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Abstract—Sixth-generation (6G) networks, offering ultra-low
latency and high bandwidth, provide critical support for rapid
data transmission in postdisaster environments where conven-
tional infrastructure may be compromised. This study presents a
privacy-preserving framework for postdisaster structural health
monitoring (SHM) by integrating 6G-enabled Internet of Drone
Things and spatial crowdsourcing. Drones and unmanned ground
vehicles collect real-time imagery of damaged infrastructure. To
address privacy concerns and reduce communication overhead,
we employ federated learning (FL), which enables decentralized
model training on local devices without transmitting raw data. A
key challenge in FL is the presence of nonindependent and identi-
cally distributed data across clients, which degrades global model
performance. To mitigate this, we propose personalized conditional
federated averaging (PC-FedAvg), a selective aggregation method
that incorporates only client models with low validation loss into
the global update. The PC-FedAvg framework is built on Effi-
cientNetV2 and includes personalized model adaptation to enhance
generalization on heterogeneous data. Experimental results on the
“Concrete Crack Images for Classification” dataset demonstrate
that PC-FedAvg outperforms baseline FL methods in accuracy and
stability. This approach improves the effectiveness and reliability
of SHM systems in real-world postdisaster scenarios by enabling
timely and accurate damage assessment while preserving data
privacy.

Index Terms—Anomaly detection, drones, federated learning
(FL), spatial crowdsourcing, structural health monitoring (SHM).
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I. INTRODUCTION

POSTDISASTER structural health monitoring (SHM) is
essential for assessing and restoring critical infrastructure

after natural or human-induced disasters. Sixth-generation (6G)
networks are envisioned as a cornerstone for integrated sensing
and communications, opening new avenues for environmental
monitoring and disaster management, particularly in postdisas-
ter infrastructure assessment [1], [2], [3]. Central to this transfor-
mation are unmanned aerial vehicles (UAVs), commonly known
as drones, which are equipped with state-of-the-art communi-
cation interfaces, such as WiFi and 5G. These drones play a
pivotal role in the emerging Internet of Drone Things (IoDT)
framework [4], [5], [6], [7]. Here, IoDT denotes the coordinated
integration of aerial and ground robotic agents into a unified
sensing and communication network, enabling continuous data
collection in challenging environments. Spatial crowdsourcing
refers to the distribution of sensing tasks to multiple unmanned
agents, increasing coverage and scalability in remote or haz-
ardous areas.

The integration of spatial crowdsourcing with IoDT consti-
tutes a novel methodology for data acquisition in remote and
hazardous environments. In this approach, drones and unmanned
ground vehicles (UGVs) are deployed to collect real-time data
over extensive and potentially dangerous areas, replacing con-
ventional methods that depend on human intervention in inac-
cessible locations [8], [9], [10]. In postdisaster scenarios, rapid
and precise data collection is essential. Drones acquire critical
sensory information from points of interest (PoIs), such as dam-
aged structures, obstructed roadways, and vital infrastructure.
This method significantly enhances both the efficiency and the
scope of data collection [11], [12], [13], [14].

Timely and accurate assessments of structural health are
crucial after a disaster to inform repair and reconstruction
efforts, thereby conserving resources and potentially saving
lives [15], [16], [17], [18]. Drones outfitted with advanced
sensing technologies can swiftly survey large regions, capturing
high-resolution imagery and sensor data that provide insights
into the condition of buildings, bridges, and other critical infras-
tructures [19], [20], [21]. These aerial assessments facilitate the
identification of structural damage, hazard detection, and pri-
oritization of areas requiring immediate attention. Furthermore,
the implementation of the air–ground nonorthogonal multiple
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access (AG-NOMA) technique enhances data transmission rates
and quality-of-service (QoS). In this configuration, drones trans-
mit uplink data to UGVs that function as mobile base stations
for data decoding, while the UGVs also engage in direct data
collection from PoIs. This dual-mode operation optimizes the
volume of collected data while managing the energy constraints
of the drones.

A significant challenge in SHM lies in the effective integra-
tion and analysis of data from numerous spatially distributed
sources. Centralized data processing is often computationally
intensive and incurs high communication overhead, particularly
in postdisaster environments where network connectivity may
be compromised [22], [23]. To overcome these limitations, we
propose a federated learning (FL) approach that exploits the
decentralized characteristics of IoDT. This approach enables
local data processing on drones and UGVs, thereby reducing
the necessity for extensive data transmission and enhancing data
security [24], [25]. FL has demonstrated effectiveness in various
fields, including civil engineering and infrastructure monitoring,
by facilitating collaborative model training across distributed
devices while preserving data locality [26], [27], [28], [29].

However, the local datasets collected by individual agents
are statistically heterogeneous [nonindependent and identically
distributed (non-IID)]; for example, crack images captured un-
der varying illumination or damage patterns differ significantly
between clients, which degrades the performance of global
models trained with conventional FL methods, such as FedAvg.
To address this, we introduce personalized conditional federated
averaging (PC-FedAvg), which aggregates only those client
updates whose validation loss falls below the median threshold.
This selective aggregation filters out low-quality models and,
when combined with client-level fine-tuning of EfficientNetV2,
enhances model robustness and generalization across diverse
datasets.

Our proposed FL framework thus integrates 6G-enabled
IoDT, spatial crowdsourcing, and selective PC-FedAvg aggre-
gation to improve the accuracy, reliability, and privacy of SHM
systems in postdisaster scenarios. The key contributions of our
work are as follows:

1) We propose a novel FL framework tailored specifically for
SHM in postdisaster scenarios. This framework leverages
the decentralized nature of the IoDT, enabling local data
processing on drones and UGVs. This approach reduces
the need for extensive data transmission to a central server,
thereby enhancing data security and efficiency.

2) We introduce an innovative method for training Efficient-
NetV2 within FL settings. This method includes an effi-
cient communication protocol for aggregating the learned
models, ensuring that the computational load is distributed
and data privacy is maintained.

3) To tackle the challenge of non-IID data distribution, we
develop a novel technique to personalize the resulting
models. This personalization enhances the generalization
capabilities of the clients’ models, thereby improving the
accuracy of SHM across diverse datasets.

4) The proposed FL framework significantly enhances the
accuracy and reliability of SHM models. By allowing

collaborative model training across multiple devices while
keeping the data localized, our approach ensures robust
and scalable real-time SHM. This is crucial for making
informed decisions during postdisaster recovery efforts,
ultimately contributing to the resilience and safety of
critical infrastructure.

5) Our FL approach reduces the computational and commu-
nication overhead associated with traditional centralized
models. By leveraging the strengths of 6G networks and
IoDT, the framework provides a more efficient and scal-
able solution for SHM, making it feasible to operate in
challenging postdisaster environments where communi-
cation networks may be compromised.

The rest of this article is organized as follows. Section II
reviews related work in FL and SHM. Section III presents the
system model, detailing the integration of 6G networks and
IoDT for SHM. Section IV introduces our proposed PC-FedAvg
algorithm for FL and discusses the personalized EfficientNetV2
models. Section V describes the experimental setup and results,
validating our approach on real SHM datasets. Finally, Section
VI concludes this article, highlighting key findings and future
research directions.

II. RELATED WORK

FL has garnered significant interest in recent years as a
promising approach in the field of machine learning, particularly
for its ability to preserve data privacy by decentralizing data
storage and processing [30], [31], [32], [33], [34], [35], [36],
[37], [38]. This approach is particularly attractive for practi-
cal problems and applications where data decentralization is
essential. Despite its potential, the literature contains only a few
studies that successfully leverage FL to construct robust global
models. For instance, Hard et al. [39] employed FL to develop
a system for next-word prediction on mobile devices. However,
many studies focus on addressing the training challenges posed
by non-IID data distribution across clients.

McMahan et al. [40] introduced the pioneering FL algorithm
known as FedAvg. This algorithm uses local stochastic gradient
descent (SGD) updates to build a global model by averaging
model coefficients from a subset of clients with non-IID data.
The FedAvg algorithm is controlled by three key parameters: C,
the proportion of clients selected to perform computation in each
round; E, the number of training passes each client makes over
its local dataset in each round; and B, the local mini-batch size
used for client updates. Selected clients perform local SGD forE
epochs with mini-batch size B. Clients that have not completed
E epochs by the start of the update round (stragglers) are not
considered during aggregation. Stragglers refer to clients that
are delayed in completing their local training rounds, which may
lead to outdated or suboptimal updates during aggregation.

