although the discussed papers do not directly
address the detection or diagnosis of FM, they are deemed
pertinent to our study due to their relevance to the condition.
Many of their insights could be interpreted as potential
indicators or symptoms of FM. One study examined the
correlation between FMS and arachnoiditis, while another
investigated if heart rate variability (HRV) and anxiety
levels are related to FMS. Additionally, it was found that
sleep disorders are prevalent in FMS patients, although
periodic leg movement disorder and bad sleeping patterns
had no signicant association. Another study compared
hippocampal volume levels in FMS patients with those
without FMS, revealing potential differences. Moreover,
RA patients with FM-like symptoms were found to have
less synovitis as detected by power Doppler ultrasound,
highlighting potential distinctions between RA and FMS.
Furthermore, the role of MSKUS in PsA was explored,
along with its potential to enhance the performance of
Classication Criteria for Psoriatic Arthritis (CASPAR).
Sleep patterns in FMS patients were also studied. At the same
time, another investigation demonstrated how classication
results could be inadvertently inated by treating longitudinal
or contemporaneous scans as independent data points,
showcasing the importance of rigorous methodology in FMS
research.

Adhesive arachnoiditis is a serious illness that leads
to severe pain and neurological issues. Idris et al. [75]
conducted a case study of a 47-year-old woman to
discuss adhesive arachnoiditis in the context of FMS.
Their study highlights the importance of recognizing the
relationship of adhesive arachnoiditis with the immune
and nervous systems for interdisciplinary management
and treatment involving neurosurgery, pain specialists, and
neuropsychologists.

McGonagle et al. [76] investigated the discrepancy
between subjective and objective data in FMS patients,
focusing on sleep patterns compared to healthy controls.
Results reveal differences in sleep parameters such as
BMI, sleep quality, and microstructure, with FMP show-
ing decreased microarousals but higher percentages of
alpha delta sleep and NREM myoclonia. Rosenfeld et al.
[77] also presented a study on nding the relationship
between sleep patterns and FMS and concluded that
sleep apnea was prevalent in 45% of FMS patients.
Notably, a low ratio between qEEG delta and alpha during
non-rapid eye movement sleep proved specic for FM,
with potential diagnostic value, especially when considering
benzodiazepine use.

Lee [78] studied the role of MSKUS in the early detection
of PsA, while Mian et al. [79] and Basu et al [80] compared
FMS and RA. Using ultrasound, Mian et al. [79] studied if
RA patients who met the clinical criteria for FMS showed
lower levels of joint inammation. In fact, RA patients
meeting FMS criteria showed higher disease activity, and
mental illness like depression, disability, and tiredness scores.
Further, individuals meeting both FMS and joint count
criteria showed signicantly lower synovial inammation
in ultrasound scans. This suggests that identifying and
treating such patients might require researchers to come up
with different treatment strategies. Next, Basu et al [80]
investigated whether RA patients with higher bromyal-
gianess scores exhibit similar brain functional connectivity
abnormalities as seen in FMS patients. Using fMRI, they
found a signicant positive correlation between connectivity
of the default mode network to the left mid/posterior insula
and bromyalgianess scores in RA patients. These results
indicate that RA patients showing an increased bromyal-
gianess share neurobiological features observed in FM. From
this, one could infer a potential central nervous system
involvement in pain symptoms beyond classic inammatory
mechanisms.

Bilgin et al. [81] studied if anxiety in FMS patients
was related to their HRV frequency subbands. By creat-
ing multilayer perceptron neural networks that take ECG
signals as the input, they discovered correlations between
specic HRV high-frequency subbands and scores from the
Beck Anxiety Inventory and Hamilton Anxiety Inventory.
By complementing anxiety tests in clinical evaluation, they
concluded that HRV parameters could potentially serve as
an adjunct diagnostic method for FMS. Finally, in the
context of mental health and anxiety, McCrae et al. [82]
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studied if FMS patients exhibit smaller hippocampal volume
compared to healthy controls. They examined 40 female
FMS patients and 22 healthy controls by taking T1-weighted
sMRI scans. The FMS patients in their study demonstrated
signicantly smaller hippocampi volumes in both hemi-
spheres, independent of depression levels. This suggests that
neurobiological mechanisms could contribute to cognitive
complaints in FMS, such as abnormal neurotransmission and
glucocorticoid dysfunction.

