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ABSTRACT In the era of Large Language Models (LLMs), Knowledge Distillation (KD) enables the transfer
of capabilities from proprietary LLMs to open-source models. This survey provides a detailed discussion
of the basic principles, algorithms, and implementation methods of knowledge distillation. It explores
KD’s impact on LLMs, emphasizing its utility in model compression, performance enhancement, and self-
improvement. Through the analysis of practical examples such as DistilBERT, TinyBERT, and MobileBERT,
the paper demonstrates how knowledge distillation can markedly enhance the efficiency and applicability of
large language models in real-world scenarios. The discussion encompasses the varied applications of KD
across multiple domains, including industrial systems, embedded systems, Natural Language Processing
(NLP), multi-modal processing, and vertical domains, such as medicine, law, science, finance, and materials
science. This survey outlines current KD methodologies and future research directions, highlighting its role
in advancing Al technologies and fostering innovation across different sectors.

INDEX TERMS Artificial intelligence (AI), large language model (LLM), knowledge distillation (KD),

optimization.

I. INTRODUCTION

Proprietary LLMs like GPT-3.5 [1], GPT-4 [2], Gemini [3],
and Claude2 have become groundbreaking technologies in
the rapidly changing field of artificial intelligence (Al),
profoundly altering our understanding of natural language
processing(NLP). These models, which stand out for their
enormous size and complexity, have opened up new possi-
bilities. They can now produce writing that resembles that
of a person and have advanced problem-solving abilities.
Their primary importance is found in their emergent skills [4],
where they exhibit capacities above and beyond their stated
training goals, allowing them to do a wide range of
activities with impressive efficacy. Their deep understanding
of context, nuance, and the intricacies of human language
enable them to excel in a wide array of applications, from
creative content generation to complex problem-solving [2].
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Despite these advantages of proprietary models, users may
still prefer open-source alternatives, even though they exhibit
certain limitations, such as suboptimal performance [5].
To mitigate these performance issues, knowledge distillation
can be utilized to transfer sophisticated capabilities from
proprietary LLMs to open-source models [6], [7]. Knowledge
distillation is a model compression technique in which
a smaller model (student model) learns from a larger
model (teacher model) to enhance its performance [8],
as illustrated in Figure 1. Open-source models can also use
knowledge distillation for self-improvement by employing
themselves as teacher models to improve their performance
continuously [7]. Figure 2 illustrates the role of knowledge
distillation in LLMs.

A. EVOLUTION

While private LLMs like GPT-4 [2] and Gemini [3] have
amazing capabilities, they are not without drawbacks. Their
greater cost, restricted accessibility, and adaptability are
major disadvantages [2]. These proprietary models are more
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expensive for individuals and smaller organisations to use and
frequently have restricted access. Concerns concerning data
privacy and security are raised by the fact that using these
proprietary LLMs frequently requires transferring sensitive
data to external servers [9]. This particular component is of
particular importance for users who handle sensitive data.
The general-purpose architecture of proprietary LLMs does
not always match the particular requirements of specialised
applications.

In contrast, open-source models such as LLaMA [10]
and Mistral [11] offer a number of noteworthy advantages
over proprietary LLMs. The accessibility and adaptability
of open-source models is one of its main advantages.
These models are more easily accessible to a wider range
of users, from lone researchers to smaller organisations,
since they are not restricted by licencing costs or usage
guidelines. This transparency encourages innovation and a
wide range of applications by creating a more inclusive
and collaborative research environment for Al. Furthermore,
because open-source LLMs are customisable, more spe-
cialised solutions can be created to fulfil certain requirements
that may not be addressed by large-scale, generic models.

However, open-source LLMs also have a set of disad-
vantages of their own, primarily due to their relatively
smaller size and resources in comparison to their proprietary
equivalents. The smaller model scale is one of the biggest
drawbacks, as it frequently leads to poorer performance
on real-world jobs requiring a lot of instructions [5]. With
fewer parameters, these models may struggle to represent
the breadth and depth of knowledge found in larger models
such as GPT-4. Moreover, there is usually less pre-training
expenditure required for these open-source models. This
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lower investment may result in a smaller set of pre-training
data, which could restrict the models’ capacity to comprehend
and manage a variety of specialised or diversified sub-
jects [12]. Additionally, open-source models frequently go
through fewer fine-tuning stages due to resource limitations.
A model’s performance must be optimised for certain jobs or
sectors, and insufficient fine-tuning can reduce the model’s
usefulness in niche applications. When these models are
contrasted with the highly optimised proprietary LLMs,
which are frequently designed to perform well in a broad
range of difficult circumstances, this shortcoming becomes
very clear [2].

As a result of the differences in performance between
proprietary and open-source LLMs, KD approaches have
become increasingly popular [6]. KD uses advanced propri-
etary models like GPT-4 or Gemini to enhance open-source
LLMs, similar to a student learning from a skilled instructor.

B. PURPOSE AND STRUCTURE OF THIS SURVEY

This paper aims to systematically summarize the current
research status and application progress of knowledge distil-
lation in large language models. The specific contributions
are as follows:

« Review of Basic Concepts and Technical Methods:
This paper provides a detailed discussion on the basic
principles, algorithms, and implementation methods of
knowledge distillation, including core techniques such
as soft targets, feature matching, and attention transfer.
By introducing these techniques, the paper offers a
comprehensive theoretical foundation for readers. These
techniques will be explained in detail in the next section.

« Exploration of Practical Applications Across Various
Layers: The paper analyzes the practical applications
of knowledge distillation in different layers, including
industrial systems, embedded systems, natural lan-
guage processing, multi-modal processing, and vertical
domains. These examples demonstrate the broad appli-
cation prospects of knowledge distillation in real-world
operations.

« Analysis of the Role in Improving Model Performance
and Efficiency: Through actual case evaluations, the
paper explores how knowledge distillation enhances
model performance and efficiency. It focuses not only
on the accuracy of the models but also discusses their
performance in reducing latency, improving throughput,
and decreasing model size, highlighting the multifaceted
benefits of knowledge distillation in practical applica-
tions.

o Prospects for Future Development: The paper discusses
the current challenges facing knowledge distillation and
proposes future research directions and potential appli-
cations. It emphasizes the importance of multi-modal
knowledge distillation, adaptive and online knowledge
distillation methods, and the development of more

56297



IEEE Access

D. Zhang et al.: Distilling Wisdom: A Review on Optimizing Learning From Massive Language Models

efficient and scalable distillation techniques to guide and
inspire future research.

o Empirical Case Studies: By analyzing real-world cases
such as DistilBERT, TinyBERT, and MobileBERT, the
paper illustrates how knowledge distillation can signif-
icantly improve the efficiency and feasibility of large
language models in practical applications. These cases
validate the effectiveness of the theoretical concepts and
provide valuable references for practical operations.

This survey aims to systematically summarize the current
research status and application progress of knowledge
distillation in large language models. The specific objectives
include reviewing the basic concepts and technical methods
of knowledge distillation with a detailed discussion on
its principles, algorithms, and implementation methods;
exploring practical applications across various layers such
as industrial systems [13], embedded systems [14], natural
language processing [15], [16], multi-modal processing [17],
and vertical domains [7], [18]; analyzing the role of
knowledge distillation in improving model performance
and efficiency through actual case evaluations; and looking
ahead to future development directions by discussing current
challenges and proposing future research directions and
potential applications.

The structure of the survey is outlined as follows: The sec-
ond section introduces the basic concepts and development
history of LLMs. The third section provides an overview
of KD and LLMs’ basic principles and technical methods.
The fourth section explores the specific applications of KD
in different application layers. The fifth section analyzes
the role of KD in optimizing model performance. The sixth
section addresses current challenges and future development
directions in the field. The seventh section concludes the
survey and proposes directions for future research initiatives.

Il. RELATED WORK

Knowledge distillation (KD) has gained significant attention
in the machine learning community as a crucial technique
for model compression and efficiency enhancement. This
section reviews notable works and surveys in the field of KD,
emphasizing advancements and applications across various
domains.

A. OVERVIEW OF LARGE LANGUAGE MODELS (LLMS)

The development of large language models have undergone
several key stages. From early statistical language models
to neural network-based deep learning models and the
current Transformer-based models, these models have con-
tinuously improved their ability to handle natural language
tasks [19], [20].

1) KEY STAGES OF DEVELOPMENT

Early language models were predominantly founded on
statistical methods, which leveraged techniques such as
n-grams and Markov models to predict subsequent words
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in a sequence. An n-gram model, for instance, would
estimate the probability of a word based on the occurrence
of the preceding n-1 words. Markov models, on the other
hand, utilized the Markov assumption, which states that the
probability of transitioning to the next state (or word) depends
only on the current state and not on the sequence of events that
preceded it [21]. Despite their simplicity and computational
efficiency, these models were significantly constrained by
their limited ability to capture long-range dependencies
within text. This limitation arose because statistical models
typically considered only a fixed window of previous words,
which resulted in a loss of context and coherence over longer
passages [22]. The emergence of neural network-based
models heralded a transformative era in language modeling.
Recurrent Neural Networks(RNNs) introduced the capability
to process sequences of arbitrary length by maintaining
a hidden state that could, in theory, encode information
from all previous time steps in a sequence [23]. However,
in practice, RNNs encountered difficulties with learning
long-range dependencies due to issues like vanishing and
exploding gradients [24]. To address these challenges, Long
Short-Term Memory (LSTM) networks were developed.
LSTMs are a type of RNN specifically designed to capture
long-term dependencies by incorporating memory cells
that can retain information across many time steps [25].
This innovation allowed LSTMs to significantly outperform
traditional RNNs in tasks requiring the modeling of longer
contexts. However, despite these advancements, both RNNs
and LSTMs remained computationally intensive and still
struggled with very long-range dependencies, paving the way
for the development of more sophisticated architectures [20].

2) INTRODUCTION OF TRANSFORMER ARCHITECTURE

The introduction of the Transformer architecture marked a
significant turning point in the development of large language
models. Transformers leverage a self-attention mechanism
that allows them to process all tokens in a sequence
simultaneously, rather than sequentially, enabling parallel
processing during training and inference. This innovation
greatly enhances the models’ efficiency and effectiveness,
allowing them to capture complex dependencies and contex-
tual information more effectively than previous models [26].

o Self-Attention Mechanism: The self-attention mecha-
nism is central to the Transformer’s ability to capture
long-range dependencies and contextual information.
By computing the similarity between each element
in the input sequence and all other elements, the
self-attention mechanism enables the model to focus on
the most relevant parts of the input when generating
each part of the output [20]. This approach allows
the model to weigh the importance of different words
differently, depending on their relevance to the current
context, which significantly improves the handling of
long-distance relationships in text.
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« Positional Encoding: Unlike RNNs and LSTMs, Trans-
formers do not process tokens in a sequential manner and
thus lack a built-in mechanism to understand the order of
tokens. To address this, Transformers employ positional
encoding, which provides information about the position
of each token in the sequence [27]. Positional encoding
involves adding a unique positional vector to each
token embedding, allowing the model to learn the
positional relationships between tokens. This enables
the Transformer to maintain the sequence order and
capture the positional context, which is crucial for
tasks like language modeling where word order impacts
meaning.

The combination of these features allows Transformers
to handle long-range dependencies more effectively and
efficiently, leading to significant improvements in perfor-
mance on a variety of natural language processing tasks.
The Transformer architecture has become the foundation
for many state-of-the-art language models, including BERT,
GPT-3, and T5, which have set new benchmarks in various
NLP tasks [27].

3) PROMINENT LLMs
Developed by OpenAl, the GPT (Generative Pre-trained
Transformer) series has become representative of generative
pre-trained models. GPT-3, with its 175 billion parameters,
has demonstrated an unprecedented ability to generate
human-like text and perform a variety of NLP tasks with few-
shot learning [28], [29]. This model utilizes a transformer
architecture that allows it to process text in a parallel
manner, enhancing its efficiency and capability to handle
complex language tasks. GPT-3’s versatility in generating
coherent text, answering questions, translating languages,
and summarizing content has set new benchmarks in the field
of NLP. The latest version, GPT-4, builds upon the foundation
laid by its predecessors, further enhancing the model’s
generative and comprehension capabilities. GPT-4 showcases
significant improvements in understanding context and
generating coherent and contextually accurate responses [2].
Its enhanced architecture and increased parameter count
enable it to perform more complex tasks and provide more
nuanced and accurate outputs, solidifying its position as a
leading model in the generative pre-trained category.
Introduced by Google, BERT (Bidirectional Encoder
Representations from Transformers) represents a signifi-
cant advancement in language modeling by employing a
bidirectional encoder representation. Unlike unidirectional
models that process text from either left-to-right or right-
to-left, BERT considers context from both directions during
training [27]. This bidirectional approach allows BERT to
understand the context of a word more effectively, leading
to substantial improvements in various NLP tasks such as
question answering, named entity recognition, and sentiment
analysis. BERT’s ability to capture the intricate relationships
between words in a sentence has made it a powerful tool
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for many NLP applications. Its architecture, which includes
multiple layers of transformers, enables it to learn deep
contextual representations, making it highly effective in
understanding the subtleties of human language.

