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ABSTRACT Surface water quality is of utmost significance to ensure public health and facilitate sustainable
economic development. Traditional water quality assessment methods are typically time-consuming and
labor-intensive and require numerous field measurements and laboratory analyses, which are costly and
impractical to implement in large-scale water quality monitoring. Recent advances in machine learning
(ML) have brought new approaches to predicting water quality index (WQI) and classifying water quality
in real time to enhance decision-making in environmental management. In this study, we propose a novel
gated liquid neural network (gated-LNN) that can predict WQI and classify water quality with high
accuracy. As opposed to typical ML models, the proposed gated-LNN includes a gating mechanism that
enhances temporal learning and noise robustness, making it well-suited for dynamic environmental data. For
ascertaining the effectiveness of the proposed approach, we conducted rigorous experiments on a publicly
available water quality dataset with 1897 examples collected from varied water bodies of India between
the years 2005 and 2014. The dataset comprises seven most significant parameters of water quality, i.e.,
dissolved oxygen, pH, conductivity, biological oxygen demand, nitrate, fecal coliform, and total coliform.
The proposed gated-LNN model achieved a high R? of 0.9995 for WQI prediction and 99.74% accuracy
for three-class water quality classification into “Good,” “Poor,” and “Unsuitable” classes, outperforming
state-of-the-art models in both regression and classification tasks. While these results highlight the model’s
potential as a highly accurate and efficient tool for real-time water quality assessment, its generalizability to
different regions remains an important consideration. Future work will focus on enhancing computational
efficiency and conducting generalization tests on datasets from diverse geographic regions and time periods
to evaluate adaptability.

INDEX TERMS Gate mechanism, liquid neural networks, machine learning, water quality prediction.

L. INTRODUCTION
Surface waters in river systems constitute the primary
The associate editor coordinating the review of this manuscript and source of freshwater on earth and are vital to human exis-
approving it for publication was Yougan Chen . tence on the planet [1]. Water quality is determined by
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natural processes, such as precipitation and erosion, and
anthropogenic activities that pollute the aquatic ecosystem,
including agriculture, urbanization and industrialization [2],
[3]. Degradation of surface water quality compromises access
to potable water, posing serious challenges to public health
and economic development [4], [5]. The water quality index
(WQI), which conglomerates several physical and chemical
variables, is widely used to grade the quality of ground and
surface waters in water resource management and environ-
mental protection [6], [7], [8].

Artificial intelligence (AI) can be harnessed to model water
quality in environmental engineering [9], [10], [11], [12].
Hameed et al. [13] applied neural networks to a dataset that
contained monthly information on water quality in Malaysia.
The radial basis function neural network yielded the best
performance, with the highest coefficient of determination
(R%) of 0.9872 for WQI prediction. Asadollah et al. [14]
used a novel ensemble of machine learning (ML) methods—
the extra-tree regression ensemble model—to predict WQI
on a dataset that collected monthly data in Hong Kong.
Among various experiments, the highest R2 value of 0.98 was
reported. Majnooni et al. [15] applied four deep learn-
ing (DL) models—gated residual variable selection model
(GRVS), cross-deep model, wide-deep model, and deep base
model—on a WQI dataset that contained ten parameters.
The best model, GRVS, attained the highest 0.98 R2 value.
Talukdar et al. [16] optimized gradient boosting (GB), ran-
dom forest (RF), and deep neural network (DNN) with an
entropy-based weighting approach and applied them to a
water quality dataset sourced from Loktak Lake. After exten-
sive experiments, the best model, RF, yielded the highest R2
value of 0.90 for others. Wang et al. [17] proposed a long
short-term memory (LSTM) network-based ML approach for
WQI monitoring of a semi-arid river. After applying Apriori
algorithm-based optimization for tuning training parameters,
the LSTM-based model attained 89.07% accuracy for WQI
prediction. Shams et al. [18] used various ML approaches for
WQI prediction, including RF and several boosting models.
A grid search mechanism was used to tune the parameters of
the boosting models. The GB attained the best accuracy of
99.5% for WQI prediction.

Khan et al. [19] used principal component analysis-based
regression and gradient boosting for WQI prediction and
water quality classification. On a water quality dataset
sourced from the Gulshan Lake, the model attained an excel-
lent 95% accuracy for WQI prediction and 100% accuracy
for water quality classification. Bi et al. [20] proposed a
hybrid model that contained a LSTM-based encoder-decoder
network. Using the Savitzky-Golay filter to eliminate noise
in the dataset, the model attained 0.679 root mean square
error (RMSE) for WQI prediction. Saeed et al. [21] pro-
posed an LSTM-based deep-learning approach for WQI
forecasting. They applied data pre-processing and aggre-
gation on a West Australian estuary dataset, followed by
data transformation, which converted the pre-processed data
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for time-series forecasting. An excellent 0.957 R2 value for
WQI prediction was reported. Tian et al. [22] monitored the
water quality of reservoirs supplying city and agricultural
water using a Fuzzy C-means clustering algorithm and the
band combination model to analyze remotely sensed water
quality variables. Using ML models like mixed density net-
work (MDN), XGBoost, DNN, and support vector regression
(SVR) to predict optically active and non-optically active
components, the best R? score of 0.98 was attained by the
MDN model.