IV. DISCUSSION
Secular trends of publications stratied by data modality
and use of AI have been presented in Fig. 5. Nearly half
of the reviewed papers (n = 28) focused on detecting
and diagnosing FMS, with several using modalities like
EEG and ECG. Specically, EEG signals were explored
for the prognosis, classication, and severity assessment
of FMS and the detection of abnormal patterns and sleep-
related features. Physiological parameters, including protein
levels, respiration rate, and temperature, showed potential
for FMS diagnosis using ECG signals. Of note, many
articles (n = 13) focused on pain detection in FMS.
These studies used a range of medical data, including
EMG and US. EMG indicators had been developed to
diagnose temporomandibular disorders, providing a protocol
for assessing and diagnosing pain-related conditions in the
jaw. Ultrasound studies focused on trigger points and their
correlation with pain manifestation. Eight studies focused
on brain connectivity and brain changes in FMS. The
relationship between the function and structure of the brain
in FMS patients was explored using fMRI to identify
overlapping changes in the brain’s structural and functional
aspects. EEG was used to study brain activity to analyze
physical and chronic pain. The studies reviewed in this work
are summarized in Fig. 7.

While we reviewed different methodologies used in
FMS research in the previous section along with their
advantages, it is also crucial to recognize and discuss
their limitations and disadvantages. Although traditional
clinical and questionnaire-based methods for diagnosing
FMS remain valuable, they exhibit several limitations that
drive researchers to explore novel approaches. First, self-
reported questionnaires depend heavily on patient percep-
tion, which can vary widely and introduce subjectivity
into the diagnostic process [9]. As a result, clinicians
often encounter delayed or missed diagnoses, particularly
when FMS symptoms overlap with other chronic pain
disorders [11].

Methods involving EMG or EEG provide objective
physiological markers but can be challenging to integrate
into routine clinical use because of noise sensitivity, the
need for specialized equipment, and complex signal pro-
cessing protocols [23], [27]. Furthermore, while EEG-based
techniques capture neural correlates of pain, they may
not always reect the full clinical complexity of FMS,
whose pathophysiology often extends beyond single-marker

observations [7]. Similarly, MRI and fMRI offer detailed
structural and functional insights but can be expensive,
time-consuming, and logistically difcult for routine assess-
ments [26]. Additionally, conventional MRI/fMRI analyses
may overlook subtle variations in brain connectivity pat-
terns linked to FMS due to limited temporal resolution,
further complicating attempts to standardize imaging-based
biomarkers [17].

In recent years, ultrasound-based approaches have been
studied for muscle stiffness and tissue abnormalities in
FMS [19]. However, variations in operator skill, patient
anatomy, and scanning conditions can inuence the acquired
images, reducing inter-operator reliability. In turn, wear-
able device data (e.g., from tness trackers) is inherently
high-dimensional and unstructured; although it captures
longitudinal trends, it is prone to artifacts, missing values, and
dependence on user compliance [20].

These limitations have motivated researchers to formulate
more robust, data-driven problem statements that aim to
unify diverse clinical, physiological, and imaging modalities.
By using ML and AI algorithms, researchers seek to address
common issues—such as subjective biases in questionnaires,
complexmultisystem presentations of FMS, and variable data
quality—through automated feature extraction and classica-
tion [18], [21]. These AI-driven approaches aspire to provide
clinicians with reliable, scalable, and reproducible methods
for FMS detection and diagnosis, ultimately improving
patient outcomes and facilitating personalized treatment
strategies.

In the remainder of this section, we focus specically on
the use of AI for FMS assessment, discuss their relative
advantages and disadvantages, and propose future directions
in FMS research.

A. USE OF AI FOR FMS ASSESSMENT
Since 2016, there has been a growing trend in the
use of AI methodologies (Fig. 5), predominantly in
the areas of ML, deep learning, and neural networks,
to address the multifaceted challenges posed by FMS.
Specically, the last couple of years have seen a surge
in the number of research papers leveraging AI method-
ologies for the detection/diagnosis of FMS. This trend
underscores the growing recognition and application of
advanced technologies to enhance the understanding and
management of FMS.

Using AI to detect, classify, and diagnose FMS presents
several advantages. Our review found numerous studies
that illustrate these approaches’ qualitative and quantitative
benets. First, using AI-based approaches increases diag-
nostic accuracy since AI algorithms can process complex,
high-dimensional data, identifying patterns that may not be
visible to human observers. AI and ML-based algorithms
can efciently handle large amounts of data coming from
diverse sources (e.g., EEG, ECG, MRI, fMRI), saving time
and resources in research and clinical settings. By analyzing
subtle patterns in patient data, AI models can potentially
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TABLE 4. Summary of studies involving pain detection in FMS stratified by signals used.

