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Leveraging Neural Networks and Calibration
Measures for Confident Feature Selection
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Abstract—With the surge in data generation, both vertically
(i.e., volume of data) and horizontally (i.e., dimensionality) the
burden of the curse of dimensionality has become increasingly
palpable. Feature selection, a key facet of dimensionality reduction
techniques, has advanced considerably to address this challenge.
One such advancement is the Boruta feature selection algorithm,
which successfully discerns meaningful features by contrasting
them to their permutated counterparts known as shadow features.
Building on this, this paper introduces NeuroBoruta, that extends
the traditional Boruta approach by integrating neural networks
and calibration metrics to improve prediction accuracy and reduce
model uncertainty. By augmenting shadow features with noise
and utilizing neural network-based perturbation for importance
evaluation, and further incorporating calibration metrics alongside
accuracy this evolved version of the Boruta method is presented.
Experimental results demonstrate that NeuroBoruta significantly
enhances the predictive performance and reliability of classification
models across various datasets, including medical imaging and
standard UCI datasets. This study underscores the importance of
considering both feature relevance and model uncertainty in the
feature selection process, particularly in domains requiring high
accuracy and reliability.

Index Terms—Neural networks, measurement uncertainty,
feature selection, boruta, transfer learning, perturbation analysis,
feature importance.

I. INTRODUCTION

ITH the emergence of data centers and the advent of
W Big Data technologies in recent years, there has been
a marked influence on the processes of data generation and
storage. These advancements have acted as powerful enablers for
high-throughput systems, substantially augmenting the capacity
to generate data both in terms of the number of data points
(sample size) and the range of attributes or features collected
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for each data point (dimensionality) [1]. The explosive surge in
the volume of gathered data has heralded unprecedented oppor-
tunities for data-driven insights. Al technologies like machine
learning (ML), and specially neural networks (NNs) are able to
extract valuable insights from vast amounts of data.

High-dimensionality simultaneously poses distinct chal-
lenges that obstruct the success of ML algorithms. As data
dimensions increase, irrelevant and redundant features may also
be added to the data [2]. Moreover, as the number of dimensions
in a dataset expands, the complexity of the information also
tends to increase [3]. Therefore, more complex models are often
required to handle the intricate information stemming from
high-dimensional data [4]. Experiments have shown that more
complex models can sometimes introduce challenges, leading
to inconsistent predictions [5]. This inconsistent performance
can be interpreted as uncertainty in the model’s predictions.
In ML, uncertainty typically stems from two primary sources:
(I) data-related uncertainty, caused by inherent noise or vari-
ability in the data (aleatoric uncertainty), and (II) uncertainty
related to the model itself, which occurs when the model’s
structure or parameters are not fully understood or properly
captured (epistemic uncertainty) [6]. Thus, confidence can be
understood as the inverse of the model’s uncertainty. This issue
is particularly concerning in the context of neural networks
(NNs), which are known to produce overconfident predictions
even when they are incorrect [7].

In high-stakes environments, decision-making systems aided
by Al must not only be accurate, but also minimize uncertainty.
This is increasingly important in the healthcare domain, where
uncertain predictions risk guiding either a human operator or,
in more severe scenarios, an automated controller, towards er-
roneous decisions [8].

In dealing with high-dimensional data, feature selection (FS)
aims to identify the most significant subset of features, discard-
ing those that are irrelevant or redundant. This process not only
effectively reduces the dimensionality of datasets but also en-
hances the performance of classification tasks [9], [10]. Classic
approaches to feature selection focus on improving predictive
models in terms of accuracy. Accordingly, this paper introduces
a novel FS method that aims to identify a subset of features
which not only enhances model accuracy but also reduces model
uncertainty.

The remainder of this paper is structured as follows: Next
Section II reviews the related work. Section III offers a com-
prehensive discussion of the proposed algorithm. Section IV
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details the dataset used and outlines the experimental design.
The findings from the experiments are presented and analyzed
in Section V. Lastly, Section VI provides concluding remarks
and suggests avenues for future research.

II. BACKGROUND

The curse of dimensionality, a term coined by Richard Bell-
man [11] which encapsulates the challenges faced in handling
high-dimensional data spaces, is effectively addressed by em-
ploying a collection of techniques collectively referred to as
dimensionality reduction. Dimensionality reduction can be cat-
egorized into two primary branches:

1) Feature extraction: the process of creating a smaller col-
lection of new features from the original dataset while still
preserving the majority of the vital information.

2) Feature selection: the process of identifying and choos-
ing the most relevant features from the original dataset
based on their contribution to the predetermined relevance
criterion.

Feature selection, similar to ML models, is classified into
supervised, unsupervised, and semi-supervised types, depend-
ing on the availability of well-labeled datasets. Furthermore,
supervised feature selection is divided into four main subcate-
gories, namely (interested readers in delving deeper into feature
extraction and feature selection, and their various types, are
encouraged to refer to [12]):

1) Filter methods: rank features based on statistical measures

and select the top-ranked features.

2) Wrapper methods: evaluates subsets of features which best
contribute to the accuracy of the model.

3) Hybrid methods: leverages the strengths of both filter and
wrapper methods by first implementing a filter method to
simplify the feature space and generate potential subsets,
and then using a wrapper method to identify the most
optimal subset [1].

4) Embedded methods: utilize specific ML models that use
feature weighting functionality embedded in the model to
select the most optimal subset during the model’s train-
ing [13].

Random Forest (RF) is a widely used algorithm for embed-
ded feature selection. The RF algorithm is a type of ensemble
classifier that uses a concurrent set of decision trees, termed
component predictors. RF applies a bootstrapping technique that
randomly creates n training subsets from the main dataset, and
this process is performed m times, leading to the construction
of m independent decision trees. Each tree is built using a
random subset of features. The ultimate decision is made based
on the majority vote of the component predictors [14]. RF
typically calculates feature importance using either the Mean
Decrease in Impurity (MDI) or the Mean Decrease Accuracy
(MDA) methods. MDI measures the importance of a feature
by the total reduction in node impurity (e.g., Gini impurity or
entropy) that it provides across all trees. MDA, on the other
hand, assesses the importance of a feature by the decrease
in model accuracy when the feature’s values are randomly
permuted.
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Kursa [15] argued that the trustworthiness of the evaluation
of feature significance is grounded in the presumption that
the separate trees cultivated within the RF are unrelated while
numerous analyses have occasionally demonstrated that this
presupposition might not hold true for certain datasets. Further-
more, they contended that distinguishing genuinely important
features becomes difficult when dealing with a large number
of variables, as some may seem important due to random data
correlations. Accordingly, the importance score by itself is inad-
equate to pinpoint significant associations between features and
the target [15]. They address this issue by proposing the Boruta
algorithm.

In RF, the importance of features is calculated in comparison
to each other. However, in Boruta, the main idea is to evaluate
the importance of features in competition with a set of random
features called shadow features. In this process, every feature in
the dataset is duplicated and their values are shuffled randomly.
The RF algorithm is applied repeatedly, randomizing the shadow
features each time and calculating feature importance based on
MDA method for all attributes (original features and shadow
features). Initially, Boruta used a statistical test to determine
feature importance. In this approach, if the importance of a given
feature consistently exceeds the highest importance among all
the shadow features, it is classified as important. The measure
of consistency is established through a statistical test based
on the binomial distribution, which quantifies how frequently
the feature’s importance overtakes the Maximum Importance
of the Random Attributes (MIRA). If this count (called ‘hits’)
significantly outnumbers or undershoots the expected count,
the feature is deemed *important’ or ‘unimportant’ respectively.
However, Boruta also offers a simplified selection criterion. This
approach considers features that have at least one instance where
their importance score is higher than the maximum importance
score of the shadow features. If a feature achieves this threshold
at least once, it is deemed ’important.” This process iterates
until all features are conclusively categorized or a predetermined
iteration limit is reached.

Since the introduction of Boruta, this algorithm has been
extensively and successfully utilized in across diverse research
domains, including medicine [16], [17], [18], cybersecurity [19],
engineering [20], [21], and environmental [22], [23], [24] stud-
ies. Even the Boruta algorithm has been successfully employed
to reduce the dimensionality of features extracted from images
by deep networks [25]. While the Boruta algorithm has indeed
been successful in feature selection, contributing to improved
predictive performance as highlighted in the literature, it’s cru-
cial to note that in Boruta, features are merely permuted. This
permutation does not alter the inherent attributes of a feature.
A similar phenomenon occurs in the RF algorithm when calcu-
lating feature importance through permutation. However, The
relevance of the feature is determined by the data’s characteris-
tics, not its value [26].

