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ABSTRACT The increasing penetration of electric vehicles (EVs) and photovoltaic (PV) systems poses
significant challenges to distribution grid performance and reliability. Battery energy storage systems (BESS)
offer a promising solution to mitigate these challenges; however, most existing BESS optimization strategies
fail to simultaneously enhance grid performance and maximize economic benefits for BESS owners. This
research proposes an optimized BESS dispatch strategy that balances both grid performance and BESS bid
pricing in the transactive energy (TE) market through a multi-criteria decision-making (MCDM) method.
The strategy aims to reduce energy procurement costs and create a more favorable system for EV users
by minimizing their charging expenses. Using the DIgSILENT PowerFactory power system software for
modeling and simulation, the active and reactive power dispatch of BESS is optimized via a differential
evolution (DE) algorithm. The experimental validation of the proposed approach demonstrates significant
improvements in grid performance, reduced energy costs, and enhanced flexibility for distribution network
operators (DNOs) in prioritizing either grid performance or financial considerations, or both. Overall, this
novel approach provides an effective framework for DNOs to enhance grid performance while strategically
incorporating the economic aspects of BESS, ultimately lowering EV charging costs compared to existing
methods.

INDEX TERMS Distributed generation, differential evolution algorithm, energy storage, electric vehicle,
transactive energy, voltage unbalance.

I. INTRODUCTION

The global adoption of electric vehicles (EVs) is accelerating,
primarily driven by environmental concerns and government
policies that promote clean energy solutions [1]. Despite
these positive trends, a significant portion of EVs still
rely on conventional fossil-fuel-based energy for charging.
This reliance not only increases costs, particularly when
accounting for associated emissions, but also conflicts with
broader sustainability goals. Renewable energy (RE) systems
offer a compelling solution, providing the potential to
lower both charging costs and greenhouse gas emissions.

The associate editor coordinating the review of this manuscript and

approving it for publication was Amin Mahmoudi

However, while RE systems and EVs are key contributors
to reducing emissions and improving energy efficiency,
their uncoordinated integration can introduce serious oper-
ational challenges, jeopardizing grid performance and effi-
ciency. Typically, distribution network operators (DNOs)
are responsible for forecasting EV demand and RE-based
distributed generation (DG) to maintain the low-voltage
(LV) distribution grid. However, the inherent variability
of RE-based DGs and the mobility uncertainty of EV
users introduce significant demand-generation imbalances,
potentially degrading grid performance [2]. Additionally, the
uncoordinated distribution of 1-ph EVs among phases causes
unbalance in a LV distribution grid [3], [4], [5], [6]. This
imbalance is further exacerbated when time-of-use (ToU)
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based charging strategies are employed, potentially leading
to unexpected demand peaks. Such peaks increase the risk
of overloading, which places additional thermal stress on
transformers and other critical infrastructure. Consequently,
uncoordinated EV integration can result in increased grid
demand, network imbalances, higher power losses, voltage
fluctuations, potential overloading of local distribution net-
works, and reduced hosting capacity [7], [8], [9]. These issues
can escalate grid instability and operational costs, presenting
significant challenges for DNOs. Moreover, reduced hosting
capacity limits the grid’s ability to accommodate additional
EVs and RE systems, often necessitating costly upgrades to
the distribution network [10], [11].

A viable solution to the complex challenges of integrating
RE sources and EVs charging into distribution networks
is the strategic use of battery energy storage systems
(BESS) in transactive energy (TE) market framework.
These systems play a crucial role in strengthening grid
resilience by stabilizing the intermittent and variable output
of RE-based DGs, particularly photovoltaic (PV) systems.
Additionally, BESS help manage the fluctuating demand
from EVs charging, reduce voltage imbalances, and minimize
power losses in the distribution grid [12]. Recent research
emphasizes the significance of optimal BESS placement
and sizing, demonstrating their potential to improve voltage
regulation, decrease power losses, and enhance overall grid
performance [13], [14], [15], [16], [17], [18], [19], [20].
For instance, the study in [13] proposes a robust BESS
dispatch framework designed to reduce voltage deviations
while providing fast frequency response in weak distribution
grids. Similarly, authors in [14] examines optimal DG sizing
and node selection to improve voltage profiles and reduce
emissions. The study in [15] focuses on optimizing BESS
dispatch to address DG uncertainty, mitigating voltage devi-
ations and reducing energy losses. According to studies [17],
[18], determining the optimal location and capacity of
BESS is critical for maximizing operational effectiveness.
Furthermore, coordinated strategies that combine optimal
BESS placement with managed EVs charging have been
shown to significantly reduce voltage unbalance and alleviate
network congestion [19]. Additionally, the study in [20]
investigates BESS performance under various PV production
scenarios—maximum, rated, and minimum—and proposes
an optimal dispatch strategy for efficient active power
management. While these studies contribute significantly
to technical advancements, they often overlook important
economic and market considerations.

Several research works are incorporating BESS into power
networks involves significant financial considerations that
affect the feasibility and sustainability of such projects. For
example, in [21] authors optimized BESS capacity by min-
imizing investment cost to store surplus PV energy. In [22]
authors proposed charging the BESS during off-peak hour
and discharges it during peak for maximizing net revenue of
BESS owner where battery degradation cost is considered as
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a key parameter. In [23] authors optimized residential BESS
scheduling to minimize energy cost (saving in electricity
bill) and emission cost. In [24] authors optimized sizing
and placement of BESS in the distribution network by
minimizing BESS’s capital cost and operation cost aiming to
minimize active/reactive power import from grid. While some
other researchers optimize the on-grid BESS for economic
operation to maximize revenue. For example, in [25]
authors identify optimal location and optimum dispatch for
minimizing annualized cost (BESS investment, operation and
maintenance, replacement and power import) considering
variable scenario of PV based DGs. In [26] authors gives
flexibility to the private owned BESS owners to offer bid
for either discharging or charging. The developed method
tunes optimum operation strategy for charging/discharging
based on price for maximizing individual BESS owner’s
profit. In [27] authors consider PV and EV’s battery as
DG of a building for TE market participation to support
the grid. The developed method ensures incentives to each
DG (dispatchable BESS) owners if the bid price is lower
than the TE market clearing price. Similarly, in [28] authors
presents a TE market framework for an EV parking lot with
PV and battery systems, optimizing cost-effective charging.
In [29] authors optimized the BESS installation capacity
to maximize the net present value considering capital cost,
operational cost, service time, and cash flow under various
market types and ownership. This study identified that
energy storage sharing operation require least BESS capacity
while increase the distribution loss to highest. In [30],
the authors proposed a two-level optimization model for
BESS aimed at maximizing the net revenue of the BESS
owner while minimizing total operational costs. The model
accounts for participation in multiple markets, including
reserve, energy capacity, and regulation mileage, as well
as the costs associated with battery degradation. In [31]
authors proposed a BESS bidding strategy that maximizes the
revenue from selling (discharging) and minimize the cost of
buying (charging) to maximize profit for renewable energy
sources producers. Another study [32] introduces a bilateral
trading and auction mechanism between EV aggregators and
EVs to provide ancillary services and address grid challenges.
This approach creates a TE market where aggregators sell
aggregated EV energy (similar to BESS) to DNOs for grid
support.

