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ABSTRACT The widespread deployment of small cells (SCs) plays a crucial role in enhancing system
capacity, coverage, and quality of service (QoS) for smart applications. However, due to the dynamic nature
of user demands and the limited resources available, SCs cannot support large quantization codebooks, which
are typically more suitable for macro cells (MCs) in finite rate feedback (FRF)-based multiple input single
output (MISO) systems. In this paper, we propose an adaptive quantization approach for SCs that adjusts
the codebook size based on the number of receiver antennas. Additionally, we address the issue of code
quantization error (CQE), which arises when two distinct channels are quantized using the same code, as well
as the average system error (AvgSysErr), which can increase due to elevated CQE. Our analysis shows that
for SCs to achieve convergence of AvgSysErr with FRF-based MISO systems, the probability of non-unique
codes in the quantization codebook must be less than i, where N is the number of antennas at the transmitter.
Similarly, the lower bound for the non-unique code probability must be less than or equal to ¢, where ¢
represents the difference between the non-unique code probabilities of Nll and le, given NLl > NLZ (where
N1 and N; denote the number of antennas at the transmitter).

INDEX TERMS Small cells, adaptive quantization, code quantization error, finite rate feedback, average
system error.

I. INTRODUCTION

Small Cells (SCs) play a crucial role in Industry 4.0 and are
expected to become an integral component of Industry 5.0,
6G networks, smart cities, and the Internet of Things (IoT)
[11, [2]. Applications such as cellular vehicle-to-everything
(C-V2X), 6G virtual cells, private and edge networks for
enterprises, and smart city infrastructure will drive the
widespread deployment of SCs in the near future [3], [4], [5],
[6]. Recent studies indicate that SC deployments increased by
approximately 15% between 2021 and 2022, with projections
estimating the number of deployments to reach 10 million
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by 2030 [3]. Additionally, SCs generated approximately
US$1.1 billion in revenue in 2022, a figure expected to grow
eightfold to around US$8.2 billion by 2032 [7].

SCs utilize Access Points (APs), also known as hotspots,
with limited coverage to serve user devices equipped with
heterogeneous antennas, such as smart devices, HDTVs,
IoT systems, and more [3]. SCs typically support varying
numbers of users who can join or leave the APs randomly at
any time. Due to their ability to provide ad-hoc, on-demand
services, SCs are characterised by their distributed, dynamic,
and dense deployments, accommodating a wide range of
antenna-equipped devices. The primary goal of SCs is to
enhance system coverage, capacity, and quality of service

(QoS) [4], [5].
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In this paper, we model SCs as multi-user multiple input
multiple output (MU-MIMO) systems with large number
of dynamic users. We propose a per-antenna adaptive
quantization approach for SCs, based on finite rate feedback
(FRF), which is suitable in these dynamic environments.
Specifically, we envison an adaptive and distributed code-
book for SCs, given the dynamic nature of SCs. The detailed
methodology for codebook generation is elaborated in the
sub-sections of Section I'V.

Assume that we use a large codebook for SCs similar
to that used for macro cells (MCs), and powerful access
points (APs) akin to base transceiver stations (BTS), to serve
all users. A large codebook, however, would be ineffective
for SCs, especially with users joining and leaving randomly
and frequently compared to a more stable user base in
MCs. A large codebook for SCs would a) quickly become
disproportionate in size, and b) consume excessive bandwidth
in a limited feedback system [21]. Therefore, determining an
optimal codebook size that adapts to the dynamic user base
in SCs and maximizes overall system resources presents an
important challenge worth exploring further.

In this paper, we propose an adaptive and distributed
approach that generates the quantization codebook for APs
independently, based on the number of connected antenna
clients. For example, consider an SC system with x’ clients
and a codebook size of X’ at a given moment. As the
number of clients changes from x’ to x”, the codebook
size dynamically adjusts from X’ to X”, and vice-versa.
This adaptive approach ensures that the codebook size
aligns with the fluctuating number of connected users,
making per-receiver antenna-based quantization essential.
Moreover, since the codebooks are generated independently
and randomly according to the number of receiver antennas,
they exhibit a distributed nature.

However, due to the adaptive and distributed nature of
codebook generation in SCs, a key challenge is the potential
occurrence of non-unique quantization codes/codevectors
within the codebooks. In the remaining sections, we explore
the specifics, constraints, and solution strategies to address
this issue and ensure the effectiveness of adaptive and
distributed codebooks in SCs.

The key contributions of the paper are summarised as
follows:

« We propose a per-receiver antenna quantization
approach for codebook generation tailored to the densely
deployed, dynamic, and distributed nature of SCs. To the
best of our knowledge, this represents a novel approach.

« We introduce a threshold criterion for ensuring unique
quantization codes/codevectors within the codebook.
This criterion is essential for determining the appropriate
codebook size and stipulates that the probability of
non-unique codes must always be less than % where N
represents the number of antennas at the transmitter.

o The lower bound for the non-unique code probability
in the adaptive quantization codebook for SCs is found
to be less than or equal to &, where ¢ represents the
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difference between the non-unique code probabilities of
1% and NLZ, given ]% > NLZ (where N1 and N, are the
number of antennas at the transmitter). The value of &

can be used as a design parameter.

