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ABSTRACT In this paper, we propose a novel channel estimation approach and driving decision method for
adaptive cruise control (ACC) systems for vehicular networks, leveraging the properties of deep learning, re-
inforcement learning, and orthogonal time frequency space (OTFS) modulation. To achieve that, we propose
to leverage deep learning (DL) to estimate motion parameters. Subsequently, we develop a reinforcement
learning method to process the obtained target motion information to enable adaptive vehicle-following
strategies. This ensures robust decision-making and precise control under dynamic and uncertain driving
conditions, achieving superior performance in terms of both accuracy and reliability.

INDEX TERMS ACC, deep learning, OTFS, reinforcement learning.

I. INTRODUCTION

Emerging vehicular networks are anticipated to integrate
intelligent capabilities essential for supporting autonomous
driving and reducing traffic congestion. Adaptive cruise con-
trol (ACC) serves as a cornerstone in implementing intelligent
vehicular networks (IVNs). It enables IVN participants to ac-
quire essential information, e.g., lane details, pedestrians, and
unexpected traffic incidents, ensuring safe following distances
from preceding vehicles and minimizing collision risks. Fur-
thermore, ACC can effectively manage vehicle acceleration
and braking, alleviating driver fatigue, especially during long-
distance and highway driving. Therefore, ACC is recognized
as a transformative component of next-generation wireless
systems, attracting increasing attention from both academia
and industry.

Cruise control systems originated in the mid-20th cen-
tury [1], with early implementations using mechanical mech-
anisms to sustain a fixed throttle position, offering limited
functional capabilities. However, conventional cruise control
(CCC) systems were unable to ensure consistent vehicle ve-
locity and provided minimal enhancement in safety or driving

comfort. To address these limitations, the first generation of
ACC systems was developed to dynamically adjust vehicle
velocity and maintain a specified following distance from
the preceding vehicle through integrated throttle and brake
control. Initially, ACC systems were deployed in luxury ve-
hicles by automakers and suppliers, focusing on improving
driving comfort and convenience while offering secondary
safety benefits. Today, ACC systems are commonly integrated
into vehicles across various market segments, from high-end
to mid-range models. Specifically, when no vehicle is detected
ahead, an ACC-equipped vehicle operates similarly to a tra-
ditional CCC system, maintaining a driver-defined velocity
via throttle control. Upon detecting a preceding vehicle, the
ACC system determines the safety of maintaining the preset
velocity. If the vehicle ahead is too close or moving at a
much lower speed, the system shifts from maintaining the
diver-defined velocity to controlling a user-defined time head-
way, adjusting both the throttle and the brake accordingly.
Modern ACC systems typically operate at a velocity range
of 40 km/h to 160 km/h, with a maximum braking deceler-
ation of approximately 0.5 g. It is important to note that the
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driver maintains full control of the vehicle, enabling manual
intervention whenever required.

To accomplish successful tasks, ACC system needs to
measure the distance and relative velocity between adjacent
vehicles using diverse sensors, e.g., radar, lidar, or a video
camera. This acquired data is then transmitted to the con-
troller to determine and perform appropriate control actions.
Towards that end, the study in [2] developed a vision-based
ACC system by utilizing a camera for both range and ve-
locity measurements. Despite the progress, a single camera
falls short in detecting vehicles in adjacent lanes, and its
performance is vulnerable to weather conditions, such as fog
or rain, compromising safe cruise control. For instance, the
study in [2] examined a vision-based ACC system that used
a single camera to compute both range and relative veloc-
ity. However, vision-based ACC systems are vulnerable to
weather-related issues, such as fog, where a following vehicle
may fail to detect the leading vehicle, thereby compromis-
ing safe cruise control. Given that, [3] proposed to integrate
frequency-modulated continuous wave (FMCW) radar with
constant false alarm rate (CFAR) clutter rejection, enhancing
detection reliability in adverse weather conditions, such as
rain. This integration can reduce the impact of clutter, en-
suring accurate range and velocity measurements [4]. With
the same purpose, [5] proposed a lidar-based ACC frame-
work to detect both distance and velocity information of
nearby vehicles. To further improve performance, [6] intro-
duced a multi-dimensional sensor-based ACC system, which
exploits the Kalman filter algorithm for obstacle detection
and tracking. However, the use of multi-dimensional data in
these systems poses significant computational challenges, es-
pecially for vehicles within large-scale IVNs, restricting its
implementation in real-time scenarios. Therefore, the devel-
opment of a low-complexity approach for determining range
and relative velocity in ACC systems tailored for IVNs re-
mains a critical challenge.