Accordingly, the primary aim of the proposed method is the
introduction of a method, built upon the Boruta methodology,
which effectively selects a subset of features that not only
enhances model accuracy but also reduces the model’s predictive
uncertainty.
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Considering the significance of uncertainty in the proposed
method, it is important to highlight that an examination of
the literature on feature selection shows that the concept of
uncertainty is frequently explored and utilized. However, the
definitions of uncertainty in the literature vary. The concept of
entropy as an indicator of uncertainty has been widely used in
filter methods. Many entropy-based filter strategies have been
proposed, utilizing measures like information entropy, rough
entropy, and mutual information to evaluate feature relevance.
However, the type of uncertainty these methods target primarily
pertains to the information gain and redundancy among fea-
tures, rather than model predictive uncertainty. For instance,
Symmetrical uncertainty has been widely used to evaluate the
dependency between features and the target variable, aiming to
reduce redundancy by selecting features that maximize infor-
mation gain. For instance, [3] proposed a filter method using
symmetrical uncertainty, while [27] introduced an M-Cluster
feature selection (Mcfs) method using Symmetrical Uncertainty
(SU) to enhance classification accuracy in medical datasets. [28]
leveraged Symmetric Uncertainty (SU) to evaluate the relevance
and redundancy of class-independent features, and [29] devel-
oped a graph-based filter method using symmetric uncertainty
to visualize and rank features, enhancing feature selection in
high-dimensional datasets.

Another group of methods utilizes entropy-based mea-
sures. [30] developed a composite entropy-based method that
combined fuzzy set theory with entropy measures to evaluate
feature relevance, and [31] presented an optimization-based
filter method leveraging conditional mutual information to select
features. [10] proposed the Uncertainty Change Ratio (UCR),
combining conditional mutual information (CMI) and condi-
tional entropy (CE) to measure feature importance, and [32]
presented a framework using intuitionistic fuzzy entropy (IFE)
to handle uncertainty in datasets.

Neighborhood mutual information and entropy measures have
also been employed to address information uncertainty. [33]
used neighborhood mutual information (NMI) combined with a
forward greedy search to assess feature relevance, particularly in
medical datasets, and [2] combined self-information measures
with neighborhood rough sets to evaluate feature relevance. [34]
utilized neighborhood entropy-based uncertainty measures for
classifying gene expression data, incorporating neighborhood
entropy (NE), decision neighborhood entropy (DNE), and neigh-
borhood mutual information (NMI).

Additionally, semi-supervised and hybrid methods have been
proposed. [35] introduced a semi-supervised feature selection
method that iteratively selected the most informative pairs of
data points, updating the similarity matrix and ranking features
based on their ability to preserve must-link and cannot-link con-
straints. [36] proposed an uncertainty optimization-based feature
subset selection model using rough set theory to minimize un-
certainty in feature subsets, and [37] introduced a novel method
for feature selection in a three heterogeneous information system
(3HIS) using rough set theory and various uncertainty measures.

Recently, research has begun incorporating uncertainty met-
rics into wrapper methods to enhance feature selection. The
type of uncertainty these methods target is typically related
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to the predictive uncertainty of the model, which differs from
the information uncertainty addressed by filter methods. [38]
utilized rough set theory to identify features that contributed to
high certainty in predictions while filtering out those that added
to uncertainty, thereby optimizing feature selection to enhance
the accuracy and efficiency of stock market predictions. [39]
introduced a feature selection method combining SU with Ant
Colony Optimization (ACO), using a probabilistic sequence-
based graph representation to enhance the selection of informa-
tive features and reduce redundancy. Similarly, [40] proposed an
ensemble feature selection framework that combined SU with a
Multi-Layer Perceptron (MLP) to enhance the classification of
sonar targets. This method ranked features based on SU values,
trained multiple MLP models on different subsets, and combined
their predictions through an ensemble voting mechanism to
address information uncertainty and feature relevance.

[41] introduced a feature selection method based on Bayesian
learning to address the specific needs of healthcare data, focusing
on reducing uncertainty for a single target of interest. This
approach used Bayesian confidence measures to evaluate fea-
tures based on their contribution to improving model confidence
for the target class. The paper defined model confidence for
a specific target as the average precision over multiple iter-
ations, calculated by evaluating the accuracy of the model’s
predictions for a target class in each iteration. This approach
provided a measure of the model’s reliability in predicting
the specific target without directly quantifying uncertainty in
a probabilistic sense. [42] presented an enhanced version of the
Instance-wise Variable Selection (INVASE) algorithm, called
Uncertainty-aware INVASE, to improve predictive confidence in
healthcare applications like breast cancer diagnosis. This model
introduced an uncertainty quantification module and a reward
shaping module, modifying the Predictor Network to output both
a mean (predicted value) and a variance (uncertainty measure).
The model was trained using a specialized loss function to
balance prediction accuracy and uncertainty estimation.

The above reviews reveal the following limitations:

e The evaluation of feature significance in RF relies on the

assumption that the trees are independent, but many studies
have shown this assumption may not always hold true [15].

* In Boruta, features are simply permuted, with their rele-
vance determined by the data’s characteristics rather than
their values. If the data is poorly distributed or exhibits in-
herent patterns, such as frequently repeating limited unique
values, multicollinearity between original and shadow fea-
tures can occur. This may result in misleading conclusions
about the importance or predictiveness of the shadow
features.

e Uncertainty measures in filter methods primarily target
the reduction of information uncertainty and redundancy
among features, not predictive uncertainty. Moreover, filter
methods—typically employing statistical measures like in-
formation gain and entropy—are independent of predictive
models, and consequently, they do not account for how
the selected features will interact with a specific model
in terms of predictive uncertainty, particularly epistemic
uncertainty.
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® While some recent feature selection methods address pre-
dictive uncertainty, model confidence has often been over-
looked. Even the confidence introduced in [41] does not
provide a probabilistic measure of prediction confidence.
Accordingly, this study proposes a novel feature selection
method designed to enhance both epistemic and aleatoric pre-
diction uncertainty. Epistemic uncertainty, which stems from the
model’s lack of knowledge about its structure and parameters,
can be influenced by the selection of features, since high di-
mensionality potentially exacerbating this uncertainty by adding
complexity to the model’s structure. Aleatoric uncertainty, aris-
ing from inherent noise in the data, is also considered. To address
these challenges, our approach enhances the Boruta algorithm
by replacing the RF model with NNs, which are better suited
to capturing complex relationships in the data and mitigate the
risk associated with the lack of independence between trees in
RF. Additionally, noise is introduced to the shadow features to
simulate aleatoric uncertainty, ensuring that the competition be-
tween original and shadow features accounts for this uncertainty.
The proposed method is designed to iteratively select features
that, even in the presence of noisy shadow features, help to
enhance the model’s performance by improving both prediction
accuracy and reducing predictive uncertainty, ultimately increas-
ing the model’s confidence in its predictions. Additionally, this
new design incorporates calibration metrics—which assess the
model’s confidence in its predictions—thereby elevating the
focus of conventional wrapper methods from solely error-based
performance to a more comprehensive evaluation that includes
both accuracy and confidence-based assessment.

III. METHODOLOGY

The method proposed in this paper extends conventional
Boruta feature selection by incorporating noise augmentation
into the creation of shadow features, substituting the RF fea-
ture importance method typically used in Boruta with NNs
and perturbation techniques. Additionally, it advances beyond
merely assessing accuracy for feature importance, incorporating
calibration metrics to enhance the evaluation process. In the
subsequent sections, initially, the conventional Boruta feature
selection is reviewed to establish a baseline, followed by a
detailed presentation of the proposed methodology.

A. Preliminary: Introduction to Boruta

The Boruta algorithm is an effective, straightforward tech-
nique for selecting the most relevant subset of features in a
dataset. It achieves this by performing a comparative analysis
with synthetically created shadow features. Here’s a brief outline
of the process:

® Creation of Shadow Features: The algorithm begins by du-

plicating each feature within the dataset. These duplicates
are then randomly shuffled to create shadow features, en-
suring they mirror the structure but not the exact sequence
of the original features.

e [mportance Assessment Using RF: Both original and

shadow features undergo an evaluation to determine their
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importance, which is carried out repeatedly through the RF
model.

e Comparison and Iteration: Each original feature’s impor-
tance is compared against the highest score obtained by
any shadow feature in each iteration. An original feature
is considered significant if it consistently surpasses the
best shadow feature in terms of importance over several
iterations.

e Jterative Process: The algorithm iteratively refines the
comparison, aiming to isolate the features that demonstrate
real predictive capabilities.

o Feature Selection: At the end of this process, any feature
that consistently shows greater importance than the cor-
responding shadow features is selected as significant and
kept for further model development.