Also from Google, T5 (Text-to-Text Transfer Transformer)
represents a unification of handling multiple NLP tasks
by converting all tasks into a text-to-text format. This
innovative approach simplifies the model architecture and
training process by treating every NLP task as a text
generation problem [30]. Whether the task is translation,
summarization, or question answering, TS5 processes the
input text and generates the desired output text, leveraging
the same underlying model. This text-to-text framework
greatly enhances T5’s versatility and performance across a
wide range of NLP tasks. By training on diverse datasets
and tasks, TS5 learns to generalize well across different
types of text processing challenges, making it a robust and
adaptable model for many applications in natural language
understanding and generation.

4) CORE PRINCIPLES OF LLMs

The core principles of LLMs are fundamentally rooted
in the Transformer architecture [26]. This architecture has
revolutionized the field of natural language processing
by introducing several key features that enhance model
performance and efficiency. LLMs leverage a two-phase
training approach that includes pre-training on large-scale
text data followed by fine-tuning on specific tasks. This
strategy allows the models to learn rich linguistic knowledge
and contextual information, making them highly versatile and
powerful for a wide range of applications.

o Self-Attention Mechanism: One of the most significant
innovations in the Transformer architecture is the
self-attention mechanism. This mechanism captures
long-range dependencies and contextual information by
computing the similarity between each element in the
input sequence and all other elements. Unlike traditional
sequential processing methods, which process tokens
one at a time, the self-attention mechanism allows the
model to focus on different parts of the input simultane-
ously. This parallel processing capability improves both
training and inference efficiency, enabling the model
to handle larger datasets and more complex tasks [26].
The self-attention mechanism ensures that the model can
dynamically weigh the importance of different words
in a sequence based on their relevance to the current
context, leading to more accurate and coherent text
generation.

« Simultaneous Processing: Another crucial advantage of
the Transformer architecture is its ability to process all
elements of the input sequence simultaneously. This is
a departure from the sequential nature of earlier models
like RNNs and LSTMs, which process tokens in a step-
by-step manner. The simultaneous processing enabled
by Transformers not only accelerates the training
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process but also allows the model to maintain a global & veicebt Sunthedia
view of the entire sequence, enhancing its ability to LARGE LANGUAGE MODELS - PIVOTAL INNOVATIONS
capture complex dependencies and interactions between

words.

o Pre-Training Phase: During the pre-training phase,
the model is exposed to a vast corpus of text data,
learning to predict the next word in a sentence. This
unsupervised learning process enables the model to
acquire a deep understanding of syntax, semantics,
and world knowledge. By learning from diverse and S—erl ) 1999
extensive text data, the model builds a comprehensive
language representation that can be applied to various
downstream tasks [28]. The pre-training phase is crucial
as it equips the model with a broad base of knowledge
that can be fine-tuned for specific applications.

o Fine-Tuning Phase: Following pre-training, the model
undergoes fine-tuning on specific tasks to enhance its
performance in those areas. Fine-tuning involves adjust-
ing the pre-trained model using task-specific labeled
data, allowing the model to specialize in particular
tasks such as question answering, text classification,
or sentiment analysis. This phase ensures that the model
can adapt its general language understanding to meet the
requirements of specific applications, achieving higher
accuracy and relevance in its outputs [27], [28].

In summary, the evolution of LLMs from statistical
models to sophisticated Transformer-based architectures
has dramatically enhanced their ability to understand and
generate human language. The continuous improvements in
model architecture, training techniques, and the leveraging of
large-scale datasets have propelled the capabilities of these
models, making them indispensable tools in the field of S
natural language processing. Understanding the history of
large language models is crucial (Figure 3).

Additionally, Minghao et al. extensively reviewed recent
advancements in large language models (LLMs) and their
various architectures, including encoder-only, decoder-only,
and encoder-decoder models [32]. Encoder-only models,
such as BERT and RoBERTa, transform input data into
lower-dimensional vectors, capturing contextual information.
In contrast, decoder-only models like GPT-1 through GPT-
40 and Mistral utilize uni-directional attention mechanisms
to generate tokens based solely on previous ones. Encoder-
decoder models, represented by TS5 and the Switch Trans-
former, combine both encoder and decoder components
of the transformer architecture. A notable aspect of the
Switch Transformer is its use of Mixture of Experts (MoE)
technology, which selectively activates specific parts of the
model in response to input, thereby improving computational
efficiency. Furthermore, they also argued that the GLM model
employs a.unique approach by Qmitting sequences of wo.rds & voicebot esles Synthedia
from the input and concentrating on their reconstruction
instead of merely masking tokens. This strategy enables GLM FIGURE 3. History of LLMs. Souce from:voicebot.ai [31].
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to outperform BERT while using fewer parameters. Figure 4
illustrates the evolutionary tree that highlights the progression
of LLMs across different architectural.

B. OVERVIEW OF KNOWLEDGE DISTILLATION

Knowledge distillation is a technique used to compress
and transfer knowledge from a large, complex model(the
teacher) to a smaller, simpler model(the student). This
process involves the student model learning to mimic the
behavior of the teacher model, thereby achieving similar per-
formance with fewer parameters and reduced computational
requirements [33], [34]. The primary objective of knowledge
distillation is to retain the accuracy and capabilities of the
large model while significantly reducing its size and inference
time.

The core techniques of knowledge distillation revolve
around three main approaches: soft targets, feature matching,
and attention transfer. Instead of using hard labels for
training, the student model is trained on the soft targets
provided by the teacher model, which include the probability
distribution of the output classes, helping the student
model capture the teacher model’s learned knowledge more
effectively [33], [34]. The term ‘‘soft target” denotes the
probability distribution from a teacher model that provides
confidence scores for various answers, helping the student
model learn more efficiently than just using the correct
answer [35], [36]. Feature matching involves using the
intermediate features (activations) of the teacher model to
guide the learning process of the student model, allowing
the student to learn richer and more nuanced features [34],
[37]. Attention transfer involves transferring the attention
maps of the teacher model to the student model, highlighting
important areas in the input data that the teacher model
focuses on, thus helping the student learn where to pay
attention [37]. By guiding a smaller model to concentrate
on the significant aspects of the data identified by a larger
model, this technique contributes to improved accuracy in
predictions [38], [39].

The current research of KD focuses on several key
areas, including cross-modal knowledge distillation, self-
distillation, online knowledge distillation, and distillation
for robustness and generalization. Cross-modal KD extends
distillation techniques to scenarios where the teacher and
student models operate on different modalities, such as
distilling knowledge from a vision model to a language
model [40], [41]. Self-distillation involves a model distilling
knowledge into itself, improving its own performance
without the need for a separate teacher model, which can be
particularly useful in iterative training processes [42]. Online
KD trains multiple student models simultaneously, allowing
them to learn from each other in an online setting without a
predefined teacher model, enhancing the performance of all
participating models [17]. Research also explores how KD
can improve the robustness and generalization capabilities
of models, making them more resilient to adversarial attacks
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and better at handling diverse data distributions [43], [44].
An overview of this survey on KD of large language models
is presented in Figure 5.

1) ADDITIONAL TECHNIQUES AND APPLICATIONS

Based on the current situation, there are some optimizations
for the student model. This allows the student model to adapt
to a variety of fields.

Parameter Pruning: Parameter pruning is a technique
aimed at reducing the size of a model by removing
redundant or less significant parameters. By identifying and
eliminating weights that contribute minimally to the model’s
performance, pruning helps in streamlining the model,
thereby reducing its complexity and memory footprint. This
process not only lowers the computational cost but also
enhances inference speed, making the model more efficient
for deployment in resource-constrained environments [45].
The pruning process involves techniques such as weight
magnitude pruning, where parameters with the smallest
absolute values are removed, or more sophisticated methods
that consider the impact of parameters on the overall network
performance.

Quantization: Quantization is another effective technique
used to improve model efficiency. This method involves
reducing the precision of the weights and activations from
higher precision (such as 32-bit floating-point) to lower pre-
cision (such as 8-bit integer). By converting the model param-
eters to lower bit-widths, quantization significantly reduces
the model size and the amount of computation required for
inference [46]. Despite the reduction in precision, quantized
models often maintain comparable performance levels to
their full-precision counterparts due to careful calibration
and optimization processes. Quantization can be particularly
beneficial in scenarios where computational resources are
limited, such as on edge devices or mobile platforms.
Together, parameter pruning and quantization contribute to
making LLMs more practical for real-world applications by
enhancing their efficiency without substantially compromis-
ing their performance.

Adaptive KD: Adaptive methods involve dynamically
adjusting the distillation process based on the difficulty
of the samples [47]. This can help to focus the training
on harder samples where the student model needs more
guidance from the teacher model. In adaptive KD, the training
process is tailored to focus more on challenging samples
where the student model requires additional guidance. This
adaptive approach ensures that the student model receives
more focused and effective learning signals, which can lead
to better generalization and robustness. For instance, if the
student model performs well on easier samples but struggles
with harder ones, the distillation process will emphasize
these harder samples, providing more detailed and nuanced
knowledge transfer from the teacher model. This targeted
training helps in improving the student model’s performance
more efficiently compared to uniform distillation methods.
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FIGURE 4. The evolutionary tree of LLMs [32].

Adaptive KD can be implemented using various techniques,
such as adjusting the weight of each sample’s loss based on
its difficulty or using an adaptive temperature in the softmax
function to control the smoothness of the teacher model’s pre-
dictions. These methods ensure that the distillation process is
more responsive to the learning needs of the student model,
leading to more efficient and effective training outcomes.
Model compression techniques like KD, pruning, quanti-
zation, and adaptive KD each have unique pros and cons.
KD transfers knowledge from a larger teacher model to
a smaller student model, significantly reducing size while
maintaining accuracy [6], especially in natural language
processing [16]. However, it relies on large labeled datasets
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and struggles with very small models [6]. Pruning removes
redundant weights or neurons for better compression and
lower computational demands, but often sacrifices accuracy
and requires fine-tuning [48], [49]. Quantization reduces
model precision, saving memory and speeding up inference,
though it can degrade accuracy in complex tasks without
specialized hardware [50]. Adaptive KD customizes the
distillation process based on input difficulty or model
alignment, improving performance but increasing training
complexity [47], [51]. While KD and its adaptive forms
balance performance and size, pruning and quantization
excel in extreme compression scenarios, highlighting the
complementary nature of these methods.
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2) EMERGING TRENDS

With the development of KD of LLMs, there are many
prospects for the future direction of this technique. Here are
some of the main possible directions.

Multi-Modal KD: Integrating information from multiple
modalities, such as text, images, and audio, into a single
model is an emerging trend in KD. This approach leverages
the complementary strengths of different data types to create
more robust and versatile models. By distilling knowledge
from models trained on diverse modalities into a unified
model, researchers can develop systems capable of handling
a wider range of tasks and providing richer, context-
aware responses. For instance, a multi-modal model can
understand and generate descriptions for images, respond
to audio queries, and interpret text, making it highly
useful in applications like virtual assistants and automated
customer service [40]. Figure 6 illustrates the Multimodal
Hierarchical Knowledge Distillation for Medical Visual
Question Answering (MHKD-MVQA), which comprises
five distinct modules: Multimodal Pretrain, Multimodal
Feature Extraction, Multimodal Hierarchical Knowledge
Distillation, Medical VQA, and Answer Prediction [52].
The integration of multiple modalities enhances the model’s
ability to capture nuanced information and improve its
generalization capabilities across various tasks.

Distillation for Model Robustness: Recent studies have
focused on using KD to improve the robustness of mod-
els against adversarial attacks. Adversarial attacks involve
manipulating input data in subtle ways to deceive a model into
making incorrect predictions. By training a teacher model
with adversarial examples and then transferring these robust
features to a student model, KD can help the student model
become more resilient to such attacks. This process involves
exposing the student model to clean and adversarially
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perturbed examples during training, allowing it to learn
robust representations less susceptible to manipulation. This
technique improves the security and reliability of Al systems,
particularly in sensitive applications such as cybersecurity
and autonomous driving [43], [44].