Li et al. [41] proposed the FedProx algorithm, which builds
on FedAvg by addressing the issue of statistical heterogeneity
through two key modifications: considering stragglers during
aggregation and adding a proximal term to the objective function.
Arivazhagan et al. [42] addressed the effects of statistical het-
erogeneity using a personalization-based approach (FedPer). In
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Fig. 1. Proposed system model for postdisaster SHM using 6G networks and IoDT.

FedPer, the model is divided into base and personalization layers.
The base layers are aggregated using a standard FL approach,
while the personalized layers are not aggregated, thus allowing
for customization at the client level.

Several other methods have been proposed to achieve person-
alization in FL. Smith et al. [43] introduced the MOCHA-based
multitask learning framework to address the non-IID challenge.
Hanzel and Richtárik [44] proposed the L2GD algorithm, which
combines the optimization of local and global models. Deng
et al. [45] developed an adaptive personalized FL algorithm,
which mixes the user’s local model with the global model to
improve learning outcomes.

Despite these advancements, existing FL methods still face
challenges in effectively managing non-IID data distributions
and ensuring model personalization. Our proposed approach,
PC-FedAvg, fills these gaps by introducing a tailored learning
algorithm that optimizes weight communication and aggrega-
tion. PC-FedAvg employs EfficientNetV2 to personalize the
resulting models at each client, thereby improving the accuracy
and robustness of FL models in postdisaster SHM scenarios. By
addressing the issues of non-IID data and enhancing model per-
sonalization, our method significantly improves the reliability
and efficiency of SHM systems, ensuring timely and accurate
damage assessments.

III. SYSTEM MODEL

The proposed system model, as illustrated in Fig. 1, inte-
grates 6G networks with the IoDT to create a robust frame-
work for postdisaster SHM. This architecture leverages drones
(UAVs) and UGVs equipped with advanced communication

technologies, such as WiFi/5G, to perform real-time data col-
lection and processing.

Drones play a pivotal role in this architecture by acquiring
sensory data from various PoIs, such as damaged structures
and obstructed roads. Equipped with high-resolution cameras,
LiDAR, and other sensors, drones can capture detailed images
and measurements of critical infrastructure. These drones are
connected via 6G networks, enabling high-speed data trans-
mission and low-latency communication, essential for timely
disaster response.

UGVs complement the drones by serving as mobile base
stations and data aggregators. They collect data relayed by
drones and perform initial processing to reduce data volume
before transmission. UGVs are also equipped with similar sens-
ing technologies, allowing them to gather data directly from
ground-level PoIs. This dual capability ensures comprehensive
coverage and data redundancy, enhancing the reliability of the
SHM system.

The system utilizes an AG-NOMA technique to optimize data
transmission rates and ensure QoS. In this model, drones collect
uplink data and relay it to UGVs, which decode the data and
transmit it to a central server if necessary. The AG-NOMA tech-
nique is based on the principle of superimposing multiple signals
on a common frequency band and then using advanced decoding
algorithms to separate them at the receiver. This method en-
hances spectrum efficiency and minimizes interference, which
is particularly beneficial in scenarios with a high density of
transmitting drones. Its application is crucial in postdisaster
environments where rapid and simultaneous data transmission
from multiple sources is required. The AG-NOMA technique
enables efficient spectrum usage and supports simultaneous
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transmissions from multiple drones, significantly enhancing the
system’s scalability.

Communication between drones and UGVs is facilitated by
6G networks, providing high bandwidth and low latency. This
ensures real-time data transfer, crucial for immediate disaster
assessment and response. The AG-NOMA technique allows
multiple drones to share the same frequency band without
significant interference, optimizing the available spectrum and
improving data throughput. UGVs communicate with the central
server or cloud infrastructure using terrestrial 6G networks.
This communication model supports large data transfers and
integrates with existing network infrastructure, ensuring com-
patibility and extensibility. UGVs can also act as relay nodes
for other ground units, creating a mesh network that enhances
coverage and resilience, especially in compromised postdisaster
environments.

The operational workflow of the proposed system involves
several key steps. First, drones and UGVs are deployed to collect
sensory data from PoIs. Drones, equipped with high-resolution
cameras, LiDAR, and other advanced sensors, survey large
areas and capture detailed images and measurements of critical
infrastructure. These data are then relayed to UGVs, which act as
mobile base stations. These UGVs not only aggregate the data
but also perform initial processing to reduce the data volume
before transmission to a central server. This step is crucial in
managing the limited energy reserves of drones and ensuring
efficient data collection.

Next, UGVs transmit the processed data to a central server
or cloud infrastructure using terrestrial 6G networks. The high
bandwidth and low latency of 6G networks facilitate real-time
data transfer, essential for immediate disaster assessment and
response. The AG-NOMA technique employed allows multiple
drones to share the same frequency band without significant
interference, optimizing the available spectrum and improving
data throughput. This ensures that the system can handle si-
multaneous transmissions from multiple drones, significantly
enhancing its scalability and efficiency.

Once the data reach the central server, it undergo further
analysis to assess the structural health of the infrastructure.
High-resolution images and sensor data provide insights into
the condition of buildings, bridges, and other critical structures,
identifying potential hazards and prioritizing areas needing ur-
gent attention. The central server is responsible not only for
data aggregation but also for performing advanced data analysis
tasks. These include image processing algorithms for crack
detection, damage assessment algorithms based on machine
learning techniques, and statistical analysis to evaluate structural
integrity. Techniques, such as convolutional neural networks and
support vector machines, are utilized to process and interpret
the sensory data. This comprehensive analysis informs repair
and reconstruction efforts, ultimately saving time, resources, and
lives in postdisaster scenarios. The system’s ability to integrate
and analyze data from numerous spatially distributed locations
makes it a powerful tool for real-time SHM, leveraging the
advanced capabilities of 6G networks and IoDT.

Potential system-level limitations should also be considered.
These include communication disruptions due to environmental
factors, inconsistent data quality from varied sensor sources, and

delays in data transmission, all of which could impact overall
system performance. Furthermore, the proposed system model
can be extended by integrating with existing wireless sensor
networks (WSNs) to facilitate large-scale knowledge discovery.
Such integration would enable the fusion of data from both
mobile (drones and UGVs) and static sensor nodes, thereby
enriching the data pool and enhancing the decision-making
process in disaster management scenarios.

In the FL setup, a PC-FedAvg algorithm was implemented,
simulating an environment with five clients. Each client per-
formed local training using the EfficientNetV2 model, pre-
trained on the ImageNet dataset and fine-tuned for binary clas-
sification. The local models were updated using SGD with mo-
mentum and communicated to a central server for aggregation.
Unlike traditional FedAvg, our method selectively aggregated
models from clients with validation losses below the median,
ensuring robust and accurate global model updates.

The system effectively integrates advanced communication
and data processing technologies, ensuring comprehensive and
efficient SHM in postdisaster scenarios. By leveraging the de-
centralized nature of FL and the advanced capabilities of 6G
networks and IoDT, our proposed system model addresses the
challenges of real-time data collection, transmission, and anal-
ysis, providing a robust framework for enhancing the resilience
and safety of critical infrastructure.

IV. PERSONALIZED CONDITIONAL FEDAVG

We introduce an innovative algorithm named PC-FedAvg,
specifically designed to improve the efficiency and accuracy
of FL within the realm of postdisaster SHM. This algorithm
addresses the critical challenge of aggregating weights from
low-performing clients by utilizing a filtering mechanism based
on local performance metrics. During each update round, clients
communicate their local loss values to the central server. Only
those clients whose local loss values fall below the overall
median are included in the aggregation process. This selective
inclusion effectively reduces the incorporation of “bad” weights,
thereby enhancing the overall model’s accuracy and reliability.

Our approach centers on the employment of EfficientNetV2,
tailored to the specific needs of SHM. The method addresses the
challenge of non-IID data distribution, which is common in FL
settings, by developing a personalized support vector algorithm
optimized for each distributed data model.