The rest of this paper is organized as follows: Section II
provides a review of related work, with sub-section II.
A revisiting finite rate feedback (FRF) systems and sub-
section II-B discussing notations used. Section III out-
lines the system model of our study. Section IV delves
into quantization for SCs, beginning with sub-section IV.
A, which presents the per-receiver antenna quantization
approach for SCs. Sub-section IV-B explores the average
system error (AvgSysErr) and code quantization error (CQE)
specific to SCs. Sub-section IV-C addresses the generation
of quantization codebooks, while sub-section IV-D examines
the relationship between AvgSysErr and non-unique code
probability in SC systems. Finally, sub-section IV-E estab-
lishes the lower bound for non-unique code probability. The
paper concludes with Section V, summarizing the findings
and implications of our work.

Il. RELATED WORK
First, we review the FRF system, which plays a crucial role
in the operation of the SC systems considered in this paper.

A. REVISITING FINITE RATE FEEDBACK SYSTEM

The FRF system quantizes the channel realization using
a pre-existing quantization codebook, selecting the vector
that forms the smallest angle with the channel [8], [9].
The codebook consists of an N- dimensional unit-norm
vectors, randomly generated with 28 entries, where N is
the number of transmit antennas and B is the number of
quantization bits [8], [9], [10]. In [10], it was demonstrated
that feedback beamforming remains invariant when the
channel is multiplied by ¢ for any 6. Additionally, [11]
highlighted the effectiveness of using a small number of bits
per antenna in the FRF system.

In FRF systems, real channels are quantized using a pre-
existing codebook, which inevitably leads to quantization
errors. Related studies [12], [13] have established upper
bounds for quantization error in multiple input single
output (MISO) systems. In particular, [13] concluded that
in systems where the number of antennas at both the
base station and mobile users is equal, the number of
feedback bits, B, must increase linearly with the signal-
to-noise ratio (SNR) in dB to maintain multiplexing gains
equivalent to the number of transmit antennas. This, however,
results in the need for a large centralized codebook. Further
studies [14], [15] explore the impact of channel quantization
under various conditions. In [14], a downlink channel with
an FRF-MISO system is considered, where the number of
antennas at mobile stations exceeds those at the base station.
It was demonstrated that user diversity reduces the required
number of channel state information (CSI) feedback bits to
achieve target performance. Meanwhile, [15] showed that
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zero-forcing dirty paper coding (ZF-DPC) with quantized
feedback closely approaches the capacity of perfect CSI
feedback. Additionally, [16], [17] investigate the sum-rate
capacity of MIMO broadcast channels with limited feedback.
In [16], the construction of M beams and the selection of users
with high signal-to-interference-plus-noise ratio (SINR) is
analysed, while [17] introduces per-user unitary and rate
control (PU2RC) to exploit user diversity in systems with
limited feedback.

Similarly, the study in [18] and the references therein
examine the quantization of channel realizations using pre-
designed codebooks, comparing sum-rate capacities across
various scenarios. Recent findings in [19] explore single
and MU-MIMO systems with finite-bit analog-to-digital
converters (ADCs) and limited feedback bits, demonstrating
that the number of feedback bits must increase linearly with
ADC resolution to maintain performance.

The linear increase in feedback bits leads to a larger
quantization codebook, which poses a significant challenge
for SC systems with constrained resources. A larger code-
book consumes more bandwidth on the feedback link,
leaving less capacity for other users [21], [22]. The study
in [21] partially addresses the relationship between feedback
frequency, the number of users, and quantization bits,
examining the trade-off between user diversity and accurate
channel representation. In [22], the sum-rate capacity is
analysed at different feedback rates using various codebooks,
including Fourier, Grassmannian, and Random codebooks.
The results demonstrate that Grassmannian and Random
codebooks outperform the Fourier codebook in terms of
sum-rate capacity. The variable length quantization (VLQ),
where different binary codewords of different lengths are fed
back for different channel states, compared to finite-rate CSI
feedback based fixed-length quantizers (FLQS), is studied
in [37]. The study takes the outage probability into account
as a performance measure, and VLQ is suggested to achieve
the full-CSIT outage probability performance with a finite
rate when the signal-to-noise ratio (SNR) tends to infinity.
However, the SNR reaching infinity is a rather ideal scenario,
which may not be suitable for the SC environments. Having
said that, the dynamic adaptation of the quantizer with the
channel condition of the instant is an interesting proposition
that we have also considered in the proposed per-antenna
based quantization approach for SCs.

To the best of our knowledge, most studies on quantization
codebooks have largely overlooked the potential issue of
channel quantization mismatch-—i.e., when two or more
channel realizations are quantized using the same code. This
issue in finite rate feedback (FRF) systems was identified
and partially addressed in [20], which proposed a solution
involving codebook rotation to preserve the uniqueness of
quantization codes/codevectors and maintain the rank of
the quantization matrix. However, we believe that channel
quantization mismatch is a critical problem that requires
deeper investigation, especially in the context of adaptive and
distributed codebook generation for SCs. In these systems,
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where user dynamics constantly change as users join or leave,
the risk of quantization code mismatch becomes even more
significant.

Overall, there is a clear need to ensure the uniqueness of
channel quantization codes/codevectors for SCs. To address
this, we propose a threshold criteria, which is detailed with
the Lemmas in the following sections.

B. NOTATION

The superscript (.)7 denotes the Hermitian transpose, and
C represents the set of complex numbers. The operators
E[.] and ||.|| represent the expectation and Euclidean norm,
respectively. Matrices, vectors, and scalars are defined as
introduced throughout the paper.

IlIl. SYSTEM MODEL

Our system model is designed for a distributed, dynamic,
and densely deployed SC environment in an urban setting,
as shown in Figure 1. The circle represent the signal
coverage of an MC, whereas the dotted circles represent
the signal coverage of the APs. APs may serve numerous
dynamic, heterogeneous users entering and leaving within
their range. The intersection of the dotted circles indicates
the interference region caused by adjacent APs. The term
‘heterogeneous antenna clients’ in SCs refers to devices
with varying numbers of receiving antennas, such as mobile
phones, laptops, HDTVs, sensors, and other smart devices.