Continual Learning and Online Distillation: In dynamic
environments where data continuously evolve, traditional
static models often struggle to remain relevant. Online
distillation methods address this challenge by enabling
models to be updated in real time as new data becomes
available. This continuous learning approach ensures that the
model stays up-to-date with the latest information and can
quickly adapt to new patterns. By continuously transferring
knowledge from an updated teacher model to a student
model, online distillation helps maintain high performance
without the need for complete retraining from scratch.
This is particularly beneficial in scenarios such as real-
time analytics, personalized recommendations, and evolving
user preferences [17]. In various industrial applications,
online distillation enhances machine health prognosis on
edge devices [53], while also contributing to improvements
in robustness and accuracy across diverse domains, including
video surveillance and autonomous driving [54]. Continual
learning through online distillation helps to maintain the
effectiveness and relevance of the model over time.

Self-Supervised KD: In many practical situations, labeled
data are scarce and expensive to obtain. Self-supervised
learning combined with KD offers a solution to this problem.
In this approach, the student model learns useful represen-
tations using unlabeled data [55]. This process enables the
student model to acquire meaningful patterns and features
from the vast amounts of available unlabeled data, enhancing
its performance on downstream tasks. Self-supervised KD
is particularly useful in domains such as natural language
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processing and computer vision, where the abundance of
unlabeled data can be leveraged to improve model accuracy
and efficiency [56].

3) CASE STUDIES

KD is a versatile and powerful technique that significantly
enhances the deployment of LLMs by creating smaller, more
efficient versions without a substantial loss of performance.
The ongoing research and emerging trends in KD continue
to expand its applicability, making advanced Al models more
accessible and practical for various real-world applications.
Here are some case studies.

DistilBERT: Developed by Hugging Face, DistilBERT is a
distilled version of BERT (Bidirectional Encoder Represen-
tations from Transformers) that retains 97 percent of BERT’s
performance while being 60 percent faster and 40 percent
smaller [15]. DistilBERT achieves this remarkable efficiency
by applying KD techniques to compress the original BERT
model. During the distillation process, a smaller student
model learns to mimic the outputs of the larger BERT teacher
model. The result is a model that maintains a high level
of accuracy in natural language understanding tasks but is
much more efficient in terms of computational resources.
DistilBERT’s reduced size and increased speed make it
particularly useful for applications where computational
efficiency is critical, such as real-time language processing
on web servers.

TinyBERT: Similar to DistilBERT, TinyBERT is another
compressed version of the BERT model designed to achieve
significant reductions in model size and inference time
while maintaining minimal performance loss [16]. TinyBERT
utilizes a two-stage learning framework that includes general
distillation and task-specific distillation. In the general
distillation stage, the student model learns from the teacher
model’s intermediate representations and predictions. In the
task-specific distillation stage, the student model is further
fine-tuned on downstream tasks to optimize its performance.
TinyBERT’s efficiency and performance make it suitable
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for deployment in scenarios with limited computational
resources, such as mobile applications and edge devices.

MobileBERT: MobileBERT is an optimized version of
BERT specifically designed for mobile and edge devices.
It combines KD with architectural optimizations to deliver
high performance in resource-constrained environments [57].
MobileBERT achieves its efficiency through several tech-
niques, including bottleneck structures and a carefully
designed teacher-student learning framework. This model
is significantly smaller and faster than the original BERT,
making it ideal for on-device Al applications where memory
and processing power are limited. MobileBERT’s ability to
perform complex language tasks on mobile devices without
relying on cloud-based resources enables a wide range of
applications, from personal assistants to real-time translation
services.

Sun et al. conducted a comparative analysis of the various
models and demonstrated that MobileBERT significantly
outperforms all other models of smaller or comparable
sizes [57], as illustrated in Tables 1 and 2. The analysis in
Table 1 utilized the SQuAD development datasets based on
Exact Match (EM) and F1 scores, alongside model parameter
size (#Params) for each model. SQuAD is a reading com-
prehension dataset, where version 1.1 includes guaranteed
answers, while version 2.0 introduces unanswerable ques-
tions to enhance complexity. Conversely, Table 2 employed
the GLUE benchmark for its comparative assessment, which
includes a variety of language understanding tasks like
CoLA, SST-2, MRPC, STS-B, QQP, MNLI, QNLI, and RTE.
The evaluation metrics include model parameters (#Params),
FLOPS (computational cost), latency, and task-specific
accuracy or correlation scores. The GLUE score is an
aggregated metric representing overall performance across
these tasks.

Table 1 demonstrates the trade-offs between model size,
efficiency, and performance across different use cases. BERT
BASE serves as a baseline with strong performance but a high
parameter count, while smaller models like DistilBERT and
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TABLE 1. Comparison of models on SQUAD dev datasets [57].

Model #Params SQuAD vl.1 SQuAD v2.0
EM F1 EM F1
BERTgASE 109M 80.8 885 742t 771t

DistilBERTpASE-6L 66.6M 79.1 86.9 - -
DistilBERTgasE 61 66.6M 78.1 862 660  69.5
DistilBERTgasg41 | 52.2M 718 812 606  64.1

TinyBERT 14.5M 7277 82.1 65.3 68.8

MobileBERT TNy 15.1M 81.4  88.6 74.4 77.1
MobileBERT 25.3M 829 90.0 76.2 79.2
MobileBERT w/o OPT 25.3M 834  90.3 77.6 80.2

TinyBERT reduce parameters at the cost of some accuracy.
On the other hand, larger models, such as BERT and Mobile-
BERT, without optimizations, offer improved accuracy but
come with higher computational costs. MobileBERT stands
out as a balanced option, combining efficiency with strong
performance, making it suitable for tasks that require both
speed and accuracy.

Table 2 further explores these trade-offs in natural
language processing, showing that while BERTgasg is
a high-performing benchmark, its latency and resource
demands limit its use in real-time applications. Models
like DistilBERT and those using progressive knowledge
distillation (PKD) effectively minimize size and inference
costs while maintaining competitive accuracy. MobileBERT
stands out with a GLUE score of 78.5 and reduced latency,
making it suitable for high-efficiency applications. Overall,
optimized models like MobileBERT can achieve state-
of-the-art performance while remaining computationally
efficient, making them suitable for edge devices and resource-
constrained environments.

There are some more KD techniques and models that
each have unique skills and application areas. XLNet [58]
employs an auto-regressive pre-training method, leveraging
large-scale text data through permutation language mod-
eling to enhance NLP task performance and contextual
understanding. ERNIE [59] integrates knowledge, combining
large-scale text data and knowledge graphs to achieve
enhanced contextual representation. ROBERTa [60] focuses
on robust optimization, using dynamic masking to improve
NLP task performance and robustness. Electra [61] enhances
pre-training efficiency and speed through replaced token
detection. DeBERTa [62] employs a disentangled attention
mechanism, improving language understanding through
enhanced contextual encoding. SqueezeBERT [63] achieves
efficient inference and edge deployment through model
compression. ERNIE 2.0 [64] integrates incremental knowl-
edge, combining large-scale text data and domain-specific
knowledge to achieve domain adaptability and versatility.
SpanBERT [65] employs span-based pre-training, using
span boundary objectives to enhance NLP task perfor-
mance and entity recognition. CamemBERT [66] focuses
on language-specific adaptation for French, using language-
specific pre-training to improve French NLP task perfor-
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mance. These models demonstrate the broad application of
KD across various tasks and domains, highlighting the unique
advantages of different models in compression, efficiency,
performance, and versatility.

Ill. APPLICATIONS OF KNOWLEDGE DISTILLATION IN
VARIOUS DOMAINS

KD has found extensive applications across multiple
domains, leveraging its ability to transfer the knowledge from
large models to smaller ones, thereby improving efficiency
and performance. Based on the provided diagram, here are
the specific applications of KD in various domains.

A. AGENT

1) INDUSTRIAL SYSTEM

KD plays a crucial role in enhancing all aspects of industrial
systems, such as for remaining useful life (RUL) prediction
of machine [13]. In predictive maintenance, KD allows
smaller models to more accurately predict equipment failures,
enabling timely maintenance operations, reducing downtime
and improving overall operational efficiency [67]. Table 4
demonstrates the improvement in performance achieved
through KD, which leads to increased accuracy in moni-
toring industrial processes. In addition, in automated safety
systems, distillation models can quickly and accurately
detect anomalies, which is critical to early identification
and resolution of potential safety issues, thereby maintaining
safer industrial operations [68]. KD optimizes the utilization
of software library calls and mechanical equipment. Smaller
models learn from larger models to make efficient use of
resources and improve the efficiency of software develop-
ment and mechanical operation, especially in environments
with limited computing resources [69]. By learning from
the experience of larger models, smaller models can achieve
efficient use of resources, resulting in time and cost savings
during development and operation of industrial systems.

In the operation process, it supports automated task
assignment, schedule prediction, and risk assessment. Dis-
tilling complex scheduling algorithms into smaller, more
efficient models enables organizations to manage tasks
more accurately and efficiently [13]. This approach allows
accurate prediction and adjustment of progress, ensuring
optimal resource allocation and timely completion of tasks.
In addition, the distillation model enhances risk assessment
capabilities to better identify and mitigate potential risks,
thereby improving overall operational resilience [70].

In industrial product defect detection, models based on
attention mechanism and KD can effectively improve the
detection accuracy, especially when dealing with complex
backgrounds and diverse product types [71]. This is of great
significance for ensuring product quality and reducing the
scrap rate in the production process. In real-time industrial
applications, a wide range of KD models can provide
effective end-to-end anomaly detection to ensure system
stability and reliability [72]. Multi-stage attention mechanism
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TABLE 2. Comparison of models on GLUE benchmark [57].

Model #Params #FLOPS Latency CoLA SST-2 MRPC STS-B QQP MNLI-m/mm QNLI RTE GLUE

BERTgAsE 109M 22.5B 342 ms 52.1 93.5 88.9 85.8 71.2 84.6/83.4 90.5 66.4 78.3

DistilBERTgaSE-6L T 66.2M 11.3B - - 92.0 85.0 70.7 81.5/81.0 89.0 65.5 -

DistilBERTgaSE4L T 52.2M 7.6B - 32.8 91.4 82.4 76.1 68.5 78.9/78.0 85.2 54.1 -

TinyBERT* 14.5M 1.2B - 433 92.6 86.4 79.9 71.3 82.5/81.8 87.7 62.9 75.4

MobileBERT Ny 15.1IM 3.1B 40 ms 46.7 91.7 87.9 80.1 68.9 81.5/81.6 89.5 65.1 75.8

MobileBERT 25.3M 5.7B 62 ms 50.5 92.8 88.8 84.4 70.2 83.3/82.6 90.6 66.2 77.7

MobileBERT w/o OPT 25.3M 5.7B 192 ms 51.1 92.6 88.8 84.8 70.5 84.3/83.4 91.6 70.4 78.5
TABLE 3. Overview of mentioned knowledge distillation techniques and models.

Techniques and Models | Skills Seed Knowledge Knowledge Distilla- | Objectives

tion

DistilBERT [15] Compression BERT Dataset Teacher-Student Compression, Speed

TinyBERT [16] Compression BERT Dataset Teacher-Student Compression, Speed

MobileBERT [57] Compression, Edge De- | BERT Dataset Teacher-Student Edge Deployment

ployment

Multi-Modal

[41]

Knowledge Distillation

Multi-Modal Processing

Text, Image Datasets

Multi-Modal

Versatility, Robustness

Robustness [44]

Distillation for Model

Adversarial Robustness

Adversarially Perturbed
Data

Robust Features

Adversarial Robustness

Knowledge Graphs

tion

Self-Supervised Unlabeled Data Utiliza- | Unlabeled Data Self-Supervised Representation Learning

Knowledge Distillation | tion

[55]

GPT-3 Series [1] Generative Pre-training Large-Scale Text Data Pre-training Few-Shot Learning

GPT-4 [2] Generative Pre-training Large-Scale Text Data Pre-training Contextual Understanding

Gemini [3] Multi-Modal Pre- | Large-Scale Text, Im- | Multi-Modal Versatility, Robustness
training age, and Audio Data Integration

BERT [27] Contextual Large-Scale Text Data Bidirectional Train- | NLP Tasks Performance
Representation ing

T5 [30] Text-to-Text ~ Transfer | Large-Scale Text Data Text-to-Text Frame- | Versatility, Performance
Learning work

XLNet [58] Auto-regressive Pre- | Large-Scale Text Data Permutation NLP Tasks Performance,
training Language Modeling | Contextual Understanding

ERNIE [59] Knowledge Integration Large-Scale Text Data, | Knowledge Integra- | Enhanced Contextual Rep-

resentation

RoBERTa [60] Robust Optimization Large-Scale Text Data Dynamic Masking NLP Tasks Performance,
Robustness
Electra [61] Sample Efficiency Large-Scale Text Data Replaced Token De- | Efficient Pre-training,
tection Speed

DeBERTa [62]

Disentangled Attention
Mechanism

Large-Scale Text Data

Enhanced
Contextual Encoding

Improved Language Under-
standing

SqueezeBERT [63]

Efficient Inference

Large-Scale Text Data

Model Compression

Speed, Edge Deployment

ERNIE 2.0 [64]

Incremental Knowledge
Integration

Large-Scale Text
Data, Domain-Specific
Knowledge

Continual Learning

Domain Adaptability, Ver-
satility

SpanBERT [65]

Span-based Pre-training

Large-Scale Text Data

Span Boundary Ob-
jectives

NLP Tasks
Enhanced
Recognition

Performance,
Entity

CamemBERT [66]

Language-Specific
Adaptation (French)

Large-Scale Text Data

Language-Specific
Pre-training

NLP Tasks Performance for
French

sample correlation KD technology significantly improves the

2) TOOL USE

performance and robustness of the model by extracting and
utilizing the correlation information between samples [73].
This is especially important for maintaining an efficient
model performance in a diverse and dynamically changing
industrial environment [74].
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Recent developments in LLMs have demonstrated significant
advancements in handling various tasks. However, these
models often encounter challenges when dealing with
large numerical values or performing complex mathemat-
ical calculations [75], [76]. Consequently, there has been
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TABLE 4. Accuracy comparison of different methods [67].