A. Conditional-FedAVG

In an FL environment, the learning task involves a collection
of C clients and a central server S. Each client learns from
its local data and periodically communicates with the server to
collaboratively solve the following global optimization problem:

min
w∈Rd

f(w) :=
1

C

C∑
c=1

fc(wc) (1)

where fc represents the local loss function for client c, which is
defined as

fc(wc) := E(xi,yi)∼Dc
[Lc(wc;xi, yi)] (2)
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andLc(wc;xi, yi) quantifies the error of the model wc given the
input xi and the true label yi.

Each client updates its local model parameters wc using SGD
with momentum. The SGD update rule is given by

w(t+1)
c := w(t)

c − η∇Lc(w
(t)
c ;xi, yi). (3)

Note that the gradient is computed as

∇Lc(wc;xi, yi) =
(
σ(w�c xi)− yi

)
xi

and the negative sign in the update rule in (3) ensures descent in
the loss function.

The use of momentum in SGD helps to accelerate conver-
gence by considering the past gradients in the update rule, thus
avoiding oscillations and ensuring smoother convergence. The
momentum term is mathematically represented as

v(t+1) := μv(t) + η∇Lc(w
(t)
c ;xi, yi) (4)

where the momentum term μv(t) incorporates the history of past
gradients to stabilize the update. Consequently, the model update
with momentum becomes

w(t+1)
c := w(t)

c − v(t+1). (5)

After training locally, each client sends its updated model pa-
rameters to the central server. The central server aggregates these
parameters to form a new global model. Unlike the standard
FedAvg approach, which averages the weights of all client mod-
els, our Conditional-FedAvg method selects only those clients
whose validation losses are less than or equal to the median
(i.e., loss(t+1)

c ≤M). This selective aggregation enhances the
robustness and accuracy of the global model by mitigating the
impact of poorly performing clients.

For clarity, we note that stragglers are defined as clients that
fail to complete the required number of local epochs within the
designated time window; such clients may be excluded from
aggregation to prevent outdated updates from degrading global
model performance.

The aggregation process is mathematically defined as

w(t+1) :=
1

C ′

C ′∑
c=1

w(t+1)
c (6)

where C ′ is the number of selected clients whose validation
losses satisfy loss(t+1)

c ≤M.
To illustrate the Conditional-FedAvg method, consider the

following algorithm.
Algorithm 1 delineates the steps for implementing the Condi-

tional FedAvg method within an FL framework. Initially, the
server initializes the global model and iteratively updates it
by aggregating the parameters from selected clients based on
their validation performance. In this aggregation step, the central
server computes the arithmetic mean of the selected client model
parameters, ensuring that high-quality updates dominate the
global model. Each client trains its local model using its dataset
and transmits the updated model parameters and validation loss
to the central server.

The process begins with each client receiving the initial
global model w. During each communication round, each client

Algorithm 1: Conditional FedAvg.
1: Server executes:
2: Initialize global model w
3: for each round t = 1 to T do
4: Sample a subset of clients Ct from C
5: Initialize list client_models← []
6: Initialize list client_losses← []
7: for each client c in Ct in parallel do
8: w

(t+1)
c , loss

(t+1)
c ← ClientUpdate(c, w)

9: Append w
(t+1)
c to client_models

10: Append loss
(t+1)
c to client_losses

11: end for
12: Compute the median lossM of client_losses
13: Select clients with loss

(t+1)
c ≤M

14: Aggregate the selected client models to update
global model w:

15: w ← 1
|C ′ |

∑
c∈C ′ w

(t+1)
c

16: end for
17: return global model w
18: ClientUpdate(c, w):
19: Dc ← local data at client c
20: Initialize local model wc ← w
21: for each epoch e in E do
22: for each batch b in Dc do
23: Compute predictions ŷ ← σ(w�c x)
24: Compute loss �← Lc(wc;x, y)
25: Backpropagate to compute gradients ∇Lc

26: Update model parameters wc ← wc − η∇Lc

27: end for
28: end for
29: Compute validation loss lossc ← Validate(wc, Dval)
30: return updated model wc, validation loss lossc

performs local training on its dataset Dc to update its model
parameters wc. The local training process involves multiple
epochs of SGD, where each epoch consists of several mini-batch
updates. The local model update rule is given by

w(t+1)
c := w(t)

c − η∇Lc(w
(t)
c ;xi, yi). (7)

After completing the local training, each client computes
the validation loss on its validation dataset Dval and sends the
updated model parameters w(t+1)

c and validation loss loss(t+1)
c

to the central server. The central server then aggregates the model
parameters from the selected clients whose validation losses
satisfy the criterion loss(t+1)

c ≤M.
The conditional aggregation mechanism is mathematically

represented as follows. Let Lval
c be the validation loss of client

c at round t. The central server computes the median of the
validation losses

M := median
(
{Lval

c }Ct
c=1

)
. (8)

The server then selects the clients with validation losses less
than or equal to the median

C ′t := {c | Lval
c ≤M}. (9)
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The global model is updated by averaging the model parameters
from the selected clients

w(t+1) :=
1

|C ′t|
∑
c∈C ′t

w(t+1)
c . (10)

This conditional aggregation process ensures that the global
model is primarily influenced by well-performing local models,
thus enhancing the overall performance and robustness of the
system.

The effectiveness of the Conditional-FedAvg method is eval-
uated using standard metrics, such as accuracy, precision, re-
call, and F1-score. These metrics provide a comprehensive
assessment of the model’s performance, particularly in scenarios
with imbalanced data distributions. The experimental results
demonstrate that the proposed method significantly improves
the accuracy and robustness of the SHM system compared to
traditional FL approaches. The conditional aggregation mech-
anism effectively mitigates the negative impact of poorly per-
forming clients, leading to a more reliable and accurate global
model.

To further understand the benefits of Conditional-FedAvg,
consider the theoretical underpinnings of this approach. In FL,
the data across clients are often non-IID, which can lead to
significant performance degradation when simply averaging
model parameters. Conditional-FedAvg addresses this issue by
selectively aggregating the models from clients that perform well
on their local validation data, thus ensuring that the global model
benefits from high-quality updates.

From an optimization perspective, the goal of FL is to mini-
mize the global objective function defined in (1). However, due
to the heterogeneity of the data, the local objective functions
fc(wc) may differ significantly across clients. The conditional
aggregation mechanism helps to align the local objectives with
the global objective by focusing on the clients that provide the
most informative gradients.

The Conditional-FedAvg algorithm can be viewed as a form
of robust optimization, where the global model is updated based
on a subset of reliable clients. This approach can be formalized
using robust optimization theory, which aims to optimize the
worst-case performance of the model. By selecting clients with
low validation losses, the algorithm effectively minimizes the
influence of outliers and ensures that the global model is robust
to variations in the local data distributions.

In practice, the Conditional-FedAvg algorithm involves the
following key steps:

1) Client Selection: In each communication round, a subset
of clients is selected to participate in the training process.
This selection can be random or based on certain criteria,
such as data availability or computational resources. Note
that clients failing to complete the required local training
in time (i.e., stragglers) are either delayed or excluded
to prevent outdated updates from degrading the global
model.

2) Local Training: Each selected client performs local train-
ing on its dataset using the SGD with momentum algo-
rithm. The local training process involves multiple epochs,

during which the model parameters are updated based on
the computed gradients.

3) Validation and Reporting: After local training, each client
computes the validation loss on its validation dataset and
sends the updated model parameters and validation loss to
the central server.

4) Conditional Aggregation: The central server computes the
median of the validation losses and selects the clients
with validation losses less than or equal to the median.
The global model is updated by averaging the model
parameters from the selected clients.

5) Model Update: The updated global model is sent back to
the clients for the next communication round.

This iterative process continues until the global model con-
verges or a predefined number of communication rounds is
reached. The Conditional-FedAvg algorithm ensures that the
global model is continually improved by incorporating high-
quality updates from well-performing clients.