While the reviewed studies have made notable progress
in ML-based water quality prediction, they come with sev-
eral limitations [23], [24]. Many approaches, such as neural
networks and ensemble methods, require significant compu-
tational power and fine-tuning of hyperparameters, making
them less practical for real-time applications. Some studies
rely on datasets with low temporal resolution, like monthly
measurements, which may fail to capture short-term fluc-
tuations in water quality. DL models, despite their strong
predictive capabilities, often require large amounts of train-
ing data and are prone to overfitting, limiting their ability
to generalize to new environments. Similarly, tree-based
models like random forests and gradient boosting, while
effective, can be difficult to interpret and struggle with noisy
or incomplete data. Additionally, while LSTM and hybrid
models enhance temporal learning, they are computationally
intensive and do not always outperform simpler models in
real-world applications.

In this work, we have built a ML model for WQI prediction
using a more advanced liquid neural network (LNN) [25],
which is a type of artificial neural network used to model
time-varying dynamic systems and uncertainties. Compared
with traditional neural networks, LNN possesses the advan-
tages of adaptability over time, flexibility, and computational
efficiency. Moreover, we have incorporated a gating mecha-
nism to create a novel gated LNN designed for the efficient
processing of information over time. Gated-LNN can learn
long-term dependencies more effectively by controlling the
forgetting of past information and is more resilient to noisy
data [26]. We trained and tested the gated-LNN model on a
public water quality dataset. In our experiments, gated-LNN
demonstrated excellent performance for predicting WQI and
classifying water quality labels.

The main contributions of this paper are as follows:

oTo the best of our knowledge, this work is the first to pro-
pose and implement gated-LNN for water quality prediction
and classification tasks.

eThe incorporated gating mechanism dynamically adjusts
the contributions of new inputs, maintains relevant past states,
and controls the outputs, thereby enhancing the model’s abil-
ity to learn long-term dependencies and its resilience against
noisy data.

¢On a public water quality dataset with seven key water
quality attributes, which had been sourced from various
water bodies in India from 2005 to 2014, the model attained
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excellent performance, lending support for its application in
environmental engineering and water resource management.

Il. MATERIALS AND METHODS

A. PROPOSED GATED LIQUID NEURAL NETWORK

The proposed gated-LNN model (Fig. 1) systematically pro-
cesses water quality attributes and dynamically captures
their relationships. First, water quality attributes in the study
dataset (see Section D. DATASET) are processed through
a two-staged sequential gating mechanism comprising a
gate sigmoid layer followed by a gate hyperbolic tangent
layer. The former normalizes feature importance to a range
between 0 and 1 and dynamically selects and weights the
most relevant information for further processing; the latter
applies the non-linear transformation to the former’s output
and scales the relative importance of features to a range
between —1 and 1, capturing both positive and negative fea-
ture contributions. The information the two gate layers have
processed is then passed to the liquid layer, which (1) captures
complex, non-linear, and time-varying relationships between
features through recurrent connections and (2) processes and
preserves temporal dependencies. These operations ensure
effective modeling of dynamic and interdependent water
quality parameters, allowing the gated-LNN to understand
how changes in one parameter affect others. Finally, the
processed features are fed to a fully connected layer for WQI
prediction and water quality classification.

Fully connected
Liquid Layer layer

Water quality
features

Input

FIGURE 1. Proposed gated-LNN model for water quality index prediction.

B. LIQUID NEURAL NETWORKS

An LNN applies a differential equation to describe how
a system changes over time; its primary components are
time-varying activation functions and a combination of
such functions defined according to the given differential
equation [25], [27]. The state of the network is thus a con-
tinuous time-dependent function, where the weighted input
function at a given time, (t), can be mathematically expressed
as:

u(t) =W.x(t) (D

where u (¢) represents the input vector of the network, W,
the weight matrix; and x(¢), the current state of the network,
i.e., the present state of the dynamic system. A differential
equation governs the network state at any time changes and
this change,

0
);(t’) —F (). 1), 6) @
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where x(t) represents the instantaneous state of the network;
f (1), the function that determines the nature of the dynamics
of the system (and is usually considered to be nonlinear); and
0, parameters of the model. The output function is obtained
by a composition of the state of the network and the weighted
input function, as given below:

y () = o(Wy.x (1)) 3

where y(¢) represents the network output; W,, the weight
matrix used for the output; and o, the activation function. The
LNN learns by backpropagation, which minimizes the loss
between outputs of the network and target values, as given
below:

L=3" (-5 @

where L represents the loss function of the network; y; (1),
actual output, and y; (), predicted outputs. The loss function
is used to optimize the parameters of the gated-LNN model.