The method outlined in the following sections builds upon the

original concept of Boruta algorithm.

B. Proposed Method: NeuroBoruta

The proposed method enhances the Boruta algorithm in
several significant ways: Firstly, it enhances the creation of
shadow features by augmenting them with noise. Secondly, it
replaces the RF and its embedded feature importance method
with NNs and perturbation analysis. Lastly, it elevates the feature
importance metric from solely focusing on accuracy to include
both accuracy and calibration metrics. Each of these strategies
is elaborated in the following.

1) Noise-Augmented Shadow Features: Shadow features in
conventional Boruta algorithm bearing the same characteristics
as the original ones, even considering the permutation of these
shadow features disrupts the original relationship with the target
variable. However, in predictive modeling, the overall char-
acteristics of the dataset are often considered more insightful
than the value of any single feature [26], while in the Boruta
algorithm each original feature competes with new generated
features mirroring their own characteristics.

Let’s consider one feature denoted as X, its shadow feature
X' can be defined as X’ = shuffle(X), where shuffle represents
arandom permutation of the entries in X . Although the order of
data points in X’ is randomized, the overall statistical distribu-
tion remains the same as X . This could lead to scenarios where
some statistical relationship (like correlation) between X and
X' exists simply due to the similar distribution of values, even
though the logical or causal relationship intended in the model
is disrupted.

To assess the potential for multicollinearity, consider the
correlation coefficient between X and X'. The correlation co-
efficient p between two variables X and X’ using the Pearson
correlation coefficient is given by:

!
px o = 2K (1)
oxox!
Where:
e cov(X, X') is the covariance between X and X',
e oy and oy are the standard deviations of X and X',
respectively.
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The covariance cov(X, X') can be calculated as:
cov(X, X) = E[(X - px)(X' —px)] (@)

where px and px are the means of X and X', respectively.
Given that X" is a shuffled version of X, the means px and pix-
will be equal, and the standard deviations o x and o x+ will also
be equal because shuffling does not change the distribution of
the data.

However, calculating this directly for a permuted version is
not straightforward because permutation disrupts the pairing of
the values that contributes to the covariance. For a sufficiently
large dataset and truly random permutation, the theoretical
expectation of cov(X, X’) should be zero because each pair
of values (z,2') from X and X’ would likely be unrelated.
However, if X is not well-distributed, or has inherent patterns
such as limited unique values that repeat frequently, multi-
collinearity among X and X’ might be observed. This can lead
to misleading conclusions about shadow features importance or
predictiveness.

This potential issue is addressed by adding a scaled noise
component to the original features. This ensures that the shadow
features will differ marginally from their originals, reducing the
likelihood that they’ll maintain same statistical distributions.

In the context of NeuroBoruta, the introduction of noise
into shadow features serves a dual purpose. Firstly, it deviates
shadow features slightly from the originals in terms of their
distribution, as discussed previously. Secondly, and crucially, it
aligns with the goal of evaluating calibration metrics, which
is discussed in the next section.4 In ML and deep learning,
noise is recognized as a fundamental source of uncertainty that
can affect model predictions. Calibration metrics, which assess
how well the probabilistic predictions of a model correspond
to actual outcomes, are particularly sensitive to the integrity of
the feature set in the presence of noise. By incorporating noise
into the shadow features, NeuroBoruta effectively simulates
more challenging and realistic scenarios where features must
demonstrate not only predictive accuracy but also robustness
in maintaining calibration. This approach ensures that selected
features are not only impactful but also reliable under varying
conditions, enhancing the overall confidence in the model’s
predictions. Thus the use of noise-augmented shadow features
complements the calibration focus of NeuroBoruta, providing a
stringent benchmark for feature selection.

Algorithm 1 clearly outlines the steps involved in the gen-
eration of noise-augmented shadow features. In this approach,
each original feature undergoes a process of augmentation with
a factor of white noise — a random value possessing zero mean
and standard deviation equal to that computed from the original
feature. Subsequently, a random permutation is applied.

2) Uncertainty-Aware Feature Importance Via NNs Pertur-
bation Analysis: The concept of perturbation analysis offers a
solution to quantify the influence of each variable within the
framework of NN models. In the procedure, perturbations are
intentionally introduced to the NN’s inputs. To maintain control
over the experiment, only one input variable is altered during
each iteration, keeping the remainder unchanged. The variable
(in other words feature) that, when disturbed, yields the most
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Algorithm 1: Noise-Augmented Shadow Features.
1:  Let D be the set of all features
2: for each feature f in F' do
3 §f + std(f)

4: Noisey < N(0,0y)

5

6

7

Shadow; < shuffle(f + C' x Noisey)
end for
return Dy g < set of noise-augmented shadow
features

significant impact on the dependent variable (in other words
target or output) is then recognized as the variable of greatest
importance [43].

In this paper, the impact on the dependent variable is assessed
using both accuracy and calibration metrics. Given the biased
performance of accuracy metrics in imbalanced datasets, the
F1 score is selected to gauge the impact in terms of accuracy.
Among calibration metrics, the Brier score and Expected Cali-
bration Error are chosen to further assess the impact in terms of
uncertainty.

The Expected Calibration Error (ECE) is a widely recognized
metric for assessing the calibration accuracy of probabilistic
models. In practice, ECE (3) is computed by dividing the dataset
into M bins and evaluating the absolute difference between
the observed frequency of the positive class in each bin and
the mean predicted confidence for that bin. This difference
is then weighted by the proportion of the total observations
that fall into each bin, providing a weighted average of these
discrepancies across all bins [44]. In simple words, ECE is the
average discrepancy between the observed accuracy and the
predicted probability within each of M defined buckets [45].

LA
ECE = Z Tm|Acc(Bm) —Conf(By)| (3)

m=1
M
1
ACC(BTYL) = _l(zjl - y?) (4)
m=1 |Bm|
M 1
Conf(Bn) =Y B ©)
me1 m

where B,, is the number of predictions in bucket m, n is the total
number of data points, Acc(B,,) (4) and Con f(B,,) (5) are the
accuracy and confidence of bucket m, respectively. Also 1(-)
is the indicator function. A lower ECE value indicates better
calibration, with a value of 0 representing perfect calibration,
where the predicted probabilities precisely reflect the observed
frequencies.

Brier score (BS) defined as the average gap between predicted
probabilities and ground truth and demonstrates the accuracy of
predictions in probabilistic form [46]. Brier score is formulated
as (6):

1 N
BS = ;(pi —0;)? (©6)
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where N is the total number of samples, p; is the predicted
probability for each sample, and o, is the actual outcome for each
sample. A model demonstrating a lower Brier Score indicates
better calibration.

The ECE and Brier score complement each other by providing
two distinct but equally important perspectives on the quality
of probabilistic predictions. ECE measures how well a model’s
predicted probabilities align with actual outcomes. For instance,
if a model assigns a 70% probability to a particular outcome,
the ECE evaluates whether that outcome occurs approximately
70% of the time across all instances where the model makes
such a prediction. This assessment ensures that the predicted
probabilities accurately reflect the true likelihood of outcomes,
thus measuring the model’s calibration.

On the other hand, Brier score measures the accuracy of prob-
abilistic predictions by evaluating not just whether the prediction
is correct, but also how close the predicted probability is to
the actual outcome. For example, if a model assigns an 80%
probability to a specific outcome and that outcome occurs, the
Brier score will indicate that the prediction was well-calibrated.
Conversely, if the model assigns an 80% probability to an
outcome and it does not occur, the Brier score penalizes this
prediction, with the penalty proportional to the difference be-
tween the predicted probability and the actual outcome.

By selecting these two metrics, the proposed method ensures
that the feature selection process not only enhances predictive
accuracy but also improves the model’s confidence.

3) Neuroboruta: Considering the integration of NN into the
methodology, the proposed method is hereafter referred to as
NeuroBoruta for ease of reference. Algorithm 2 offers a step-
by-step delineation of the proposed method.

Consider a dataset, D = {(x1,v1), (z2,92), ..., (zn,yN)}s
where x; represents the i** observation vector in a d-dimensional
feature space, and ; corresponds to the label of the i observa-
tion. The first stage involves the creation of training and testing
datasets, denoted by Dy;qin and Dy.st, respectively.