In summary, authors [13], [14], [15], [16], [17], [18], [19],
[20] develop methods for identifying optimal location for
integrating BESS with optimal BESS dispatch for improving
grid performances whereas authors in [21], [22], [23], [24],
and [25] minimizes levelized cost of electricity production
using BESS without accounting grid performance. Addition-
ally, research in [26], [27], [28], [29], [30], [31], and [32] has
explored BESS participation in TE market environments, yet
without integrating grid performance considerations. To the
best of the authors’ knowledge, based on our literature
review of existing BESS optimization strategies [13], [14],

VOLUME 13, 2025



T. H. M. Sumon Rashid et al.: Strategic Integration of Battery Energy Storage Systems

IEEE Access

(151, [1e], [17], [18], [19], [20], [21], [22], [23], [24],
[25], [26], [27], [28], [29], [30], [31], [32], no prior
research has simultaneously addressed EV charging demand
mitigation, grid performance improvement, and BESS owner
participation in the TE market through strategic BESS
integration into the distribution grid. Hence, there is a need
for an enhanced approach that effectively considers these
critical factors. This research introduces an advanced system
for BESS integration to address these challenges.

The key contributions of this research are summarized as
follows:

« Unlike traditional approaches (optimal placement and
sizing) that predefine BESS dispatch, the proposed work
introduces a dynamic, market-based bidding mecha-
nism, enabling individual BESS owners to participate
in energy trading while ensuring cost-effective EV
charging.

« A novel multi-criteria decision-making (MCDM) based
BESS ranking method is proposed to determine the
most suitable BESS dispatch nodes, considering both
technical and financial requirements, whereas tradi-
tional approaches considers either technical or financial
aspects. The proposed approach allows DNOs to
trade-off between technical and financial performance
based on their requirements.

o A price-based bidding mechanism is introduced, ensur-
ing only cost-efficient BESS units are dispatched which
is reducing energy cost for DNOs. The proposed method
reduces the energy cost which ultimately reduces the
EVs charging cost.

o Unlike commonly used evolutionary algorithms such as
genetic algorithm (GA) and particle swarm optimization
(PSO), which are widely implemented for power
system applications, this study evaluates the differential
evolution (DE) algorithm for optimizing BESS dispatch
and compares its performance to GA and PSO.

o The proposed approach is validated using a practical
LV grid, demonstrating improved grid performance and
suggesting the least EV charging cost. In general, it can
be applied to any LV distribution grid.

The rest of this paper is organized as follows: Section II
introduces the control system architecture. Section III
presents the problem formulation, detailing the objectives and
constraints of the control model. Section IV describes the
DE optimization algorithms, while Section V outlines the
proposed methodology. Section VI covers the experimental
setup, Section VII provides the results and discussion, and
finally, Section VIII offers concluding insights and future
work.

Il. CONTROL SYSTEM ARCHITECTURE

Fig. 1 illustrates the configuration of the proposed control
strategy, with arrows clearly depicting the power flow
pathways. The system is composed of diverse types of
EVs connected to a central AC bus, while both the PV
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FIGURE 1. Proposed control system structure.

system and the BESS are interfaced via dedicated DC/AC
converters. The integration of the BESS with the PV system
enables the storage of excess solar energy during off-peak
periods, maximizing renewable energy usage and supporting
grid stability. A versatile bi-directional converter empowers
the BESS to either inject or draw power from the system,
depending on dynamic control settings and grid demands.
This LV distribution grid, incorporating EVs, PV panels,
BESS, and residential loads, connects to the primary utility
network through a 0.4/11kV transformer, ensuring a seamless
interaction with the main grid. In the simulation study, the
EVs adhere to the proposed optimal charging schedule, while
the BESS plays a crucial role in providing grid support
services and flexibility within a DNO controlled TE market
framework. However, EV uncertainty impacts the modeling
of PV-powered BESS by introducing variability in charging
demand and grid interactions. Incorporating this uncertainty
is crucial for optimizing system efficiency and ensuring grid
stability.

A. MODELING OF EV UNCERTAINTY

EVs play a vital role in reducing emissions generated by
traditional vehicles. However, EVs loads introduce several
uncertainties that impact key parameters, including peak
power demand, load profiles, voltage levels, system reliabil-
ity, and frequency stability [33]. To account the variability
in factors such as the plug-in times (arrival time), state of
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charge (SoC), energy demand, and plug-in duration of EVs,
stochastic modeling of uncertainty can be written as:
Arrival time uncertainty:

197 = 79" 4 U, where, U, ~ N(0, 07) (1.1)

This represents uncertainty in the actual arrival time of the
EV around the expected arrival 7"
Charging duration uncertainty:

T; = T; + AT; where, AT; ~ N(0, o'%) (1.2)
Energy demand uncertainty:
E[" = E["! + Ug where, Ug ~ N(0, o) (1.3)

The actual required energy in real-time may vary from the
forecasted value Elr “d.

Equation (1.1) to (1.3) subject to the following con-
straints (2.1) to (2.3):

1. Charging power limit:

0<Pi; <P"™ 2.1)
2. SoC bound:
SoCmin < SoCiy < SoC"™ 2.2)
3. Energy required:
E; > E[“ (23)
where,
re . . .
E; 1 : Required energy by EV i for a complete charge (in
kWh).

t{" :Arrival time of EV i.

Ug ~ N(u, of) :Arrival time of EV i.

P :Maximum charging power limit for EV i (in kW).

E; ‘Total available energy for EV i.

u :Represents average(mean) or expected value of the
random variable.

o :Represents standard deviation used to measure the
uncertainty around the mean value.

Therefore, it is clear that the forecasting of EVs charging
demand is crucial due to human behavior. The amount of error
will increase with the growing number of EV. To mitigate
such error, this study has proposed strategic management of
BESS and the modeling of BESS is described in the later
subsection.