C. GATED-LNN

LNNs represent a powerful approach to learning the evolution
of dynamic systems as structures modeled by differential
equations [25], [27]. These structures can be enhanced
with gate mechanisms [28], which control and optimize the
dynamics in a much more flexible way. Over time, gate mech-
anisms can either activate parts of the network or limit their
influence, rendering the model more controlled and sensitive
to data. In a typical LNN, network dynamics are governed by
a differential equation, where the state of the network, x(¢),
is modeled as a function of time. With the addition of gate
mechanisms, which control how active the network is over
certain time intervals, the evolution of the network becomes
more controlled. The state of the LNN is given as:

ax(t)
at

where g(t) represents the gate function.
The time-varying gate function is defined mathematically
as:

=f@x@),u@),0).g() &)

g () =0 (Ws.x (1) + by) .tanh (Wy.x (1) + b;)  (6)

where o is the sigmoid activation function, which regulates
information flow, while tanh (.) is the hyperbolic tangent acti-
vation function, which scales and transforms input features
non-linearly. Here, W, and W; represent the weight matrices
for the sigmoid gate and the tanh activation function, respec-
tively, while bs and b, are their corresponding bias terms.
The sigmoid function limits the value of g(¢) to between
0 and 1: when g(¢) =~ 0, the state of the network remains
unchanged; when g(¢) & 1, the system makes a full evolution.
This gating mechanism introduces flexibility to the learning
as network activity can vary dynamically over a certain time
interval. As the value of the function g(#) changes over time,
the dynamics of the network adapt to these changes, i.e., the
gate function controls how the network evolves. The output
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of a LNN is thus directly related to the state of the network
and the gate function and can be expressed as:

y(@) =a(Wy.x(1).g (1) (N

where y(¢) represents the output of the network, Wy is the
output weight matrix, and x(#) is the transformed and gated
network state. The gate function decides the amount of
activity of the output. This flexibility allows the network
to undergo a more efficient learning process by processing
only important information at certain time intervals. In other
words, the gate function allows the network to focus on more
important data when needed. The effect of the gate mecha-
nism on the learning process is observed by tuning the loss
function. As learning of the network is usually done through
a backpropagation algorithm, the loss function is deployed
here to minimize differences between network predictions
and actual values.
The loss function can be represented as:

N
L=> (y@®-3®) @®)
i=1

where L represents the loss function; y; (), actual output;
yi (1), model’s predicted output. Thus, the network can oper-
ate more efficiently by learning only at important moments.
The gating mechanism used in this design is similar to
a GRU-type approach [29], utilizing a sigmoid function to
control information flow and a fanh activation to control input
transformation. However, unlike GRU, which employs sepa-
rate update and reset gates to manage information flow across
time steps, the proposed model uses a single gating function
that modulates the entire information transfer process. This
single gate architecture reduces computational complexity
while still capturing temporal dependencies effectively. The
fully connected layers are used as intermediate processing
steps so that the network can learn appropriate gating values
dynamically. This process is achieved in the liquid neural
network by modulating the input before it reaches the lig-
uid dynamics layer, with information transfer controlled and

increasing the model’s temporal dependency ability.

D. DATASET

We used the public water quality dataset [30], which
is sourced from various lakes and rivers in India
from 2005 to 2014. It contains a total of 1897 cases, which
have been characterized using seven quantitative features
of water quality: (1) “dissolved oxygen”, the amount of
oxygen dissolved in the water, which is necessary to sustain
aquatic life; (2) “pH”, the level of acidity or alkalinity of
the water; (3) “conductivity”, the ability of water to conduct
electric current, which informs on the presence and level of
dissolved particles; (4) “biological oxygen’, the amount of
dissolved oxygen that microorganisms in the water absorb,
which reflects the degree of organic pollution; (5) “nitrate”,
the number of nitrate ions in the water, which is an indicator
of sewage or fertilizer contamination; (6) “fecal coliform”,
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FIGURE 2. Water quality parameters and water quality indices (WQI) of
water samples in the study dataset (n=1897): (a) dissolved oxygen,

(b) pH, (c) conductivity, (d) biological oxygen, (e) nitrate, (f) fecal coliform,
(g) total coliform, and (h) WQl.

} } HEEE| “ “"*‘J“&ﬂ

the number of coliform bacteria of fecal origin in the water,
which is an indicator of fecal contamination; and (7) ‘“‘total
coliform™, the total amount of fecal and non-fecal coliform
bacteria from both in the water (Fig. 2).