In this proposed variant, Dy, 1s solely used for feature
selection, while Dy, is reserved exclusively to evaluate the
performance of the selected features. Thus, the feature selection
process does not have any access to or influence from the test
dataset, thereby ensuring an unbiased assessment of the feature
selection process.

Given Dyyq;n @ new train set D’ is constructed by a combina-
tion of original features and their noise-augmented counterparts
(shadow features). This set is then normalized to prepare it for a
shallow neural network. The shallow ANN model is trained on
this normalized dataset. Once the model is trained, it evaluates
three metrics: the F1 score, Brier score (BS), and ECE.

After training, each feature in D’ undergoes perturbation
analysis. Here, individual features are perturbed by adding noise
scaled to a factor of their standard deviation (C' * o), and the net-
work’s performance is re-evaluated. The change in performance
metrics due to perturbation—specifically, the reduction in F1
score and increases in BS and ECE—are calculated for each
feature.

To determine the significance of the original features in
Dirain, the maximum delta values among the shadow features
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Algorithm 2: Proposed Method: NeuroBoruta.

1: Let Dy, 4in be the train set with feature set F

2: Let Dy g be the set of noise-augmented shadow features

3: Let H be the empty list to store the hit history

4: Let maxIter be the maximum number of iterations
Require: Shallow ANN, Dy,qin, Dng, maxIter

5: for iter = 1 to maxIter do

6: Create D' = Dypgin U Dys

: Normalize D’

7

8: Model <+ Shallow ANN

9: Train the model on the dataset D’

0: Compute F'15, BS, EC'E <« the training f1 score,
Brier score, and ECE of model on D’

11:  for each feature f in D’ do

12: Perturb & shuffle feature f by adding (C' * o)
while keeping other features unchanged
13: Compute F15', BS"s, ECE'; < the fl score,

Brier score, and ECE of trained model on D’ with
perturbed feature f

14: Compute decrease in f1 score:
FlS/f/ + max(F1S — F15',0)
15: Compute increase in Brier score and ECE:

BS’ < max(BS" — BS,0)
EC’E/} +— max(ECE' — ECE,0)
16: end for
17: Normalizing every F1S%, BS't, EC E'; via Min-Max
scaler method
18: F]-SJVIamSha,dow — max(FlS") among DNS
19:  BS\azShadow < max(BS") among Dy g
20: ECEnazShadow < max(ECE") among Dy g
21: for every feature f in Dy,q;p (original feature) do
22: if FS/f/ > INfazshadow
or BS/} > Iazshadow
or ECE;/c > INazshadow then

23: Add a hit to H ¢, the hit history for feature f
24 end if

25: end for

26: end for

27: return The set of features with at least one hit

are established as thresholds. If the performance degradation of
an original feature exceeds these thresholds, it is marked as a
‘hit,” indicating its significant role in model performance.

The iterative process repeats for a predefined number of
iterations (maxlIter), allowing for multiple evaluations and
adjustments to the model and feature set. At the end of these
iterations, the features that have accumulated at least one hit are
selected.

IV. EXPERIMENTAL SETUP
A. Data Sets

This study utilizes the FracAtlas dataset [47], comprises 4,083
X-ray images gathered for analyzing musculoskeletal injuries
(i.e., fracture). The dataset includes a broad age range of patient,
from 8 months to 78 years old, to accommodate variations
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(a) Fractured

(b) Non-Fractured

Fig. 1. Examples of the X-ray images from FracAtlas dataset.

in bone structure that could affect fracture analysis. It was
noted that younger subjects might display features in their bone
structure that resemble fractures due to lower bone density, while
older subjects could have rough bone surfaces misinterpreted as
fractures by analytical models. Gender distribution within the
dataset shows 62% male and 38% female representation. No-
tably, the dataset includes 713 images categorized as ‘Fractured’
and 3,366 images classified as 'Non-fractured.” Analyzing the
subset of images that show fractures, the gender distribution is
markedly different: 85.4% of these abnormal images are from
male and 14.6% are from female patients. The dataset encom-
passes detailed imaging of various body parts, with 1,538 hand
scans, 2,272 leg scans, 338 hip scans, and 349 shoulder scans
across multiple views [47]. Fig. 1 shows samples of FracAtlas
dataset.

B. Transfer Learning

Training a deep learning model with convolutional layers from
image data typically demands a substantial dataset and involves
computationally intensive parameter tuning. Given the limited
number of images in the FracAtlas dataset, this study adopted
the transfer learning (TL) approach to prepare the dataset for the
proposed NeuroBoruta method from the FracAtlas dataset.

Here, the idea of TL is to transfer knowledge at the para-
metric level from models that had been initially trained and
optimized on massive datasets such as ImageNet [48]. By strip-
ping away the final fully-connected layers and freezing the rest
of networks, these networks were repurposed as fixed feature
extractors for the FracAtlas dataset, effectively leveraging their
pre-established computational intelligence for new data appli-
cations.

The output from these pre-trained models was set to produce
256-dimensional feature vectors per image. These feature repre-
sentations were then utilized as input for the proposed method.
Fig. S1 from the Supplementary Document illustrates the use
of TL in this study. By employing a variety of pre-trained
models, from CNNGs to transformers, the study aimed to mitigate
the influence of any specific model’s pre-training on the final
results. Five pre-trained models employed in this study to extract
features, are briefly presented below.

® InceptionResNetV2: InceptionResNetV2 is constructed by

integrating the strengths of two advanced architectures:
Inception and ResNet. The Inception modules employ
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multiple convolutions and pooling layers to aggregate fea-
tures at different spatial scales from one layer to the next,
facilitating multi-level feature extraction. This structure
allows the model to capture a broad range of features
efficiently. Residual connections, a key component from
ResNet, enhance the gradient flow across numerous lay-
ers. These connections create shortcut paths that directly
sum features from preceding layers to subsequent layers,
effectively addressing the vanishing gradient problem and
allowing for significantly deeper networks [49].

e DenseNetl21: DenseNet-121, abbreviated from Dense
Convolutional Network, comprises 121 layers. This archi-
tecture is renowned for its ‘dense blocks,” which connect
each layer directly to every other subsequent layer. These
dense blocks concatenate outputs from all preceding lay-
ers and feed them as inputs to subsequent layers [50].
This structure maximizes information and gradient flow
throughout the network, allowing it to be both deeper and
more accurate while efficiently reusing features.

e EfficientNetBO: EfficientNet-B0O is part of the Efficient-
Net family of models (BO to B7) introduced by [S1].
EfficientNetBO represents a breakthrough in scaling up
convolutional neural networks (CNNs) through the novel
compound scaling method, which uniformly scales the
network’s depth, width, and resolution with a set coeffi-
cient. EfficientNet architecture utilizes multiple compo-
nents, including Mobile Inverted Bottleneck Convolutions
(MBConv) and Squeeze-and-Excitation (SE) optimization,
yet it remains relatively lightweight [S1].

e BigTransfer (BiT): BiT employs a modified ResNet ar-
chitecture, extensively pre-trained on extensive datasets
such as ImageNet-21 k to enhance its transfer learning
capabilities. This model utilizes deep residual networks
along with advanced training techniques like Group Nor-
malization and Weight Standardization, which are crucial
for maintaining performance stability across varied batch
sizes and image resolutions. These features allow BiT to be
effectively adapted to new tasks while preserving learned
features from its extensive pre-training. Specifically, this
paper focuses on the BiT version using the ResNet50
architecture trained on the ImageNet-21 k dataset [52].

e Vision Transformer (ViT): ViT shifts from conventional
CNN approaches to using the transformer architecture,
which was originally developed for natural language pro-
cessing tasks. It starts by splitting an image into fixed-size
patches, then linearly embedding each of them (i.e., flat-
tened them), akin to tokens in a natural language model.
These embeddings then pass through a series of trans-
former layers that use self-attention mechanisms to inte-
grate information from different patches [53]. ViT under-
goes pre-training on extensive datasets like ImageNet to
adapt to new tasks.

Table I provides general information about proposed pre-
trained models. It worths to mention that the number of parme-
ters reported here are less than in the original architecture. This
discrepancy is because the top classification layer, typically used
for classifying large number of classes in ImageNet, has been
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TABLE I
ARCHITECTURES” SUMMARY OF UTILIZED PRE-TRAINED MODELS

Architecture Input Size  Output Size  Number of Parameters
InceptionResNetV2 299%299 256 54,730,208
Densenet121 224%224 256 7,299,904
EfficientNetBO 224%224 256 4,377,507
BiT 224%224 256 24,024,896
ViT 224%224 256 86,389,248

removed to facilitate transfer learning. For the InceptionRes-
NetV2 model in this research, the required input image size is
set at 299 x 299 pixels, whereas the other models use an image
size of 244 x 244 pixels. Additionally, the output feature size
has been fixed to a 256-dimensional vector, further modifying
the network from its standard setup.