B. MODELING OF BESS

The BESS model is composed of a battery bank and a
bi-directional DC/AC converter, which enables two-way
energy exchange. The available active power for grid support
services is constrained by the battery’s storage capacity and
the rating of the PWM-controlled converter. In this approach,
BESS units operate in grid-following mode, synchronizing
with the grid’s voltage and frequency rather than establishing
an independent reference. This mode ensures that BESS
units respond dynamically to grid conditions and TE market
signals rather than acting as standalone power sources. The
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grid-following inverters adjust power injection or absorption
based on real-time grid requirements while maintaining
synchronization with the primary grid. Unlike grid-forming
BESS, which are used in isolated microgrids or black-
start scenarios, grid-following BESS do not dictate system
frequency or voltage. Instead, they contribute to grid stability
by modulating active and reactive power, following the
dispatch instructions provided by DNO within the TE market
framework.

In this study, the BESS configuration, depicted in Fig. 2,
incorporates a PQ controller, a charge controller, and a
power reference generator (Pr.r). The (Pr) generator plays
a critical role by generating a reference signal that adjusts the
BESS’s active power output based on the real-time power
levels measured at the grid connection point. This ensures
that the BESS output power, denoted as (P;,), is effectively
managed, as shown in Fig. 2(a). Each component of the
control system is discussed in detail in the following
subsection, offering a deeper understanding of their specific
functions and contributions to the overall operation of the
BESS.

1) ACTIVE/REACTIVE (PQ) CONTROLLER

As highlighted in green in Fig. 2(a), the PQ controller
features two PI controllers (PI-1 and PI-2) that are responsible
for regulating the active and reactive power of the BESS,
ensuring precise control over the power exchange with the
grid.

a: ACTIVE POWER DISPATCH CONTROL
This study addresses the uncertainties in EV travel patterns,
which can potentially disrupt grid stability by invalidating
scheduled charging times and leading to the need for
rapid charging. In such scenarios, the BESS acts as an
essential support mechanism by supplying the necessary
active power. The BESS’s reference active power signal, Py,
is determined using P-f droop characteristics, which respond
to deviations between the grid frequency and the target
reference frequency. This P, signal guides the magnitude
and direction of active power adjustment, aligning it with the
BESS output AC power signal, Pj,, as illustrated in Fig. 2(a).
Within the active power control section, the P signal
is compared to the BESS output, generating a direct-axis
current reference, iy ef —in, which passes through a filter and
a PI controller. The output of this process is fed into the
charge controller to manage the charging and discharging
states of the battery. The BESS discharges to supply active
power if the frequency deviation is positive, indicating a need
for additional grid support, and charges the battery if the
deviation is negative. To ensure accurate power regulation,
the system calculates the difference between the generated
current reference, ig—ref —in, and the actual direct-axis current,
Idref—our» Producing a correction signal, Aiy. This signal is
then fed back to PI-1, which generates an error signal to
fine-tune the active power output of the BESS, adjusting it
according to real-time grid conditions. This feedback loop

VOLUME 13, 2025



T. H. M. Sumon Rashid et al.: Strategic Integration of Battery Energy Storage Systems

IEEE Access

p o
| Voltage
Measurement I R
iosstn

Correction
Signal

Reactive Power (Q) control g
L) (Q-V drooy |
Current
i

e e Limiter

Converter Control LI (O
LoL
PUM Filter
AC

(c) dqaxis current control

FIGURE 2. BESS model and controllers.

is crucial for maintaining stable and reliable power delivery,
adapting the BESS response dynamically to fluctuations in
grid demand.

b: REACTIVE POWER DISPATCH CONTROL

For efficient and reliable operation of power systems,
voltages of all the nodes must be maintained within desired
limits for power system stability enhancement. Reactive
power dispatch control significantly influences voltage
regulation, enhancing the stability of the power system. The
reactive power voltage regulation Q(V) droop characteristics
illustrated in Fig. 3. If node voltage is below deadband
voltage then Q injection increase the voltage level and
BESS converter is operated in capacitive mode and while
node voltage above the deadband voltage it is required to
absorb Q and BESS converter operate in inductive mode.
Reactive power can be injected into or absorbed from the grid
solely through electronic BESS converters without negatively
affecting battery lifespan [34].

In this study, BESS units are connected to the distribution
network via single-phase converters. These converters can
manage the injection or absorption of reactive power based
on their nominal apparent power rating and the BESS’s
active power output. The capability to handle reactive power
is guided by a four-quadrant operation model, as shown
in Fig. 4. This model allows the BESS to function as a
flexible source of reactive power support within distribution
networks, enhancing voltage stability.

The BESS inverter can operate in either capacitive or
inductive modes, depending on the quadrant in which it
is functioning. For reactive power injection, it operates in
quadrants IIT and IV, while reactive power absorption occurs
in quadrants I and II. This operational flexibility enables
the inverter to seamlessly transition across all power factor
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FIGURE 4. Four-quadrant PQ control capability of a BESS converter
model [35].

modes, ranging from +1 to —1, where negative values indi-
cate reactive power injection (capacitive mode) and positive
values signify reactive power consumption (inductive mode).
Such adaptability is crucial for maintaining grid voltage
within desired limits, particularly in systems with high levels
of distributed energy resources (DER). It should be noted
that this paper does not delve into the specific topologies
of power converters used for BESS integration. Various
converter designs can be applied in practice, as noted in [36].
The key requirement for addressing the optimal reactive
power dispatch problem is that the converters must have a
rated power capacity equal to or exceeding the battery’s rated
power and must support effective reactive power control.
This ensures that the BESS can reliably contribute to voltage
regulation and system stability, regardless of the specific
converter technology employed.
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2) BESS CHARGE CONTROLLER

Fig. 2(b) illustrates the charge controller, which manages
SoC within the specified range. The charge controller output
passes through a current limiter to ensure compliance with
Eq.(3):

S=P 402 3)

where S is the converter’s apparent power.

The charge controller mainly manages the active current
(d-axis). The regulation of the d-axis current reference value
based on the battery’s SoC level can be represented as
follows [36]:

Id-ref-in if SoC > SoCpin,
Idref-out = 1 —ldref-in  1f SOC < S0Cpax, 4
0 otherwise.

BESS can be set to discharge if battery SoC > 0.3p.u.
(SoC minimum) and charge (consume) if battery SoC <
0.90p.u (SoC Maximum) is below maximum SOC and no
active power deficit in the system. The d-axis and g-axis
current controllers manage the active and reactive power
output of the BESS. The reference values for active and
reactive power on the d-axis and g-axis are constrained by a
maximum absolute value of 1 p.u., which represents the total
capacity of the BESS converter. The g-axis current is set to
0 to regulate only active power dispatch in response of error
(Aiy) between the input reference (iy—ref—in) and generated
current reference (igref —our)-

The controller prioritizes reactive power support to address
voltage deviations only when the node voltages fall outside
the deadband voltage range, as illustrated in Fig. 3.