In conclusion, the Conditional-FedAvg method offers a scal-
able and efficient solution for FL in non-IID environments. By
selectively aggregating the models from clients with low valida-
tion losses, the algorithm enhances the robustness and accuracy
of the global model, making it well suited for applications, such
as SHM. The theoretical foundations and practical implemen-
tation of Conditional-FedAvg demonstrate its effectiveness in
addressing the challenges of FL and optimizing the performance
of distributed systems.

B. Personalized EfficientNetV2

The proposed methodology leverages EfficientNetV2 within
the FL framework to enhance the performance and robustness of
SHM systems. EfficientNetV2, a state-of-the-art convolutional
neural network, is particularly well suited for this application
due to its efficient scaling and superior performance in image
classification tasks. This section details the EfficientNetV2 ar-
chitecture, its integration into FL, and the personalized model
adaptation strategy.

EfficientNetV2 employs a compound scaling method that
uniformly scales the network’s depth, width, and resolution. In
simple terms, increasing the network depth allows it to learn
more complex features, increasing the width improves feature
representation, and enhancing the resolution provides finer de-
tail in the input images. This balanced scaling approach leads
to significant improvements in performance while maintaining
computational efficiency.

The backbone of EfficientNetV2 consists of several stages
of convolutional layers that include depthwise separable con-
volutions and squeeze-and-excitation blocks. For clarity, the
convolutional components are explained as follows:

1) Depthwise Separable Convolutions: These split a standard
convolution into the following two parts.
a) Depthwise Convolution: Applies a single convolu-

tional filter per input channel.
b) Pointwise Convolution: Uses a 1× 1 convolution to

combine the outputs of the depthwise step, effectively
mixing information across channels.
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2) Squeeze-and-Excitation Blocks: These blocks recalibrate
channelwise feature responses by the following.
a) Squeeze: Aggregating global spatial information into

a channel descriptor.
b) Excitation: Applying learned weights via a small neu-

ral network to emphasize important channels.
The compound scaling method is mathematically described

by

d′ = αφd, (scales network depth) (11)

w′ = βφw, (scales network width) (12)

r′ = γφr, (scales input resolution) (13)

where d, w, and r represent the original depth, width, and
resolution of the network, respectively, and φ is a compound
coefficient while α, β, and γ are scaling factors.

The EfficientNetV2 model is pretrained on the ImageNet
dataset and fine-tuned for binary classification tasks specific to
SHM. The final fully connected layer is modified to output a
single probability value, thereby adapting the pretrained model
to classify images as either indicating a structural defect or not.

In the FL setup, multiple clients collaboratively train a shared
global model while keeping their data localized. Each client
updates its local model using its dataset and periodically com-
municates with a central server for model aggregation. The
local training process minimizes the binary cross-entropy loss
function over each client’s local dataset. The model parameters
are adjusted iteratively using SGD with momentum, which is
formulated as

w(t+1)
c := w(t)

c − η∇L(w(t)
c ;xi, yi) (14)

where η is the learning rate,∇L denotes the gradient of the loss
function, wc represents the local model parameters at client c,
and xi, yi are the input data and corresponding labels.

The local loss function for binary classification is defined as

L(wc;xi, yi) = −
[
yi log σ(w

�
c xi)

+(1− yi) log(1− σ(w�c xi))
]

(15)

where σ(z) = 1
1+e−z maps the output to a probability between

0 and 1.
The gradient of the loss function with respect to the model

parameters wc is computed as

∇L(wc;xi, yi) =
(
σ(w�c xi)− yi

)
xi. (16)

The use of momentum in SGD helps to accelerate conver-
gence by incorporating past gradients into the update rule. The
momentum term is given by

v(t+1) := μv(t) + η∇L(w(t)
c ;xi, yi) (17)

where v is the velocity and μ is the momentum coefficient.
Consequently, the model update with momentum becomes

w(t+1)
c := w(t)

c − v(t+1). (18)

After local training, each client sends its updated model
parameters to the central server. Unlike the standard FedAvg
approach, our method incorporates a conditional mechanism

where only models from clients with validation losses below the
median are selected for aggregation. The global model update
is performed as

w(t+1) :=
1

C ′

C ′∑
c=1

w(t+1)
c (19)

where C ′ is the number of selected clients.
The implementation of the personalized EfficientNetV2

method involves several key steps. First, the dataset is split into
training, validation, and test sets. Data augmentation techniques,
such as random horizontal flips and rotations, are applied to the
training data to improve generalization. The data are then nor-
malized to ensure consistent input distributions. The Efficient-
NetV2 model is initialized with pretrained weights and modified
for binary classification. The training process involves multiple
epochs, during which the model parameters are updated based
on the computed gradients. Each client independently trains its
local model on its dataset and periodically communicates with
the central server.

During each communication round, the central server ag-
gregates the model parameters from selected clients based on
their validation performance. The server computes the me-
dian of the validation losses from all clients and selects the
clients whose losses are below this median. The model pa-
rameters of these selected clients are then averaged to up-
date the global model. This process ensures that the global
model is primarily influenced by well-performing local models,
thus enhancing the overall performance and robustness of the
system.

The personalized aspect of the EfficientNetV2 model involves
fine-tuning the global model on local datasets to better capture
the unique data distribution of each client. To mathematically
formalize the personalization strategy, let wglobal

c be the global
model parameters received by client c at the beginning of round
t. Each client fine-tunes these parameters on its local dataset Dc

by minimizing the following objective function:

Lpersonalized
c (wc;Dc) =

1

|Dc|
∑

(xi,yi)∈Dc

L(wc;xi, yi) (20)

where |Dc| is the number of samples in the local dataset. The
fine-tuning process updates the local model parameterswc using
SGD with momentum as described earlier. After fine-tuning,
the personalized model parameters wpersonalized

c are obtained.
These personalized models are then evaluated on local vali-
dation datasets, and the validation losses are computed. The
central server aggregates the personalized model parameters
from clients with validation losses below the median, ensuring
that the global model benefits from high-quality updates.

Several potential drawbacks of the current optimization
method should be noted. In some cases, the use of SGD with
momentum may lead to convergence to local optima rather than
a global optimum. Alternative optimization methods, such as
adaptive learning rate techniques (e.g., Adam or RMSprop),
could be explored in future work to further improve perfor-
mance.
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Algorithm 2: Personalized EfficientNetV2 training.
Require: Dataset D, batch size B, learning rate η, number
of epochs E

1: Initialize EfficientNetV2 model M
2: Define loss function L and optimizer O
3: for each epoch e = 1 to E do
4: Shuffle dataset D
5: for each batch b in D do
6: Forward pass: compute predictions ŷ = M(b)
7: Compute loss � = L(ŷ, y)
8: Backward pass: compute gradients ∇L
9: Update model parameters: M ←M − η∇L

10: end for
11: end for
12: return trained model M

Moreover, FL for SHM introduces security vulnerabilities,
such as data poisoning and model inversion attacks. Future
research could investigate additional security provisioning, in-
cluding differential privacy and secure aggregation techniques,
to mitigate these risks.

Finally, the proposed approach is novel in its integration of
EfficientNetV2 with a personalized FL framework that incor-
porates conditional aggregation. This combination addresses
the challenges of non-IID data distributions and local model
personalization in SHM, setting it apart from conventional FL
methods.

The overall performance of the personalized EfficientNetV2
method is evaluated using standard metrics, such as accuracy,
precision, recall, and F1-score. These metrics provide a compre-
hensive assessment of the model’s performance, particularly in
scenarios with imbalanced data distributions. The experimen-
tal results demonstrate that the proposed method significantly
improves the accuracy and robustness of the SHM system com-
pared to traditional FL approaches. The conditional aggregation
mechanism effectively mitigates the negative impact of poorly
performing clients, leading to a more reliable and accurate global
model.