FIGURE 1. A typical small cell environment.

We characterize SCs using an MU-MIMO wireless local
area network (WLAN) with K APs and users, as illustrated
in Figure 2a. Each AP is equipped with N antennas, while the
users have heterogeneous antenna configurations, denoted
by the variable M. An enlarged view of the jth AP and
its user, incorporating FRF, is shown in Figure 2b. For our
analysis, we use the jth AP-user pair as the reference point.

VOLUME 13, 2025
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a. KAPs and clients

N M MNoise (n)
bits Coding Detection bits
& &
Maodulation Demodulation|

- -
Finite-rate feedback

b. Enlarged view of the jth AP client pair

FIGURE 2. Modelling a typical small cell environment.

The received signal y; at the jth user or client is expressed as

K
yi=Hlvisi+ > Hfivisi+n;. 1)
i=1,if

The channels Hj; € CN*M and H; € CN*M follow
independent and identically distributed (i.i.d.) Rayleigh
fading. The beamforming vector is denoted by v e CN*!,
while n € C¥*! represent the noise at the client. The noise
is modelled as an independent complex Gaussian random
process with variance > = 1. The scalar complex symbol
intended for the jth client is s;, with symbol power given by
E[ls*] =P

Each AP serves its heterogeneous antenna clients, forming
channel realizations represented by a composite matrix H,
where H = [h; hy hs ... .hy] € CY*M The matrix HY ¢
CMxN corresponds to the transposed channels, with the ith
row representing the channel of the ith receiver (denoted
by th ). In the overlapping areas (of the dotted circles), the
channel matrices Hj; and H;; capture interference effects,
where the ith and jth users experience interference from
multiple transmitters in each other’s range.

We normalize the channels for both desired and undesired
Hj;

[T
where Hj; represents the channel from the jth transnjljitter
to the jth receiver (i.e., the desired signal). The same
normalization process is applied to the undesired channels,
such as the jth transmitter to the ith receiver (i.e., the
undesired signal).

For the FRF system, each column of the normalized

[hl,hz, .k, hM] where h; €

A
users within the dotted circles. For instance, Hj] =

channel matrix H” =
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CN*1 s individually quantized using a codebook. The

codebook is created with B’ quantization bits and contains
quantization vectors C 2 {wl,wz, ...... WzB/}, which
are selected to form the minimum angle with the channel
vectors [8], [9]. Thus,

hj = arg mlg sin (Z(h/, w)), )

andﬁ: fl],flz, ﬁ],ﬁM]

Additionally, as we envision an adaptive and distributive
per-antenna-based quantization approach for dynamic and
heterogeneous users in SCs, the quantization codebook would
adjust dynamically according to the number of receiving
antennas at the client.

Considering the use of the downlink Zeroforcing (ZF)
technique, the precodlng vector for client j, v;, is ahgned
with the projection of Hjj onto the null space of {Hﬂ},#]
We assume equal power allocation across the scheduled users,
ie.,y = 1%. Therefore, the SINR is given by

2 |l A~
4 ”HJJ ” HHJJ Vj
SINR; =

3

2 K 2 'y H ~
02+ Xy |1y s
i#

Following [31], [32], we use the expected interference

as

’

- 2
constraint (IC) values (IE H HZI Vi

~ B
E ”H’f % 2w )

_ 1
S WN-1)

and the expected quantization error as

_ B
E [sin(£(fy, /) | <2 (w5) w1 )
IV. QUANTIZATION FOR SMALL CELLS
In this section, we discuss the quantization scheme for SCs,
its benefits and constraints, and the threshold criteria to
address the constraints.

A. PER-RECEIVER ANTENNA QUANTIZATION FOR SMALL
CELLS
The per-receiver antenna quantization approach considers
each antenna at the receiver/client, represented as M =
[M1, M3, .....Mypy], for channel quantization. Specifically,
each receiving antenna contributes equally to the total
quantization bits B’. This is unlike the FRF-MISO and FRF-
MIMO systems, where B’ increases linearly with SNR [13].
When B’ increases linearly with SNR, it forms a huge code-
book with 25’ for quantization, which may not be suitable
for densely deployed, fast-changing dynamic systems like
SCs. The heterogeneous antenna clients may join or leave
the network at any point, rendering the huge quantization
codebook ineffective in its size for quantization. Instead,
we take an adaptive approach to creating a quantization
codebook for SCs. The codebooks are dynamic, and they
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adapt to the fast-changing heterogeneous clients’ activities.
In other words, the per-receiver antenna quantization
approach generates or ceases the quantization codebook
according to the client’s changing heterogeneous antennas.

The concept of per-receiver antenna quantization was
partially explored in [32], where the analytical expression
for the expected quantization error is given in (4). Suppose
B’ represents the total number of quantization bits and M’
is the number of antennas at the receiver for an SC at any
given instant, then the per-receiver antenna quantization bits
are denoted by f = %. These B quantization bits are
used to independently and randomly generate 2# quantization
codes/codevectors at the APs for each receiver antenna.
Consequently, as M’ varies, the quantization codebook size,
26 also varies with the change in . This leads to a dynamic
codebook of size Cy « 37, Where C represents the quantization
codebook.