3) THE D AND Q AXIS CURRENT CONTROLLER

Fig. 2(c) illustrates the d-q axis current controller, which
plays a critical role in regulating the active and reactive power
(PQ) output of the BESS by minimizing the error between
the grid current reference and the generated current reference.
This controller receives input from the converter’s AC current
in the d-q reference frame, acquired via a phase-locked loop
(PLL). Its output is a pulse-width modulation (PWM) index
on the d-q axis, which sets the reference phase angle for
controlling the DC/AC converter.

ill. PROBLEM FORMULATION

To address the additional EVs energy demand arising from
forecasting uncertainty, this study proposes a novel method
for integrating BESS to improve key network indicators at
minimal cost. This study considers energy loss and network
imbalance as the key network indicators.

A. OBJECTIVES

1) MINIMIZATION OF VOLTAGE UNBALANCE FACTOR

The voltage unbalance factor (VUF) is a crucial metric used
to quantify imbalance in a power system. It is expressed as
the percentage ratio of the negative sequence voltage to the
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positive sequence voltage, as defined in Eq.(5). Minimizing
the VUF helps ensure power quality and stability within the
network.

A =min > VUF(@1) 5)

k€Knode

where t represents each time step, covering a 24-hour period,
witht =1, 2, ..., 24. The VUF at a specific node k and time
step t is calculated using the following expression:

[VE(@)_|

VUF (f) = —— 22—
YO = Vo

Here, V¥(r)_ and Vk(t)+ denote the magnitudes of the
negative and positive sequence voltages, respectively, at node
k and time step t. The index k refers to a measurement node
within the set of all measuring nodes, Ky4.. According to
IEEE Standard 141-1993 [37], the acceptable limit for VUF
in distribution networks should not exceed 2%. Keeping the
VUF below this threshold is essential to maintain power
quality and reduce the risk of equipment malfunction or
inefficiency due to voltage imbalances.

2) MINIMIZATION OF ENERGY LOSS
In this study, energy loss in terms of active power losses is a
key indicator of the efficiency of distribution network man-
agement, as they directly translate to costs for distribution
companies. Consequently, minimizing active power losses is
one of the most frequent and essential objectives in optimal
power flow (OPF) studies conducted by distribution system
operators. Incorporating EVs uncertainties and BESS into
the formulation of power loss minimization introduces com-
plexities. These uncertainties stem from the unpredictable
behavior of EVs in terms of their charging/discharging
schedules, SoC, and energy demand. BESS, on the other
hand, can reduce losses and improve grid performance
through optimal dispatch.
The total power loss for all branches can be formulated as:
P2 4+ 02
Ploss, total = Z ri,jwv—zQw (6)
ijeB i
where P;j and Q;; are active and reactive power flow from
bus i to j.
The goal is to minimize the anticipated power loss, and it
can be expressed as:
. P2 + 0%,
f2°bJ = min Z r,;j—l’J V.2Ql’l @)
(i.)eB !
3) MINIMIZATION OF VOLTAGE DEVIATION
Voltage deviation refers to the difference between the actual
voltage at a bus (node) in a power system and its nominal or
target voltage. It quantifies how far the voltage deviates from
its desired value, often set around 1 p.u. Maintaining voltage
within acceptable limits is crucial for the stability, reliability,
and efficiency of the power system. Excessive deviation can
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lead to equipment malfunctions, increased power losses, and
network instability.

The voltage deviation for a system with N buses for
minimization of voltage deviation can be formulated as
shown in Eq.(8).

N
A =min > Vi — v ®)
i=1
where, V; and V/"*"" are actual and nominal (1p.u.) voltage at
bus i.

In the multi-objective function shown in Eq.(9), we con-
sider the VUF as the key grid performance indicator, which
helps mitigate grid imbalances, increase hosting capacity,
and reduce overall power demand [38]. Additionally, voltage
deviations and energy loss are included in Eq.(9).

Fory = min (ouf™ + 0afy™ + 033 ©)

where w1, wr and w3 are weights factor for different
objectives and treated equally in this paper.

B. CONSTRAINTS

Evaluating the optimization requires consideration of par-
ticular constraints. The power limits for BESS charging
and discharging must stay within the defined maximum
and minimum active/reactive power thresholds, as specified
in Eq.(10.1), Eq.(10.2), and Eq.(10.3). Furthermore, BESS
operation should adhere to grid security constraints (voltage,
branch current) outlined in Eq.(10.4) and Eq.(10.5).

gliznss,i = Pg}}alg)s,i < Pggss.;» Vi, Vt (10.1)
(dch,0) .

—PRESS < Pigss; <0, ViVt (10.2)

—Opkss,i < Oprssi < Opss,i»  Vis V1 (10.3)

Viin < Vi < Viax, Vi€ {1,2,...,N}  (10.4)

Tory < I™, Wt (10.5)

where, Pg‘é“érs“?x denotes the minimum and maximum active

power dispatch limits of the BESS, respectively. ng/sdscﬂ’t)

represents the active power charged or discharged by the
BESS at time step t at node i. Qg ; indicates the maximum
reactive power capacity of the BESS. Viin/max corresponds
to the minimum and maximum voltage levels at the nodes,
while /;1** denotes the maximum allowable current limit of
the branch.

The DE algorithm is employed to solve the control objec-
tive in Eq.(9) under the constraints specified in Eq.(10.1)
through Eq.(10.5). The implementation of the proposed
method within smart grids will be detailed in section VI.

IV. OPTIMIZATION ALGORITHM

This study employs the DE technique to address the optimal
BESS deployment challenge. DE is preferred over GA
and PSO due to its robustness in handling multi-objective
constraints and its higher solution accuracy. As a stochastic,
population-based evolutionary algorithm, DE is widely used
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for solving complex optimization problems in power systems
due to its simplicity, robustness, and efficiency [39]. The
algorithm operates on a population of candidate solutions that
evolve over several generations. Each solution represents a
potential BESS dispatch configuration, which is improved
using three key operators: mutation, crossover (recombina-
tion), and selection. The flowchart of the basic DE algorithm
is illustrated in Fig. 5.

« Initialization: The algorithm initializes a population
of candidate solutions, representing potential BESS
dispatch configurations. Each solution is randomly
assigned within predefined constraints to ensure diver-
sity and prevent premature convergence.

« Mutation Operator: During mutation, a mutant vector
is generated by adding a scaled difference between two
or more randomly chosen population vectors to a base
vector. Various mutation strategies exist to govern how
this process is implemented.