DLFN DLFN- W/O W/0 KD-SCL
KD Mem & | Hard
Hard
Acc | 80,67% 82,47 % 85,43% 87,23% 88,82%

a growing focus on equipping LLM agents with tool-
use capabilities. Traditional methods have predominantly
relied on human-curated data for training [77] or prompt
engineering [78].

More recently, distillation-based approaches have emerged
as promising alternatives [78], [79], [80]. Toolformer uti-
lizes a self-supervised approach, minimizing the need for
extensive human annotations by identifying essential APIs
and distilling this knowledge into the model. This method
has shown superior performance, with the GPT-J-based
Toolformer outperforming models like OPT(66B) and GPT-
3(175B) [77]. Graph-ToolFormer focuses on enabling LL.Ms
to reason over complex graph data by integrating external
graph reasoning APIs. This model uses ChatGPT to create
a large graph reasoning dataset for training [81]. Gorilla
addresses inaccuracies in generating API inputs, reducing
hallucination by collecting numerous models from platforms
like HuggingFace and Torch Hub, and utilizing GPT-4
for generating synthetic instruction data [82]. GPT4Tools
enhances open-source LLMs such as LLaMA and OPT
with multimodal tool-use capabilities previously exclusive
to advanced proprietary models like ChatGPT and GPT-
4. This involves creating an instruction-following dataset
using multimodal contexts and the Low-Rank Adaptation
optimization [83].

ToolAlpaca [84] proposes a framework for augmenting
compact language models with tool-use skills for embodied
intelligence. It compiles a dataset with nearly 4000 instances
from over 400 real-world tool APIs across 50 categories,
with documentation generated by ChatGPT. ToolLLM offers
a comprehensive framework for enhancing tool-use profi-
ciency in LLMs, focusing on data creation, model training,
and evaluation by distilling knowledge from ChatGPT. Their
ToolLLaMA model excels in executing complex instructions
and managing new APIs [85]. CRAFT introduces a general
framework for tool creation and retrieval, leveraging GPT-
4 to generate code snippets that smaller LLMs can use
during inference [86]. Confucius employs a tiered training
strategy for mastering tool use through a curriculum and
iterative self-instruction from introspective feedback [87].
MLLM-Tool integrates multimodal encoders with open-
source LLMs, enabling interpretation of visual or audio
content embedded instructions. This method also uses GPT-
4 to generate initial instruction-answer pairs [88]. Shen et
al. propose a multi-LLM framework to enhance tool-use
capabilities by decomposing the ability into planner, caller,
and summarizer roles, supported by a two-stage training
strategy using ChatGPT and GPT-4 for collecting execution
trajectories [89]. Yuan et al. address the issue of lengthy
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tool documentation hindering tool utilization by proposing
EASYTOOL, which distills essential information from
extensive documentation using ChatGPT for ground truth
summarization [86].

3) PLANNING

In the context of high-level task decomposition, LLMs have
demonstrated their ability to generate plausible goal-driven
action plans without prior training, as shown by Huang et al.
[90]. Their research introduces non-invasive tools to enhance
model executability and evaluates these methods through
human assessment to balance executability and semantic
accuracy. Most existing methods utilize prompting strategies
for task planning or rely on human-curated data for training.

Recent advancements have also seen the emergence of dis-
tillation methods. FireAct [95] refines LLMs by fine-tuning
smaller models using agent trajectories derived from various
tasks and prompting techniques, demonstrating performance
enhancement with GPT-4-generated trajectories. AgentTun-
ing [78] enhances LLM performance in executing agent tasks
by utilizing a dataset called Agentlnstruct and applying a
hybrid instruction-tuning approach. Lumos [96] introduces
a framework for training agents using a unified data format
and modular architecture, facilitating the decomposition of
tasks into subgoals and actionable steps. TPTU-v2 [97]
improves task planning and tool usage in real-world scenarios
with a framework that includes an API Retriever, an LLM
Finetuner, and a Demo Selector. AUTOACT [80] proposes
a self-instruct method to generate planning trajectories with
limited initial data, employing a division-of-labor strategy to
create specialized sub-agents for different task aspects.

Distillation also supports the training of embodied multi-
modal agents. For example, Sumers [91] enhance Al
agents’ ability to follow instructions by using pretrained
vision-language models for supervision, leveraging model
distillation and hindsight experience replay in a simulated
3D environment. Emma [86] addresses the inefficiency of
training embodied agents in noisy visual worlds by using
imitation learning in a simulated environment, guided by an
expert Language Model.

In terms of planning, KD provides essential support for
automated task allocation [92], schedule forecasting [93],
and risk assessment [94]. By distilling complex scheduling
algorithms into smaller, more efficient models, organizations
achieve more accurate and efficient task management [92].
This process enables precise forecasting and adjustment of
schedules, ensuring optimal resource allocation and timely
task completion. Additionally, the enhanced risk assessment
capabilities of distillation models help organizations identify
and mitigate potential risks more effectively, improving
overall operational resilience [94].

In conclusion, the application of KD in industrial systems
demonstrates its potential to transform various operational
processes. By enhancing predictive maintenance, optimizing
tool use, and improving programs, KD helps improve the
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TABLE 5. Overview of KD in agent.

Aspect Description References
Industrial System - Predictive Maintenance Predict failures, timely maintenance, reduce downtime, improve efficiency. [13], [67]
Industrial System - Automated Safety Systems  Detect anomalies, early identification, resolve safety issues, maintain safer operations. [68]
Industrial System - Resource Utilization Optimize resource utilization, improve efficiency, limited computing resources. [69]
Industrial System - Task Assignment Automated task assignment, schedule prediction, risk assessment, manage tasks efficiently.  [13], [70]
Industrial System - Product Defect Detection Improve detection accuracy, complex backgrounds, diverse product types, ensure quality. [71]
Industrial System - Anomaly Detection End-to-end anomaly detection, system stability, reliability, real-time applications. [72]
Industrial System - Sample Correlation Sample correlation, enhance performance, robustness, diverse environments. [73], [74]
Tool Use - Toolformer Self-supervised, identify APIs, distill knowledge, superior performance. [77]

Tool Use - Graph-ToolFormer Graph reasoning, external APIs, ChatGPT dataset. [81]

Tool Use - Gorilla Reduce inaccuracies, collect models, synthetic instruction data. [82]

Tool Use - GPT4Tools Enhance multimodal tool-use, instruction-following dataset. [83]

Tool Use - ToolAlpaca Tool-use skills, embodied intelligence, real-world tool APIs. [84]

Tool Use - ToolLLM Tool-use proficiency, data creation, model training, evaluation. [85]

Tool Use - CRAFT Tool creation, retrieval, code snippets, inference. [86]

Tool Use - Confucius Tiered training, curriculum, self-instruction, introspective feedback. [87]

Tool Use - MLLM-Tool Multimodal encoders, interpret visual/audio content, GPT-4 instructions. [88]

Tool Use - Multi-LLM Decompose ability, planner, caller, summarizer roles, training strategy. [89]

Tool Use - EASYTOOL Distill essential information, extensive documentation, ChatGPT summarization. [86]
Planning - High-level Task Decomposition Generate action plans, executability, semantic accuracy. [90]
Planning - Embodied Multi-Modal Agents Follow instructions, vision-language models, model distillation, simulated environment. [86], [91]
Planning - Task Allocation Automated task allocation, accurate task management. [92]
Planning - Schedule Forecasting Schedule forecasting, adjustment, optimal resource allocation. [93]
Planning - Risk Assessment Risk assessment, identify, mitigate risks, improve resilience. [94]

efficiency, safety, and reliability of industrial operations.
These improvements highlight KD’s value in industrial envi-
ronments where maximizing performance and minimizing
downtime are key goals. Integrating KD into these systems
not only takes advantage of large models but also ensures that
the benefits of advanced Al technology are fully realized in
resource-constrained environments.

B. ASSIST

1) EMBEDDED

KD significantly enhances the deployment and performance
of compact models in a variety of applications in embedded
systems, such as smart home devices, mobile devices,
vehicle systems, drones, and robotics. Despite the typical
limitations in compute and storage resources within these
embedded systems, KD enables smaller models to maintain
performance levels comparable to larger models [14]. For
instance, in smart home devices, KD improves speech
recognition and natural language understanding, thereby
making interactions with virtual assistants more efficient and
accurate. This improvement ensures that users can enjoy
seamless and intuitive smart home controls, enhancing the
overall user experience. As Jaiswal and Gajjar [98] discuss,
deep neural network compression via KD is particularly
beneficial for embedded applications, enabling sophisticated
functionalities without the need for extensive computational
resources.

In mobile devices, KD plays a crucial role in saving battery
life while still delivering advanced features. By learning from
larger models, smaller models can efficiently perform tasks
such as image recognition and personal assistance without
consuming excessive power. This balance of performance and
efficiency allows users to enjoy features like real-time image
analysis and responsive virtual assistants while maintaining
long battery life, making their devices more practical
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and satisfying. Xie et al. [99] highlight how distillation
embedded absorbable pruning can be employed to achieve
fast object re-identification, which is essential for many
mobile applications.

Furthermore, KD is pivotal in vehicle systems, drones,
and robotics, where efficient and accurate perception is
critical. Shaw et al. [100] demonstrated the application
of teacher-student KD for radar perception on embedded
accelerators, which underscores the potential of KD in
enhancing the capabilities of resource-constrained embedded
systems.

In the realm of fault diagnosis and health monitoring,
Gong et al. developed a lightweight method based on
KD for embedded systems, emphasizing the method’s
ability to maintain high diagnostic accuracy with reduced
computational overhead [101]. Similarly, Chen et al. [102]
presented a lightweight deep learning network for efficient
crack segmentation on embedded devices, highlighting the
practical applications of KD in structural health monitoring.
In addition, Cho and Lee [103] focused on building compact
convolutional neural networks for embedded intelligent
sensor systems using group sparsity and KD, demonstrating
significant improvements in both model compactness and
performance. Li et al. [104] introduced embedded mutual
learning, a novel online distillation method that integrates
diverse knowledge sources, further showcasing the versatility
and efficacy of KD in various embedded applications.

Wang et al. [105] explored collaborative KD for heteroge-
neous information network embedding, which can be crucial
for improving the interoperability and performance of embed-
ded systems in complex environments. Xiao et al. [106]
proposed a distillation sparsity training algorithm to accel-
erate convolutional neural networks in embedded systems,
emphasizing the importance of efficient training techniques
in constrained environments. Lastly, Xiong et al. [107] inves-
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tigated ability-aware KD for resource-constrained embedded
devices, highlighting how KD can be tailored to the
specific capabilities of different devices to optimize their
performance.

In summary, KD significantly advances the deployment
of compact models in embedded systems by enabling high
performance with limited resources. This makes KD an
invaluable tool for enhancing the functionality and user
experience of various embedded applications, from smart
home devices to mobile phones and beyond.