As seen in Fig. 2, the dissolved oxygen ranges from 0.0 to
11.4, indicating instances of complete oxygen depletion,
which may signify severe pollution or stagnation along-
side well-oxygenated conditions. The pH values exhibit an
extremely wide range, from 0.0 to 9,01, suggesting the pres-
ence of potential data anomalies or measurement errors.
Conductivity spans from 0.4 to 65,700, reflecting diverse
water salinity or ion concentration levels potentially influ-
enced by pollution or natural mineral content. Biological
oxygen demand varies between 0.1 and 534.5, highlighting
significant differences in organic matter content and micro-
bial activity. Nitrate levels, ranging from 0.0 to 108.7, suggest
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areas with negligible to extremely high nutrient concentra-
tions, possibly due to agricultural runoff or industrial waste.
Fecal coliform and total coliform exhibit wide ranges, from
0.0 to 27,252 and 0.0 to 51,109, respectively, indicating vari-
ations in microbial contamination, with potential health risks
at higher levels. Finally, the WQI ranges from 19.3 to 99.8,
reflecting water quality from poor to excellent conditions.

Data preprocessing was carried out, including mean impu-
tation for missing values and z-score normalization using
standardization to scale the data. This was done to prepare
the data for subsequent processing and ensure it is suitable
for further analysis.

E. CALCULATION OF wai

WQI is a well-established metric used to assess water quality.
It is calculated as [18]:

N
B ®)

where N denotes the total number of parameters; and g; and
w; represents the quality rating and the corresponding unit
weight of the parameter i, respectively. g; is calculated as:

4i = 100 (V" - V”’) (10)

Si — Vid

where v; corresponds to the observed value for the parameter
i, vig represents the ideal value under pure water conditions,
and s; is the standard threshold for the same parameter. w; is
calculated as:

wi = K (11)
Si
where k is a proportionality constant given by:
k= ! (12)
Zl”:] Si

Categorical labels of water quality are determined based on
values of WQI: a value between 0 to 50 indicates “Good”’;
51 to 100, “Poor”’; and 101 and above, “Unsuitable’ [18].

Ill. EXPERIMENTS AND RESULTS

The gated-LNN model was implemented in MATLAB on
a computer with an NVIDIA GeForce RTX 3090 GPU
and 24 GB RAM. Model performance was evaluated using
a hold-out validation approach, where 75% of the dataset
was allocated for training and 25% for testing. Performance
metrics calculated on the test set include RMSE, mean abso-
lute percentage error (MAPE), mean absolute error (MAE),
and R%. RMSE measures the average magnitude of the errors
between the predicted and actual values and is an indicator
of model accuracy [31]: low RMSE implies that model pre-
dictions closely approximate actual data. Mathematically, the
RMSE is computed as [31]:

1 N .
RMSE = \/ﬁ Zi:l (vi — yz‘)z (13)
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where N represents the total number of data points, y;, actual
data values, and y;, predicted data values. The MAE measures
the average absolute difference between actual and predicted
values, while the MAPE expresses this error as a percentage
of the actual values [32], [33]:

1 N R
MAE = Nzizl lyi — il (14)
100 <N |y; — ;
MAPE = — S |22 (15)
N =] vy

where y; represents the actual values, and y; denotes the
predicted values.

R?, which ranges from 0 to 1, expresses what proportion
of the original data variance is covered by the predicted
data [34]. An R? value near 1 indicates a good fit between
predicted and actual data. It is calculated using the following
formula [35]:
> (vi — 9i)2
>y i =5
where y; represents the actual data points, y; represents the
predicted values, and y; is the average of the actual data.
A higher R? value indicates that the underlying structure and
trend of the data have been better preserved after the modeling
or simplification process.

To overcome the challenges posed by the additional param-
eters introduced by the gating mechanisms, we employed
several strategies. We employed regularization techniques
such as L2 weight decay and dropout to avoid overfitting
via reduction of reliance on specific neurons and enhanced
generalization. In addition, we controlled the capacity of
the network via careful selections for the number of hidden
units in the gating layers in a way that attempted to bal-
ance expressiveness and complexity. To facilitate effective
training despite the increased parameter space, we employed
the Adam optimizer. Furthermore, the liquid neural net-
work’s dynamic temporal dependencies with fewer trainable
parameters than traditional recurrent architectures alleviated
the added complexity introduced by the gating mecha-
nism. Parameters for the gated-LNN model were determined
heuristically in experiments. The model has a feature input
layer configured to accept an input dimension without nor-
malization. The gating mechanism consists of two fully
connected layers, having 1024 neurons, followed by sig-
moid activation and hyperbolic tangent activation functions,
respectively, for nonlinearity and gating control. A custom
liquid layer block contains another fully connected layer with
1024 neurons, followed by a fully connected hidden layer
with 1024 neurons. The final output layer is a single fully
connected layer for regression tasks, followed by a regression
layer. The training was performed using the Adam optimizer
with a maximum of 600 epochs, an initial learning rate of
0.0001, and a mini-batch size 256. Data shuffling at every
epoch was applied, and training progress was monitored
via live plots with validation data included for performance
assessment.