« Crossover Operator: The crossover operator generates
a trial vector by mixing elements from the mutant
vector and the original target vector, typically using
a binomial crossover. Each element of the trial vector
is selected from either the mutant or the target vector
based on a crossover probability (CR). When CR is
high, the trial vector closely resembles the mutant vector,
supporting exploration. In contrast, a low CR makes the
trial vector more similar to the target vector, encouraging
exploitation of the existing population.

o Selection Operator: The trial vector is evaluated
against the target vector, retaining the more optimal
solution for the next iteration.
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The process continues until convergence criteria, such as
minimized VUF, energy losses and Voltage Deviation, are
met.

V. PROPOSED METHODOLOGY

The proposed methodology integrates BESS dispatch within
a TE market framework, ensuring optimal grid performance
while enabling BESS owners to participate in energy
trading. The core objective is to optimize BESS dispatch
by considering both grid performance (e.g., voltage profile
and loss reduction) and economic efficiency (e.g., energy
procurement cost minimization) through a price-based bid-
ding mechanism. The proposed framework consists of the
following key steps:

A. OVERVIEW OF THE TE MARKET FRAMEWORK

In this study, the TE market operates on a price-based bidding
mechanism, where independent BESS owners submit bids
to supply energy in response to real-time grid demand.
The DNO evaluates these bids based on both economic
and grid performance criteria, ensuring cost-efficient energy
procurement while maintaining grid performance.

The market participation process follows these key steps:

1) DEMAND FORECASTING AND REAL-TIME ASSESSMENT

o The DNO forecasts the total demand, including EVs
charging demand, and schedules generation on a day-
ahead basis. To maintain grid performance, the DNO
monitors demand and generation in real time. If the
distribution grid requires additional generation due to
higher-than-forecasted EVs charging demand, BESS
units will provide support to maintain grid performance.

e In real time, if EVs actual demand (P,;) exceeds the
scheduled demand (Pg.,), the DNO issues a demand
request for additional energy supply from BESS owner
at each time step. Thus, the real-time additional demand
bids for the DNO at each time step ¢ are calculated
by subtracting the scheduled power demand from the
real-time power demand using Eq.(11).

P, — P if Py (t Pq
PAD(t):[ Tt sch  1f Pre(t) > Pgcn (11)

0 otherwise

2) BESS MARKET PARTICIPATION AND BIDDING PROCESS

o To address the additional demand arising from the
DNO’s demand bids, BESS owners submit bids spec-
ifying the amount of energy they can supply and the
corresponding price ($/kWh). In this study, we assumed
that BESS owners operate independently, covering all
investment, maintenance, and life cycle costs and profits
in their bids to the DNO.

« To ensure cost-effectiveness, each bid price must be
below or equal to the grid locational marginal price
(LMP) as shown in Eq.(12).

BESSE < LMP (12)

Price —
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This constraint restricts BESS owners from exploiting
excessively high supply bid prices.

3) OPTIMAL NODE SELECTION AND MARKET CLEARING

To select the most suitable BESS units for dispatch, the
MCDM method evaluates each node based on VUF and Bid
Price. VUF and Bid price are normalized for each node i using
Eq.(13) and Eq.(14). A higher normalized VUF indicates
greater node imbalance, boosting the likelihood of selection
for BESS dispatch, while a higher normalized bid price
reflects lower cost, increasing the chances of selection.

Actual VUF;
VUFNem — Y (13)
Most worst node VUF
Best BidPri
BidPriceMN™ = Sablh iy (14)
Actual BidPrice;

The weighted score for each node i is calculated by
multiplying the normalized VUF and bid price values by their
respective weights and summing them, as shown in Eq.(15).
The nodes are then ranked in descending order based on these
weighted scores, with the highest score indicating the optimal
node.

Weighted Score; = (wgp - VUFN™ 4wy, - BidPrice?H’rm)
(15)

where, wgp +wgp =1

Here, wg, and wy, are the weight factors for grid per-
formance and financial performance, respectively, reflecting
their relative importance.

Once the optimal BESS units are selected, their active and
reactive power dispatch is optimized using the DE algorithm
to solve Eq.(9). The aggregated BESS dispatch must satisfy
the additional demand as shown in Eq.(16):

N
> Pgess = Pap (16)
i=1

This constraint ensures that the sum of power injections
from selected BESS units must match the DNO’s additional
demand request. The TE market clearing price is set by the

last accepted bid price, provided it remains below or equal to
grid LMP.

B. IMPLEMENTATION OF THE CONTROL STRATEGY

A central controller collects network data at each time step
to assess additional demand requirements and subsequently
sends power demand signals to all BESS owners in real
time. Each BESS owner has a local controller installed to
manage operations. The proposed strategy is implemented
within the central controller, which determines the optimal
dispatch and transmits dispatch signals to the respective
BESS local controllers for execution. Ultimately, BESS
participation dynamically adjusts based on real-time pricing
signals and grid conditions. The complete steps of the
proposed methodology for strategic BESS integration and
dispatch within the TE framework are illustrated in Fig. 6.
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FIGURE 6. Proposed TE market based BESS’s optimal allocation strategy
using DE algorithm.

The proposed method only considers bids that satisfy
the condition in Eq.(12). BESS units are then allocated to
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the optimal nodes based on this selection strategy. The DE
optimization algorithm is applied to determine the optimal
dispatch of BESS units, ensuring that the aggregated supply
bid power meets the demand specified in Eq.(16). This
strategy ensures an efficient, cost-effective, and reliable
approach to meeting additional demand while maintaining
grid performance and minimizing energy procurement costs.

VI. EXPERIMENTAL SETUP

To validate the proposed price-based bidding mechanism
within a TE market framework for the strategic integration
and dispatch control of BESS, using a practical Australian
LV grid serving 1,020 residential consumers is used as the
test grid, as depicted in Fig. 7. The grid includes 12 single-
phase BESS units of varying capacities, 36 single-phase PV
sources with a total capacity of 2,880 kW, and 12 synchronous
machine-based DER units with a combined capacity of
1,665 kW. The modeling and simulation were conducted
using DigSILENT PowerFactory.

In the test grid, all residential consumers are assumed to
own EVs equipped with single-phase chargers of varying
capacities: Level 2 HCS-80 (15.4 kW), HCS-60 (11.5 kW),
HCS-50 (9.6 kW), and HCS-40 (7.7 kW). The base residen-
tial load is modeled as a constant active power demand with a
0.96 lagging power factor. During charging, EV batteries are
represented as constant power loads operating at unity power
factor to facilitate grid management. The test grid remains
interconnected with the main grid, enabling the DNOs to
dynamically import or export energy based on real-time
conditions. In general, the proposed approach is applicable
to any LV distribution grid.