Beyond precise sensing, reliable communication is an-
other essential enabler for IVNs, allowing participants to
exchange critical information for timely decision-making and
efficient resource allocation. Traditionally, orthogonal fre-
quency division multiplexing (OFDM) has been adopted for
vehicle-to-vehicle (V2V) communications due to its strengths
in scalable multi-user access and robustness against multi-
path fading. For instance, the work in [7], [8], [9] developed
an OFDM-based pre-coded chaos shift keying (PC-CSK)
transceiver to enhance V2V communication reliability. How-
ever, OFDM suffers from a high peak-to-average power
ratio (PAPR), increasing transmitter complexity and reducing
power efficiency. Additionally, it experiences significant per-
formance degradation in high-mobility environments due to
large Doppler shifts and inter-carrier interference, particularly
in high-speed vehicle scenarios such as highways [10], [11],
[12]. Consequently, OFDM may not be well-suited for high-
mobility IVN applications.

Recognizing the above challenges, a novel communication
paradigm known as orthogonal time frequency space (OTFS)
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has been developed. Unlike OFDM modulating data sym-
bols in the time-frequency (TF) domain, OTFS operates in
the delay-Doppler (DD) domain. This shift enables OTFS to
convert fluctuating and dense channel responses in the TF
domain to quasi-static and sparse ones in the DD domain,
thereby improving robustness to Doppler spreads and enhanc-
ing performance in high-mobility scenarios. Inspired by these
benefits, several studies have explored OTFS-based V2V
communications [13], [14], [15], [16], [17], where results con-
firmed the superior performance of OTES for high-velocity
scenarios. Another important finding in these studies is that
the DD domain channel parameters are essential for realizing
the sensing functionality by converting the delay and Doppler
shifts into vehicle ranges and velocities. Consequently, OTFS
can effectively serve both sensing and communication tasks
using unified signal processing techniques, offering a promis-
ing solution for designing low-complexity ACC systems in
IVNs.

While OTFS excels in sensing and communication, it ne-
cessitates advanced decision-making strategies to fully capi-
talize on its advantages. Notably, distance and relative velocity
to the preceding vehicle can be estimated at present time
step, however, the preceding vehicle’s driving status such as
velocity at next time step can not be accurately predicted.
This unknown information causes challenges for the follow-
ing vehicle to maintain within desired system constraints,
motivating the use of reinforcement learning (RL) that can
iteratively learn the vehicle dynamics by the following ve-
hicle’s interaction with the preceding vehicle and improve
driving strategy. Q-learning is a popular choice among many
researchers due to its simplicity and effectiveness in environ-
ments with discrete, well-defined state and action spaces. For
instance, [18] innovatively applied a critic-only Q-learning
method for designing optimal tracking control. Addition-
ally, [19] introduced a model-based approximate Q-learning
algorithm that trains the control laws to maximize the ex-
pected time before system constrains, such as safety, comfort,
and fuel economy are violated. Further extending the util-
ity of Q-learning, [20], [21] employed it in an autonomous
car-following system that processes video frames, thereby
enhancing the adaptability of ACC systems to complex traffic
conditions. Previous studies have validated the effectiveness
of Q-learning in complex driving environments. In this work,
we adapt Q-learning specifically for highway scenarios, op-
timizing it to leverage the unique capabilities of OTFS for
enhanced safety and operational efficiency.