R*=1- (16)
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The constant learning rate of 0.0001, combined with the
Adam optimizer, ensured stable and gradual updates for
effective optimization. The training progress for WQI pre-
diction converged well (Fig. 3). RMSE and loss curves for
both training and validation decreased steeply in the initial
iterations and stabilized to near-minimal values as training
progressed. The final achieved validation RMSE is 0.035737,
indicating high accuracy. The smoothed training and valida-
tion curves suggest consistency with neither major overfitting
nor divergence, which implies the generalizability of well-to-
unseen data. The model attained RMSE, MAE, and MAPE of
0.0357,0.0242, and 0.5376, respectively, which indicate min-
imal deviations between predicted and actual values, and R?
of 0.9995, underscoring the model’s ability to explain nearly
all the variability in the data. These results lend credence to its
robustness and efficiency in predicting WQIL. Not only is the
model able to predict the general trend of WQI values, but it is
also adept at capturing local fluctuations in WQI effectively.
In an analysis of the test set, the predicted WQI values closely
followed the actual values across all samples, demonstrating
the model’s generalization ability. Even in regions with sharp
peaks and variations, the deviations remained minimal, indi-
cating the robustness of Gated-LNN (Fig. 4).

g Fregsas (8 2034 1)

; |"‘
N:-)-..—,x-» 0

e 2 Py

FIGURE 3. Plots of training progress for WQI prediction.

TABLE 1. Summary of evaluation metrics obtained for WQI prediction.

RMSE MAE MAPE R?

0.0357 0.0242 0.5376 0.9995

The quantitative evaluation metrics obtained for WQI pre-
diction, presented in Table 1, highlight the high accuracy and
reliability of the proposed model. The RMSE of 0.0357 and
MAE of 0.0242 indicate minimal deviations between pre-
dicted and actual values. The MAPE of 53.76% demonstrates
the model’s exceptional prediction accuracy relative to the
true values. Besides, R? of 0.9995 further underpins the
model for explaining nearly all the variability in data, giving
credence to its robustness and efficiency in predicting WQI.

Fig. 4 also compares the actual and predicted WQI values,
which reflect the good predictive capability of the proposed
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FIGURE 4. Comparison of predicted versus actual WQI on the test set.

model. The predicted values follow the actual values closely
over the entire range of samples, with minimal deviations
even in regions characterized by sharp peaks and variations.
This is indicative of the model’s ability to capture both the
general trend and local fluctuations in WQI effectively.

The proposed gated-LNN model was also used in the
classification of water quality. The performance evaluation of
this classification task was carried out with accuracy, recall,
precision, specificity, and F1-score metrics [36] to evaluate
the model performance of classification of water quality into
“Good”, “Poor”, and “Unsuitable” classes. In the training
phase of the classification task, we employed an Adam opti-
mizer with a maximum of 600 epochs, an initial learning rate
of 0.0001, and a mini-batch size of 256. Data shuffling was
applied at every epoch, and training progress was monitored
via live plots with validation data included for performance
assessment.

(2)

FIGURE 5. The distribution of the class categories in training (a) and test
(b) sets.

The class distributions of the training and test sets are
shown in Fig. 5. As observed, the “Poor” class has the
highest number of samples in both the training and test sets,
while the “Good” and ‘““Unsuitable” classes have relatively
fewer samples. However, this situation did not lead to an
overfitting toward the majority class. This situation can be
seen in Fig. 6 and Table 2. If there were a class imbalance,
the confusion matrix would show more misclassifications
for underrepresented classes, with most predictions biased
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FIGURE 6. Plots of training progress for water quality classification.

TABLE 2. Summary of evaluation metrics (%) obtained for automated
water quality classification using the proposed gated-LNN model.

Accuracy Precision Recall Specificity ~ Fl-score

99.74 99.81 99.71 99.84 99.76

toward the majority class. This would lead to lower recall
for underrepresented classes and lower precision for the
majority class. The F1-score would also decrease, indicating
poor precision-recall balance. However, the confusion matrix
shows high precision, recall, and F1-scores for all classes,
indicating no significant class imbalance and that the model
handles all categories well.

Training accuracy increased rapidly from about 50% to
over 96% in the first 200 iterations, stabilizing at 96.7%
at the end of training (Fig. 5). Validation accuracy demon-
strated a similar trend, converging to about 96%. In contrast,
training loss declined sharply from an initial value of about
1.2 to below 0.1 within the first 300 iterations, stabiliz-
ing at about 0.05 toward the last iterations. Validation loss
demonstrated a similar trend, reaching a convergence value
of approximately 0.07. The confusion matrix shows only one
instance of misclassification (Fig. 6). Moreover, the model
attained excellent accuracy, precision, recall, specificity, and
F1-score of 99.74%, 99.81%, 99.71%, 99.84%, and 99.76%,
respectively, indicating that the proposed gated-LNN model
is accurate, discriminative, and sensitive for water quality
high classification.

It can be observed from Fig. 6 that the proposed
Gated-LNN model classified Class 1 instances as 113, Class
2 instances as 176, and Class 3 instances as 90, with only
one misclassification for Class 1. These results show that
the proposed model effectively discriminates between classes
with high overall accuracy and maintains a minimum misclas-
sification rate across all classes.