VII. RESULTS AND DISCUSSION

This section presents the results of the proposed method for
the optimal coordination of BESS. The method effectively
addresses the EV charging demand, provides ancillary
services through a novel TE market-clearing approach, and
improves grid performance. The system without BESS serves
as the base case. This study examines the effect of different
additional power requirements (P4p) under the base case and
evaluates the impact of the proposed method considering the
following scenarios:

o Case I: Network without BESS (base case)
« Case II: Optimal allocation of BESS using the strategy
discussed in section V (proposed method)

Three different hours during the peak period are considered
to investigate the impact of the base case and the proposed
method while the DNOs face additional EV charging
demand.

A. IMPACT OF THE PROPOSED METHOD ON GRID
PERFORMANCE

This section examines the impact of the base case and the
proposed BESS integration strategy by comparing Case I and
Case II. In the base case (Case I), grid performance was
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FIGURE 7. Modeled test grid for case study.

evaluated without BESS. In Case II, the proposed approach
was implemented to select optimal nodes for dispatching
the active and reactive power of the BESS, improving VUF
regulation, reducing node voltage deviation, and minimizing
energy costs.

To ensure a balanced trade-off between grid perfor-
mance and energy procurement costs, equal importance was
assigned to VUF and bid price (wg, = 0.5, wyp, = 0.5) in
Eq.(15). While this subsection analyzes key grid performance
metrics (VUF, node voltage, and energy losses), the next
subsection will examine the impact of weighting factor
selection in Eq.(15) and its effect on energy procurement
costs compared to existing optimization methods.

To evaluate the impact of the proposed method, we ana-
lyzed three peak hours (18, 19, and 20). For each hour,
normalized weighted scores were calculated using Eq.(15),
ranked in descending order, and filtered to exclude bids
exceeding the LMP based on the constraints in Eq.(12). The
most suitable nodes for BESS dispatch were then selected
sequentially, starting from the highest-ranked node, followed
by the next highest, and so on, until the constraints in Eq.(16)
were satisfied. Tables 1, 2, and 3 present the normalized
weighted scores for Hours 18, 19, and 20, respectively.

AtHour 18, the optimal nodes identified based on weighted
score rankings—N632, N671, N633, N611, N692, and
N675—dispatch a total of 684 kW to meet an additional
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TABLE 1. Selection of BESS dispatch nodes using the proposed method

(Hour 18).
Node Name | Normalize VUF | Normalize Bid | Weighted Score
Price
N611 1.00 0.90 0.95
N632 0.42 0.98 0.70
N633 0.94 1.00 0.97
N634 0.87 >LMP >LMP
N645 0.60 >LMP > LMP
N646 0.64 >LMP >LMP
N652 0.47 >LMP >LMP
N671 0.71 0.96 0.83
N675 0.92 1.00 0.96
N680 0.75 >LMP >LMP
N684 0.97 >LMP >LMP
N692 0.85 0.92 0.88

TABLE 2. Selection of BESS dispatch nodes using the proposed method

(Hour 19).
Node Name | Normalize VUF | Normalize Bid | Weighted Score
Price
N611 0.68 0.81 0.74
N632 0.12 1.00 0.56
N633 0.40 0.98 0.69
N634 1.00 >LMP >LMP
N645 0.04 0.95 0.50
N646 0.09 0.91 0.50
N652 0.59 >LMP >LMP
N671 0.52 0.88 0.70
N675 0.88 0.89 0.89
N680 0.73 >LMP >LMP
N684 0.71 > LMP > LMP
N692 0.67 0.93 0.80

TABLE 3. Selection of BESS dispatch nodes using the proposed method

(Hour 20).
Node Name | Normalize VUF | Normalize Bid | Weighted Score
Price
N611 0.15 > LMP > LMP
N632 0.48 0.96 0.72
N633 0.69 0.96 0.82
N634 0.89 0.98 0.94
N645 0.85 1.00 0.92
N646 1.0 0.98 0.99
N652 0.40 > LMP > LMP
N671 0.37 > LMP > LMP
N675 0.36 0.94 0.65
N680 0.15 > LMP >LMP
N684 0.33 0.96 0.64
N692 0.36 0.90 0.63

EV charging demand of 544 kW, as shown in Table 1.
At Hour 19, the selected nodes—N645, N646, N632, N633,
N671, N692, N611, and N675—dispatch 775 kW, fully
covering the additional EV charging demand of 767 kW and
eliminating the need for grid energy imports, as presented in
Table 2. Similarly, at Hour 20, the identified nodes—N684,
N675,N692, N632, N645, N633, N634, and N646—dispatch
710 kW against an additional EV charging demand of
894 kW, necessitating the import of 184 kW from the external
grid, as detailed in Table 3.
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Notably, nodes N632, N633, N675, and N692 are con-
sistently selected across all studied hours due to their worst
VUEF, low BESS bid price, or a combination of both.

Fig. 8 illustrates the grid performance (VUF and node
voltages) for Cases I and II during the three peak hours (18,
19, and 20). The case-wise observations from this figure are
as follows:

o Case I: During peak demand, for an example at Hour
19, VUF at nodes N634, N675, N680, N684 and N692
exceeds 2% standard, and voltage levels at most nodes
drop below the standard threshold (0.99 p.u.).

« Case II: The proposed method significantly improves
VUF and node voltage across all nodes compared to the
Case I during all observed peak hours.

Based on the observations in Fig. 8(a)-(f), it can be
concluded that the proposed method effectively enhances grid
performance by maintaining VUF and node voltage levels
within acceptable standards.

Additionally, Fig. 9 shows a substantial reduction in total
energy losses using the proposed method compared to Case I.
This reduction - 47%, 32%, and 41% for Hours 18, 19, and 20,
respectively aligns with the study’s objectives and highlights
significant advantages in improving distribution network
efficiency. Moreover, the optimal injection of reactive power
leads to further reductions in system energy loss and
improvements in the node voltage profile.

B. VALIDATION OF THE PROPOSED METHOD

This section presents a comparative analysis to validate
the proposed strategic integration and dispatch method
against the developed optimal placement of DGs and optimal
dispatch methods cited in [16], [18], [40], and [41]. The
validation is carried out by comparing key performance
metrics such as VUF, node voltage, and energy procurement
cost. Additionally, a sensitivity analysis is conducted to
evaluate the impact of weighting factor selection on BESS
dispatch strategy.