Motivated by the above, in this paper, we investigate the
design of OTFS sensing-assisted ACC system for IVNs.
Specifically, the roadside infrastructure units (RSUs) transmit
OTFS signals to the mobile vehicles for downlink communi-
cation. Meanwhile, the received signals at the vehicles can be
further radiated to their adjacent vehicles. In such a context,
the following vehicle captures the reflected signal from the
preceding vehicle and extracts the delays and the Doppler
shifts to determine the corresponding distance and velocity.
Subsequently, the optimal driving policy for the following
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FIGURE 1. Physical scenario.

vehicle can be obtained, enabling a low-overhead ACC system
design for joint sensing and communication functionalities.
To the best of authors’ knowledge, this is the first attempt
to exploit OTFS for designing the ACC system in IVNs. The
main contributions are listed as follows:

e We propose a novel adaptive cruise control system
for vehicular networks, by leveraging the properties of
OTFS signals and RL. This integration enhances the
accuracy of vehicle sensing under varying conditions
but also significantly boosts the adaptability and perfor-
mance of cruise control functions across diverse traffic
scenarios.

® To perform sensing tasks, we first formulate the parame-
ter estimation as a regression problem and then develop
a dedicated parameter estimation network (PEnet) by
exploiting the power of ResNet. PEnet can capture intri-
cate signal features and mitigate noise and interference,
enabling efficient and accurate feature extraction for
sensing tasks. Additionally, PEnet is able to reduce
computational complexity significantly, demonstrating
its potential in real-world implementations.

e With extracted target information, we develop an adap-
tive vehicle-following strategy by leveraging RL to learn
optimal control policies through interactions with dy-
namic environments. The designed strategy can ensure
accurate and robust decision-making by accounting for
real-time environmental changes and complex vehicular
interactions. Additionally, it is capable of adapting to
varying and uncertain driving conditions, enhancing per-
formance in responsiveness and reliability, even under
challenging scenarios.

The remainder of this paper is organized as follows:
Section II introduces system models, and Section III derives
proposed methods. Our simulation results are provided in
Section IV, while Section V concludes this paper.

Notations: Boldface capital letters are used to represent
matrices, such as X, Y, and v. Boldface lowercase letters are
used to represent vectors, such as x, y, h, k, 1, and s. Black-
board bold letters denote complex number vector spaces; for
instance, C¥N*! represents a complex number vector space
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of dimensions MN x 1. Additionally, [E denotes expectation
in probability and statistics. The set of states and the action
space in RL are defined in uppercase calligraphic letters, such
as S and A. Random variables are denoted by italic letters,
like x, y, etc.

Il. SYSTEM MODELS

We consider a vehicular system supported by an RSU, as
shown in Fig. 1, including k£ vehicles in the traffic flow, in-
dexed from O to k — 1. The following autonomous vehicle,
indexed as k — 1, is denoted as Bob. Each vehicle receives
both the direct transition signal from the RSU and the re-
flected signal from its preceding vehicle. All vehicles share
the same frequency band. To simplify the problem, the height
of the RSU is ignored. In the following, we first introduce our
kinetic model for the vehicle system, followed by a detailed
explanation of the OTFS-assisted sensing model.

A. VEHICLE KINETIC MODEL

In this section, we focus on the straight-line motion of vehicles
for simplicity, then extend the single-vehicle kinematic model
to a multi-vehicle system.

Specifically, the single vehicle kinetic model can be char-
acterized by its position, velocity, and acceleration along the
longitudinal axis. For a specific vehicle j, its position update
process can be expressed as

xj(t + Ar) = xj(t) + vj(t) - At + %aj(t) S(An?, (D)

where x;(¢), v;(t), and a;(¢) represent the position, velocity,
and acceleration of vehicle j at time ¢, respectively, and At
denotes the time step. Also, its velocity update process is
given by

Vit + At) = v;(t) + aj(t) - Ar. )

Next, we extend this kinetic model to a multi-vehicle sys-
tem. To model dynamics between vehicles, we define the
distance d(¢) and relative velocity v(¢) between vehicle i 4 1
(following vehicle) and vehicle i (preceding vehicle) as

dii1(t) = x;(t) — xi11(1),
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FIGURE 2. OTFS modulation and demodulation process.

Viit1(t) = vi(t) — vip1 (1), 3)

where d(t) represents the longitudinal distance between two
vehicles, and v(¢) stands for the relative velocity. And after
At, it can be written as

diip1(t + At) = x;(t + A1) — xip1(t + A1),
Vi ip1(t + A1) = vi(t + At) — v (8 + Al), “4)

where i 4+ 1 denotes any following vehicle up to k — 1.