C. Experiment Configurations

In this study, the performance of the proposed method has
been compared with the original Boruta algorithm. For feature
selection using the Boruta algorithm, RF with 200 predictors is
utilized.

In configuring the method proposed in this study, more pa-
rameters need to be decided upon. The first set of these pa-
rameters pertains to the shallow neural network used inside
the NeuroBoruta which is solely used for feature importance
calculation. Given that in the NeuroBoruta, this network is solely
used for feature selection, and features are chosen based on
the impact their perturbation has on reducing model accuracy,
thus fine-tuning the learner at this stage is not critical. What
is required here is to select a network architecture that can
generate a minimum accuracy above 50 percent. Accordingly,
the network used here consists of two fully connected layers,
containing 64 and 8 neurons respectively, both utilizing the
ReLU activation function. The epoch was set to 100. Class
weights are dynamically adjusted based on the inverse frequency
of each class within the dataset to address class imbalances,
thereby promoting equitable learning across both classes. For
the perturbation analysis which is used for feature importance
during the NeuroBoruta references suggests that typical per-
turbations in neural network analysis involve changes ranging
from 10 to 50% of the values of individual variables [43], [54].
This study adapted the perturbation scale to include a factor of
standard deviations to appropriately model these changes within
the context of each dataset. Here, a scaling factor of 3 is applied
to the noise added to each feature during perturbation analysis. In
a similar manner, a scaling factor of 3 is used during the shadow
feature generation step. Maximum iterations for NeuroBruta and
Boruta are set 100. In this study, both NeuroBoruta and Boruta
select features that have accumulated at least one hit. By using
the one-hit threshold, it is ensured that all features demonstrating
any significant impact on the model’s performance are retained
for further consideration. The experiments were conducted in
a virtualized environment with the following hardware config-
uration: an Intel(R) Xeon(R) CPU @ 2.20 GHz with 2 virtual
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CPUs, 12 GB of memory, running on a Linux Kernel version
6.1.85+, and operating on an x86_64 architecture.

V. RESULTS AND DISCUSSION

This section is organized into two distinct parts. Section V-A
presents and discusses the results obtained from the proposed
method, NeuroBoruta, comparing its performance to the original
Boruta algorithm. The comparison extends to include perfor-
mance evaluations using all features extracted from pre-trained
models without any feature selection. Section V-B broadens the
performance analysis by applying the proposed method to three
additional non-image tabular datasets from the University of
California, Irvine (UCI) ML repository. This extension aims to
provide further insights into the model’s performance beyond
the primary FracAtlas dataset.

A. Results and Analysis

The performance evaluation process consists of two main
phases: feature selection and model tuning, followed by gen-
eralization evaluation as illustrated by Fig. S2 from the Sup-
plementary Document. Initially, the dataset is split into training
and testing sets at a ratio of 70% to 30%, with stratified sam-
pling from the target variable. Feature selection is performed
on the training set, resulting in a reduced set of features that
are deemed most relevant. The training set is then filtered to
include only these selected features. Subsequently, multi-layer
perceptron (MLP) is tuned using the filtered training set. The
fine-tuned model is evaluated to ensure it meets the desired
performance criteria. For feature selection, the NeuroBoruta
and the original Boruta algorithm are each run on the training
dataset, with a maximum iteration limit of 100 times. To extend
the performance evaluation and comparison, Recursive Feature
Elimination (RFE) feature selection was also considered. RFE
operates by recursively eliminating features and evaluating the
model performance to identify the optimal subset of features
that yield the highest performance score. This choice of RFE was
made for its similarity to Boruta and NeuroBoruta, as all three are
wrapper methods that iteratively evaluate feature importance to
improve model performance but with different mechanisms. In
this study, RFE was implemented using a RF with 100 predictors
as the Classifier, cross-validation with five folds and F1 score as
the evaluation metric during the RFE process. Fig. S3 from the
Supplementary Document illustrates the relationship between
the number of features retained and the F1 score achieved,
aiding in identifying the optimal number of features that balance
complexity and performance across pre-trained models by RFE.

Considering that evaluating the model only once in phase
one does not guarantee reproducible results. This is due to the
fact that most ML and deep learning (DL) models assume that
training and testing datasets have the same distribution [55].
Consequently, their performance can suffer under data distri-
bution shifts [56], [57]. Accordingly, phase two is designed to
measure the model’s generalization power. For this evaluation,
the dataset is repeatedly divided into training and test sets with
a 70% to 30% ratio. The model, using the architecture obtained
from the initial tuning, is trained from scratch on each training
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set. Importantly, only the architecture of the tuned model from
phase one is used, without transferring the optimal weights.
The model is then tested on each test set. Performance metrics
are calculated and stored for each iteration, with a number of
iterations set to 30. While phase one is designed for feature
selection and hyperparameter tuning, phase two aims to train
the model each time with a different training set and evaluate
it with a different test set. This ensures the model is exposed
to various data distributions during training and testing, and the
stored results allow for assessment of the model’s generalization
ability across different possible data distributions. The evalua-
tion metrics used in this study are ECE, Overconfidence Error
(OE), and F1 score. The choice of the F1 score is due to the
imbalanced nature of the dataset. F1, by combining precision
and recall, allows for a comprehensive performance assessment.
The OE is another metric used to assess calibration performance.
This metric specifically penalizes predictions where the level of
confidence surpasses the actual accuracy, applying a weighting
based on the degree of confidence [46]. OE is formulated as
follows [58] (7):

OF = Z % [conf(B,,) - max (conf(B,,)—acc(By,), 0)]
(N

Where, B,, represents the set of samples within the m-th bin,
conf(B,,,) denotes the average confidence in bin m, acc(B,,)
represents the accuracy within bin m, and n is the total number
of samples across all bins. Lower ECE and OE values indicate
better calibration of the model, meaning the predicted probabil-
ities of outcomes are more accurate.

In this study, the hyperparameter tuning of a neural network
model was performed using the Keras Tuner, a library built upon
TensorFlow and Keras. The search space for the hyperparam-
eters included the number of layers, ranging from 1 to 4, and
the number of units per layer, varying from 16 to 1024 with
a step size of 32 units. This step size indicates the interval at
which the number of units in each layer was incremented during
the search. The hyperparameter search was conducted using
Keras Tuner’s Hyperband algorithm, an efficient method that
evaluates models with varying resource allocation, balancing
exploration and exploitation. The objective was to maximize
validation accuracy with a validation split of 20%, meaning
that 20% of the training data was used to evaluate the model’s
performance during the hyperparameter search. Class weights
were included to ensure balanced learning across all classes.
The search process set a maximum of 100 epochs for training
each model, with a reduction factor of 3, meaning that the
training resources were scaled down by this factor during the
iterative search process. Early stopping was implemented to
prevent overfitting, halting the training if the validation loss did
not improve for 30 consecutive epochs. Upon completion of
the hyperparameter search, the optimal hyperparameters were
identified, including the best number of units in the input layer
and the optimal number of layers. These model characteristics
are subsequently utilized in Phase 2, with an epoch size of 1000.
Table II summarized the optimal architecture and the number
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TABLE IT
SUMMARY OF NO. OF SELECTED FEATURES AND MODELS’ OPTIMAL
ARCHITECTURE

Method Pre-trained No. of Features  Fine-tuned MLP architecure*
BiT 136 (656, 592)

ViT 108 (112, 320)

NeuroBoruta ~ Densenet121 142 (944, 272)

EfficientNetB0 163 (592, 656, 592, 944)
InceptionResNetV2 146 (592, 432)

BiT 54 (336, 912, 592)

ViT 82 (592, 976)

Boruta Densenet121 50 (656, 784, 1008, 368, 176)
EfficientNetB0 63 (624, 976, 592)
InceptionResNetV2 46 (688, 208)

BiT 256 (880, 16, 368)
ViT 256 (144, 304, 272)

All Features Densenet121 256 (592, 720, 912)
EfficientNetB0 256 (144, 752, 272, 304)
InceptionResNetV2 256 (176, 208)

BiT 12 (560, 144, 16, 752)
ViT 9 (496, 688, 688)

RFE Densenet121 17 (688, 752, 688, 16)
EfficientNetB0 16 (496, 336, 464)
InceptionResNetV2 19 (208, 784, 976, 144, 784)

* Each number signifies the size of neurons in a layer. In the cases where a sequence of numbers is
presented, such as (i1.,i2,i3), these correspond to multiple hidden layers within the network.

of selected features by NeuroBoruta, Boruta and RFE across
different pre-trained models.