The integration of EfficientNetV2 into the FL framework,
coupled with a personalized model adaptation strategy, signifi-
cantly enhances the performance of SHM systems. The condi-
tional aggregation mechanism further improves the robustness
and accuracy of the global model, making it well suited for
real-time monitoring and postdisaster assessment scenarios. The
proposed method outperforms several baseline FL algorithms,
demonstrating its effectiveness in handling non-IID data distri-
butions commonly encountered in SHM applications.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Experimental Setup

1) Dataset: For our experimental evaluation, we utilized the
“Concrete Crack Images for Classification” dataset.1 The dataset
contains 40 000 images divided into two classes: 20 000 negative

1[Online]. Available: https://data.mendeley.com/datasets/5y9wdsg2zt/1

Algorithm 3: Run FL with personalized EfficientNetV2.
Require: Data loaders train_loader, val_loader, number
of clients C, number of rounds R

1: Initialize results list results
2: Create clients clients← []
3: for each client i in range(C) do
4: Append

FederatedModel(create_model(), criterion,
optimizer) to clients

5: end for
6: for each round r = 1 to R do
7: Initialize list client_losses
8: for each client c in clients do
9: train_loss← c.fit(train_loader)

10: val_loss, val_acc← c.validate(val_loader)
11: Append val_acc to client_losses
12: end for
13: Aggregate models based on validation performance
14: Append results for round r to results
15: end for
16: return results

(no cracks) and 20 000 positive (cracks). Each image is 227
× 227 pixels in size with RGB channels. The images were
derived from 458 high-resolution images (4032 × 3024 pix-
els) collected from various buildings on the METU campus.
The high-resolution images exhibit variability in surface finish
and illumination conditions. The dataset was generated using
the method proposed by Zhang et al. [46], without any data
augmentation techniques, such as random rotation or flipping.

2) Data Preprocessing: To ensure consistency and improve
model training, the dataset underwent several preprocessing
steps.

1) Normalization: All images were normalized to have pixel
values in the range [0, 1] to standardize the input data and
facilitate model convergence.

2) Resizing: Images were resized to 224 × 224 pixels to
match the input requirements of the EfficientNetV2 model
used for feature extraction.

To split the data into training, validation, and test sets, we
implemented a custom function. The dataset was divided with an
8:1:1 split ratio, and random seeds were set for reproducibility.
The training set contained 80% of the data, the validation set
10%, and the test set the remaining 10%.

The following data transformations were applied to the im-
ages to ensure robustness and generalization of the model.

1) Training Set: Resizing to 224 × 224 pixels, random hor-
izontal flip, random rotation by 10◦, and normalization
using mean and standard deviation values of [0.485, 0.456,
0.406] and [0.229, 0.224, 0.225], respectively.

2) Validation and Test Sets: Resizing to 224× 224 pixels and
normalization using the same mean and standard deviation
values as the training set.

3) Evaluation Metrics: The primary evaluation metric for
our experiments was validation accuracy, which measures the

https://data.mendeley.com/datasets/5y9wdsg2zt/1
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proportion of correctly classified images. In addition, we calcu-
lated precision, recall, and F1-score to provide a comprehensive
assessment of the anomaly detection performance. These met-
rics are defined as follows:

1) Precision: The ratio of correctly predicted positive obser-
vations to the total predicted positives.

2) Recall: The ratio of correctly predicted positive observa-
tions to all actual positives.

3) F1-Score: The harmonic mean of precision and recall,
providing a balance between the two metrics.

These metrics were chosen to ensure a thorough evaluation
of the model’s performance, particularly in detecting anomalies
(cracks) in the images.

4) Benchmarked Methods: We compared the proposed PC-
FedAvg algorithm against the following three FL algorithms to
highlight its effectiveness.

1) FedAvg: The traditional federated averaging method,
where all client updates are averaged to form the global
model update.

2) FedProx: An extension of FedAvg that incorporates a
proximal term in the loss function to account for client
heterogeneity and ensure stability during training.

3) FedPer: A personalized FL method that allows partial
parameter sharing to create personalized models for each
client.

The selection of these benchmarked methods was based on
their relevance and widespread use in the FL community, pro-
viding a solid baseline for evaluating the improvements offered
by PC-FedAvg.

5) Experimental Procedure: To conduct a comprehensive
evaluation, the following procedure was implemented.

1) Client Simulation: We simulated an FL environment with
five clients. Each client had access to a non-IID portion of
the dataset to reflect real-world scenarios.

2) Training Rounds: Each FL algorithm was trained for ten
communication rounds.

3) Local Training: Each client performed local training for
five epochs before communicating the model updates to
the central server.

4) Model Architecture: We employed the EfficientNetV2
model pretrained on ImageNet for feature extraction, ad-
justing the final layer for binary classification.

5) Optimization: The anomaly detection task was optimized
using the Adam optimizer with a learning rate of 1× 10−3.

6) Hyperparameter Tuning: Extensive hyperparameter tun-
ing was conducted to optimize the performance of the PC-
FedAvg algorithm and the underlying EfficientNetV2 model.
For the learning rate, values ranging from 1× 10−4 to 1× 10−2

were considered, with 1× 10−3 ultimately selected based on the
best validation accuracy and lowest validation loss. Batch sizes
were explored in the range of 16–128, and a batch size of 32 was
chosen to balance computational efficiency and model conver-
gence. The number of local training epochs per communication
round was varied between 3 and 10, with five epochs providing
the best tradeoff between computational cost and performance.
The final hyperparameter configuration was determined using

Fig. 2. Validation accuracy over rounds for different algorithms.

a grid search approach, where the combination that yielded the
highest performance on the validation set was selected.

The data loaders for the training, validation, and test sets were
created using custom functions to handle data transformation
and batching. The training process was executed on a CUDA-
enabled device to leverage GPU acceleration. The experiments
were conducted on a system equipped with an Intel Core Ultra
7 155H processor, featuring 16 cores (six performance cores at
4.8 GHz and eight efficient cores at 3.8 GHz). It includes 16 GB
of LPDDR5x-SDRAM and a 1 TB PCIe 4.0 NVMe SSD for
storage. The graphical processing unit is an NVIDIA GeForce
RTX 4060 with 8 GB of GDDR6 memory.

Overall, this experimental setup ensures a rigorous and com-
prehensive evaluation of the proposed PC-FedAvg algorithm,
highlighting its effectiveness in the context of FL for SHM.

B. Overview of Validation Accuracy

The objective of this analysis is to provide an overview of
the validation accuracy trends across different algorithms over
multiple rounds of FL. This analysis aims to highlight the
consistency and performance of each algorithm throughout the
training process.

Fig. 2 illustrates the validation accuracy trends over different
rounds for the four algorithms under consideration: PC-FedAvg,
FedProx, FedPer, and FedAvg. Each line in the plot represents
an algorithm, with the x-axis denoting the round number and
the y-axis representing the validation accuracy. From the visu-
alization, PC-FedAvg consistently demonstrates superior per-
formance, achieving the highest validation accuracy among the
algorithms. Starting with a high initial accuracy, PC-FedAvg
exhibits a steady improvement, culminating in a final validation
accuracy of approximately 0.9955. This consistent upward trend
underscores the robustness and efficiency of PC-FedAvg in the
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Fig. 3. Distribution of accuracy for different algorithms.

FL context. FedProx also performs well, showing a gradual
and stable increase in validation accuracy across the rounds.
It achieves a final accuracy of around 0.985, indicating reliable
performance with moderate fluctuations. The use of a proximal
term in FedProx helps to stabilize the updates, contributing to
its consistent improvement.

In contrast, FedPer and FedAvg display more variability in
their accuracy trends. FedPer achieves a final accuracy of ap-
proximately 0.975, with noticeable fluctuations indicating sen-
sitivity to the federated learning environment. Similarly, FedAvg
reaches a final accuracy of around 0.977, showing a mixed
pattern of improvements and declines. The lack of conditional
aggregation in FedAvg and the personalized updates in FedPer
may contribute to their higher variability and lower overall
performance. The analysis of validation accuracy trends reveals
that PC-FedAvg outperforms other algorithms in terms of both
accuracy and stability. FedProx also shows strong performance,
while FedPer and FedAvg exhibit greater variability, highlighting
areas for potential improvement in FL applications.

C. Distribution of Accuracy Across Algorithms

We analyze the distribution of accuracy for each algorithm to
understand their performance variability. The primary objective
is to assess the spread and central tendency of accuracy scores
across different FL algorithms, including PC-FedAvg, FedProx,
FedPer, and FedAvg, using EfficientNetV2. To visualize the
distribution of accuracy, we employ two types of plots: a box
plot and a violin plot. These visualizations help in understanding
the variability and consistency of each algorithm’s performance
during the FL process.