These parameters are crucial for ACC, where the follow-
ing vehicle adjusts its acceleration a;41(f) to maintain a safe
distance and avoid collisions [22]. Note that, the proposed
kinematic model for the multi-vehicle system provides an
effective way to simulate longitudinal motion and evaluate
control strategies under straight-line driving conditions.

B. OTFS-ASSISTED SENSING MODEL
In the study of OTFS modulation, a data grid in the DD
domain is considered, represented by a matrix of size N x M,
where N and M denote the number of slots and subcarriers, re-
spectively. The data of an OTFS frame in the DD domain is ex-
pressed as XPP[k, [], where integers [ € {0, ..., M — 1} and
k €{0,...,N — 1} denote the DD indices, respectively [23],
[24]. As shown in Fig. 2, data denoted as XPP[k, 1], under-
goes a transformation to the TF domain through an inverse
symplectic finite Fourier transform (ISFFT) [25], [26], given
by

X[, ] = — Niﬁfxm[k nez(#=4) s)

MN k=0 [=0

where time and frequency indices are denoted as n and m,
respectively. Then the transmitted OTFS waveform from RSU
in the time domain can be derived using the Heisenberg
transform, where the modulation symbols XTF[n, m] are trans-
formed into s(¢). These signals are shaped by g (#) and
modulated onto orthogonal subcarriers, which is [27], [28]

M—-1N-1
sy =y Y X"T[n,mle/ A D (1 —nT),  (6)

m=0 n=0

where g (¢) is the transmit shaping function that localizes the
signal in the time domain. After traveling through the wireless
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channels, s() is collected by the receiver side, denoted as r(z),
expressed as

r() = / / h(t, v)s(t — 1)e/>™" " Ddrdv, (7)

where h(t, v) is channel response in the DD domain, given by

P
h(r,v) =) hid (T —7)8 (v —vp), ®)
i=1
where £; is the channel gain of the ith path, t; and v; are the
delay and the Doppler spread of the ith path, respectively.
Then, Wigner Transform is performed on r(#) to obtain the
TF domain response, i.e.,Y ¥ [n, m], by

Y1, m]

where gx represents the transmit pulse. Then we map the
signal from the TF domain to the DD domain using symplectic
finite Fourier transform (SFFT), given by

)

t=nT,v=mAf

N—-1M-1

3 YT, 1 (%) (10)

1
YPP[k, 1] = ——
MN n=0 m=0

After the Wigner Transform, the noise v[k, ] is added
to YPP[k, [], and A, [k — k’, [ — I'] represents the equivalent
channel in DD domain, which is

ho [k =K, 1= 1]

P
=Y e P (k=K =k 1 =1 = 1), (11)
i=1
where k,, = v,NT, I, = ;M Af, and the sampling function
w(k — k" — ky;, I — 1" — I,) can be written as

wk =k —ky, I —1'—1,)
N—1M-1
— Z Z e—jZJT(UnT—rmAf) . (12)
n=0 m=0 v=k—k'—ky,, t=l—l'~Iy;

The relationship between the input signal in DD domain,
XPP(k, 1] and the output signal in DD domain, YPP[k, [] is
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N—1M—1
YPPk, 1] = Z Z XPPk, Nhy [k — K 1 = 1] + vk, 1].
K'=01'=0
(13)
For simplicity, the relationship between the received signal
vector and the channel coefficients in the delay-Doppler do-
main can be expressed as a linear system in matrix form,
which is

(14)

(CMN><1

y= ®,h, +v,

where Y € CMN*1 is the received signal vector, v €

represents noise, and hy, € CMNx1 denotes the vector of
effective channel coefficients given by equation (11). The
sensing matrix is derived from the pilot symbols. The chan-
nel estimation problem of OTFS systems involves obtaining
channel vector h,,, which contains the motion parameter k; =
[keys ..., kgpland l, = [l ..., [;,]. The traditional radar pa-
rameter estimation methods often rely on techniques such as
matched filtering. However, these approaches are sensitive
to variations in target properties, such as rotation, transla-
tion, and scaling, and they require precise prior knowledge
of the target signal waveform, which is always challenging
to achieve. To address these challenges, we propose a deep
learning-based estimation algorithm to effectively estimate
Doppler frequency shifts and time delays, offering enhanced
accuracy and robustness.