FIGURE 7. Pictorial summary of our review.

identify FMS at earlier stages, even before the full spectrum
of symptoms has emerged. Early detection is crucial for
timely intervention, which can improve patient outcomes.
They can also help identify subgroups within the FMS
population based on shared characteristics and predict
individual responses to treatments, enabling personalized
medicine approaches. Finally, through the analysis of exten-
sive datasets, AI models can aid in discovering biomarkers
for FMS, providing objective measures for disease severity,

progression, and treatment response, thus moving beyond
the reliance on subjective patient reports. An analysis of
the different metrics presented in the reviewed studies
reveals a signicant variance in the accuracy, sensitivity, and
specicity of different models. This indicates the current
trend of optimization and adaptation of AI models to the
nuanced characteristics of FMS. For example, the ability
of EEG signals to capture unique features associated with
FMS is evident from EEG-based studies that use SVM
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and K-nearest neighbors to achieve accuracies ranging
from 91.83% to 96.15%. Similarly, the application of ML
algorithms in MRI/fMRI studies has achieved accuracies of
up to 95%. This showcases the ability of AI to understand
complex patterns within imaging data and to map them with
FMS pathology.

Barua et al. [29]developed a lightweight ML algorithm
for FMS diagnosis using single-lead ECG signals that were
recorded when patients were asleep. Their cohort comprised
FMS patients and healthy individuals. Achieving over
92% accuracy, their results suggested that measures across
different sleep stages could have clinical applications in
detecting FMS. While they used ECG signals, several others
used EEG signals to detect FMS [34], [37], [38]. They too
achieved high accuracies (up to 96.15%) with different ML
techniques, highlighting EEG as yet another feasible signal
to detect FMS. The adoption of MRI and fMRI for FMS
detection along with ML algorithms has also started gaining
popularity. They have been found to achieve great results in
differentiating FMS from other conditions. Boissoneault et al.
[21] used sMRI and fMRI to classify healthy controls and
patients with FMS and CFS accurately. Behr et al. [19]
also used SVM on ultrasound images to differentiate FMS
from healthy individuals, achieving an accuracy of 84.1%.
Finally, Liang et al. [46] came up with a novel, automatic
diagnosis model for FMS. They integrated BFCNs derived
from rs-fMRI with GCN and achieved an accuracy of
82.48%. With accuracies ranging from 82.48% to over 95%,
these studies quantitatively highlight the efcacy of ML
in improving diagnostic accuracy for FMS. Qualitatively,
they indicate that ML algorithms can detect FMS patients
with high accuracy irrespective of the image signal – be it
ECG, EEG, MRI, or ultrasound. Such state-of-the-art models
promise enhanced diagnostic capabilities and pave the way
for timely, tailored, and effective treatment strategies for
FMS patients.

B. CURRENT CHALLENGES IN FMS RESEARCH
While AI-based approaches in FMS research show several
promising avenues, it is also important to recognize its
limitations and address them carefully.

One of the biggest challenges in exploring AI methods for
FMS research is the lack of publicly available, comprehensive
datasets specically curated for FMS research. Our review
indicates that AI models that can effectively handle vast
amounts of data already exist. However, they need to
be tested to understand their performance on multimodal
data. While integrating diverse data types (e.g., clinical
records, imaging, and sensor data) can offer a more holistic
view of FMS, the effect of doing so on the performance
of existing ML models remains unclear. Some potential
challenges in using multimodal data include class imbalance
and data heterogeneity. Class imbalance can skew model
training and affect the accuracy of predictions. It could
also increase the number of false positive or true negative
results. On the other hand, data heterogeneity and variability

arise from the diverse nature of FMS symptoms and the
wide range of data types used in research. Diverse data
requires the implementation of clever strategies for data
integration. This includes multi-modal data fusion techniques
to ensure robustness and generalizability across different
patient populations and study designs. Additionally, most of
the reviewed studies rely on small datasets, making it difcult
to train robust and generalizable AI models. As a result, the
algorithms risk overtting the data, showing high perfor-
mance only within their narrow study parameters but failing
to scale to real-world clinical settings. Potential solutions
include adopting transfer learning and data augmentation
techniques along with synthetic data generation to expand
sample size.

Explainable AI (XAI) can help overcome skepticism
among clinicians about using AI to diagnose FMS by
providing understandable and interpretable model outputs
that clinicians can trust. Validating the developed AI
models is very important. Since FMS data can be highly
heterogeneous, AI models have to be tested across various
setups before being deployed clinically. This validation
should be performed across different data modalities as well
as patient cohorts from diverse demographic and clinical
settings. Performing such a validation would help improve
trust among clinicians by mitigating any bias and ensuring
generalizability.

Finally, there is a pressing need to collect and analyze
longitudinal data and highlight the temporal evolution of
FMS. Such data would not only help track disease progres-
sion, but would also be invaluable to identify early predictive
biomarkers, and study the long-term effectiveness of various
treatments. Longitudinal studies, when conducted parallelly
with ML analysis, hold the potential to interpret intricate
mechanisms underpinning FMS, facilitating early detection
and intervention strategies. Also, no studies in the ‘‘Brain
Connectivity’’ section employed AI techniques for data
analysis or pattern recognition. This highlights a potential
gap in the literature and opens up an opportunity for future
research to leverage the power of AI in examining complex
neurobiological mechanisms underlying brain connectivity in
FMS patients.