Figs. 3 and 4 illustrate the distribution of accuracy scores
across multiple rounds for the four algorithms under considera-
tion. The box plot (see Fig. 3) shows the median, quartiles, and
potential outliers, whereas the violin plot (see Fig. 4) provides
a more detailed view of the distribution shape and density.
The analysis of the accuracy distribution reveals several key
insights. PC-FedAvg exhibits a high median accuracy, with a
narrow interquartile range, indicating consistent performance

Fig. 4. Violin plot of accuracy distribution across algorithms.

across multiple rounds. The upper and lower whiskers of the
box plot are relatively short, suggesting low variability and high
reliability. The violin plot confirms this observation, showing a
dense concentration of accuracy scores around the median, with
minimal spread. This consistency can be attributed to the con-
ditional aggregation mechanism in PC-FedAvg, which ensures
that only high-quality updates from clients with lower validation
losses are included in the global model update. FedProx also
demonstrates a high median accuracy, similar to PC-FedAvg, but
with slightly more variability. The interquartile range is wider,
and the whiskers extend further, indicating higher performance
variability. The violin plot shows a denser distribution around the
median but with a broader spread compared to PC-FedAvg. This
variability can be explained by the proximal term in FedProx,
which stabilizes updates but may still allow for some fluctuations
in performance due to the inherent differences in client data
distributions.

FedPer exhibits a lower median accuracy compared to
PC-FedAvg and FedProx, with a wider interquartile range and
longer whiskers. The box plot indicates higher variability, with
several outliers present. The violin plot shows a more spread-out
distribution, with less density around the median. This spread
suggests that FedPer may be more sensitive to variations in the
FL process, potentially due to its personalized model updates
that introduce variability in the aggregated global model. FedAvg
shows a performance distribution similar to FedPer, with a
slightly higher median accuracy but comparable variability. The
interquartile range is wide, and the whiskers extend further,
indicating significant performance variability. The violin plot
reveals a broad spread of accuracy scores, with less density
around the median. This spread indicates that FedAvg may also
be sensitive to the variations in the FL process, as it aggregates
model updates from all clients without any conditional selection,
leading to the inclusion of suboptimal updates from poorly
performing clients.

From the analysis of the accuracy distribution, it is evident
that PC-FedAvg consistently outperforms other algorithms in
terms of both median accuracy and variability. The narrow
interquartile range and dense concentration of accuracy scores
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Fig. 5. Validation accuracy over rounds for different layers.

around the median highlight its robustness and reliability in the
FL framework. FedProx also shows strong performance with a
high median accuracy but slightly higher variability. FedPer and
FedAvg, while achieving respectable median accuracies, exhibit
higher variability and sensitivity to the FL process.

D. Impact of Model Layers, Kernels, and Nu Values

The objective of this analysis is to investigate the impact of
different model layers, kernels, and nu values on the validation
accuracy within the FL framework. By analyzing these factors,
we aim to gain insights into how they influence model perfor-
mance and discuss any significant interactions or dependencies
observed.

The analysis of the validation accuracy over different layers
reveals several insights. In Fig. 5, we observe that deeper lay-
ers generally lead to better performance. For instance, layers
with more parameters and deeper architectures tend to achieve
higher validation accuracies compared to shallower ones. This
trend suggests that deeper layers are more effective in capturing
complex patterns and representations in the data, which is crit-
ical for the FL context where data distributions can be highly
heterogeneous. Specifically, models with deeper layers show a
consistent improvement over the rounds, reaching higher final
accuracies. For example, deeper models achieve final accuracies
close to 0.995, while shallower models tend to plateau at lower
accuracies around 0.975.

Next, we analyze the impact of different kernels on validation
accuracy, as shown in Fig. 6. The choice of kernel significantly
influences model performance. Kernels, such as the radial ba-
sis function (RBF) and polynomial kernels, tend to perform
better compared to linear kernels. This performance difference
is due to the ability of nonlinear kernels to capture complex
relationships in the data that linear kernels cannot. The RBF

Fig. 6. Validation accuracy over rounds for different kernels.

Fig. 7. Validation accuracy over rounds for different nu values.

kernel, in particular, shows a steady improvement in validation
accuracy over the rounds, achieving final accuracies close to
0.990. In contrast, linear kernels exhibit more variability and
lower final accuracies around 0.970. The violin plot further
highlights that the distribution of accuracy scores for nonlinear
kernels is denser and more concentrated around higher values,
indicating their robustness and effectiveness in the FL frame-
work.

Lastly, we examine the impact of different nu values on
validation accuracy as depicted in Fig. 7. The parameter nu,
which controls the tradeoff between the margin and the slack
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variables in the optimization problem, plays a crucial role in
model performance. Higher values of nu generally lead to better
performance, as they allow for a more flexible decision boundary
that can better accommodate the variations in the data. Specif-
ically, models with higher nu values (e.g., nu = 0.2) tend to
achieve higher final accuracies around 0.985, while lower nu
values (e.g., nu = 0.1) result in lower accuracies around 0.975.
The analysis shows that higher nu values provide a better balance
between fitting the training data and maintaining generalization
to unseen data, which is critical in the FL context.

From the analysis of these factors, several important observa-
tions can be made. First, deeper layers consistently outperform
shallower ones, indicating the importance of model depth in
capturing complex data patterns. This finding is particularly
relevant in the FL context, where data distributions can be highly
heterogeneous and complex. Second, nonlinear kernels, such as
RBF and polynomial kernels, outperform linear kernels, high-
lighting their ability to model complex relationships in the data.
This result underscores the importance of selecting appropriate
kernels based on the data characteristics. Third, higher nu values
generally lead to better performance, providing a more flexible
decision boundary that can better accommodate data variations.

These observations provide valuable insights into optimizing
model performance in FL. By carefully selecting the appropri-
ate model layers, kernels, and nu values, we can enhance the
robustness and accuracy of the global model. The conditional
aggregation mechanism employed in PC-FedAvg further ampli-
fies these benefits by ensuring that only high-quality updates
from clients with lower validation losses are included in the
global model update.

E. Detailed Analysis of FL Rounds

The objective of this analysis is to provide a comprehensive
view of accuracy across all rounds and algorithms. By examining
the accuracy trends over the FL rounds for different algorithms,
we can identify key patterns, performance stability, and any
anomalies in the data. To facilitate this analysis, we utilize two
visualizations: a heatmap and a pairplot.

The heatmap in Fig. 8 provides a detailed view of how
accuracy evolves across different rounds for each algorithm. The
color intensity in the heatmap indicates the level of accuracy,
with darker shades representing higher accuracy and lighter
shades indicating lower accuracy. From this visualization, sev-
eral key observations can be made. PC-FedAvg consistently
demonstrates high accuracy across all rounds, with the color
intensity remaining dark throughout the heatmap. This indicates
that PC-FedAvg maintains a high level of performance from
the initial rounds to the final rounds, showcasing its robustness
and reliability in the FL context. The consistent dark shading
across the rounds highlights the algorithm’s ability to converge
quickly and sustain high accuracy. In contrast, FedProx shows a
gradual improvement in accuracy over the rounds, with the color
intensity transitioning from lighter to darker shades. This pattern
suggests that FedProx experiences a more gradual learning
curve but eventually reaches a high level of accuracy similar
to PC-FedAvg. The initial rounds show moderate accuracy, but

Fig. 8. Heatmap of accuracy over rounds for different algorithms.

as the rounds progress, FedProx catches up, indicating its ability
to adapt and improve over time. FedPer and FedAvg exhibit
more variability in their accuracy trends, as evidenced by the
alternating shades in the heatmap. FedPer shows fluctuations
in accuracy, with some rounds achieving high accuracy while
others fall behind. This variability suggests that FedPer may
be more sensitive to the FL environment and the specific data
distributions at each client. Similarly, FedAvg shows a mixed
pattern with both high and low accuracy across different rounds,
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Fig. 9. Pairplot for accuracy, rounds, and algorithms.

indicating that its performance is less stable compared to PC-
FedAvg and FedProx.