IIl. PROPOSED METHODS

In this section, we first develop a deep learning (DL)-based
channel estimation approach to estimate Doppler shifts and
delays for vehicle sensing. Then, a reinforcement learning
(RL)-based approach is proposed to optimize the adaptive
vehicle-following strategy.

A. ACC PROBLEM FORMULATION

As illustrated in Fig. 1, we focus on Bob (depicted in red)
following its preceding vehicle (Alice) along the highway.
Let x5(2), vp(t), ap(t) denote the position, velocity, and ac-
celeration of Bob at time 7, respectively. Similarly, x,(¢),
va(t), a,(t) represent the corresponding information of the
Alice. The distance between the two vehicles is defined as
da,b(t) = Xq(t) — xp(2).

In our formulation, the primary objective of the ACC sys-
tem is to maintain a safe following distance, defined as dsfe.
Then the allowable distance error g4 is explicitly defined
as the tolerance within which the actual following distance
dyp(t) can be derived from dgfe, ie., eq(t) = |dqp(t) —
dsafe| < €4. Similarly, we define the allowable velocity dif-
ference ¢, to limit the speed discrepancy between Alice and
Bob, i.e., ey(t) = |v,(t) — vp(t)| < &,. To ensure a safe and
comfortable driving experience, we impose the following
constraints: amax and an;, are defined as the maximum and
minimum of the allowable accelerations, respectively. Be-
sides, vmin and vmax are defined as the speed constraints on
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TABLE 1. System Constraints

Constraint Type Mathematical Expression

Speed limits Umin < Va(t) < Vmax,
Umin < 'Ub(t) < Vmax
Acceleration bounds amin < aq(t) < amax,

Amin < ab(t) < amax

ed(t) = ‘da,b(t) - dsafe| < eq,
eult) = Ioa(t) — 0y (8)] < <0

Allowable errors

the highway. These constraints and limits are summarized in
Table 1.

The ACC control problem can be formulated as finding the
optimal driving action that minimizes:

]=/[wlefi(t)—i—wge%(t)—i-wmﬁ(t)]dl, (15)

where w1, wy, and w3 are weighting factors that balance the
trade-off between distance keeping, velocity matching, and
ride comfort, respectively. In the following RL section, these
objectives are incorporated into the reward function to guide
driving decision-making process.

B. DL-BASED CHANNEL ESTIMATION

1) PILOT ARRANGEMENT

In this work, we adopt the pilot arrangement as designed
in [29], where the single pilot is embedded in the DD domain
with zero guard space. We consider xPP[k, I] corresponds
to the individual elements of the DD domain data matrix
XPP[k, 1], which represents the entire OTFS frame in the
delay-Doppler domain as mentioned above [12], [26], [30].
The pilot arrangement is given by

xXp k=kp l=Ip,
0 l e [lp — lmaXa lp + lmax],

k € [kp — 2kmax, kp + 2kmax],
xg otherwise.

*PPlk, 1] = . (16)

where x,, is the pilot located at [/, [,], and x4 is the data
symbol. Then, the received symbol at the guard space without
the noise term is

YPPIk, 11 = hylk — kp, I — Ly)x, + @ik, 11, (17)

where h,, is the effective channel in the DD domain demon-
strated by (11), and w[k, [] is the additive Gaussian noise.
For motion parameters estimation, the above equation can be
rewritten (17) as

PP, 1] = yPPLk, 11/x) = hy [k, U1+ ®[K, '], (18)

where w[k’, '] = w[k, I1/x, denotes the additive Gaussian
noise. [k, I'] is the shifting results of &, [k, [] based on the
pilot position. As a result, we can estimate the delay index and
the Doppler index directly from $pp[k’, I'].
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FIGURE 3. The structure of the proposed network.