2) SOFTWARE PLUG-IN

KD significantly enhances the capabilities of software
plugins, including browser plugins, text editor plugins, and
content management systems (CMS). The distillation model
enables these plugins to provide advanced functionality
without consuming excessive system resources. For exam-
ple, browser plugins can provide language translation and
contextual recommendations in real-time, increasing user
productivity and convenience. This approach allows for the
efficient use of resources while delivering high performance,
as demonstrated by Chen [108] in their work on distilling
crowd knowledge from software-specific QA discussions to
assist developers’ knowledge search. Similarly, text editor
plugins can provide enhanced syntax checking, style sugges-
tions, and predictive text capabilities to make writing and
editing tasks more efficient. These functionalities, supported
by KD, ensure that even lightweight models can offer robust
assistance, as shown by Guo et al. [109], who developed a
lightweight CNN for object detection with sparse models and
KD.

In CMS applications, KD allows for advanced content
management features such as automatic tagging, catego-
rization, and personalized content push, while ensuring the
system remains responsive and efficient. Shi et al. [110]
demonstrated the effectiveness of compressing pre-trained
models into compact sizes without losing significant perfor-
mance, which is essential for maintaining responsive CMS
applications.

Additionally, KD has proven useful in various other
applications. Sun et al. [111] explored a lightweight dual
Siamese network for onboard hyperspectral object tracking
via joint spatial-spectral knowledge distillation, emphasizing
the importance of KD in resource-constrained environments.
Li et al. [112] highlighted deep generative knowledge
distillation by likelihood finetuning, showcasing how KD can
enhance generative models in different contexts.

Moreover, Fluri [113] discussed change distilling to enrich
software evolution analysis with fine-grained source code
change histories, illustrating the broad applicability of KD
in software development and maintenance. Yuan et al. [114]
investigated the influence mechanism of the knowledge
network allocation on the distillation process in high-tech
enterprises, further broadening the understanding of KD’s
potential.
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Finally, Yao et al. [115] introduced GKT, a novel guidance-
based knowledge transfer framework for efficient cloud-edge
collaboration LLM deployment, underlining KD’s role in
optimizing complex deployments across distributed systems.
KD significantly advances the functionality and efficiency of
various software plugins by enabling high performance with
minimal resource consumption. This makes KD an invaluable
tool for enhancing user experience and system responsiveness
in diverse applications.

Overall, KD’s use in embedded systems and software
plugins demonstrates its profound impact on improving
performance and efficiency. By leveraging the benefits
of larger models, KD ensures that compact models can
deliver advanced functionality even in resource-constrained
environments. This approach not only maximizes the utility
and effectiveness of embedded systems and software plugins
but also ensures the accessibility and utility of advanced Al
capabilities in everyday applications.

C. NATURAL LANGUAGE PROCESSING (NLP)

In the field of NLP, KD has significantly enhanced the capa-
bilities of smaller models, enabling them to perform complex
tasks that previously required larger, more resource-intensive
models. Significant obstacles that NLP projects frequently
confront include noisy data, interpretability problems, data
shortages, and privacy issues. Our survey’s “Knowledge”
section outlines several techniques for extracting information
from large language models, which successfully gets student
models ready to take on a variety of NLP tasks. By infor-
mation augmentation, this condensed knowledge functions as
supervision for student model training. Student models are
better prepared to handle a variety of NLP problems by using
knowledge from LLMs, which improves task performance
and lessens the constraints brought on by inadequate data.

1) NATURAL LANGUAGE UNDERSTANDING (NLU)

In terms of NLU, KD improves the performance of dialogue
systems, sentiment analysis, logical analysis, and machine
translation. For example, smaller models trained by KD can
approach the performance of larger models on tasks such
as sentiment analysis and machine translation, making them
well suited for real-time applications [16]. This ability to
achieve approximate performance in a compact form factor
is critical to deploying Al technology in scenarios where
computing resources and response time are critical.

NLU is a crucial NLP task involving the comprehension
and interpretation of human language. Distilled knowledge
from LLMs is often integrated into encoder-based language
models like BERT [27] and RoBERTa [60] to enhance their
performance. This knowledge transfer, through methods such
as data labeling and augmentation, is particularly beneficial
for classification tasks. For instance, AugGPT, developed
by Dai et al. [116], addresses text classification in both
general and clinical domains. It tackles the challenges posed
by small-scale clinical datasets, which often lack expert
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TABLE 6. Overview of KD in assist.

Aspect Description References
Embedded - Smart Home Devices Improves speech recognition and natural language understanding, enhances user experience. [98]
Embedded - Mobile Devices Saves battery life, performs tasks like image recognition efficiently. [99]
Embedded - Vehicle Systems, Drones, and Robotics ~ Efficient and accurate perception, enhances capabilities of resource-constrained systems. [100]
Embedded - Fault Diagnosis and Health Monitoring ~ Maintains high diagnostic accuracy with reduced computational overhead. [101]
Embedded - Structural Health Monitoring Efficient crack segmentation, practical for structural health monitoring. [102]
Embedded - Intelligent Sensor Systems Compact CNNs using group sparsity and KD, improves model compactness and performance.  [103]
Embedded - Embedded Mutual Learning Online distillation method, integrates diverse knowledge sources. [104]
Embedded - Heterogeneous Information Network Collaborative KD for improving interoperability and performance. [105]
Embedded - Accelerated CNNs Distillation sparsity training algorithm, accelerates CNNs. [106]
Embedded - Resource-Constrained Devices Ability-aware KD tailored to specific device capabilities. [107]
Software Plugin - Browser Plugins Provides language translation, contextual recommendations, improves productivity. [108]
Software Plugin - Text Editor Plugins Enhanced syntax checking, style suggestions, predictive text capabilities. [109]
Software Plugin - CMS Applications Automatic tagging, categorization, personalized content push. [110]
Software Plugin - Hyperspectral Object Tracking Lightweight dual Siamese network for object tracking. [111]
Software Plugin - Generative Models Enhances generative models via likelihood finetuning. [112]
Software Plugin - Software Evolution Analysis Change distilling for software evolution analysis. [113]
Software Plugin - High-Tech Enterprises Influence mechanism of knowledge network allocation on KD process. [114]
Software Plugin - Cloud-Edge Collaboration Guidance-based knowledge transfer for cloud-edge collaboration. [115]

annotation and are restricted by privacy regulations, by using
LLMs to rephrase training sentences. This technique gener-
ates multiple semantically distinct yet conceptually similar
samples, enriching the dataset’s diversity and robustness.

Another method was shown by Gilardi et al. [117], who
classified inputs using ChatGPT as an annotator. It has been
discovered that their approach outperforms crowd-workers
in a number of tasks, including frame identification, stance,
relevance, and themes. Targeted Data Generation (TDG) is a
novel technique that Gao et al. [118] presented. It generates
fresh data specifically for problematic subgroups within a
dataset using human-in-the-loop and LLMs. As a result, the
dataset is enhanced and the model performs better on tasks
involving sentiment analysis and natural language inference.

By employing LLMs to extract a variety of clinical
samples, including instances and distinct seeds of clinical
entities, Tang et al. [119] also made a substantial contribution
to the process of improving the extraction of clinical
information. Several NLU tasks have been the subject of
additional research. Gao et al. [118] annotated inputs with
labels and explanations using GPT-3.5 for a variety of NLU
tasks, such as BoolQ, WiC, and user input and keyword
relevance assessment. In order to increase the amount of
high-quality training data using GPT-3 and improve the
overall quality of the dataset, Wang et al. [120] used few-
shot prompts. Ding et al. investigated the use of labelling,
expansion, and curation techniques in conjunction with GPT-
3 to extract information for NLP tasks at the token and
sequence levels.

2) NATURAL LANGUAGE GENERATION (NLG)

In the field of NLG, KD enhances various applications, such
as dialogue generation, content creation, report, and summary
generation, and data narration. By learning from larger
generative models, smaller models can produce text that
is both coherent and contextually accurate. This capability
allows distillation models to efficiently handle tasks requiring
high-quality text generation, such as automated report writing
or digital media content creation. For instance, Dai et al.
[121] demonstrated the effectiveness of KD in enabling
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multimodal generation on CLIP through vision-language
KD, showcasing how smaller models can benefit from the
rich multimodal information in larger models to generate
more accurate and contextually relevant content. Similarly,
Fantazzini et al. [122] explored efficient KD techniques for
creating green NLP models, highlighting the potential of
KD to bridge the gap with large language models while
maintaining environmental sustainability [122].

In the domain of autoregressive text generation,
Lin et al. [123] utilized imitation learning for autoregressive
KD, which helps smaller models mimic the behavior of
larger models, thereby enhancing their text generation
capabilities. Quteineh et al. [124] focused on enhancing
task-specific distillation in small data regimes through
language generation, emphasizing the importance of KD in
improving performance even when data is limited.

Liu and Lin [125] provided a comprehensive review of
unsupervised pre-training for natural language generation,
underlining how KD can be integrated into pre-training
processes to improve the efficiency and effectiveness of NLG
models. Furthermore, Yu et al. [126] conducted a survey on
knowledge-enhanced text generation, demonstrating various
ways in which knowledge distillation can be leveraged to
augment text generation models with external knowledge.
Griinwald et al. [127] discussed simple, efficient, and
high-quality evaluation metrics for NLG, which can be used
to assess the performance of distillation models and ensure
they meet the required standards for various applications.
Jiang et al. [128] explored knowledge-augmented methods
for NLG, providing insights into how KD can be combined
with other techniques to enhance the overall quality and
utility of generated text.

Wang et al. [129] investigated the use of conditional vari-
ational autoencoders with KD for generating long financial
reports, highlighting the ability of KD to support complex
and specialized text generation tasks. These advancements in
KD have also led to significant improvements in conversation
generation, making conversational Al systems more respon-
sive and natural, thus providing a more satisfying user
experience.
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3) INFORMATION RETRIEVAL

Information retrieval systems benefit significantly from KD,
which enhances search engines, recommendation systems,
literature retrieval, and information analysis. By utilizing
KD, these systems can deliver faster and more accurate
search results and recommendations, thereby increasing their
efficiency and user satisfaction. For example, search engines
employing KD can return relevant results more quickly.
Shakeri et al. [130] illustrated the impact of KD on document
retrieval, demonstrating how KD improves the relevance and
speed of search results by distilling the knowledge from
larger, more complex models into smaller, efficient ones.
Dong et al. [131] explored the idea of distillation as a
form of early stopping in overparameterized neural networks,
emphasizing the utility of harvested dark knowledge in
refining search algorithms.

Recommendation systems also see substantial benefits
from KD, enabling them to better personalize content and
enhance user experience. Huang et al. [132] discussed how
optimal transport distillation can improve cross-lingual infor-
mation retrieval for low-resource languages, showcasing the
ability of KD to bridge language gaps and provide accurate
recommendations in multilingual contexts. Vakili Tahami et
al. [133] highlighted the application of KD in fast retrieval-
based chatbots, showing that distilled models can maintain
high performance while responding rapidly to user queries.

Moreover, Xiao et al. [134] introduced Distill-VQ,
a method for learning retrieval-oriented vector quantization
by distilling knowledge from dense embeddings, which
enhances the efficiency of retrieval systems. Gao et al. [135]
examined BERT rankers under distillation, demonstrating
how KD helps in understanding and improving the ranking
capabilities of these models.

KD also plays a crucial role in zero-shot sketch-based
image retrieval, as shown by Tian et al. [136], who
used relationship-preserving KD to maintain the integrity
of relationships within the data, thus improving retrieval
accuracy. Izacard and Grave [137] demonstrated the use of
KD from reader to retriever models for question answering,
highlighting the cross-domain benefits of KD in information
retrieval tasks.

Additionally, Passalis et al. [138] discussed heterogeneous
KD using information flow modeling, which improves the
performance of retrieval systems by leveraging diverse
knowledge sources. Lu et al. [139] introduced TwinBERT,
a method that distills knowledge to twin-structured com-
pressed BERT models for large-scale retrieval, emphasizing
the scalability of KD-enhanced systems. Finally, Hofstitter
et al. [140] focused on improving neural ranking models
with cross-architecture KD, demonstrating the efficacy of
KD in refining and optimizing different architectures within
information retrieval systems.

4) CODE
In code-related tasks, KD optimizes code generation, refac-
toring, and automated testing. By leveraging the knowledge
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from larger models, smaller models can generate efficient
and high-quality code, automate testing procedures, and
significantly reduce the time and effort required for software
development. This efficiency is especially valuable in agile
development environments that demand rapid iteration and
deployment. By automating repetitive tasks throughout
numerous development cycles, KD allows developers to con-
centrate more on innovation. For instance, Song et al. [141]
discussed the concept of spot-adaptive knowledge distilla-
tion, which focuses on optimizing specific parts of the model
to improve overall performance. This approach can be applied
to code generation, where targeted optimization ensures
that the generated code is both efficient and maintainable.
Kim and Rush [142] introduced sequence-level knowledge
distillation, which can enhance the process of code generation
by ensuring that the generated sequences (i.e., lines of code)
maintain logical consistency and high quality.