1) THE WEIGHTING FACTOR SENSITIVITY ANALYSIS

In our proposed strategy, the weighting factor plays a crucial
role in the selection of BESS from the submitted supply
bids as shown in Eq.(15). Also, allows DNOs to trade-off
between technical and financial performance as per their
requirement by selecting the value of wgj, and wy,. To validate
the applicability of the proposed method in BESS selection,
a sensitivity analysis is carried out.

In the proposed method, BESS units that submit bids
higher than the LMP are first excluded from the ranking. The
remaining BESS units are ranked based on their weighted
scores, and power dispatch begins from the highest-ranked
BESS. The process continues until the additional demand is
met for the given time step .

We have evaluated three different scenarios for BESS
selection strategy:
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Scenario 1: In this scenario, we place less emphasis on grid
performance and focus more on cost minimization (wg, =
0.1, wp = 0.9). Based on the weighted score, the proposed
strategy ranks the BESS units in descending order while
excluding those with bid prices higher than the LMP. As a
result, the strategy ranks 6 out of 12 BESS units. However,
it ultimately recommends dispatching only 4 BESS units
(BESS 611, BESS 633, BESS 671, and BESS 675), as they
offer the lowest cost, while excluding the other 2 ranked
BESS units due to emphasize on bid price.

Fig. 10 shows that nodes N611, N634, N652, N671, N675,
N680, N684, and N692 have VUF values exceeding 2%,
which is beyond the standard limit. This occurs because
prioritizing cost minimization prevents the system from
selecting other 2 potential nodes that could improve grid
performance. The proposed method demonstrates that for this
scenario the total cost for meeting an additional EV charging
demand of 684 kW is $267.75. This weighting factor reduces
energy procurement costs by 26% compared to the existing
full BESS dispatch method.

Scenario 2: In this scenario, we place greater emphasis on
grid performance and less on cost minimization (wg, = 0.9,
wfp = 0.1). Based on the weighted score, the proposed
strategy ranks the BESS units in descending order while
excluding those with bid prices higher than the LMP. As a
result, the strategy ranks 6 out of 12 BESS units. However,
it ultimately recommends dispatching 5 BESS units (BESS
611, BESS 633, BESS 671, BESS 675, and BESS 692) to
improve grid performance, ensuring that VUF remains below
2% at all nodes as shown in Fig. 10, while meeting the
required additional EV charging demand. Notably, although
BESS 632 was ranked, it was not dispatched to achieve the
desired goal, which is influenced by the selected weighting
factor. The proposed method demonstrates that the total
cost for meeting an additional demand of 684 kW is
$267.75 in Scenario 1, compared to $282.43 in Scenario 2.
This weighting factor reduces energy procurement costs by
23% compared to the existing all BESS dispatch method. This
highlights the impact of weighting factor selection of BESS
energy procurement costs.

Scenario 3: In Scenario 1, cost is given higher priority,
whereas in Scenario 2, grid performance is prioritized.
As a result, in Scenario 1, grid performance deteriorates
while achieving minimal cost, whereas in Scenario 2, grid
performance improves significantly compared to Scenario
1 but at a higher cost. In this scenario, equal importance
(wgp = 0.5, wp, = 0.5) is given to both grid performance
and financial benefit. The proposed method demonstrates that
the total cost for meeting an additional EV charging demand
of 684 kW is $277. This weighting factor reduces energy
procurement costs by 22% compared to the existing all BESS
dispatch method.

Therefore, to ensure a balanced evaluation, this study
examines the impact of assigning equal importance to both
grid performance and cost minimization (wg, = 0.5,
wp = 0.5).
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FIGURE 8. Comparison of VUF and node voltage of the proposed method.
2) COMPARATIVE ANALYSIS WITH EXISTING METHODS the existing approaches [16], [18], [40], [41], considering grid
Currently, existing methods [16], [18], [40], [41] recommend performance as key optimization criteria.
dispatching an optimal amount of energy from every BESS at The proposed method recommends dispatches BESS units

all nodes using optimization algorithms to solve the problem based on bid prices, prioritizing higher power allocation from
in Eq.(9). This study evaluates the proposed method against the least expensive bidders, utilizing only 50% of available
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BESS units, whereas existing methods [16], [18], [40], [41]
recommends dispatch all BESS units without considering
energy procurement costs as shown in Table 4. Specifically,
the proposed method dispatches power from 6 BESS units—
BESS611, BESS632, BESS633, BESS671, BESS675, and
BESS692—out of 12, enhancing grid performance. Notably,
the existing dispatch method [16], [18], [40], [41] dispatches
a substantial amount of power from BESS646, which has
the highest bid price, whereas the proposed method excludes
this unit. The proposed method meets an additional energy
demand of 684 kWh at a cost of $256, compared to $354 with
the existing method [16], [18], [40], [41], resulting in energy
procurement costs savings of $98 at Hour 18. Additionally,
the superiority of the proposed method over the without
BESS and existing method (All BESS) is demonstrated in
Fig. 11. Fig. 11(a) clearly indicate that the proposed method
significantly reduces the VUF compared to the without BESS
and the existing method [16], [ 18], [40], [41]. Also, Fig. 11(b)
shows that the proposed method is able to maintain all node
voltages above 0.99 p.u., whereas the existing method fail
to maintain the standard voltage for all nodes. For example,
at node N646, the existing method [16], [18], [40], [41]
fails to maintain the voltage at 0.99 p.u. This is because
the proposed method provides coordinated reactive power
support, which enhances node voltage stability.

From the above discussion it is evident that the proposed
method outperforms the commonly recommended optimal
dispatch methods [16], [18], [26], [40], [41], not only by
improving grid performance but also by reducing energy
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FIGURE 11. Comparison of VUF and node voltage with existing DG
integration method [16], [18], [40], [41].

TABLE 4. Existing method [16], [18], [40], [41] vs proposed method (BESS
dispatch).