To ensure maximum multiplexing gain in MU-MIMO
systems, the generated quantization codebook must maintain
consistency with the expected quantization error for both
MU-MIMO and MISO systems. Without this conservation,
using additional resources in MU-MIMO would be unjusti-
fied, as an increase in antennas should not lead to a higher
error floor. Therefore, we equate the expected quantization
error for both systems as

o~ (i) — o= (+1) 6)
and hence
B = M'B. @)

This process allows for the dynamic generation of the
quantization codebook as the system evolves. The derived
expression (7) aligns with the analytical result for B found
in [31], where M’ = 1 leads to B’ = B.

The following points are noteworthy. First, there is a
linear relationship between B’ (the total quantization bits)
and the number of receiver antennas, M’. Second, the slope
of this relationship is always B, meaning: a) The optimal
quantization bits B for a single antenna receiver also apply
to multiple antennas, making the system scalable. This is
consistent with findings in [21], where more accurate CSI
feedback is shown to be critical for improving the system’s
sum rate,! b) As M’ increases, the corresponding increase
in B leads to a larger set of quantization codes/codevectors
generated with 27, and vice-versa, as illustrated in Figure 3.
This dynamically updating of the codebook ensures it
remains effective and adaptive to the changing nature of SCs.

Consider an example with an N = 6 and M = 4
MU-MIMO system, forming a 6 x 4 composite channel
realizations matrix, H. We take four sets of 6 x 1 channel
realizations of H into account as per the proposed per-receiver

I'The linear increase of B, as in (7), mirrors the concept of grouping
antennas in frequency/time blocks, which then feedback more precise CSI
within subsets of these coherence block.
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antenna quantization approach for SCs. Each channel realiza-
tion is then quantized with four independent and distributive

codebooks, each generated with 28, where B = 4B,
p="5% =8B

_B’

M

FIGURE 3. A typical case of per receiver antenna quantization with
M = 4, where each rectangle arbitrarily represents a distributive
quantization code formed with 25.

Ilustratively, the process of code generation can be likened
to rolling M independent N-sided unbiased dices (referred
to as code generators). Each time these dice are rolled, the
outcomes correspond to the quantization codes/codevectors
needed for the channel realizations in SCs. The goal of this
process is to create N-dimensional unit norm vectors that
effectively quantize the channel realizations associated with
the M receiving antennas. The details of the code generation
process are elaborated further in Section IV, C.

The per-receiver antenna quantization scheme offers sev-
eral key benefits for SC systems: a) Adaptability to dynamic
SC operations: The per-receiver quantization codebook
responds to the dynamic nature of SCs networks, where
users frequently join or leave. Codebooks are generated only
for the active receivers based on B’ and M’, ensuring the
codebook is always up-to-date with the current network users.
b) Reduction in codebook size: This scheme significantly
reduces the large quantization codebook typically seen in
MISO systems, where B increases linearly with SNR. This
results in a more cost-effective use of feedback bandwidth.
c) Efficiency for small-cell APs: By tailoring the codebook
size to the per-receiver antennas, this approach ensures an
efficient and manageable codebook size for APs, perfectly
aligned with the resource-constrained nature of small-cell
APs.

However, since the quantization codebooks for each
receiving antenna are generated independently, distributively,
and randomly, there is a significant risk of duplicate codes
within the codebook. The main challenge, therefore, is to
minimize the probability of identical codes appearing in the
quantization codebook, as this would lead to CQE.

We propose addressing CQE in SC systems through a
threshold criterion designed to ensure unique codes in the
quantization codebook for all channel realizations at any
given moment. The details and examples of this threshold
criterion are presented in Lemma 1 and Lemma 2 in
Sections IV-D and IV-E, respectively. Next, we examine
the impact of CQE on per-receiver antenna quantization,
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particularly in a distributed scenario where it can accumulate
and contribute to AvgSysErr.

AvgSysErr refers to the error distributed across receiver
antennas at a specific instant. While multiple factors
can contribute to a system error, we assume that other
sources—such as (i) feedback link bandwidth and feedback
frequency, ii) dynamic changes in the channel, and iii) chan-
nel estimation error—are properly mitigated. Under these
conditions, AvgSysErr primarily depends on two key factors:
a) quantization error and b) CQE.

The upper bound of quantization error is well-known,
given the quantization bits B [12], [13], [20]. Thus, the
average quantization error per receiver antenna becomes the
same for both MISO and MU-MIMO systems, as shown
in (7). In this context, we anticipate that CQE will be the
principal contributor to AvgSysErr. The relationship between
AvgSysErr and CQE is discussed in detail in the subsequent
sections.

B. AVERAGE SYSTEM ERROR (AVGSYSERR) AND CODE
QUANTIZATION ERROR (CQE) FOR SMALL CELLS
AvgSysErr is defined as the ratio between the total quantiza-
tion error for the receiver antennas considered and the number
of unique quantization codes/codevectors in the codebook at
any given moment. Alternatively, it can be expressed as the
per-receiver antenna quantization error

B/
M’ x 2 M (N-T)
AvgSysErr = — 3
c

where M' = M/ x x. M’ is the number of receiving antennas
considered by the system, M/ is the number of required
unique quantization codes/codevectors in the codebook for
the transmitter-receiver antenna system (i.e., N x M’) at that
instant, and x is a multiplier. The analytical expression of x is
discussed further.

The system requires unique quantization codes/
codevectors for each unique channel realization in MU-
MIMO systems. If not, CQE arises, increasing the AvgSy-
sErr, denoted as Avg’. The difference (M "M/ ) represents
the number of non-unique codes in the codebook.