Ruffy and Chahal [143] highlighted the state of KD for
classification tasks, emphasizing how KD can streamline
complex classification problems into more manageable and
efficient processes. This principle can be translated to
automated testing, where distilled models can classify and
prioritize test cases, making the code-testing process faster
and more accurate. Matsubara [144] presented torchdistill,
a modular framework for KD, which can be adapted to
various aspects of software development, including code
refactoring and optimization, to ensure that the software
remains efficient and scalable.

Khan et al. [145] explored the development of multilingual
and code-mixed visual question answering systems using
KD, showcasing how distillation techniques can be applied
to handle diverse and complex datasets. This methodology is
particularly useful in automated testing scenarios, where test
cases may need to handle multiple languages and formats.
Li et al. [146] introduced knowledge condensation distilla-
tion, which focuses on condensing essential knowledge from
large models into smaller, more efficient ones. This technique
is crucial for code refactoring, ensuring that the refactored
code retains its functionality while becoming more efficient.

Zhao et al. [147] discussed decoupled knowledge distil-
lation, which separates the distillation process into distinct
stages to improve the overall efficiency and effectiveness.
This approach can be particularly beneficial for code
generation and automated testing, where distinct stages
of development and testing can be optimized individually.
Xu et al. [148] combined knowledge distillation with self-
supervision, demonstrating how self-supervised learning
can enhance the distillation process. This technique can
be applied to software development to ensure continuous
improvement and learning from the generated code and test
results.

Kanellopoulos et al. [149] presented an improved method-
ology for information distillation by the mining program
source code, emphasizing the importance of extracting
valuable information from existing codebases. This approach
can be integrated with KD to optimize code refactoring and
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generation, ensuring that the new code is both efficient and
easy to maintain. KD significantly enhances the efficiency
and quality of code-related tasks, including generation,
refactoring, and automated testing. By automating repetitive
tasks and enabling rapid iteration, KD empowers developers
to focus on innovation, making it an indispensable tool in
modern software development.

In summary, the application of KD to various NLP
tasks demonstrates its transformative potential. By enabling
smaller models to approach larger ones in performance,
KD not only makes advanced Al capabilities more ubiquitous
but also enables these capabilities to be deployed in resource-
constrained environments. This expands the scope of NLP
technology, enabling it to be integrated into a wider range
of products and services, from mobile applications to large
enterprise systems. The integration of KD in NLP tasks
represents an important advance in making advanced Al more
accessible, efficient, and practical.

D. MULTI-MODALITY

Multimodal Large Language Models (MLLMs) understand
and process information across multiple modalities, sur-
passing classic language-only LLMs. This skill allows
for a greater variety of practical uses and more closely
resembles human perception. Creating MLLMs that can
obey multimodal instructions and increase task interaction
is becoming more and more popular. Numerous studies have
focused on multimodal KD from LLMs in an effort to address
the limited availability of multimodal instruction-following
data and take advantage of the common sense and world
knowledge embedded in teacher LLMs. KD has been crucial
in enhancing the efficacy and efficiency of small models
in computer vision and audio processing, allowing them to
execute intricate tasks that were previously the domain of
huge, resource-hungry models.

1) VISION

In the field of vision, KD significantly improves the
effectiveness of image classification, object detection, image
generation, and optical character recognition. By distilling
knowledge from larger models, small models can achieve
high accuracy in image recognition and classification while
reducing computational load. For example, KD enables
these compact models to efficiently perform tasks such as
object recognition in images and generating new images
that maintain high fidelity. Moreover, in OCR applications,
distillation models are capable of accurately identifying and
converting various texts in images into machine-coded text,
facilitating a wide range of applications from document
digitization to real-time translation of foreign language text
captured by cameras [150]. For instance, Habib et al. [151]
provided a critical review of knowledge distillation in vision
transformers, highlighting how KD improves the perfor-
mance of smaller models, enabling them to perform complex
tasks with high accuracy. Chen et al. [152] introduced
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Data-Efficient Early Knowledge Distillation (DearKD) for
vision transformers, demonstrating that early-stage KD can
significantly boost the performance of vision models with
limited data.

In object detection, Gu et al. [153] explored open-
vocabulary object detection using vision and language
knowledge distillation, showing that KD enables models
to recognize objects beyond their training vocabulary by
transferring knowledge from models trained on vast datasets.
This approach allows smaller models to efficiently perform
tasks such as object recognition in images while maintaining
high fidelity.

Moreover, Liu et al. [154] discussed semantics-aware
adaptive knowledge distillation for sensor-to-vision action
recognition, which ensures that the distilled models retain
crucial semantic information, thereby improving action
recognition performance. Ni et al. [155] further exam-
ined cross-modal knowledge distillation for vision-to-sensor
action recognition, underscoring the effectiveness of KD in
enhancing multimodal recognition tasks. In the domain of
OCR, KD enables compact models to accurately identify
and convert various texts in images into machine-coded text.
This facilitates a wide range of applications from document
digitization to real-time translation of foreign language text
captured by cameras. Liu et al. [156] highlighted the benefits
of KD in vision-and-language pretraining with object KD,
which enhances the OCR capabilities of vision models by
incorporating object-specific knowledge.

Additionally, Wu et al. [157] introduced Tiny ViT, a method
for fast pretraining distillation for small vision transformers,
demonstrating how KD can expedite the training process
while maintaining high model performance. Xu et al. [177]
explored cross-modality medical image segmentation with
online mutual KD, showcasing how KD can improve segmen-
tation tasks by transferring knowledge between modalities.

Finally, Zhang et al. [158] investigated knowledge dis-
tillation from multi-modality to single-modality for person
verification, illustrating how KD can effectively transfer
knowledge from complex, multimodal systems to simpler,
unimodal models while preserving performance. KD signif-
icantly improves the effectiveness and efficiency of various
vision-related tasks, including image classification, object
detection, image generation, and OCR. By enabling smaller
models to perform at levels comparable to larger models,
KD enhances the applicability and performance of vision
systems in real-world scenarios.

2) AUDIO

In the field of audio, KD significantly enhances a variety
of speech processing tasks, including speech recognition,
speech synthesis, speech sentiment analysis, and speech
translation. Small models trained using KD are able to
accurately transcribe spoken words into text, providing highly
reliable speech recognition capabilities for virtual assistants,
transcription services, and voice-activated applications. For
instance, Gao et al. [160] demonstrated the effectiveness of
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TABLE 7. Overview of KD in NLP.

Aspect Description References
NLU - Dialogue Systems Improves performance, real-time applications. [16], [60]
NLU - Sentiment Analysis Achieves near large model performance, critical for resource-limited scenarios.  [16]

NLU - Logical Analysis Enhances comprehension and logical analysis. [16]

NLU - Machine Translation Approaches large model performance, suitable for real-time translation. [16]

NLU - Text Classification Improves performance in classification tasks with data augmentation. [27], [60]

NLU - Data Annotation

NLU - Clinical Information Extraction

NLG - Report Generation

NLG - Data Narration

NLG - Multimodal Generation

NLG - Autoregressive Text Generation

NLG - Green NLP Models

NLG - Unsupervised Pre-training

NLG - Knowledge-Augmented Generation
NLG - Conversational Al

Information Retrieval - Search Engines
Information Retrieval - Recommendation Systems
Information Retrieval - Literature Retrieval
Information Retrieval - Information Analysis
Code - Code Generation

Code - Code Refactoring

Code - Automated Testing

Uses LLMs for annotation, surpasses crowd-workers.
Enhances extraction with diverse clinical samples.
Enables automated and accurate report writing.
Handles complex data narration tasks.

Enhances generation with vision-language distillation.
Imitation learning for better text generation.

Creates efficient, environmentally sustainable models.
Integrates KD into pre-training processes.

Augments generation models with external knowledge.
Improves responsiveness and natural interaction.
Enhances relevance and speed of search results.
Personalizes content, enhances user experience.
Improves accuracy and efficiency of retrieval.
Enhances analysis and search capabilities.

Generates high-quality, efficient code.

Optimizes and condenses code for efficiency.
Automates testing, prioritizes test cases.

[116], [117]
[119]
[121], [123]
[121], [123]
[121]
[123]
[122]
[125]
[126], [128]
[127], [129]
[130], [131]
[132], [133]
[134]
[135]
[141], [142]
[141], [144]
[141], [145]

TABLE 8. Overview of KD in multi-modality.

Aspect

Description

References

Vision - Image Classification

Vision - Object Detection

Vision - Image Generation

Vision - Optical Character Recognition (OCR)
Vision - Action Recognition

Vision - Medical Image Segmentation
Vision - Person Verification

Audio - Speech Recognition

Audio - Speech Synthesis

Audio - Speech Sentiment Analysis
Audio - Speech Translation

Audio - Audio Classification

Audio - Audio-Visual Content Generation
Audio - Acoustic Scene Classification
Audio - Audio Tagging

Audio - Audio Question Answering
Audio - Emotion Classification

Improves accuracy, reduces computational load.

Recognizes objects beyond training vocabulary.

Generates high-fidelity images efficiently.

Accurately converts text in images to machine-coded text.
Enhances recognition performance with semantic information.
Transfers knowledge between modalities for better segmentation.
Transfers knowledge from multimodal to unimodal models.
Accurately transcribes spoken words to text.

Generates natural, fluid speech from text input.

Accurately analyzes and interprets emotional tone.

Translates spoken language into different languages with high accuracy.
Improves accuracy and efficiency of audio models.

Generates high-quality audio-visual content.

Improves detection and classification of audio scenes.
Streamlines complex audio tagging processes.

Enhances spoken question-answering systems.

Enhances emotion detection capabilities in audio data.

[150][152]
[153]
[150], [152]
[1501, [156]
[154], [155]
[159]
[158]
[160], [161]
[162]
[163]
[164]
[160], [161]
[162]
[163]
[165]
[166]
[167]

multi-representation KD in audio classification, showing how
KD can improve the accuracy and efficiency of audio models.
Gong et al. [161] proposed a CNN/transformer-based cross-
model KD technique for audio classification, which further
illustrates the power of KD in enhancing audio processing
models.

In addition to improving speech recognition, KD also
enhances speech synthesis. Smaller models can generate
natural, fluid speech from text input, which is critical
for creating more realistic dialogue agents and automatic
answering systems. Chen et al. [162] explored distilling
audio-visual knowledge through compositional contrastive
learning, highlighting how KD can be used to generate high-
quality audio-visual content.

Moreover, KD significantly benefits speech sentiment
analysis. By training small models with knowledge distilled
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from larger, more comprehensive models, these models
can accurately analyze and interpret the emotional tone
of speech. Jung et al. [163] demonstrated the use of KD
in acoustic scene classification, showing its potential to
improve the detection and classification of various audio
scenes.

In the realm of speech translation, KD allows small
models to effectively translate spoken language into different
languages while maintaining high accuracy. Fukuda et al.
[164] discussed efficient KD from an ensemble of teachers,
emphasizing the potential of KD to enhance the performance
of translation models.

Furthermore, KD improves large-scale audio tagging and
audio-based question answering systems. Schmid et al.
[165] showcased efficient large-scale audio tagging via
transformer-to-CNN KD, demonstrating KD’s ability to
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streamline complex audio tagging processes. You et al. [166]
introduced MRD-Net, a multi-modal residual KD network
for spoken question answering, which highlights the utility
of KD in developing sophisticated audio question-answering
systems. Additionally, KD has been applied to fine-grained
emotion classification in audio. Kim and Kang [167] utilized
cross-modal distillation with audio—text fusion for emotion
classification using BERT and Wav2vec 2.0, illustrating the
integration of KD in enhancing emotion detection capabilities
in audio data.

KD significantly enhances various speech-processing
tasks by enabling small models to achieve high accuracy
and efficiency in speech recognition, synthesis, sentiment
analysis, and translation. These advancements are crucial
for developing more responsive and natural-sounding virtual
assistants, transcription services, and other voice-activated
applications, thereby improving user experiences and oper-
ational efficiency.

Furthermore, KD enables small models to perform speech
emotion analysis, accurately detecting and interpreting
emotional intonation in spoken language. This ability is
particularly valuable in customer service applications, where
understanding a customer’s emotional state can lead to
a more empathetic and effective response. In terms of
speech translation, KD allows for real-time translation of
spoken words, eliminating language barriers, and facilitating
seamless communication between different languages. The
distillation model performs these tasks efficiently, making
it suitable for deployment in mobile applications and other
resource-constrained environments that require fast and
accurate audio processing.