BESS Existing Proposed Method (Case II)
Name Optimum

Dispatch

Method

(All BESS)

P (kW) P (kW) Q (kVAR) | Weighted Score
BESS 611 25.182 62.526 34.439 0.95
BESS 632 | 40.552 126.384 37.027 0.70
BESS 633 42.322 130.808 77.205 0.97
BESS 634 62.354 0 0 >LMP
BESS 645 67.537 0 0 >LMP
BESS 646 104.047 0 0 >LMP
BESS 652 85.067 0 0 >LMP
BESS 671 41.391 122.51 1.052 0.83
BESS 675 44.685 161.617 77.996 0.96
BESS 680 | 81.936 0 0 >LMP
BESS 684 | 56.906 0 0 >LMP
BESS 692 32.452 80.552 30.522 0.88

import costs for DNOs, thereby lowering overall energy
procurement costs as well provide operational flexibility to
DNOs.
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C. EFFECT OF REACTIVE POWER SUPPORT FOR
UNBALANCE MITIGATION

It is well known that reactive power support improves
the voltage profile of the network. However, the impact
of reactive power on mitigating unbalance has not been
thoroughly investigated to date. This subsection explores
the effect of reactive power support under the following
scenarios:

o Scenario I (Without reactive power support): We
assume Q = 0, so P is tuned from zero to the converter’s
full capacity (S).

o Scenario II(Uncoordinated reactive power support):
P is tuned, and the remaining available converter
capacity is allocated to Q as calculated by equation
below. Therefore, uncoordinated Q is dispatched into the
network.

0=+52-p2 (17)

o Scenario III(Coordinated reactive power): Both P
and Q are simultaneously optimized while ensuring
that their combined magnitude does not exceed the
converter’s rated capacity S as shown in equation below.

S =P+ Q2 (18)

This approach ensures that the converter operates within
its limits while optimizing both active and reactive
power dispatch to enhance system performance.

In Scenario II, active power (P) is optimized to achieve its
optimal value, while the reactive power (Q) is determined
according to Eq.(17). In Scenario III, both active power
(P) and reactive power (Q) are optimized simultaneously to
ensure grid constraints are maintained and overall system
efficiency is enhanced.

These scenarios are evaluated during peak periods (Hour
18, Hour 19, and Hour 20), and the results are presented in
Fig. 12.

From Fig. 12(a), it is observed that at Hour 18, the VUF
exceeds the standard limit at nodes N611, N675, and N684
in Scenario I, and at node N611 in scenario II. In Fig. 12(b),
at Hour 19, the VUF surpasses the standard limit at nodes
N611, N675, and N692 during Scenario II, and at node N680
in the dispatch scenario I. Similarly, in Fig. 12(c) at Hour 20,
the VUF exceeds the standard limit at nodes N675, N684, and
N692 in both dispatch Scenarios I and II.

Therefore, Fig. 12, clearly demonstrates that the proposed
coordinated reactive power dispatch method (Scenario IIT)
significantly regulates the VUF, keeping it below the standard
limit (2%) and outperforming both Scenario I and Scenario II.

The proposed method was implemented on a system
running a 64-bit Windows 11 OS, equipped with a Ryzen
9 processor (4.5 GHz) and 16 GB of RAM. Unlike many
previous studies that primarily employed GA [24], [40], [43],
[44], [45] for solving the optimal BESS integration problem,
this study utilizes the DE optimization algorithm due to its
robustness in handling multi-objective constraints and higher
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FIGURE 13. Performance comparison of DE, GA, and PSO.

solution accuracy. Additionally, the study investigates the
convergence performance, computational time, and accuracy
of DE in comparison to GA and PSO.

Fig. 13 illustrates the convergence characteristics of the
DE, GA, and PSO methods. The key observations are as
follows:
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TABLE 5. Comparison of computational time and accuracy for DE, GA,
and PSO.

Optimization approach Performance Criteria

Computational time (s) | Solution Accuracy
DE 504 Very good
GA 551 Medium
PSO 489 Low

o PSO converges the fastest but results in the worst
optimal solution among the three methods.

o GA converges more slowly than PSO but faster than
DE, achieving a better optimal solution than PSO while
having a higher fitness value than DE.

o In contrast, DE provides the best optimal solution
among all three methods, demonstrating its superior
performance in terms of accuracy and robustness.

These findings demonstrate that DE outperforms GA and
PSO in terms of solution quality, making it more suitable for
high-dimensional optimization problems.

Table 5 summarizes the computational times, and accuracy
for DE, GA, and PSO for 100 iterations. In terms of real-
time computation, DE, GA, and PSO required approximately
504 seconds, 551 seconds, and 489 seconds, respectively.
While DE outperforms GA in terms of solution accuracy, its
computation time (504 seconds) may present challenges for
real-time large-scale applications. To address this, our inves-
tigation suggests a hybrid DE-PSO approach as a potential
solution. Future work could explore this hybrid method to
balance accuracy and computational efficiency by leveraging
next-generation computing technologies, including parallel
computing, multi-core processing, adaptive control for faster
decision-making, and Al-assisted optimization.

A summary of the results obtained using the proposed
method is as follows:

I. Node Voltage and VUF Improvement: The proposed
method improves both node voltage and VUF, outper-
forming existing methods [16], [18], [40], [41], as shown
in Fig. 8 and Fig. 11.

II. Loss Reduction: The innovative method reduces system
losses and further minimizes them through the coordi-
nated dispatch of BESS reactive power. The average
loss reduction during the considered peak hours is
approximately 40% (Fig. 9).

III. Energy Procurement cost Reduction: The method
reduces the BESS’s energy procurement cost by approx-
imately 28% compared to existing methods [16], [18],
[40], [41], making it possible to charge EVs at a lower
cost (Table 4).

IV. TE Market Participation: The proposed TE clearing
approach enables both the DNO and BESS users to
participate in the market, creating a win-win situation
for both parties.

V. Impact of Reactive Power on VUF: The proposed
method analyzes the impact of reactive power on VUF
and demonstrates significant reductions in VUF.
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VIil. CONCLUSION

This research presents a novel approach to optimizing
BESS to address the growing challenges associated with
increased EV and PV integration in distribution networks.
By considering both grid performance and TE market
prices, the proposed optimization model ensures mutual
benefits for both BESS owners and DNOs. The proposed
approach allows DNOs to trade-off between technical and
financial performance as per their requirement. However,
by assigning equal importance to both grid performance
and cost minimization, the simulation results reveal that
the optimized BESS strategy reduces the DNO’s energy
procurement cost by 28%;, enabling the delivery of lower-cost
energy to meet the increased demand driven by EVs.
Additionally, the impact of optimal reactive power dispatch
from BESS further addresses rising demand by reducing
overall system losses, providing effective reactive power
support during peak periods. On average, this approach
reduced system losses by approximately 40% during
peak hours compared to scenarios without BESS reactive
power support. This dual-focused optimization not only
offers an effective framework for DNOs to improve grid
reliability but also establishes a pathway for sustainable,
economically viable energy trading in decentralized power
systems. Future work will focus on incorporating forecasting
error modeling to improve the adaptability and robustness
of the proposed framework under uncertain conditions.
Additionally, implementing real-time adaptive optimization
for dynamic BESS dispatch could further enhance grid
resilience, efficiency, and responsiveness to fluctuating
energy

demands.
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