Given the distributive approach in codebook generation for
SCs, (M’ — M), is given by [35]

M —-M =M 25 9
- Ve T NM/ ©))

B . oo
ﬁ is the ratio of the number of quantization

codes/codevectors, 2%, and the number of possible outcomes,
NM’ which is also regarded as a mapping strategy of the
proposed scheme, and is further illustrated in Section IV, C.

Figure 4, shows how the number of non-unique codes
varies with the number of receiver antennas M, given N and
B. We see that as the number of M increases the number of
non-unique codes decreases with given N and B.

where
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T T T T
=@ hon-unique codes with N=& and B=5

Mumber of Non-unigue codes for N=6, B=5

ak L L L L -
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 g

Mumber of receiver antennas

FIGURE 4. Number of Non-unique codes when N = 6 and B = 5 with
varying M.

Since we know the upper bound on quantization error for
B
SCs, 2 M'w-1_ CQE can be expressed as
__B
CQE = (M"—M)2 M&-, (10)
The updated system error Avg’ then becomes

Avg' = AvgSysErr + CQE

B

/ TN /
= %CNM(M + (M/ _MC”) z’m
/ /
— 2 WD (1% + (M- M,;’))
c
= 270D (v + (M — ML) (1)

where x is the multiplier that accounts for the deviation of the
system from the ideal case. The multiplier x can be derived

as
Avg'
27 M'(N-1)
Avg' — (M’ — MC//) 27M/(II%/—1)
- 5
2 M©N-1)
Avg' — COE
- Avg — o (12)
2 MWN-D
This leads to

M= —2— )+ M/ — M M)
2 M/(N-1)

Case 1: If the required unique codes match the number of
receiving antennas (M) = M), then x = 1, meaning CQE is
zero and AvgSysErr is conserved.

Case 2: If M/ < M’, x increases, causing CQE to rise and
thus increasing Avg'.
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Case 3: If M > M’, x decreases, leading to a drop in CQE
and Avg'.

It is noteworthy that since CQE and 2_M’(§’*1> in (12)
simply represents the rate at which x decreases, when Avg’
increases, x also increases. Conversely, when Avg’ decreases,
x also decreases. Therefore, AvgSysErr will not be conserved
for both MISO and SC systems in Cases 2 and 3. The
accumulated error is given in (10).

It is important to note that Case 3 serves as a theoret-
ical discussion for illustrative purposes. In reality, when
M] > M’', the CQE reduces to zero, as the condition
M! = M’ is already satisfied. This implies that there are
sufficient quantization codes/codevectors to accommodate
all channel realizations, eliminating the occurrence of code
quantization errors.

—— AugSys M=t
—— AvgSys M=2
—8— AvgSys M=3
—— AgvSys M=4
AguBys M=3
AgvSys M=t

AvgSysEm for N=6, B=5

a ) 10 15 20 25 3o 35
MNumber of codes

FIGURE 5. AvgSysErr vs Number of Codes in the codebook for N = 6,
B=5andM=1,M=2,M=3M=4,M=5M =6.

Figure 5 illustrates the relationship between AvgSysErr
and the number of quantization codes/codevectors in the
codebook as in (11), for N = 6, B = 5 (which gives
25 =32codes)and M = |, M =2, M =3, M =4, M = 5,
and M = 6. The goal is to demonstrate how AvgSysErr
varies with the number of quantization codes/codevectors and
varying M.

We observe that Figure 5, a) effectively visualizes the
three previously discussed cases, and b) demonstrates
the decrement of AvgSysErr with increasing receiving
antenna M, given the quantization codes/codevectors,
which apparently demonstrates the advantage of distributive
per-receiver antenna quantization over traditional centralized

quantizations.
First, consider a scenario where the number of quantization
codes/codevectors is set to M = 5. In Case 1, where

M! = M’, Figure 5 shows that the AvgSysErr is slightly
greater than zero. This result is expected, as when M) = M’,
B/

the AvgSysErr corresponds to 2° M ™-D for the given values
of B and M’. This observation holds consistently across all
combinations of B, M’ and M.
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In Case 2, where, M < M’ (e.g., M’ = 6 and M/ = 5),
Figure 5 indicates that the AvgSysErr is higher than when
M’ = 5. Conversely, in Case 3, where M/ > M’ (e.g., M’ =
4 and M/ = 5), the figure shows that the AvgSysErr is lower
than when M’ = 5.

In Case 2, the CQE increases, leading to a corresponding
increase in AvgSysErr. In contrast, in Case 3, the CQE
theoretically decreases, which further reduces the AvgSysErr.

Overall, ensuring unique quantization codes/codevectors is
crucial for SCs employing per-receiver antenna quantization.
When multiple channel realizations are quantized using iden-
tical codes (which could come from independent, dynamic,
and distributive quantization codes/codevectors), it leads to
CQE, which subsequently increases the AvgSysErr.

Second, the AvgSysErr is significantly improved, up to
48 %, given B=5and M =2,M =3, M =4,M =5 and
M = 6, comparedto M = 1.

It is to be noted that when we have M = 1, we have
a huge centralized codebook that represents the standard
quantization approach used in the MISO systems where
quantization codes/codevectors linearly increase with SNR.
In contrast, when we have M > 1, the proposed pre-antenna
quantization approach comes in-effect which creates an
adaptive and distributive quantization codes/codevectors for
SCs with the increment and decrement of M’ as in (7).

Since we observe that the AvgSysErr is significantly
improved when M > 1 compared to M = 1, we conclude
that in terms of AvgSysErr, the proposed per-antenna
quantization approach for SCs outperforms the standard
centralized approach for the generation of quantization
codes/codevectors.