As reflected in Table II, NeuroBoruta consistently selected
a higher number of features compared to the original Boruta
and RFE methods across all pre-trained models. NeuroBoruta’s
selection of a relatively higher number of features compared
to traditional methods like Boruta or RFE can be attributed to
its approach, which emphasizes not just the predictive accuracy
but also the calibration of the model. This method may retain
features that, while not significantly boosting accuracy, do con-
tribute to reducing prediction uncertainty. For instance, some
features might show a weaker direct correlation with the target
variable but may provide essential context that helps the model
make more reliable probability estimations, thereby improving
the model’s overall confidence. Boruta showed conservative
feature selection, particularly noticeable in models like Incep-
tionResNetV2 and Densenet121, where only 46 and 50 features
were selected, respectively. The conservative nature of Boruta
might limit the model’s performance in complex scenarios by
potentially omitting features that contribute to the prediction but
have less apparent statistical importance. RFE demonstrated the
most stringent selection criteria, selecting fewer than 20 features
for each model. This extreme reduction could lead to models
that are very efficient computationally but may miss out on
performance if some of the discarded features hold subtle yet
crucial information. The approach of using all features serves as
a benchmark when all 256 features are retained.

Table III summarized the performance result over 30 run
across different pre-trained models and feature selection meth-
ods. Additional metrics, including accuracy, precision, and
recall, are provided in Supplementary Table S.I for further
reference. Fig. 2 illustrates the distribution of the evaluation
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TABLE III TABLE IV
PERFORMANCE COMPARISON OF NEUROBORUTA, BORUTA, RFE AND ALL STATISTICAL COMPARISON RESULTS OF DIFFERENT FEATURE SELECTION
FEATURES METHODS ACROSS VARIOUS PRE-TRIANED
F1 Score ECE OE P-Value Adjusted P-Value
BiT % 91,8975 £ 0.3850  0.0438 £ 0.0022  0.0425 £ 0.0021 Model  Comparison FiScore ECE  OE  FlScore ECE  OE
ViT % 84.4447 + 1.4769 0.0516 + 0.0084  0.0476 + 0.0091 NeuroBoruta v. Boruta 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
NeuroBoruta ~ Densenet121 % 92.1251 + 0.8174  0.0417 + 0.0045  0.0404 + 0.0045 NeuroBoruta v. RFE 0.0000  0.0000 00000 00000  0.0000  0.0000
EfficientNetB0 % 922934 + 0.4577 0.0435 + 0.0026  0.0426 + 0.0025 E NeuroBoruta v. All Feat. 0.0000 0.0000  0.0000 0.0000 0.0000  0.0000
InceptionResNetV2 % 92.1289 + 0.7164  0.0409 + 0.0033  0.0396 + 0.0034 Boruta v. RFE 00000 0.0000  0.0000  0.0000 00000 0.0000
BiT % 89.8880 + 0.8532 0.0549  0.0046  0.0534 + 0.0048 Boruta v. All Feat. 0.0000 0.0128 0.0032 0.0003 0.0770 0.0193
. RFE v. All Feat. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ViT % 82.1482 £ 1.6535  0.0573 £ 0.0088  0.0544  0.0090
NeuroBoruta v. Boruta 0.0000 00113 0.0026 0.0000 0.0678  0.0154
Boruta Denscnet121 % 87.5310 £ 12,5129 0.0653 £ 0.0568  0.0635 + 0.0570
. NeuroBoruta v. RFE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EfficientNetB0 % OLTIT3 £0.7864 00430 00041 0.0416 £ 0.0042 «  NeuoBorutav. All Feat. 00000 00000 00000 00000 00000  0.0000
InceptionResNetV2 % 90.1771 £ 0.8341  0.0497 £ 0.0038  0.0479 & 0.0038 5 Bomta v REE 00364 00000 00000 02186 00003 00003
BiT % 88.8248 £ 09852 0.05822 00052  0.0574 £ 0.0052 Boruta v. All Feat. 0.0000  0.0000 00000  0.0000 00000  0.0000
Vit % 73.2837 £ 22897 0.0883 £ 0.0169  0.0838 + 0.0177 RFE v. All Feat. 0.0000  0.0000 00000 00000 00000  0.0000
All Features Densenet121 % 92.0658 + 0.5763 0.0440 + 0.0037  0.0429 + 0.0035 NeuroBoruta vs Boruta 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EfficientNetBO % 91.8203 + 0.6447 0.0447 £ 0.0034  0.0435 + 0.0034 ] NeuroBoruta vs RFE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
InceptionResNetV2 % 91.4029 + 0.6043 0.0452 + 0.0033  0.0438 + 0.0032 E; NeuroBoruta v. All Feat. 0.7000 0.0606  0.0405 1.0000 0.3634  0.2429
BiT % 85.6458 £ 12413 00731 £ 00052 0.0712 % 0.0050 £ Borutavs RFE 00028 00000 00000 00166 00001  0.0002
ViT % 81.1578 + 1.9433 0.0666 + 0.0079  0.0637 + 0.0078 =} Boruta v. All Feat. 0.0000 0.0000  0.0000 0.0000 0.0000  0.0000
RFE Densenet121 % 90.4500 + 0.7896  0.0489 = 0.0038  0.0476 + 0.0038 RFE v. All Feat 00000~ 0.0000 ~ 0.0000  0.0000 00000  0.0001
EfficientNetBO % 88.8263 + 0.9355  0.0557 % 0.0041  0.0536 + 0.0043 _ NewoBomtavsBomta 00020 04522 0.2286 00121 10000 1.0000
InceptionResNetV2 % 88.7183 + 09240 0.0573 + 0.0036  0.0556 + 0.0037 @ NewoBoruta vs RFE 0000000000 0.0000 00000 0:0000 0.0000
4 NeuroBoruta v. All Feat. 0.0043 0.1403 0.2206 0.0260 0.8417 1.0000
=
-2 Boruta vs RFE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1.00 E Boruta v. All Feat. 0.6120 0.1241 0.0841 1.0000 0.7448 0.5044
.
095 RFE v. All Feat. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
o THE PooF k%= o o NewoBouwysBouta 00000 00000 00000 00000  0.0000  0.0000
%o # % ? % 0.10 % NeuroBoruta vs RFE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
£o8s ° %° 008 Ci\;') NeuroBoruta v. All Feat. 0.0002 0.0000 0.0000 0.0011 0.0002 0.0001
3 4
T om ¢ ® % . 5% £ Boruta vs RFE 0.0000  0.0000 00000 00000 00000  0.0000
ot 2 °i é ;*%% ﬁ‘éé §i ? Boruta v. All Feat. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001
0.75 =]
% oot § - RFE v. All Feat. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
o070 0.02 Highlighted values indicates no significant difference (P-value > 0.05).
oo Ki2 o & 3 « o N @ & < «
& N o & ) & & o & 3
dg@‘ﬁ & (\\oe“é &@& eoéa“\ &
& ©f & 3 ©f &
w A
@ FI Score (b) BCE affect the model’s ability to generalize and calibrate accurately.
0 Using all features often results in lower performance compared
to feature selection methods, particularly in calibration metrics,
0.10
. as seen in the ViT model. This suggests that including all features
w
w * 5 ;5% can introduce noise, leading to poorer model performance and
o ° e
o $FTE LIBE 5175 2 C calibration.
5
002 To statistically validate the differences in model performance
000 R across various metrics, the Wilcoxon signed-rank test was em-
> o & . . . .
R ployed. This non-parametric test is designed to compare two
(@ OF related samples to determine whether their population mean
ranks differ. The Wilcoxon signed-rank test was performed on
Fig. 2. Comparison box plots of F1 score, ECE, and OE. each pair of methods for each metric, yielding a p-value for each

metrics across pre-trained models. In the comparative analysis
of feature selection methods across various pre-trained models
NeuroBoruta consistently demonstrates superior performance in
terms of F1 score possibly due to a more comprehensive feature
set that captures relevant information. This method also exhibits
lower ECE and OE values, suggesting it not only enhances pre-
diction accuracy but also improves the confidence and reliability
of these predictions. Boruta shows moderate performance with
F1 scores generally lower than those of NeuroBoruta, partic-
ularly in models such as ViT and Densenet121. The ECE and
OE values are comparatively higher. RFE tends to select fewer
features and shows the lowest F1 scores among the methods,
especially noticeable in models like ViT and BiT. The higher
ECE and OE values suggest that the minimal feature set may

comparison. If the p-value was less than 0.05, the null hypothesis
(which states that there is no difference between the methods)
was rejected, indicating a statistically significant difference.