In summary, KD’s applications in visual and audio process-
ing demonstrate its transformative impact in enhancing the
capabilities of small models. By leveraging the benefits of
larger models, KD ensures that compact models can deliver
high-performance results in image- and voice-related tasks
while maintaining efficiency and reducing computational
requirements. This makes advanced AI technology more
accessible and practical in a wide range of applications from
consumer electronics to enterprise systems. KD’s integration
in visual and audio processing demonstrates its importance
in driving the next generation of intelligent, efficient, and
versatile Al solutions.

E. VERTICAL DOMAINS

KD plays a transformative role in multiple professional
fields such as medicine, law, science, finance, and materials
science, enhancing the efficiency of these fields by enabling
smaller models to perform complex tasks efficiently and
accurately.

1) MEDICINE

In the field of medicine, KD has significantly enhanced the
effectiveness of surgical assistance, drug development, auto-
matic monitoring, and assisted diagnosis [18]. By learning
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from larger models, smaller models can provide surgeons
with real-time insights and recommendations during surgery,
leading to improved surgical accuracy and safety. Meng
et al. provided a comprehensive survey on the application
of KD in medical data mining, highlighting how distilled
models can deliver high performance while maintaining
efficiency [168]. In surgical assistance, KD allows compact
models to process and analyze surgical data in real-time,
offering surgeons critical insights that enhance precision and
safety. This real-time assistance is crucial during complex
surgical procedures, where timely and accurate information
can significantly impact outcomes.

In drug development, KD enables smaller models to
analyze large datasets efficiently, identifying potential drug
candidates more rapidly. This accelerates the drug discovery
process and enhances the ability to find effective treatments.
Qin et al. [169] demonstrated the effectiveness of KD
in medical image segmentation, a technique essential in
drug research for analyzing medical images and identifying
biological markers. For patient monitoring, KD facilitates
continuous and automated health monitoring systems. These
systems can alert medical providers to abnormal or critical
conditions in a timely manner, improving patient care and
response times. Xing et al. [170] discussed the use of KD
in medical image classification, which plays a crucial role
in monitoring and diagnosing health conditions through
imaging technologies.

In the realm of assisted diagnosis, KD models can accu-
rately interpret medical images and patient data, providing
reliable diagnostic support that helps doctors make informed
decisions. Li and Shen [171] developed a hybrid framework
based on KD for explainable disease diagnosis, illustrating
how KD can enhance diagnostic accuracy while making
the decision-making process more transparent. Wang et al.
[172] introduced prototype KD for medical segmentation
with missing modality, which improves the robustness
and accuracy of segmentation tasks even when some data
modalities are absent. This is particularly useful in scenarios
where complete data is not always available.

Moreover, KD has been applied to multimodal hierarchical
knowledge distillation for medical visual question answering
(MHKD-MVQA), as explored by Wang et al. [52]. This
approach integrates various data types to answer complex
medical queries accurately, showcasing the versatility of
KD in handling diverse medical data. Jaiswal et al. [173]
presented ROS-KD, a robust stochastic KD approach for
noisy medical imaging, demonstrating how KD can improve
the robustness of models in dealing with noisy and imperfect
data, which is common in medical imaging. KD sig-
nificantly enhances various aspects of medical practice,
from surgical assistance and drug development to patient
monitoring and assisted diagnosis. By enabling smaller
models to perform complex tasks with high accuracy and
efficiency, KD improves healthcare delivery and patient
outcomes.
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2) LAW

In the field of law, KD supports legal search and classification
of legal documents. By learning from large models, smaller
models are able to handle a wide range of legal research tasks
more efficiently, including quick retrieval of relevant case
law, regulations, and legal precedents. This capability simpli-
fies the research process for legal professionals, saves time,
and improves accuracy [7]. Additionally, KD helps analyze
complex regulations, ensuring that legal professionals can
comply with changing legal standards. In the classification
of legal documents, the distillation model can classify and
organize documents accurately, facilitating the access and
management of legal information. For example, Yuan et al.
[174] highlighted the potential of deep learning-based legal
judgment prediction, demonstrating how KD can enhance the
efficiency and accuracy of legal search and judgment tasks.
These distilled models can process vast amounts of legal texts
to identify pertinent information quickly.

In auxiliary judgments, KD helps smaller models analyze
complex legal cases and provide recommendations or insights
that assist judges and legal professionals in making informed
decisions. Ma [175] discussed artificial intelligence-assisted
decision-making methods for legal judgments, emphasizing
the role of KD in supporting these advanced analytical tasks.

Regarding regulatory analysis, KD allows smaller models
to keep up with the evolving legal landscape, ensuring that
legal professionals can comply with changing legal stan-
dards. Yang et al. [176] explored self-knowledge distillation
techniques, which can be applied to continuously update
and refine the understanding of complex regulations, thereby
improving compliance and regulatory analysis.

In the classification of legal documents, KD enables the
accurate organization and management of extensive legal
information. Xu et al. [177] demonstrated how KD could
help distinguish confusing law articles for legal judgment
prediction, which is crucial for accurately categorizing and
organizing legal documents.

By utilizing KD, legal professionals can enhance their
workflow, ensure compliance with up-to-date regulations,
and access organized and relevant legal information more
efficiently. This results in more streamlined legal processes
and improved legal outcomes.

3) SCIENCE

In scientific research, KD significantly enhances the capabil-
ities of mathematical formula analysis, research assistance,
and chemical and physical analysis. By leveraging knowledge
from larger models, smaller models can efficiently process
and analyze complex mathematical data, providing precise
calculations and insights that are essential for advanced
scientific research. Ma et al. [178] discussed the use of large
language models for enhanced KD in scientific question
answering, illustrating how distilled models can handle
intricate scientific queries with high accuracy.
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In the realm of chemical and physical analysis, KD enables
smaller models to accurately analyze chemical reactions
and physical processes. This is crucial for discovering new
compounds and materials. Julka and Granitzer [179] applied
KD with the Segment Anything Model (SAM) for planetary
geological mapping, illustrating the effectiveness of KD
in enhancing the precision and efficiency of geological
analysis. Phuong and Lampert [75] provided insights into
the mechanisms of KD, emphasizing how KD improves the
performance of smaller models by transferring the expertise
of larger models. This foundational understanding supports
the application of KD in various scientific domains.

In mathematical analysis, Zhang et al. [180] discussed the
use of teacher-student networks with multiple decoders for
solving math word problems. KD helps these smaller models
to break down complex problems into manageable parts,
leading to more accurate solutions.

KD also plays a significant role in learning gravitational
dynamics with unknown disturbances. Lin et al. [181]
conducted an initial feasibility study on physical knowledge
distillation, demonstrating how KD can enhance the learning
of deep nets for understanding gravitational dynamics,
which is vital for advancements in robotics and automation.
Furthermore, KD has been applied to accelerate molecular
graph neural networks, as shown by Kelvinius et al. [182].
This application of KD in chemical research helps in the
efficient processing and analysis of molecular structures,
aiding in the discovery of new drugs and materials.

Van Keulen et al. [183] discussed teaching and learning
distillation in chemistry laboratory courses, highlighting the
educational benefits of KD in simplifying complex scientific
concepts for students. This approach not only improves
learning outcomes but also equips future scientists with the
tools to handle sophisticated scientific analyses. KD sig-
nificantly enhances scientific research by enabling smaller
models to perform complex mathematical, chemical, and
physical analyses efficiently. This advancement facilitates
automated data interpretation, supports innovative research,
and contributes to the discovery of new scientific insights.

4) FINANCE

In the financial sector, KD has significantly enhanced the
effectiveness of financial forecasting [ 184], risk management,
financial planning [185], and automated stock trading volume
prediction [186]. By leveraging the knowledge from larger
models, smaller financial models can deliver accurate and
timely financial forecasts, enabling investors to make well-
informed decisions [184]. For instance, Fang and Lin [187]
explored prior KD based on financial time series, demon-
strating how KD can improve the accuracy and efficiency
of financial forecasting models. These models can process
vast amounts of financial data and provide precise predic-
tions, helping stakeholders navigate the complex financial
landscape. Floratos et al. [184] discussed online KD for
financial timeseries forecasting, highlighting the real-time
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application of KD in continuously updating and refining
financial predictions.

In terms of risk management, KD enhances the ability
to identify and mitigate potential financial risks, ensuring
the stability and safety of financial operations. Tang and
Liu [188] introduced a distributed knowledge distillation
framework for financial fraud detection based on transform-
ers, showing how KD can be applied to detect and prevent
fraudulent activities efficiently.

KD also plays a pivotal role in financial planning.
By distilling knowledge from larger, more comprehensive
models, smaller models can offer personalized advice and
strategies to help individuals and businesses achieve their
financial goals. Yi et al. [189] proposed a long-short dual-
mode knowledge distillation framework for empirical asset
pricing models in digital financial networks, illustrating how
KD can be utilized to provide robust financial planning tools
that adapt to dynamic market conditions.

In the realm of automated trading, KD has enabled the
development of efficient trading algorithms that can execute
trades quickly and accurately based on real-time market
data. Shen and Kurshan [190] discussed temporal knowledge
distillation for time-sensitive financial services applications,
emphasizing the importance of KD in creating responsive and
effective automated trading systems. These distilled models
can analyze market trends, predict price movements, and
execute trades with precision, optimizing trading strategies
and outcomes.

Moreover, Wang et al. [61] explored generating long
financial reports using conditional variational autoencoders
with KD, demonstrating how KD can streamline the pro-
cess of financial reporting and analysis, making it more
efficient and comprehensive. KD significantly improves
various financial sector applications by enabling smaller
models to perform complex tasks with high accuracy and
efficiency. This advancement supports financial forecasting,
risk management, financial planning, and automated trading,
thereby enhancing the overall effectiveness and reliability of
financial services.

5) MATERIAL

In the field of materials science, KD significantly enhances
material discovery and design, material property prediction
and analysis, and synthesis path optimization. By distilling
knowledge from larger models, smaller models can accelerate
the discovery of new materials, analyze datasets of chemical
compounds, and predict their properties with high precision.
KD also improves the efficiency of material design, providing
insights into optimal structure and composition. In synthesis
path optimization, distillation models can identify the most
efficient and cost-effective methods for synthesizing new
materials, speeding up the development process and reducing
costs. For instance, VECCHIO’s work on StableMaterials
demonstrates how KD, combined with semi-supervised
learning, can enhance the diversity and efficiency of material
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generation. This approach allows smaller models to leverage
the extensive knowledge embedded in larger models to
generate innovative material compositions [191].

Das et al. [192] introduced Crysgnn, a framework that dis-
tills pre-trained knowledge to improve property prediction for
crystalline materials. This technique enables smaller models
to accurately predict material properties, which is crucial for
identifying suitable materials for various applications. Simi-
larly, Chiang et al. [193] developed LLaMP, a large language
model tailored for high-fidelity materials knowledge retrieval
and distillation, illustrating the potential of KD in extracting
and applying detailed materials knowledge efficiently.

In the realm of material design, Zhang and Saniie [194]
showcased the use of knowledge distillation-based trans-
former neural networks for characterizing steel material
microstructures. This method enhances data-efficient ultra-
sonic nondestructive evaluation (NDE) systems, enabling
precise material analysis and quality control. Additionally,
Smith et al. [195] explored a defect detection model for
industrial products that combines attention mechanisms with
KD, highlighting its effectiveness in identifying defects in
materials and improving quality assurance processes.

KD also plays a vital role in synthesis path optimization.
By learning from larger, comprehensive models, smaller
models can determine the most efficient and cost-effective
synthesis routes for new materials. This capability is essential
for accelerating the development of new materials and
reducing associated costs, thereby fostering innovation in
material science. KD significantly contributes to materi-
als science by enhancing material discovery and design,
property prediction, and synthesis path optimization. These
advancements enable smaller models to perform complex
analyses with high precision and efficiency, supporting
the development of new materials and improving existing
processes.

Overall, KD’s application in these different areas demon-
strates its great potential to enhance the capabilities of
smaller models. By enabling high-performance tasks to be
executed on models with lower computational requirements,
KD makes advanced Al technologies more accessible and
practical across a wide range of specialized fields. This
expands the range of applications of Al technology and
promotes innovation and efficiency in medicine, law, science,
finance and materials science. Figure 7 illustrates the
classification of application fields for KD LLM.

IV. PERFORMANCE OPTIMIZATION

KD plays a key role in optimizing the performance of LLMs
by employing various techniques to compress and accelerate
their performance. KD is widely used to compress LLMs,
allowing them to become more efficient without significantly
reducing performance. This process involves transferring
knowledge from a larger, more complex model (the teacher
model) to a smaller, more efficient model (the student model),
thereby reducing the computational resources required for
deployment.
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TABLE 9. Overview of KD in vertical domains.