The decrement in the AvgSysErr with the increment of
M is evident as the number of non-unique quantization
codes/codevectors decreases with the increment of M as in (9)
and is illustrated in Figure 3. Moreover, the decrement of the
non-unique quantization codes/codevectors further reduces
the CQE as in (10), which further reduces AvgSysErr as
in (11).

C. QUANTIZATION CODEBOOK GENERATION

Unlike MISO systems, the codebook for SCs is generated
distributively, independently, and randomly based on the
dynamic arrival and departure of clients. The generated code-
book for SCs must account for three key factors: a) minimiz-
ing the probability of duplicate codes, thereby maximizing
the likelihood of unique quantization codes/codevectors for
the receiver antennas, denoted as P(Uniq, M); b) ensuring a
1:1 mapping between the generated codes, 28, and the total
number of possible code combinations, N M 1o guarantee the
availability of at least one unique code; and c¢) considering the
number of transmitter antennas, N, and receiver antennas, M,
at that moment.

First, it is essential that the quantization codebook remains
unique for SC systems. Given the dynamic nature of
SC operations—-characterised by distributed, independent,
and random client interactions—-duplicate quantization
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codes/codevectors within the codebook can be unavoidable.
The presence of identical quantization codes/codevectors
leads to CQE in the system. Therefore, it is crucial to establish
a minimum probability of non-unique codes, denoted as
P(Non_Unigq, M), as one of the key components in the
codebook generation process. Details regarding the minimum
P(Non_Uniq, M) are provided in Lemma 2.

Second, the total number of quantization codes/
codevectors is represented by 28, while the number of
potential outcome combinations is given by N™. Conse-
quently, it is necessary to establish a mapping between
the quantization codes/codevectors and the combinations of
possible outcomes represented by N at any given moment.

Third, the number of transmitter antennas, N, and the
number of receiver antennas, M, must be taken into account
in SC systems at any instant, as these parameters define
the composite channel matrix that requires appropriate
quantization codes/codevectors.

For illustrative purposes, let’s examine the quantization
code requirements for an SC system with N = 6 and M = 2.
This configuration produces a composite channel matrix of
size 6 x 2. The number of quantization codes/codevectors,
represented by 2P, must correspond to the number of
possible outcome combinations given by N, taking into
account the distributed, independent, and random generation
of the quantization codes/codevectors. In this case, there are
6 x 6 possible outcome combinations. The probability of
generating duplicate outcomes can be calculated as [33], [34]

(;) x N
e (13)

N2
This results in P(Non_Uniq, 2) = é. Thus, the total number

of possible outcome combinations for N = 6 and M = 2 is
given by N | or C®*¢ possible combinations. This must map
effectively to the number of quantization codes/codevectors
represented by 27.

In scenarios where a 1:1 mapping is not achievable, a code
selection mechanism may be necessary, allowing multiple
codes to be used for channel quantization. The study of
the code selection mechanisms where there are mappings
other than 1:1 between the generated codes, 2#, and the
number of possible outcomes, N M s not straightforward—-
represents an interesting avenue for future research. However,
this paper focuses primarily on the specific requirements for
unique codes in channel quantization to mitigate AvgSysErr.
In the recent work in [35], a null algorithm is proposed to
mitigate the AvgSysErr. The efficiency of the null algorithm
in mitigating CQE is analyzed with analytical expression and
simulation results.

P(Non_Uniq, 2) =

D. AVGSYSERR AND NON-UNIQUE CODE PROBABILITY
FOR SC SYSTEMS

Lemma 1: The average system error (AvgSysErr) for small
cell (SC) systems remains consistent with that of the finite rate
feedback (FRF) multiple input single output (MISO) system
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when the probability of generating non-unique quantization
codes/codevectors is consistently less than IL\, where N
represents the number of antennas at the transmitter.

Proof: Consider an N x M FRF MU-MIMO system.
Lemma 1 stipulates that the probability of generating
non-unique codes in the quantization codebook must be less
than zlv

The non-unique code probability is defined as the like-
lihood of having identical quantization codes/codevectors
within a codebook at any given moment. Formally, this is
expressed as [33], [34]

P(Non_Uniq) = n(Non_.Umq) - (14)
n(Non_Uniq + Uniq)
where P(Unig) = 1 — P(Non_uniq). Here, P(Non_Uniq)
represents the probability of non-unique codes, P(Uniq)
denotes the probability of unique codes, n(Non_Uniq)
indicates the number of non-unique codes, and n(Unigq) is the
number of unique codes.

We will examine Lemma 1 by employing contradictory
scenarios: first, when the non-unique code probability of
the generated quantization codes/codevectors is a) equal to
}i\,, and b) greater than zlv We will demonstrate that these
contradictory arguments do not hold true. This analysis
applies universally to all clients with heterogeneous antennas
at the receiver. Finally, we will substantiate Lemma 1 with
an illustrative example.

Assumption 1: Let us assume that the AvgSysErr for SCs
is conserved with that of the FRF MISO system when the
non-unique code probability of the generated quantization
codes/codevectors is equal to %.Assumption 2:Letus assume
that the AvgSysErr for SCs is conserved with the FRF
MISO system when the non-unique code probability of the
generated quantization codes/codevectors is greater than ziv

We begin by examining Assumption 1. For example,
consider N = 6 and M = 2. which results in a 6 x 2
MU-MIMO system. This system requires at least 12 unique
quantization codes/codevectors to represent 12 distinct chan-
nel realizations. Here, the non-unique code probability is %,
given N = 6.