Table 2 lists the performance measures of water quality
classification using the proposed Gated-LNN. The model
yielded 99.74% in terms of accuracy, indicating the capability
of the model to classify almost all instances in the dataset
correctly. Besides, its precision of 99.81% indicates the high
capability of the model to reduce false positives, while the
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True Class
N
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Predicted Class

FIGURE 7. Confusion matrix obtained for water quality classification. *1,
2, and 3 correspond to the classes “Good”, “Poor”, and “Unsuitable,
respectively.

recall of 99.71% reflects its efficiency in capturing the truest
positives. A specificity of 99.84% indicates excellent per-
formance in the identification of negative cases, which is
critical for balanced classification. The F1-score is 99.76%,
indicating a strong balance between precision and recall.

To explore the contribution of each feature to the classifi-
cation of the water quality, we incorporated Shapley additive
explanations [37]. The feature importance plot, as given in
Fig. 7, ranks the input variables according to their mean
absolute SHAP values, which represent their overall contribu-
tion to the model’s predictions. Biochemical oxygen demand
appears to have the largest effect, followed by dissolved
oxygen and conductivity. The larger the SHAP value, the
larger the influence of the feature on classification decisions,
and the more it contributes towards identifying the drivers of
the model’s outputs.

Shapley Importance Plot

biochemical_oxygen_demand

PH

dissolved_oxygen

conductivity

Predictor

total_coliform

fecal_coliforn

nitrate_nitrite

0 01 02 03 04 05 06 07
Mean of Absolute Shapley Values

FIGURE 8. The feature importance plot.

The SHAP summary plot, as given in Fig. 8, for ‘Good’
provides a zoomed-in view of how feature values for specific
instances add up to make predictions. Each instance in the
data is depicted by a point, with colors indicating whether the
feature value is low (blue) or high (pink). Horizontal spread of
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FIGURE 9. The SHAP summary plot for “Good” class.
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FIGURE 10. The SHAP summary plot for “Good” class.

the points shows the range of the SHAP values, illustrating the
degree to which variations in biochemical oxygen demand,
dissolved oxygen, and other features are accountable for the
classification as ‘Good’.

The SHAP summary plot (Fig. 9) for ‘Poor’ shows the
same analysis, how feature values contribute to predictions
for this class. The SHAP value distribution is handy for
viewing the model’s sensitivity to different variables, and it
identifies which features are pushing classification decisions.
The features with a bigger range of SHAP values show a
larger degree of influence on model predictions for ‘Poor’.

The SHAP summary plot for ‘Unsuitable’ given in Fig. 10
illustrates the impact of each feature on predictions for this
class. The color-coded points are the original feature values,
and the SHAP values indicate their contribution to the clas-
sification outcome. A noticeable trend in the distribution of
points suggests that certain features tend to always contribute
heavily towards the prediction of this class, reinforcing the
necessity to examine feature interactions in the model.

We also tested the proposed gated-LNN’s performance on
noisy data. To this end, various Signal-to-Noise Ratio (SNR)
level artificial noise was produced and added to the input
data. The previous training parameter setting was saved for
this experiment too. Table 3 shows the obtained classification
evaluation metrics.

Table 3 illustrates the performance of the proposed
Gated-LNN model under different levels of noise. As SNR
decreases, the model’s performance declines steadily across
all metrics. At 60 dB, the model performs optimally with
an accuracy of 0.9816, in addition to high precision, recall,
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FIGURE 11. The SHAP summary plot for “Unsuitable” class.

TABLE 3. The performance of the proposed gated-LNN model on various
levels of noise.

SNR Accuracy  Precision Recall Specificity ~ Fl-score
60 dB 0.9816 0.9853 0.9806 0.9890 0.9826
50 dB 0.9579 0.9722 0.9509 0.9739 0.9597
40 dB 0.9500 0.9612 0.9475 0.9703 0.9524
30dB 0.8816 0.9026 0.8774 0.9313 0.8842

and specificity, indicating good performance under low noise
conditions. However, at 30 dB, accuracy drops to 0.8816, and
precision, recall, and F1-score also decrease, demonstrating
that raising the noise level negatively impacts the model’s
ability to predict correctly.

Finally, we compared the performance and execution time
of various ML methods with the proposed gated-LNN model.
To this end, we have selected random forest (RF), sup-
port vector machines (SVM), Bayesian learning (BL), and
k-nearest neighbors (kNN) algorithms, as they are popularly
used in the literature [38], [39]. Table 4 shows the accu-
racy values and running times of each method. As observed
from Table 4, the proposed method is the slowest to run,
while the other ML algorithms are much faster to produce
results. However, these ML models’ accuracy scores are far
lower relative to the performance of the proposed gated-LNN
model. The superior performance of Gated-LNN stems from
its gating mechanism, which adaptively controls information
flow through recurrent units. Unlike standard LNNG, it selec-
tively retains relevant information while filtering out noise,
enhancing long-term dependency learning and preventing
state saturation. This improves robustness to noise and allows
the model to dynamically adjust to new inputs, leading to
better regression and classification performance.