The pairplot in Fig. 9 provides additional insights by visu-
alizing the relationships between accuracy, rounds, and algo-
rithms. Each point in the pairplot represents a specific round
and algorithm, with the accuracy depicted along one axis and
the rounds along the other. The pairplot includes density plots
along the diagonals, showing the distribution of accuracy scores
for each algorithm. From the pairplot, we observe that PC-
FedAvg consistently clusters at the higher end of the accu-
racy spectrum across all rounds. This clustering indicates that
PC-FedAvg achieves high accuracy consistently, with minimal
variability. The density plots along the diagonal for PC-FedAvg
are sharply peaked, further highlighting the concentration of
high accuracy scores. FedProx also shows a strong clustering

of high accuracy scores, particularly in the later rounds. The
density plots for FedProx indicate a gradual shift toward higher
accuracy as the rounds progress, confirming its ability to im-
prove performance over time. The points in the pairplot for
FedProx transition from lower accuracy in the initial rounds
to higher accuracy in the final rounds, mirroring the pattern
observed in the heatmap. FedPer and FedAvg display more
dispersed points in the pairplot, indicating greater variability
in their accuracy scores. The density plots for these algorithms
are broader and less peaked, reflecting the fluctuations in their
performance. FedPer shows a wide spread of accuracy scores
across the rounds, with some points achieving high accuracy
while others lag behind. Similarly, FedAvg exhibits a scat-
tered pattern, indicating inconsistent performance across the
rounds.
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Fig. 10. Overall mean accuracy for each algorithm.

The detailed analysis of FL rounds highlights several impor-
tant insights. First, PC-FedAvg consistently outperforms other
algorithms, maintaining high accuracy across all rounds. This
consistency underscores the effectiveness of the conditional
aggregation mechanism in ensuring robust and reliable perfor-
mance. Second, FedProx demonstrates a strong improvement
trend, ultimately achieving high accuracy similar to PC-FedAvg.
The gradual learning curve suggests that FedProx is effective in
adapting to the FL environment over time.

In contrast, FedPer and FedAvg show more variability in
their performance, indicating that these algorithms may be more
sensitive to the heterogeneity and non-IID nature of the data in
the FL context. The fluctuations in accuracy suggest that further
optimization and refinement are needed for these algorithms to
achieve more stable and consistent performance.

F. Summary and Key Findings

The objective of this analysis is to summarize the overall
performance and key findings from the analysis of FL algo-
rithms, including PC-FedAvg, FedProx, FedPer, and FedAvg,
using EfficientNetV2. By examining the mean accuracy, stan-
dard deviation of accuracy, and final round accuracy, we provide
a comprehensive evaluation of each algorithm’s performance.
We also highlight the best performing algorithms and discuss
their strengths.

The analysis of the overall mean accuracy (see Fig. 10) reveals
that PC-FedAvg achieves the highest mean accuracy among all
algorithms, with a mean accuracy of approximately 0.993. This
indicates that PC-FedAvg consistently performs well across mul-
tiple rounds, making it the most reliable and robust algorithm in
the FL context. The high mean accuracy can be attributed to the
conditional aggregation mechanism employed in PC-FedAvg,
which ensures that only high-quality updates from clients with
lower validation losses are included in the global model update.
FedProx also demonstrates strong performance, with a mean
accuracy of around 0.985. Although slightly lower than PC-
FedAvg, FedProx shows a stable and reliable learning process.
The proximal term in FedProx helps in stabilizing the updates

Fig. 11. Standard deviation of accuracy for each algorithm.

by preventing drastic changes to the model parameters, thereby
ensuring smoother convergence and high mean accuracy. Fed-
Per and FedAvg exhibit lower mean accuracies compared to
PC-FedAvg and FedProx. FedPer achieves a mean accuracy of
approximately 0.975, while FedAvg achieves around 0.977. The
lower mean accuracies suggest that these algorithms may be
more sensitive to the variations in the FL process, potentially
impacting their overall performance. The personalized model
updates in FedPer, while beneficial for individual client per-
formance, might introduce variability in the aggregated global
model, leading to a lower mean accuracy.

The analysis of the standard deviation of accuracy (see
Fig. 11) provides insights into the variability of each algorithm’s
performance. PC-FedAvg exhibits the lowest standard deviation,
indicating that it maintains a consistent level of performance
across multiple rounds. The low standard deviation underscores
the robustness and reliability of PC-FedAvg, making it the most
stable algorithm in the FL framework. FedProx also shows a rel-
atively low standard deviation, suggesting that its performance is
stable and consistent. The proximal term in FedProx contributes
to this stability by ensuring that the updates are smooth and
gradual, minimizing fluctuations in accuracy. FedPer and Fe-
dAvg exhibit higher standard deviations compared to PC-FedAvg
and FedProx. The higher standard deviations indicate greater
variability in their performance, suggesting that these algorithms
may be more sensitive to the heterogeneity and non-IID nature
of the data in the FL context. The personalized model updates
in FedPer and the unconditional aggregation in FedAvg might
introduce variability, leading to less stable performance.

The analysis of the final round accuracy (see Fig. 12) further
highlights the strengths of each algorithm. PC-FedAvg achieves
the highest final round accuracy of approximately 0.995, demon-
strating its superior ability to handle FL tasks effectively. The
high final round accuracy indicates that PC-FedAvg converges
to a highly accurate global model, making it the best performing
algorithm in the final evaluation. FedProx also performs well
in the final round, achieving a final accuracy of around 0.985.
The stable improvement in FedProx’s performance over the
rounds is reflected in its high final round accuracy, showcasing
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Fig. 12. Comparison of final round accuracy for each algorithm.

its effectiveness in the FL environment. FedPer and FedAvg
achieve final round accuracies of approximately 0.975 and
0.977, respectively. While these accuracies are respectable, they
are lower than those achieved by PC-FedAvg and FedProx.
The fluctuations in accuracy observed in FedPer and FedAvg
throughout the rounds likely contribute to their lower final round
accuracies.

The overall performance and key findings from the analysis
highlight PC-FedAvg as the best performing algorithm, with the
highest mean accuracy, lowest standard deviation, and highest
final round accuracy. The conditional aggregation mechanism
in PC-FedAvg ensures robust and reliable performance by in-
cluding only high-quality updates from well-performing clients.
FedProx also demonstrates strong performance, with high mean
accuracy and low variability, making it a reliable choice for FL
tasks. FedPer and FedAvg, while achieving respectable accura-
cies, exhibit greater variability and sensitivity to the FL process,
indicating potential areas for further optimization.

G. Detailed Metrics Comparison

The objective of this analysis is to provide a detailed compar-
ison of precision, recall, and F1-score for each FL algorithm,
including PC-FedAvg, FedProx, FedPer, and FedAvg. By ex-
amining these metrics, we gain a comprehensive understanding
of each algorithm’s performance in different aspects of classi-
fication. The visualizations employed in this analysis include a
swarm plot for F1-score and violin plots for precision and recall,
along with a final comparison bar chart for all three metrics.

Fig. 13 provides a detailed view of the F1-score distribution
across different algorithms. PC-FedAvg achieves the highest F1-
scores with minimal dispersion, indicating its effectiveness in
balancing precision and recall. The clustering of high F1-scores
around 0.995 highlights PC-FedAvg’s ability to consistently
deliver strong classification performance. FedProx also shows
a good distribution of F1-scores, with values clustering around
0.985. This suggests that FedProx is also effective in maintaining
a balance between precision and recall. On the other hand, Fed-
Per and FedAvg exhibit more variability in their F1-scores, with

Fig. 13. Swarm plot of F1-score by algorithm.

Fig. 14. Violin plot of precision by algorithm.

lower average values around 0.975 and 0.977, respectively. This
indicates that while they perform well, their balance between
precision and recall is less consistent compared to PC-FedAvg
and FedProx.

Fig. 14 shows that PC-FedAvg consistently achieves high
precision values, with the distribution being tightly concentrated
around 0.995. This indicates that PC-FedAvg is highly effective
in minimizing false positives. FedProx also performs well in
terms of precision, with values clustering around 0.985. The
distribution for FedProx is slightly broader than PC-FedAvg,
suggesting some variability but still maintaining high precision.
FedPer and FedAvg, however, exhibit broader distributions with
lower average precision values around 0.975 and 0.977, respec-
tively. This indicates a higher rate of false positives compared
to PC-FedAvg and FedProx.