To account for multiple comparisons and control the family-
wise error rate, the Bonferroni correction was applied to the
p-values. This correction adjusts the threshold for significance
based on the number of comparisons being made, ensuring
that the likelihood of Type I errors is minimized. The results,
including the original and corrected p-values, Table IV presents
the original and corrected p-values across various models and
metrics.

It is worth mentioning that the performance comparisons
presented in this study are confined to the feature sets output
by each individual pre-trained model. In other words, cross
pre-trained model comparisons, such as contrasting the fea-
ture selection methods applied to BiT with those applied to
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InceptionResNet, have not been undertaken. This decision is
based on the understanding that each feature set output from the
different pre-trained models is considered as a distinct dataset.
The primary objective of this approach is to have the efficacy of
the discussed feature selection methods meticulously examined
within the unique context of each dataset. Consequently, this
analysis has been specifically designed to assess the performance
enhancements that are brought by each feature selection method
on a per-model basis, rather than to evaluate or compare the
inherent quality of the features generated by each pre-trained
model. This focus ensures that a thorough and relevant eval-
uation of the methods in question is conducted, tailored to the
specific characteristics and challenges presented by each dataset.

In this section, the discussion is centered on the statistical
analysis conducted to evaluate the performance of NeuroBoruta
in comparison with other feature selection methods, specifically
Boruta, RFE, and the strategy of using all features. The focus
of this analysis is particularly tailored to underscore the effec-
tiveness of NeuroBoruta, as it represents the core innovation of
this study. Comparisons between Boruta and RFE, while noted,
fall outside the primary interest of this paper and are mentioned
only to contextualize the overall landscape of feature selection
methods relative to the proposed NeuroBoruta approach. The
detailed statistical tests provided in Table IV reinforce that
NeuroBoruta provides significant improvements in terms of
predictive accuracy and confidence. For the BiT model, Neu-
roBoruta demonstrates a profound improvement over Boruta,
RFE, and the strategy of using all features, with all comparisons
showing p-values significantly lower than 0.05. In the case of
ViT, while NeuroBoruta shows improvements over Boruta and
RFE in F1 Score and calibration metrics, the adjustments for
multiple comparisons reveal that the improvements in ECE are
not statistically significant (adjusted p-values > 0.05). However,
it is noteworthy that NeuroBoruta shows a significant improve-
ment in OE (adjusted p-values < 0.05).

NeuroBoruta’s impact on DenseNetl21 shows significant
improvements in F1 Score when compared to other methods.
However, the results for ECE and OE are not significantly better
than using all features after adjusting for multiple comparisons.
This indicates that while NeuroBoruta can refine the predictive
accuracy by selecting relevant features, the dense connectivity
of DenseNet121 may diminish the effectiveness of these features
in enhancing the model’s calibration. The dense layers may
blend feature information in a way that marginalizes the benefits
of selective feature inclusion. Further insights can be gleaned
from comparing Boruta’s performance to using all features
within the same DenseNet121 architecture. In this comparison,
Boruta underperforms relative to using all features, indicating
that Boruta’s method of feature selection does not effectively
capitalize on the model’s capabilities. In contrast, even though
NeuroBoruta does not significantly improve calibration met-
rics over using all features, it maintains similar performance
levels with fewer features. This outcome highlights that Neu-
roBoruta still manages to maintain a balance between reducing
feature dimensionality and sustaining model performance. This
efficiency in feature usage without a loss in performance un-
derscores the capability of NeuroBoruta in handling complex

2189

architectures where traditional methods like Boruta may fail to
deliver optimal results. For EfficientNetB0, NeuroBoruta signif-
icantly improves the F1 Score compared to Boruta and RFE, yet
the improvements in calibration metrics (ECE and OE) are not
statistically significant after correction. This outcome suggests
that the efficiency-focused architecture of EfficientNetB0, which
is designed to minimize computational expenses, may inher-
ently limit the impact of expanded feature sets on calibration
improvements. The model’s smaller parameter count and opti-
mized processing paths could mean that the quality and precise
targeting of features are more crucial than the mere quantity of
features. Additional insights can be derived from examining the
comparison between Boruta and using all features, which also
yields no significant differences. This finding indicates that even
Boruta’s attempt at feature selection does not provide a statisti-
cally significant enhancement over using all available features.
This result is critical as it implies that within the architecture
of EfficientNetBO, the process of feature selection itself does
not substantially contribute to improving model performance,
either in terms of predictive accuracy or calibration. While the
architecture of EfficientNetB0 may inherently limit the benefits
of feature selection for calibration improvements—given its
emphasis on efficiency and a smaller parameter count—the
ability of NeuroBoruta to still outperform Boruta in terms of
F1 Score is notable. This suggests that NeuroBoruta effectively
balances feature reduction with the retention of critical predic-
tive features. With InceptionResNetV?2, NeuroBoruta shows a
clear advantage in terms of F1 Score and calibration metrics
over Boruta and RFE, with all comparisons yielding p-values
significantly below 0.05.

The detailed model-by-model analysis reveals that Neu-
roBoruta generally enhances F1 Scores and model confident
compares to Boruta and RFE feature selections across models.
While this is of lesser interest to the main focus of this paper, it
is still informative to consider the comparative performance of
Boruta, RFE, and the strategy of using all features. Evaluating
these methods alongside their respective number of selected
features reveals insights into their relative effectiveness. Gen-
erally, Boruta tends to perform better than RFE, which can be
attributed to its more sophisticated feature shadowing technique
that tends to preserve more informative features than RFE’s
more straightforward elimination process. In terms of achieving
abalance between feature reduction and maintaining high model
performance, Boruta appears to be superior to RFE. Nonetheless,
the method of using all features, despite its lack of selectiv-
ity, sometimes offers competitive performance, particularly in
models that can benefit from larger datasets. This indicates that
the effectiveness of a feature selection strategy can be highly
dependent on the specific characteristics and capabilities of the
underlying model architecture.

Having examined the performance metrics, understanding the
computational demands provides a more comprehensive view of
the trade-offs involved in feature selection methods. Although
the integration of neural networks and noise-augmented shadow
features increases computational demands, the time complexity
of NeuroBoruta is comparable to the original Boruta algorithm.
Both methods begin with creating shadow features, with a time
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complexity of O(d), where d is the number of features. The next
step involves model training—neural networks for NeuroBoruta
and Random Forest (RF) for Boruta.

Neural network training, the most computationally intensive
part of NeuroBoruta, has a complexity of O(N x L x M? x
E), where N is the number of samples, L the number of layers,
E the number of epochs, and M the average number of neurons
per layer. Perturbation Analysis further increases the complexity
toO(dx N x L x M? x E).

For Boruta, training an RF has a complexity of O(T x N x
log(N) x d), where T is the number of trees. The iterative
process, common to both methods, repeats for a given num-
ber of iterations I. Thus, NeuroBoruta’s complexity is O(d x
N x L x M? x E),comparedto O(T x N x log(N) x d) for
Boruta.

While neural networks may lead to higher computational
costs, this is mitigated by using a shallow learner without fine-
tuning in NeuroBoruta. Boruta’s reliance on RF offers scalability
but may not handle complex feature interactions as effectively.

B. Extended Comparative Study

This section explores the versatility of the proposed method
beyond the image data from the FracAtlas dataset. To this end,
three distinct datasets from the UCI ML Repository, each with
unique characteristics, were selected to evaluate the performance
of the proposed method compared to the conventional Boruta
method. Brief descriptions of each dataset are presented below:

e Smartphone-based recognition of human activities and
postural transitions (SB-RHAPT) [59]: This dataset con-
tains 10299 instances and 561 features collected from
smartphone sensors, recording six different activities and
postural transitions.

e Epileptic seizure recognition (ESR) [60]: With 11500 in-
stances and 179 features, this dataset records EEG values
to distinguish between seizure and non-seizure activities.
The original five-category target variable is simplified to a
binary classification task, creating an imbalanced dataset.

e Parkinson’s disease classification (PDC) [61]: This dataset
includes 756 instances and 755 features of biomedical
voice measurements, classifying instances into Parkinson’s
Disease and Healthy categories.