IV. DISCUSSION

Water quality determination using ML offers a rapid and
inexpensive alternative to traditional testing, which can be
used for real-time monitoring and early pollution detection.
These methods can process complex datasets to predict WQI
and water quality categories accurately to support informed
decisions on sustainable water management while ensur-
ing public health safety. In this work, a gated-LNN has
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TABLE 4. Performance and running time comparisons of the proposed
method with some of the ML methods.

Method Accuracy (%)  Running Time (sec)
RF 95.25 0.18

SVM 91.03 0.02

kNN 65.17 0.004

BL 62.80 0.002

Sﬁ;d' 99.74 3110

been constructed by adding general gating mechanisms to
an otherwise LNN model to enhance both time dynamics
and feature representations. These gates are configured to
dynamically adjust the contributions of new inputs, maintain
relevant past states, and regulate the outputs at each time step
for improved handling of temporal context. The proposed
gated-LNN yielded excellent performance for WQI predic-
tion and water quality label classification, attaining salutary
0.0357 RMSE, 0.0242 MAE, 0.5376 MAPE and 0.9995 R?
for the former task; and excellent 99.74% accuracy, 99.81%
precision, 99.71% recall, 99.84% specificity and 99.76% F1-
score for the latter task.

The gated-LNN model compares favorably against and
outperforms recent published methods for WQI prediction
and water quality classification (Table 5 ). Shams et al. [18]
studied several ML approaches to the tasks, employing RF,
XGBoost, GB, and AdaBoost for classification, and k-nearest
neighbors (KNN), decision tree (DT), SVR, and multilevel
perceptron (MLP) for regression. They performed prepro-
cessing that involved mean imputation and normalization
for the dataset, which contained 1897 instances and seven
water quality features. GB attained 99.50% accuracy for
water quality classification and MLP, R? of 0.9980 for WQI
prediction. Nasir et al. [40] used standard DT for water quality
classification. Guo et al. [41] studied various ML approaches
for water quality classification and concluded that standard
support vector machines outperformed other ML approaches.
Ahmed et al. [42] used a standard MLP approach for water
quality classification.

In Table 5, a detailed comparison of the proposed
gated-LNN method with several state-of-the-art models for
WQI prediction and water quality classification is given.
For the classification task, the proposed gated-LNN achieved
an accuracy as high as 99.75%, while the results from
other methods are 99.50% by GB, 99.30% by XGBoost,
and 99.00% by RF from Shams et al. [18]. Other classi-
fication models, such as DT from Nasir et al. [40] SVM
from Guo et al. [41] yielded considerably less 81.62% and
88.75%, respectively. This comparison illustrates the high
performance of the proposed gated-LNN in the classification
task, significantly improving the state-of-the-art approach.

The regression performance of the proposed gated-LNN
was also outstanding, achieving R? of 0.9997, outperforming
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TABLE 5. Summary of comparison with the state-of-the-art methods
developed on the WQI prediction and water quality classification.

Ref.  Method Task  Acc(%)  R?
[18]  Grid search-based RF C 99.00 B
[18]  Grid search-based XGBoost C 99.30 -
[18]  Grid search-based AdaBoost C 99.10 -
[18]  Grid search-based GB C 99.50 -
[18]  Grid search-based KNN regressor R - 98.20
[18]  Grid search-based DT regressor R - 99.00
[18]  Grid search-based SVR R - 99.10
[18]  Grid search-based MLP regressor ~ R - 99.80
[40] DT C 81.62 .
[41] SVM C 88.75 -
[42] MLP C 85.07 ;
TS Gated-LNN R - 99.95
C 99.75 -

TS Gated-LNN

# C=classification, R=regression, TS=this study.

TABLE 6. Summary of comparison with the standard LNN method on the
WQI prediction and water quality classification.

METHOD

RMSE  MAE MAPE R2
Gated-LNN  0.0357  0.0242 0.5376 0.9995
LNN 0.0867  0.0721 0.6112 0.9969
L e Fl1-
METHOD Accuracy  Precision  Recall Specificity score
Gated-LNN 99.74 99.81 99.71 99.84 99.76
LNN 98.68 99.08 99.18 98.67 98.67

all other models in comparison. Specifically, the MLP regres-
sor from Talukdar et al. [16] is 0.9980, and the SVR is 0.9910,
far lower than the gated-LNN result. The outstanding R>
reached by the proposed method shows its strong capability in
mining underlying patterns in the regression task and further
confirms its superiority in performance.

We carried out another comparison where the proposed
gated-LNN was compared with the traditional LNN. For a
fair comparison, all gated LNN and LNN parameters were
set to identical values. Table 6 shows the evaluation metrics
for this comparison. As seen in Table 6, the gated-LNN
significantly outperforms LNN across multiple evaluation
metrics. Specifically, gated-LNN achieves lower RMSE,
MAE, and MAPE values, demonstrating improved predictive
accuracy, while also achieving a higher R? value of 0.9995,
indicating a near-perfect fit. Additionally, in classification
performance, Gated-LNN exhibits superior accuracy, preci-
sion, recall, specificity, and Fl-score, with an accuracy of
99.74% compared to 98.68% for LNN.