Aspect

Medicine - Surgical Assistance

Medicine - Drug Development

Medicine - Automatic Monitoring
Medicine - Assisted Diagnosis

Law - Legal Search

Law - Auxiliary Judgments

Law - Regulatory Analysis

Law - Classification of Legal Documents
Science - Mathematical Formula Analysis
Science - Research Assistance

Science - Chemical and Physical Analysis
Finance - Financial Forecasting

Finance - Risk Management

Finance - Financial Planning

Finance - Automated Trading

Description References
Real-time insights, improved accuracy and safety. [18], [52], [168], [173]
Efficient analysis of large datasets, rapid drug discovery. [169]
Continuous health monitoring, timely alerts. [170]
Accurate interpretation of medical images, reliable support. [171]
Efficient retrieval of case law, regulations, precedents. [71, [174]
Analyze cases, provide recommendations. [175]
Compliance with evolving standards. [176]
Organize and manage legal information. [177]
Efficient processing of complex data, precise calculations. [178], [180]
Handle scientific queries with high accuracy. [178]

Analyze chemical reactions, physical processes.
Accurate and timely financial forecasts.

[179], [181]-[183]
[184], [187]

Identify and mitigate financial risks. [188]
Personalized advice and strategies. [189]
Efficient trading algorithms, real-time market data. [61], [190]

Materials Science - Material Discovery and Design
Materials Science - Property Prediction and Analysis
Materials Science - Synthesis Path Optimization

Parameter pruning and quantification are the key tech-
niques in this process. Parametric pruning reduces the size
and computational complexity of a model by removing
less important parameters. Pruning can be done at different
levels, such as the neuron level, the hierarchy level, or the
entire network level, depending on the trade-off between
model size and precision [45]. The pruned model retains
the basic features while being lighter and faster to execute.
On the other hand, quantization reduces the accuracy of the
model parameters, thus significantly reducing the size and
computational load of the model. This process involves con-
verting the floating-point weights of the model to a low-level
representation, such as an 8-bit integer, while maintaining
an acceptable level of precision [46]. The quantified model
is particularly suitable for deployment on edge devices with
limited computing power. In addition, model pruning and
structural optimization techniques are designed to simplify
the architecture of LLMs to improve their performance.
Structured pruning, such as removing entire neurons, filters,
or layers that contribute least to the model output, results in a
more efficient network structure [196]. Combining KD with
structural modifications can create student models that are not
only smaller but also better suited to specific tasks, resulting
in more efficient and specialized models [197].

Soft targets are used to smooth the probability distribution
output by the teacher model, making it easier for the student
model to learn. These soft targets are controlled by the
temperature parameter 7, which can amplify or diminish
the logits of the teacher model [33]. When the temperature
T is increased, the softmax function’s output probability
distribution becomes smoother, making it easier for the
student model to learn the knowledge.

exp(zi/T)

_— 1
Zj exp(z;/T) )

Preacher(i) =

where:

VOLUME 13, 2025

Accelerate material discovery, analyze chemical compounds.
Accurately predict material properties.
Identify efficient synthesis methods. [195]

[191]-[193]
[192], [194]

o Pieacher(i) is the soft target probability of the teacher
model for class i,

o z; is the logit (i.e., the unnormalized output) for class i,

o T is the temperature parameter, usually greater than 1.

The loss function for KD combines the standard cross-entropy
loss with the KD loss from the teacher model’s soft targets.
This combination ensures that the student model learns both
the actual labels and mimics the teacher model’s output
distribution [33].

L = aLhard(Y, Ystudent) + (1 — o) Lsof(Pteachers Pstudent) (2)

where:

o L is the total loss,

o Lpard(y, Ystudent) 18 the cross-entropy loss of the student
model based on the true labels y and the student model’s
output Ystudents

o Lgoft(Pteacher, Pstudent) 18 the cross-entropy loss between
the soft targets from the teacher model and the student
model’s output,

e « is a balancing factor to weight the two loss compo-
nents.

The cross-entropy loss functions are defined as:

Lhard(y, Ystudent) = — Zyi log(Ystudent, i) 3)

1

Lgoft(Preacher Pstudent) = — ZP teacher, i log(P student,i) “)

1

The quantization process converts floating-point weights to
a lower-bit representation (e.g., 8-bit integers) to reduce
model size and computational load [46]. This formula first
normalizes the floating-point weights to the [0, 1] range, then
maps them to the integer range of the quantization bits, and
finally converts them back to the original range in a lower-bit
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where:

¢ QO(w) is the quantized weight,

« w is the original floating-point weight,

e Wmin and wmax are the minimum and maximum values
of the original weights,

« b is the number of bits for quantization (e.g., 8 for 8-bit
integers).
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These equations and techniques are fundamental to the
process of knowledge distillation, enabling the creation of
smaller, faster, and more efficient models while maintaining
high performance.

In order to evaluate the performance of a distillation model,
appropriate indicators need to be selected and benchmarks set
to reflect the efficiency and accuracy of the model. Common
performance metrics include accuracy, latency, throughput,
and model size. Accuracy measures how correct a model is
when performing a task, such as classification or generation,
while delaying evaluation of the time it takes for the model to
generate output is critical for real-time applications. Through-
put evaluates the number of tasks handled by the model per
unit time, and model size refers to the storage requirements
of the model, which is particularly important for deployment
on resource-constrained devices. It is very important to
select and set the appropriate evaluation index to accurately
evaluate the performance of distillation model. These metrics
should be consistent with specific use cases and deployment
environments. For example, in real-time applications such as
conversational Al, latency and throughput are key metrics,
while for on-device Al applications, model size and accuracy
are a top priority [33], [45].

Many case studies highlight the effectiveness of KD in
improving LLMs performance. DistilBERT, for example,
is a small, fast version of BERT implemented via KD that
retains 97 percent of BERT language understanding while
increasing speed by 60percent and reducing volume by
40 percent [15]. Similarly, TinyBERT uses KD to compress
BERT, resulting in a model that is 7.5 times smaller and
9.4 times faster than Bert-Base, with minimal performance
loss [16]. MobileBERT optimizes performance on mobile and
edge devices by combining KD with structural modifications
to maintain competitive accuracy [57]. These case studies
show how KD can significantly improve the efficiency and
feasibility of LLMs in real-world applications, making it
more accessible and usable in a variety of environments
without sacrificing performance.

V. CHALLENGES AND FUTURE DIRECTIONS OF
KNOWLEDGE DISTILLATION

KD faces several significant challenges that need to be
addressed to maximize its potential. One of the primary
challenges is the heavy reliance on large datasets and the
associated high cost of data labeling [6]. Effective KD
requires extensive and diverse training data to ensure that
the student model can accurately capture the knowledge of
the teacher model. However, acquiring and labeling such
large datasets is both time-consuming and expensive, posing
a barrier to the widespread adoption of KD [33]. Another
major challenge is ensuring the effectiveness and robustness
of knowledge transfer. The student model must not only
replicate the performance of the teacher model but also
generalize well to new, unseen data. Achieving this requires
sophisticated techniques to prevent overfitting and to ensure
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that the distilled knowledge remains relevant across different
contexts and applications [6].

Another challenge related to the use of KD in sensitive
fields like healthcare and legal systems is the rise of
significant ethical concerns. In healthcare, KD’s dependence
on large datasets for model training raises issues surrounding
patient privacy, data security, and the potential misuse of
sensitive medical information [198]. Similarly, the legal
sector faces the critical need for client confidentiality, privacy,
and accountability in sensitive legal tasks, which is essential
for ethical practice [7], [199]. As a result, both areas require
the development of robust ethical frameworks to mitigate the
potential risks associated with the application of KD.

One of the main challenges in KD is addressing the
transfer gap between teacher and student models. As Niu
et al. [200] highlight, the effectiveness of KD is often
hindered by the differences in architecture and capacity
between the large teacher model and the smaller student
model. This transfer gap can lead to inefficient knowledge
transfer, where the student model struggles to fully utilize
the distilled knowledge. Additionally, Zhang et al. [201] note
that in the context of vision transformers, there are unique
challenges related to maintaining the fine-grained spatial
information and ensuring the robustness of distilled models.
Another significant challenge is the application of KD in
federated learning environments, where data privacy and
distributed training add layers of complexity. According to
Qin et al. [202], federated learning introduces issues such as
inconsistent data distributions and communication overhead,
complicating the KD process further.

A new research area in KD is focused on exploring the
performance gap between teacher and student models. Huang
et al. introduced an innovative KD technique named DiffKD,
which aims to bridge this gap by explicitly denoising and
aligning features through the use of diffusion models [203].
Diffusion models represent a cutting-edge category of
deep generative models that have demonstrated exceptional
success across various applications, such as image synthesis,
video generation, and molecular design [204]. These models
are a prime example of self-supervised learning, as they
operate without requiring labeled data [205]. For instance,
some studies have indicated that a diffusion model can be
trained using just a single image of the “Marina Bay Sands,”
enabling it to generate similar images that incorporate
additional towers resembling the ‘“Sands Skypark™ [206].
Prior research has highlighted the challenges associated with
sample size in KD [6], particularly in domains like medicine,
where obtaining data samples can be both challenging and
expensive [206]. Therefore, applying the diffusion model
offers a promising approach to address these sampling
challenges.

Future research in KD should focus on developing more
sophisticated methods to bridge the transfer gap between
teacher and student models. One promising direction is
the exploration of adaptive KD techniques that dynami-
cally adjust the distillation process based on the specific
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characteristics of the models involved, as suggested by the
work of Niu et al. [200]. Additionally, as Habib et al.
[201] propose, there is a need for advanced strategies in
vision transformers to preserve essential spatial information
and enhance model robustness. In the realm of federated
learning, Qin et al. [202] recommend the development of new
algorithms that can handle heterogeneous data distributions
and reduce communication costs, making KD more feasible
in decentralized environments. Finally, integrating KD with
other machine learning paradigms, such as semi-supervised
and unsupervised learning, could further expand its applica-
bility and effectiveness across various domains, as discussed
by Alkhulaifi et al. [14].

Looking ahead, several trends are likely to shape the future
of knowledge distillation. One such trend is the integration
of multi-modal KD, which involves transferring knowledge
across different modalities such as text, images, and audio.
This approach can create more versatile and comprehensive
models capable of handling a wider range of tasks and
data types [40]. Additionally, there is growing interest in
adaptive and online knowledge distillation methods. These
approaches involve continuously updating and refining the
student model as new data becomes available, enabling the
model to adapt to changing conditions and requirements
in real-time. This can significantly enhance the model’s
performance and applicability in dynamic environments [17].
The development of more efficient and scalable distillation
techniques will also play a crucial role in the future of
KD. Techniques that reduce the computational overhead of
distillation and improve the efficiency of the training process
are essential for making KD more accessible and practical
for a broader range of applications. Furthermore, advances
in understanding the theoretical foundations of knowledge
distillation could lead to the development of more effective
and robust distillation strategies, ultimately enhancing the
performance and reliability of distilled models.

VI. CONCLUSION

KD serves as a powerful technique for optimizing the
performance of LLMs by compressing them into more
efficient, smaller models without significant loss of accuracy.
Throughout this survey, we have explored various aspects of
KD, including its basic concepts, core techniques, and diverse
applications across multiple domains such as industrial sys-
tems, embedded systems, natural language processing, multi-
modality, and specialized vertical domains. The application
of KD in these fields has demonstrated substantial improve-
ments in efficiency and performance, making advanced Al
capabilities more accessible and practical for real-world
deployment.

Despite its successes, KD faces several significant chal-
lenges that need to be addressed to maximize its potential.
These challenges include the reliance on large, annotated
datasets, the effectiveness and robustness of knowledge
transfer, and the computational overhead associated with
the distillation process. Multi-modal KD is confronted with
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additional complexities, such as the need to align diverse
data representations, maintain inter-modal relationships, and
navigate the intricacies of various architectures, which are
often compounded by a scarcity of annotated datasets.
Likewise, online KD faces difficulties in adapting to evolving
data streams, reducing computational demands, and ensuring
synchronized and scalable knowledge transfer in real-time
settings. Future research directions in KD emphasize the
necessity of integrating multi-modal knowledge distillation,
developing adaptive and online distillation strategies, and
enhancing the efficiency and scalability of distillation tech-
niques. Progress in these domains will significantly improve
the applicability and effectiveness of KD, solidifying its
role as an essential component in the advancement of Al
technologies.

Overall, KD represents a vital strategy in the field of
Al, enabling the creation of efficient and high-performing
models that are well-suited for a wide range of applications.
Continued research and innovation in KD will undoubtedly
contribute to the advancement of Al, providing more
powerful, versatile, and accessible solutions to meet the
growing demands of various industries and research domains.
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