Additionally, the above received signal in the guard space
area can be expressed in matrix form as

YPP =h, +v"°°, (19)

where h,, represents the matrix form of the channel response
in the DD domain, and vPP denotes the Gaussian noise ma-
trix. Specifically, the element in the k-th row and /-th column
of h, is defined as Hy [k, [] = hy [k, []. Given this, we propose
to employ DL to estimate the off-grid delay indices /;; and
Doppler shifts k,, = k; + «; directly from the received signals.
Note that the off-grid delay indices correspond to the spatial
position of the target in the DD domain, e.g., yellow squares
in Fig. 3. The proposed DL-based approach can directly learn
and extract underlying channel characteristics for sensing
purposes, overcoming the limitations of traditional non-DL
methods that heavily rely on assumptions of guide alignment
and perfect channel sparsity.

2) THE PROPOSED DL-BASED METHOD FOR
PARAMETERS ESTIMATION
The received signal YPP is a complex-valued matrix, where
we separate the real and imaginary components and use them
as input features. Then the input of the proposed DL model is
defined as

Xin = {Re {YPP}, Im {YPP}}, (20)
where Re{YPP} and Im{YPP} indicate the real and imaginary
parts of YPP, respectively. Subsequently, X;, is fed into the
DL model for training. To this end, we propose a PEnet con-
sisting of two sub-modules: a residual convolutional neural
network (RCNN) and a multi-layer perceptron (MLP). Fig-
ure. 3 illustrates the structure of our proposed model. The
processed features are fed into the RCNN, as shown in the
green dashed box. The RCNN comprises 7" residual blocks
to extract spatial features from the 2D input. Each residual
block contains Ny layers, where the operations in the 1st to
(Nr, — 1)th layers are identical and include “Conv”, “”BN”
and “ReLU” operations. Here, “Conv” represents the con-
volutional layer, and “BN” is a batch normalization layer
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to accelerate the training process and mitigate gradient van-
ishing. The ReLU function is employed as the activation
function throughout the RCNN. The flow of data through
the residual blocks is indicated by green arrows, highlighting
the hierarchical feature extraction process within the RCNN
module. After feature extraction through the RCNN, to gen-
erate the final output from the extracted features, the MLP
processes the features to produce a Ppax X 2 vector vp =
ey o s lepskyys ooy kypl, where Ppay denotes the maximum
number of paths, which constrains the shape of the output. The
transition of data from the RCNN to the MLP is indicated by
the purple arrow, emphasizing how the learned representations
are processed in the final stage. We rewrite the output as

Vp = f0(Xin)»

where 6 represents the trainable network parameters. Thus,
the PEnet can adopt the stochastic gradient descent algorithm
(e.g., Adam) to refine the parameters @ to realize a well-trained
model, which is capable of radar parameters.

Upon estimating delay and Doppler indices, the corre-
sponding estimated distance d; and relative velocity v; be-
tween the i — 1-th and i-th vehicle can be obtained by

21

~ ~

I+ ky, c

i — X —,
MAf NT ~ f.

i X c, Vi (22)
where ¢ represents the speed of light, and f, is the carrier
frequency.

C. RL-BASED DRIVING DECISIONS

As discussed previously, distance and relative velocity are
crucial for ACC problems, providing Bob with essential infor-
mation for its driving behavior. Towards that end, we propose
to leverage RL to enable Bob to make optimal decisions based
on a Markov decision process (MDP) principle. To be specific,
as depicted in Fig. 4, at each time step 7, the agent observes
the current state s, from the state space S, which typically
refers to the set of all possible states that the agent can be in.
Then, it selects an action a; from the action space A based on
a specific rule or current policy 7. The performed action will
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FIGURE 6. The MSE of velocity with DL-based baselines.

result in an immediate reward r; from the environment and a
transition to a new state s, 1.

Specifically, Bob learns the value function for a given
policy through interaction with Alice to determine an optimal
solution. Also, based on the value function, Bob continu-
ously develops and learns the optimal policy 7* to maximize
the expectation of cumulative reward, E[ZIT;O] y'r,], where
y is the discount factor that controls the weighting of fu-
ture rewards on the cumulative return. The value function
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FIGURE 7. Cumulative rewards over training episodes with a fitted curve.