The same evaluation process and statistical tests from previ-
ous section were used for these datasets. Number of selected fea-
tures, the performance results and statistical analysis results are
summarized in Tables V, VI, VII respectively. Also, additional
metrics, including accuracy, precision, and recall, are provided
in Supplementary Table S.II for further reference. Fig. S4 from
the Supplementary Document illustrates the distribution of the
evaluation metrics across ESR, PD, and RHAPT datasets.

For the ESR dataset, it is observed that Boruta selected 178
features, equivalent to the total number of features available,
indicating no reduction or selection was effectively made. In
contrast, NeuroBoruta successfully reduced the feature set to
118, demonstrating its capability to discern and retain the
most relevant features for modeling. In the PD dataset, Neu-
roBoruta selected 123 features, which is a significant increase
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TABLE V
SUMMARY OF NO. OF SELECTED FEATURES AND OPTIMAL ARCHITECTURES OF
MODELS ACROSS THREE DATASETS: ESR, PD, AND RHAPT

Method Dataset ~ No. of Features  Fine-tuned MLP architecure
ESR 118 (408, 946, 364, 534)
NeuroBoruta  PD 123 (176, 784, 16)
RHAPT 492 (272, 976, 528)
ESR 178 (336 624)
Boruta PD 78 (48, 944, 752, 944, 528)
RHAPT 478 (688, 624, 752, 688)
ESR 178 *
All Features  PD 755 (720, 400, 272, 144, 1008)
RHAPT 561 (304, 240)

* The features selected by Boruta and the complete feature set for ESR are identical, and a single
model has been tuned for them.

TABLE VI
PERFORMANCE COMPARISON OF NEUROBORUTA, BORUTA, RFE AND ALL
FEATURES ACROSS THREE DATASETS: ESR, PD, AND RHAPT

F1 Score ECE OE
ESR % 97.5342 £ 0.4592  0.0084 £ 0.0015  0.0074 + 0.0016
NeuroBoruta ~ PD % 91.6095 + 0.8640  0.0601 £ 0.0053  0.0579 + 0.0057
RHAPT % 98.9528 + 0.1321  0.0092 + 0.0011  0.0088 + 0.0010
ESR % 94.6043 + 0.6410  0.0119 + 0.0014  0.0085 + 0.0013

Boruta PD % 91.4418 £ 0.9091  0.0621 £ 0.0067  0.0607 + 0.0067
RHAPT % 98.8392 + 0.2026  0.0097 + 0.0014  0.0092 + 0.0014
ESR* % 94.6043 £ 0.6410  0.0119 £ 0.0014  0.0085 + 0.0013
All Features ~ PD % 90.5719 + 0.7385  0.0687 + 0.0049  0.0675 + 0.0048
RHAPT % 98.9097 £ 0.1925  0.0089 + 0.0015  0.0083 + 0.0015

* The features selected by Boruta and the complete feature set for ESR are identical, and a single
model has been tuned for them. Thus results for All features are repeated.

TABLE VII
FURTHER STATISTICAL COMPARISON RESULTS OF DIFFERENT FEATURE
SELECTION METHODS ACROSS THREE DATASETS: ESR, PD, AND RHAPT

P-Value Adjusted P-Value

Model Comparison F1 Score ECE OE F1 Score ECE OE

ESR NeuroBoruta v. Boruta 0.0000 0.0000  0.0032 0.0000 0.0000  0.0097
NeuroBoruta v. Boruta 0.7922 0.3818  0.2129 1.0000 1.0000  0.6388

PD NeuroBoruta v. All Feat. 0.0000 0.0000  0.0000 0.0000 0.0000  0.0000

Boruta v. All Feat. 0.0000
0.0058
0.4161

0.1048

0.0000
0.1460
0.1706
0.0099

0.0000
0.4280
0.0262
0.0037

0.0001
0.0173
1.0000
0.3145

0.0001
0.4380
0.5118
0.0298

0.0001
1.0000
0.0787
0.0112

NeuroBoruta v. Boruta
RHAPT  NeuroBoruta v. All Feat.

Boruta v. All Feat.

Highlighted values indicates no significant difference (P-value > 0.05)

compared to Boruta’s selection of 78 features. Similarly, for the
RHAPT dataset, NeuroBoruta identified 492 features compared
to Boruta’s 478, indicating a preference for a slightly larger fea-
ture set which may contribute to model robustness and accuracy.
These findings are consistent with those reported in the previous
section, where NeuroBoruta consistently selects more features
compared to Boruta.

As indicated by Table VI, NeuroBoruta consistently achieves
high F1 Scores, notably outperforming the other methods in most
cases. For instance, in the ESR dataset, NeuroBoruta achieves
an F1 Score of 97.5342% with notably low ECE and OE,
indicating not only high accuracy but also reliable calibration
and confidence in its predictions. In the PD dataset, while
NeuroBoruta’s F1 Score is comparably high, the differences in
ECE and OE are not as pronounced compared to the Boruta
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and all features methods. For the RHAPT dataset, NeuroBoruta
again shows superior F1 Scores but with ECE and OE values
that are comparable to those achieved using Boruta and the all
Features method. The subsequent statistical tests further validate
these findings. In the ESR dataset, significant p-values (below
0.05) for the comparisons of F1 Score, ECE, and OE between
NeuroBoruta and Boruta confirm the statistical significance of
the performance improvements with NeuroBoruta. In contrast,
in the PD dataset, the high p-values for the F1 Score and OE
when comparing NeuroBoruta and Boruta (p > 0.05) indicate
no significant difference. The PD dataset consists of 756 records
with 755 features and performance constraints observed might
be attributable to the limited dataset size, which poses challenges
for neural network architectures that typically require a larger
sample size to generalize effectively. Considering neural net-
work is the backbone of the proposed NeuroBoruta method, this
outcome may reflect a sensitivity of NeuroBoruta to dataset size,
with smaller datasets potentially having similar performance
with Boruta. In the RHAPT dataset, while the F1 Score shows
a significant improvement when NeuroBoruta is compared to
Boruta (p-values < 0.05), the non-significant results for ECE
and OE (adjusted p-values > 0.05). In the RHAPT dataset, the
number of features selected by NeuroBoruta closely aligns with
those selected by Boruta, differing only slightly. This minimal
difference suggests that both methods achieve a comparable
optimization of the feature set. Despite the marginal increase
in the number of features by NeuroBoruta, a significant im-
provement in the F1 score was noted, indicating that the addi-
tional features selected might be marginally more informative
or relevant for the model’s predictive accuracy. However, the
calibration metrics (ECE and OE) exhibited similar performance
between NeuroBoruta and Boruta. This observation implies that
the slight increase in feature selection by NeuroBoruta does not
substantially impact the model’s calibration characteristics. It
is therefore reasonable to conclude that when the number of
features selected by both methods is approximately equivalent,
their impact on calibration is expected to be similar.

VI. CONCLUSION

The innovation of NeuroBoruta lies in selecting a feature
subset that not only improves model accuracy but also enhances
prediction uncertainty. The proposed method extends its focus
from solely error-based performance to simultaneously optimiz-
ing both error-based metrics (e.g., F1 score) and confidence
measures (e.g., ECE and Brier score). NeuroBoruta was eval-
uated on the FracAtlas medical imaging dataset using transfer
learning with pre-trained models for feature extraction and three
UCI datasets. Comparative analyses with Boruta, RFE, and
all-features models demonstrated that NeuroBoruta excelled in
enhancing both predictive accuracy and uncertainty, particularly
in the FracAtlas dataset. However, in smaller datasets like PD,
NeuroBoruta’s advantages were less pronounced, underscoring
its sensitivity to data size.

To the best of the authors’ knowledge, the consideration
of prediction uncertainty in feature selection has been largely
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overlooked in the existing literature. Traditional wrapper-based
methods predominantly focus on optimizing prediction accuracy
by minimizing error rates, without explicitly addressing the
impact of feature selection on model uncertainty. This presents
an opportunity to extend current methodologies by adapting
wrapper methods to prioritize the selection of features that not
only improve predictive accuracy but also enhance the model’s
ability to quantify and manage uncertainty.

Moreover, the possible extend of this work could be systemat-
ically studying the effects of varying levels of noise on shadow
features and evaluating the robustness of different pre-trained
models under these conditions. Additionally, investigating the
potential of integrating filter-based methods that maximize in-
formation gain with the proposed method that aim to minimize
prediction uncertainty could provide deeper insights into the
development of more robust and uncertainty-aware feature se-
lection strategies.
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