C. FUTURE DIRECTIONS IN FMS RESEARCH
AI algorithms offer considerable strengths in FMS research,
primarily due to their ability to uncover complex patterns
within vast datasets that may elude traditional analysis tech-
niques. One of the signicant advantages is the application
of transfer learning and domain adaptation techniques. These
approaches enable researchers to leverage pre-trained models
from related elds, signicantly reducing the need for exten-
sive labeled datasets specic to FMS. Such methodologies
are invaluable in contexts where data collection is challenging
or when aiming to accelerate the development of diagnostic
and prognostic models. ML’s capability to handle and analyze
multi-dimensional data allows for integrating various data
types (e.g., clinical, biochemical, imaging data), thereby
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enriching the analysis and offering a better understanding
of the syndrome. The adaptability of ML models to learn
from new data continually means they can evolve and
improve as more information becomes available, making
them increasingly effective over time in diagnosing and
understanding FMS.

With AI research in FMS gaining popularity, this eld
is well set for major progress and breakthroughs in the
near future. Application of deep learning models that are
the state-of-the-art (Transformers, Graph CNN models,
and Semi-supervised learning algorithms, for example) on
multimodal data could lead to the creation of new baselines
and benchmarks. Transformers and Graph CNNs in particular
have shown great promise and results in other elds that
involve processing of unstructured data. This makes them
potentially well-suited for understanding the intricacies of
FMS detection and management. Implementing these models
by parallelly adopting XAI and uncertainty quantication
(UQ) could be the next big breakthrough in FMS research.
By ensuring models not only yield accurate predictions
but also provide interpretable explanations, researchers and
clinicians can gain insights into the decision-making process
of algorithms. This would build trust and help translate AI
ndings into practical clinical applications, leading to a faster
and more timely diagnosis. This is extremely crucial for a
condition like FMS because of its complexity and lack of
clear understanding. To efciently scale up the application
of AI in FMS research, implementing cloud-based systems
is very important. Cloud computing can provide the nec-
essary infrastructure to support the large-scale analysis of
multimodal data. This would allow researchers to exploit the
full potential of AI without being limited by local hardware
constraints.

Integration of wearable devices and mobile health tech-
nologies provide another promising research direction. These
devices are an excellent source of real-time, continuous data
that can be obtained through activity trackers, biosensors,
and other wearable technologies. They would allow for a
more nuanced understanding of the condition, facilitate the
collection of extensive data, and support the development of
precise and timely treatment strategies tailored specically
to the patient’s symptoms and lifestyle. However, because
of privacy and ethical reasons, sharing data from mobile
and wearable devices could be dangerous and hard to
implement. In such a setup, encouraging collaborations
across disciplines and creating open-source datasets could
accelerate advancements in FMS research. Data sharing
enables researchers to reproduce existing results and study
them in diverse settings. They create a platform for
conducting validation studies across diverse populations
and settings. Furthermore, integrating genomic, proteomic,
and metabolomic data with clinical and physiological data
could provide a comprehensive, multimodal approach to
understanding FMS. This would lead to breakthroughs
in FMS diagnosis, management, and treatment, thereby
improving the quality of the patients’ lives signicantly.

Finally, real-world clinical adoption of AI-based diagnostics
requires addressing practical challenges, such as ensuring
cost-effectiveness and providing adequate training for clin-
icians and technicians who implement these methods in daily
practice. High-end equipment and software maintenance can
be expensive. Targeted training programs for frontline clinical
staff, coupled with user-friendly software interfaces, could
help mitigate these challenges. By reducing the operational
burden and cost barriers, AI-based diagnostic tools can
be seamlessly integrated into conventional methodologies,
enabling broader adoption and, ultimately, timely FMS
detection.

V. CONCLUSION
In this work, we conduct a systematic review highlighting the
importance of AI-based techniques in FMS detection. The
complex and poorly understood nature of FMS poses signif-
icant challenges in diagnosis and prognosis. The absence of
clear methods for measuring disease severity, diagnosis, and
progression creates an urgent need for innovative research
approaches to address these issues. AI holds signicant
potential for enhancing understanding of FMS and improving
patient care. By analyzing vast datasets and identifying
patterns, AI can help in early detection of FMS along with
precise diagnosis, and personalized treatment. Despite its
strengths, using AI in FMS research faces challenges like
interpretability, data variability, and the lack of publicly
available open-source datasets. Future research directions
should focus on incorporating XAI and UQ techniques,
integrating wearable devices for real-time data collection, and
conducting longitudinal studies to track disease progression.
Collaboration, data sharing, and using multimodal data
are crucial to getting a better understanding of FMS and
enhancing patient outcomes.
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