is the expected return (i.e., cumulative reward), which is a
sum of the reward subject to Bob’s states and is affected
by Bob’s current policy, given by V7™ (s) = E;[ tT:_Ol yir |
s; = s]. Similarly, the corresponding action value function
is Q% (s, a) = En[ZIT;OI y'r; | s; = s, a; = a]. The relation-
ship between V(s) and Q(s, a) can be represented using a
state-transition-matrix, denoted as P(s'|s, a), representing the
probability of reaching the next state s’ after taking the action
a at state s. Then we have

0" (s,a) = Z P(s'|s,a)[R(s,a.s)+yV7 (5)].

s'eS

(23)

To achieve an optimal decision, we investigate the Bellman
Optimality Equation for the action-value function Q*(s, a),
which is

Q*(s, a)
= ZP (s"1s,a) |:R (s,a,s')+y max Q* (s, a’)i| , (24

s'eS

where max, Q*(s’, ') represents the maximum expected fu-
ture reward for state s’ considering all possible actions [31],
[32].

To address the above problem, a variety of RL architec-
tures have been employed, e.g., [33]. Among them, Q-learning
demonstrates its promise due to its flexibility in reward struc-
tures and simple implementation. Consequently, this work
utilizes Q-learning to seek the optimal action-value function
Q*(s, a) by iteratively updating its estimate based on observed
state transitions. The update rule can be expressed as

QO(s,a) < Q(s, a)
+a [R (s,a,8)+y max O (s',d") — O, a)} , (25)

where « is the learning rate that controls how much the newly
observed value updates the existing g-values. By following
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FIGURE 8. Distance and velocity of two vehicles in a scenario 1 test.

the iterative process, Q-learning can find the optimal policy
by continuously refining its estimates of Q*(s, a).

The objective is to incentivize Bob to maintain a safe
distance from Alice, while ensuring that the reward is up-
dated based on the relative velocity and proximity to the
ideal safe following distance. By continuously refining its
estimates of Q*(s, a), Bob is trained to optimize his driving
behavior based on the distance and relative velocity to Alice,
ensuring safe following within the desired system constraints.
Upon obtaining optimal Q*(s, a), Bob can effectively adapt
to dynamic traffic conditions, maintaining a balance between
safety, efficiency, and achieving integration with the OTFS-
based ACC framework, ensuring reliable decision-making,
even under variable vehicular dynamics, ultimately improving
system performance.

In highway scenarios, the state is defined as a vector
S = [dg.p, vap], Where d,, represents the distance between
Alice and Bob, and v, j; denotes their relative velocity. The
road length is constrained by dn,x, while the velocities of both
vehicles are limited within the range [Vmin, Vmax]. To facilitate
efficient learning and decision-making, the state space S is
constructed by discretizing both the relative distance d, , and
the relative velocity v, into a finite set of intervals. This dis-
cretization ensures that Bob can effectively evaluate different
driving conditions while maintaining computational feasibil-
ity. The action space A consists of three discrete acceleration
choices: braking, maintaining a constant speed, and accel-
erating. These actions allow the agent to adaptively adjust
Bob’s motion in response to Alice’s behavior while ensuring
safe and efficient driving. In this setup, a reward function is
designed to encourage Bob to maintain a safe distance from
Alice, with penalties for both excessive proximity (risk of
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FIGURE 9. Distance and velocity of two vehicles in a scenario 2 test.

collision) and large deviations from the ideal safe distance.
The reward is structured as follows. Bob receives a penalty,
i.e., —2, if the distance between Alice and Bob is either less
than a minimum safe distance or greater than a maximum
following distance, indicating a risk of collision or excessive
following distance. On the other hand, if the distance between
Alice and Bob is within the safe range, and the relative veloc-
ity between them is small, Bob receives a positive reward, i.e.,
+1. Otherwise, the reward is 0.

IV. SIMULATION RESULTS

In this section, extensive simulations are conducted to verify
the effectiveness of the proposed DL-based channel estima-
tion and Q-learning algorithm for the ACC system in highway
scenarios.