Since the quantization codes/codevectors are generated
independently and randomly, for M = 2, we can model the
process using two unbiased N = 6-sided code generators to
create a quantization codebook for quantizing each column
of the composite channel matrix H. Thus, for M = 2, the
process independently generates C®*© possible combinations
of codes, as described earlier. From these combinations, C®*2
quantization codes/codevectors are required for the 6 x 2 SC
system.

It is clear that, due to the independent, distributive, and
random nature of code generation for SCs, two of the
12 codes-—namely, c1; and cy>—may exhibit similarities.
As a result, we have 10 unique codes for 12 channel
realizations, which leads to M/ < M’. This situation
corresponds to Case 2 discussed previously. Additionally, the
codebook exhibits a non-unique code probability of % and a
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unique code probability of %. Consequently, we conclude that
when the non-unique code probability is %, the AvgSysErr
of the SC system will not align with that of the FRF MISO
system.

Assumption 2: Following a similar approach, let us now
consider the case where the non-unique code probability is %
which is greater than %. For M = 2, we use two 5-sided code
generators that independently and randomly produce C>*3
quantization codes/codevectors. From this set, we select C7*2
codes for consideration.

In this scenario, we observe that out of the 10 channel
realizations, 8 codes are unique, while 2—cy; and cpyy—are
identical. Consequently, we have M < M’, which aligns
with Case 2 discussed earlier. Moreover, in this case, the
codebook exhibits a non-unique code probability of % and a
unique code probability of %.

Therefore, when the non-unique code probability exceeds
le’ the AvgSysErr of the FRF MU-MIMO system will not
align with that of the FRF MISO system.

Since both Assumption 1 and Assumption 2 do not hold,
we proceed to examine Lemma 1 by considering cases where
the non-unique code probability of the generated codes is less
than zlv

Following a similar process from the previous assump-
tions, let’s now consider the case where the non-unique code
probability is % which is less than é.

For M = 2, the process will independently and randomly
generate C’*7 quantization codes/codevectors. From this,
we select C7*2 codes for consideration. Although two codes,
c11 and ¢y, are identical out of 14 total codes, there are still
12 unique codes corresponding to 12 channel realizations.
Thus, we have M/ = M’, which aligns with Case 1,
as discussed earlier. Additionally, the codebook exhibits
a non-unique code probability of % and a unique code
probability of S.

Therefore, when the non-unique code probability is less
than le’ the AvgSysErr of the FRF MU-MIMO system aligns
with that of the FRF MISO system. As we continue to
generate quantization codes/codevectors for systems like 8 x
2,9 x 2, and so on—considering non-unique code probabilities
of % and l, respectively—these scenarios resemble Case 3,
where M > M'.

Mathematically, when M > M’, the AvgSysErr no
longer aligns with that of the MISO system, as the CQE
decreases. However, from a practical standpoint, since
there are sufficient unique codes generated to match the
one-to-one channel realizations, the AvgSysErr effectively
aligns. Case 3 simply indicates that there are more unique
quantization codes/codevectors available in the codebook for
channel quantization.

The summary of the P(Non_Unigq, M"), the case scenarios,
and the AvgSysErr of the considered N x M’ system is
presented in Table 1 on top of the next page. We conclude that
for FRF MU-MIMO systems, the AvgSysErr is conserved
with the MISO system when the non-unique code probability
of the generated codebook is always less than %
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In the example above with 6 x 2 system, the
P(Non_Uniq, 2) = % and less conserves the AvgSysErr with

. 1 1 1 1
MISO system, since we know 5> >3 >3 >

1
9
This general principle holds, where 1%1 > o= > > NLH,
provided Ni < Nj....< Ny,.
However, the lower bound for the non-unique code
probability remains unknown. In the following section,
we address this lower bound with Lemma 2.

E. LOWER BOUND OF NON-UNIQUE CODE PROBABILITY
Lemma 2: The lower bound for the non-unique code
probability of the generated quantization codes/codevectors,
P(Non_Uniq, N,, - Ny—1), should be less than or equal to
&, where ¢ represents the difference between the non-unique
code probabilities NLl and NLZ given NLI > NLZ Specifically,
P(Non_Uniq, Ny, - N,—1) < e.
Proof: Consider the cases where N = 6, with M = 3 and
M = 4, forming 6 x 3 and 6 x 4 systems, respectively.
As part of the quantization code generation process, we use
an N-sided unbiased code generator, where each receiver
antenna is assigned a code. For M = 3 and M = 4, the
process independently and randomly generates 6 x 6 x 6 and
6 x 6 x 6 x 6 combinations of codes.

We know that using two identical combinations of
codes for channel quantization increases the non-unique
probability, leading to a rise in CQE. For both M = 3 and
M = 4, we aim to calculate the non-unique probability of the
quantization codes/codevectors as N increases and determine
the lower bound with ¢.

From Lemma 1, we established that the non-unique code
probability should always be less than 1lv As N increases,
we compare the change in the non-unique probability with ¢.
To confirm, we check whether any two identical quantization
codes/codevectors occur in the generated codebook, which
would contribute to the non-unique code probability. For
M =3 and M = 4, the probability of generating two identical
codes when using three or four unbiased N-sided code
generators (corresponding to M = 3 and M = 4 receiver
antennas) at the APs, randomly and independently, is given
by the following equations [33], [34]:

(3) XN XN —1
7 (15)

P(Non_Unigq, 3) =
and

(g)xNxN—lxN—Z

P(Non_Uniq, 4) = (16)

N4
‘We now calculate the non-unique probability of the generated
quantization codebook as N increases. Figure 6 shows
the curve representing the non-unique probability for an
M -receiver antenna system, P(Non_Uniq, M), where
M = 3 and M = 4, as the number of transmitter antennas,
N, increases. We observe that both P(Non_Uniq,3) and
P(Non_Uniq, 4) decrease with increasing N, and the curve
asymptotically approaches the x-axis.
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TABLE 1. Summary of the P(Non_Uniq, M’), the case scenarios and the AvgSysErr of the considered N x M’ system.