We also conducted a further performance analysis using a
Taylor diagram [43] to visually assess the predictive capa-
bility of the proposed Gated-LNN in comparison to other
traditional methods for WQI prediction. The Taylor diagram,
presented in Fig. 12, provides a comprehensive evaluation
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FIGURE 12. Comparison of the proposed Gated-LNN in the Taylor
diagram [43] with other methods for WQI prediction.

by illustrating the relationship between model standard devi-
ation, RMSE, and correlation coefficient in a single plot.
As shown in Fig. 12, the gated-LNN exhibits the best pre-
dictive performance, achieving the highest correlation and
the lowest RMSE, indicating a near-perfect fit to the actual
WQI values. SVM also demonstrates strong performance,
with a similarly high correlation and low RMSE, making it
a competitive alternative to Gated-LNN. RF and kNN mod-
els perform moderately well, with slightly lower correlation
values and higher RMSE, suggesting that while they can
still provide reliable predictions, they are not as accurate as
gated-LNN and SVM. Furthermore, the Taylor diagram high-
lights the substantial improvement achieved by the proposed
Gated-LNN over the traditional LNN model for WQI predic-
tion. The diagram clearly shows that Gated-LNN exhibits a
significantly higher correlation coefficient and a lower RMSE
compared to LNN, indicating that the proposed modifications
have successfully enhanced the model’s predictive accuracy.
This improvement suggests that the gated mechanism effec-
tively optimizes the learning process, allowing the model to
better capture variations in WQI values.

The advantages and disadvantages of our proposed
gated-LNN are listed below.

Advantages:

eThe proposed gated-LNN model yielded excellent results
in WQI prediction and water quality classification, with
R? of 0.9995 and 99.74%, outperforming state-of-the-art
methods.

eThis model incorporates different gating mechanisms,
which improve feature representation via dynamic adjust-
ment of input contributions and maintaining relevant past
states. These operations enhance the model’s ability to learn
long-range dependencies and (because of that) resilience to
data noise.

eTrained and tested on a large dataset comprising
multi-site data collected over many years, excellent model
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performance supports its application for water quality assess-
ment in different contexts and scenarios.

eThe model allows real-time assessment of water quality
and can inform decision-making on the protection of public
health and sustainable management of water resources.

Disadvantages:

eGated-LNNs are computationally expensive in terms of
their architecture. Their training requires powerful GPUs and,
very often, extended times.

eMost DL models, like gated-LNN, often lack trans-
parency. Users may find it hard to understand the decision-
making process.

eThe performance heavily relies on the quality and quan-
tity of the input data; errors in data pre-processing or
anomalies may adversely impact outcomes.

eWhile the model handles temporal dynamics well, it may
struggle with datasets containing extreme heterogeneity or
unstructured attributes.

eAs the proposed model is customized for certain water
quality datasets, further modifications will be needed for it to
be applied in other environmental contexts.

V. CONCLUSION

In this study, a new gated liquid neural network (Gated-
LNN) model was proposed for the prediction of water quality
index (WQI) and classification of water quality. The pro-
posed model demonstrated high accuracy and robustness,
yielding R? value of 0.9995 for the prediction of WQI and
a 99.74% three-class classification accuracy, outperforming
state-of-the-art modern methods. The gating mechanism in
gated-LNN enhances the model’s ability to handle tempo-
ral dynamics, adapt to noisy datasets, and learn long-term
dependencies, rendering it a powerful tool for water quality
monitoring. The excellent results attest to the potential of
gated-LNN to contribute to real-time water quality assess-
ment for sustainable water resource management.

Future work should prioritize optimizing the computa-
tional efficiency of the gated-LNN model to ensure its
scalability for large-scale datasets and real-time deploy-
ment. Additionally, incorporating explainable Al techniques
will enhance model transparency, fostering trust and adop-
tion among policymakers and environmental managers.
To broaden its applicability, future research should explore
integrating multi-source data, including remote sensing and
IoT-based sensor networks, into the model framework. Such
advancements would enable gated-LNN to be applied beyond
water quality assessment to real-time monitoring and pre-
diction in other environmental domains, such as air quality
and soil contamination. These improvements will strengthen
the model’s role in environmental conservation and sus-
tainable resource management. Moreover, evaluating the
model’s performance on datasets from different geographic
regions and time periods remains an important direction for
future research. Conducting such generalization tests will
provide deeper insights into the adaptability and robustness
of the proposed approach. Lastly, we will explore alternative
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gating mechanisms, such as fully learnable or attention-based
gates, to evaluate their impact on the performance of the
Gated-LNN when applied to more complex datasets.
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