For the OTFS system, the size of each OTFS frame is
M x N, where M = 12 is the subcarrier numbers, and N = 8
is the time slots. The path number is 4, and the channel coef-
ficients follow CA/ (0, %) distribution. The maximum doppler
index is kmax = 3, and maximum delay index is /p,x = 4. The
Af issetto 7.5 kHz, and f, is 3 GHz. The number of training
samples is 10*. The block number 7 is set to 4, and the layer
number Ny is set to 12. The proposed approach is imple-
mented on a desktop computer equipped with a Xeon Gold
6226R CPU operating at 2.9 GHz and an NVIDIA GeForce
RTX 3090 GPU. Network training is performed using the
Adam optimizer, with the learning rate initialized at 0.01. Ad-
ditionally, we employ two metrics to evaluate the performance
of the proposed parameter estimation approach, which are
given by MSE(d) = E[|d — d|?] and MSE(v) = E[|v — ¥|].
Here, MSE(d) and MSE(v) are the MSE of the parameters
distance and velocity. In Q-learning setting, training parame-
ters such as learning rate («), exploration rate (¢), and discount
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FIGURE 10. Average distance between Alice and Bob over 100 tests in two
scenarios.

factor (y) are set as 0.1, 0.01, and 0.9, respectively. Bob is
trained over 20,000 episodes, where it iteratively learns the
optimal policy based on the observed rewards. The cumu-
lative reward during training provides insight into how well
the agent improves its behavior over time.

As shown in Fig. 5, we demonstrate the MSE of distances
of our proposed Resnet with another two DL-based base-
lines: MLP and CNN. The results illustrate that the MSE
of the estimated delay and Doppler parameters decreases as
the signal-to-noise ratio (SNR) increases. This behavior is
expected, as higher SNR levels reduce the influence of noise.
The MLP- and CNN-based methods exhibit suboptimal per-
formance due to their limited ability to capture spatial features
from the input data. In contrast, the proposed Resnet integrates
the strengths of both CNN and MLP, by leveraging spatial
feature extraction through RCNN and parameter regression
through MLP. As a result, the proposed Resnet achieves sig-
nificantly lower estimation errors, particularly at higher SNR
values. Similar conclusions can be obtained for the velocity
estimation, as depicted in Fig. 6.

Fig. 7 demonstrates the cumulative reward of our proposed
Q-learning. As training progresses, the cumulative reward
increases and stabilizes, achieving convergence around the
10,000 episode mark. This is evident as the fluctuations in
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reward decrease and the fitted curve levels out, indicating that
Bob’s performance is stabilizing. It is learning a more con-
sistent strategy for maintaining safe following distances and
making efficient speed adjustments in the simulated driving
environment.

To further validate the effectiveness of our proposed Resnet,
we consider two testing scenarios. In test scenario 1, Bob
starts with a velocity significantly lower than Alice’s, meaning
Bob has to accelerate and adapt to Alice’s pace. As shown in
Fig. 8, although Bob’s velocity is lower, he gradually speeds
up to close the gap and ensures a safe following distance. In
other words, Bob can adjust the velocity to safely maintain a
distance from Alice while avoiding collisions. In test scenario
2, the initial distance between Alice and Bob is larger than
the safe distance. Bob aims to follow Alice as closely as
possible while avoiding excessive deviation from the ideal
safe distance. As shown in Fig. 9, Bob reduces the distance
between Alice without violating the safe distance threshold.

These two scenarios highlight how Bob handles differ-
ent driving conditions, either adjusting to a slower pace or
maintaining a safe following distance when starting farther
apart. As shown in figure 10, the average distance between
Alice and Bob stabilizes around the ideal safe following dis-
tance (i.e., 100m) over time. The variance range indicates
some fluctuations, but the distance stays within the safe range
(i.e.,[90 m, 110 m]).

V. CONCLUSION

In this paper, we proposed a DL-based channel estimation
and a RL-based driving decision method to enhance the
ACC system in IVNs. The developed DL approach can en-
sure communication reliability between vehicles, significantly
reducing estimation errors in dynamic environments. The pro-
posed RL method is able to optimize the decision-making
process to maintain a safe following distance and adapt to
varying traffic conditions. Our extensive simulations have
demonstrated the feasibility and effectiveness of the proposed
methods.

This work indicates a promising direction for more intelli-
gent, adaptive, and safe automotive technologies, marking a
significant step into fully autonomous vehicles. Future studies
could explore the scalability of the proposed methods in more
congested traffic scenarios with more complex and practi-
cal conditions such as pedestrian recognition and multi-lane
navigation.
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