System | Non-unique code probability of the Codebook P(Non_Uniq) Case Scenario AvgSysErr
7 77 7
P(Non_Uniq, M) = % Case 1,i.e., M, <M Not Conserved with MISO
P(Non_Unig, M) >4 Case 1, ie., M, <M’ Not Conserved with MISO
Case 2, i.e., ]W: = ]\J/
when,
o P(Non_Unig, M) = 1.
N xM -
P(Non_Unig, M) <% where i= 1. , Conserved with MISO
: Case 3,ie., M, > M
when,
P(Non_Unugq, M) < ﬁ s
where j=2,3,...n.
a7y iRER
| —#— Non-unique Prot diff M=3
== Non-unigue Prob diff M=4
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FIGURE 6. Non-unique probability vs N.

The decrement in P(Non_Uniq, 3) and P(Non_Uniq, 4) as
N increases, is expected since the quantization codebook
expands as more transmitter antennas are added, effectively
creating a taller codebook. This provides more unique codes
for channel quantization, particularly for M = 3 and
M = 4. As a result, P(Non_Uniq, M) decreases while
P(Unig, M)=1 — P(Non_Uniq, M) increases with N. Since
M = 4) > (M = 3), the non-unique probability
P(Non_Uniq, 4) is slightly greater than P(Non_Unig, 3),
as illustrated in Figure 6. This is because there is a higher
likelihood of generating two identical codes when the number
of receiver antennas M = 4 exceeds M = 3.

The P(Non_Unig, M) vs N curve also indicates that as N
increases, P(Non_Uniq, M) approaches saturation, meaning
there is no significant change in the non-unique probability
as N continues to grow. This suggests that the lower bound
for P(Non_Uniq, M) can be reached.

The asymptotic behaviour of P(Non_Uniq, M) relative to
the x-axis is justified by the fact that some degree of code
repetition is inevitable, regardless of how tall the codebook
becomes with increasing N. This is due to the random,
independent, and distributed generation of quantization
codes/codevectors at each AP.

In other words, the asymptotic nature of the curve reflects
the reality that, regardless of how large the codebook N¥
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Mumber of Tx antennas N

FIGURE 7. ¢ vs N.

grows, at least two identical codes are likely to exist.
This arises from the inherent randomness in the codebook
generation process. Figure 7 depicts the curve of ¢ versus
N, where ¢ represents the difference in the non-unique
probability between N, and N,_j. The asymptotic nature
of this curve suggests that the difference in non-unique
probabilities, e, saturates as N increases. A small value
for ¢ can be set based on the specific requirements of
the SC system under consideration. Thus, the non-unique
probability, P(Non_Uniq, N,, - N,_1), can be controlled to
be less than or equal to ¢, ensuring that no further changes
in P(Non_Uniq, N, - N,—1) occur, even as N continues to
grow. This behaviour helps to illustrate the lower bound of
P(Non_Unigq, M).

It is important to note that P(Non_Uniq, N,, - N,—1) < ¢
holds true for any number of receiver antennas, i.e., M =
1,2,3...... , n, in the case of SC systems. This is because,
regardless of how much we increase N or M, the non-unique
probability P(Non_Unig, M) will remain asymptotic to the
x-axis for each incremental increase in M. This behaviour
results from the inherent probability of generating identical
outcomes when using two independent, N-sided unbiased
code generators. Therefore, Lemma 2 can be generalized
to any M and N, ensuring that the relationship between the
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non-unique probability and & holds universally across all
configurations of transmitter and receiver antennas. U

V. CONCLUSION

In the context of dynamic, distributive, and densely deployed
SCs aimed at enhancing system coverage, capacity, and QoS,
we have examined the adaptive and distributed per-receiver
antenna quantization approach. To maintain control over the
CQE and AvgSysErr, the threshold for the non-unique code
probability in the per-receiver antenna quantization codebook
was identified as being less than %, where N is the number
of transmitter antennas at the APs. Additionally, the lower
bound for the non-unique code probability was established as
being less than &, a small, customisable design parameter for
SC systems.

While the proposed per-antenna quantization approach
has been evaluated in reference to the MISO system, the
underlying framework is extendable to MIMO configura-
tions, which are increasingly relevant in heterogeneous and
dense small cell deployments. As modern user equipment
evolves to support multiple antennas, future work will focus
on implementing and analyzing the proposed method in
a full MU-MIMO system. This will allow for a more
comprehensive understanding of its performance under joint
receiver-side processing and spatial multiplexing, and will
further demonstrate its scalability and robustness in practical
network scenarios.

In addition, it would be valuable to explore the impact of
quantization code mismatches on CQE. Such mismatches,
which violate the 1:1 mapping between channel realizations
and quantization codes/codevectors, present a significant risk
in limited feedback systems and warrant deeper investiga-
tion. We envision that with the full-fledged 6G and IoT
implementations, the deployment of SCs will be ubiquitous
for system coverage, capacity and QoS. In such a context,
interference management could be one of the challenging
aspects of SCs deployment, which is partly discussed in [36].
Further, the distributed nature of the per-receiver antenna-
based quantization can be envisioned inline with the concept
of edge computing, where the promising federated learning
(FL) approach could be used to train the model for finding out
more non-unique codes for quantization for the SCs, which
may help avoiding the increment of the CQE and AvgSysErr.
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