Fig. 15 highlights the ability of each algorithm to correctly
identify true positives. PC-FedAvg again shows superior perfor-
mance with a high concentration of recall values around 0.995.
This demonstrates its effectiveness in correctly identifying true
positive cases. FedProx follows closely with recall values around
0.985, showing its strength in capturing true positives. FedPer
and FedAvg show more variability and lower average recall
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Fig. 15. Violin plot of recall by algorithm.

Fig. 16. Final comparison—precision, recall, and F1-score for each algorithm.

values around 0.975 and 0.977, respectively, indicating that they
may miss more true positive cases compared to PC-FedAvg and
FedProx.

The final comparison of precision, recall, and F1-score for
each algorithm is presented in Fig. 16. This bar chart pro-
vides a comprehensive view of how each algorithm performs
across all three metrics. PC-FedAvg consistently outperforms
the other algorithms in all three metrics, with precision, recall,
and F1-score values all clustered around 0.995. This highlights
the algorithm’s overall effectiveness and robustness. FedProx
also shows strong performance, with values around 0.985 for
all metrics, making it a reliable choice for FL tasks. FedPer and
FedAvg, while performing well, show slightly lower and more
variable metrics, indicating areas for improvement in balancing
precision and recall.

The detailed metrics comparison highlights PC-FedAvg as
the best performing algorithm across precision, recall, and F1-
score. Its ability to consistently achieve high values in all three
metrics underscores its robustness and effectiveness in the FL

Fig. 17. Validation accuracy comparison of EfficientNetV2 with latest algo-
rithms.

context. FedProx also performs well, maintaining high precision
and recall with minimal variability. FedPer and FedAvg, while
achieving respectable metrics, exhibit greater variability and
lower average values, suggesting potential areas for further
optimization. These findings are critical for understanding the
strengths and weaknesses of each algorithm and for making
informed decisions in the selection and optimization of FL
algorithms for real-world applications.

H. Comparison of EfficientNetV2 With State-of-the-Art
Algorithms

The objective of this analysis is to compare the performance
of EfficientNetV2 with other state-of-the-art algorithms. By
examining validation accuracy over multiple rounds and final
accuracy, we aim to highlight the strengths and weaknesses of
EfficientNetV2 relative to other advanced models.

Fig. 17 shows the validation accuracy of EfficientNetV2 and
other algorithms, including ResNet, VGG, Inception, DenseNet,
and MobileNet, over multiple rounds of FL. EfficientNetV2
demonstrates superior performance, achieving higher validation
accuracy consistently across all rounds. Starting with a high
initial accuracy, EfficientNetV2 shows a steady improvement,
reaching a final validation accuracy of approximately 0.9955.
This consistent upward trend highlights the model’s robust-
ness and efficient handling of the FL process. In comparison,
ResNet, VGG, Inception, DenseNet, and MobileNet also show
improvements in validation accuracy over the rounds but do
not match the performance level of EfficientNetV2. ResNet,
for example, achieves a final accuracy of around 0.985, while
DenseNet and Inception achieve approximately 0.982 and 0.980,
respectively. VGG and MobileNet follow with final accuracies
of about 0.975 and 0.977, respectively. The lower validation
accuracies of these models indicate that while they are strong
performers, EfficientNetV2’s optimized architecture provides a
significant advantage. Fig. 18 provides a clear comparison of
the final accuracy for EfficientNetV2 and the other algorithms.
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Fig. 18. Final accuracy comparison of EfficientNetV2 with latest algorithms.

EfficientNetV2’s final accuracy of 0.9955 stands out promi-
nently, surpassing the final accuracies of ResNet, VGG, Incep-
tion, DenseNet, and MobileNet. This comparison underscores
the superior performance of EfficientNetV2 in achieving high
accuracy in FL tasks.

Several factors contribute to EfficientNetV2’s superior per-
formance. The model employs a compound scaling method
to balance network depth, width, and resolution, optimizing
performance while maintaining efficiency. EfficientNetV2’s use
of depthwise separable convolutions and squeeze-and-excitation
blocks further enhances its ability to capture complex patterns in
the data, which is crucial in an FL environment where data can
be highly heterogeneous and distributed. ResNet, while known
for its deep residual learning capabilities, does not achieve the
same level of performance as EfficientNetV2, likely due to its
less optimized scaling and higher computational complexity.
DenseNet, with its dense connectivity pattern, and Inception,
with its multipath architecture, also show strong performance but
fall short of EfficientNetV2’s accuracy. VGG and MobileNet,
despite their simpler architectures, provide respectable results
but lack the advanced optimizations present in EfficientNetV2.
One significant advantage of using EfficientNetV2 is its ability
to maintain high accuracy with relatively lower computational
requirements compared to some of the other state-of-the-art
models. This efficiency makes EfficientNetV2 particularly suit-
able for FL scenarios, where computational resources at client
devices can be limited.

I. Visual Analysis of Crack Detection

We provide a visual representation of the crack detection
results achieved by the proposed method. This analysis is in-
tended to highlight the effectiveness of our approach in identi-
fying structural defects.Fig. 19 showcases a sample set of crack
images, with detected cracks highlighted by yellow borders.
The images are sorted based on their anomaly levels, providing
a comprehensive view of the model’s detection capabilities

across varying degrees of structural damage. The visual results
indicate that the proposed method is highly effective in detecting
cracks, even in cases where the defects are subtle and not easily
discernible. The model accurately identifies both prominent and
minor cracks, demonstrating its robustness in handling diverse
types of structural anomalies. For example, in images with fine
hairline cracks, the model successfully highlights these defects,
showing its sensitivity to minute structural irregularities.

Challenging cases, such as images with low contrast or com-
plex backgrounds, are also effectively handled by the model.
These scenarios often pose difficulties for traditional detection
methods, but our approach leverages the advanced feature ex-
traction capabilities of EfficientNetV2 to distinguish cracks from
noise and background variations. This robustness is crucial for
real-world applications where structural defects may not always
be clearly visible. The visual analysis underscores the efficacy
of our proposed method in crack detection, highlighting its
potential for enhancing SHM systems by providing accurate and
reliable defect identification.

VI. DISCUSSION

In this section, we synthesize the key points of our work,
critically discuss its technical accuracy and practical feasibility
in real-world SHM scenarios, address limitations and potential
drawbacks, and explore broader impacts and future directions.

A. Technical Accuracy and Practical Feasibility

Our proposed PC-FedAvg algorithm, integrated with Effi-
cientNetV2 within an FL framework, has demonstrated high
accuracy and robustness in detecting structural defects. The
experimental results confirm that selective aggregation based
on validation loss leads to a more reliable global model, while
the use of EfficientNetV2 ensures superior feature extraction
and classification performance.

B. Limitations and Drawbacks

Despite the promising results, several limitations must be
acknowledged. Client dropout due to limited computational
resources or network issues can lead to suboptimal model up-
dates. Data heterogeneity across clients, particularly in non-
IID settings, may also affect convergence and performance. In
addition, communication disruptions—common in postdisaster
environments—can further degrade the performance of the FL
process. These factors highlight the need for robust strategies to
manage unreliable client participation and variable data quality.

C. Security Vulnerabilities

FL, while preserving data privacy by keeping data local, is still
susceptible to security threats, such as data poisoning and model
inversion attacks. Adversaries could potentially manipulate local
model updates or extract sensitive information from the aggre-
gated model. Mitigation strategies, including secure aggregation
protocols, differential privacy techniques, and robust anomaly
detection mechanisms, should be considered to enhance the
security of the system.
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Fig. 19. Sample of crack images. The crack images are surrounded by yellow. The images are sorted based on their anomaly level.

D. Broader Impact and Generalizability

The proposed FL framework and the PC-FedAvg algorithm
are not limited to SHM applications. Their scalability, adaptabil-
ity, and decentralized nature make them applicable to various
domains, such as healthcare, smart cities, and autonomous ve-
hicles, where privacy and efficient data processing are critical.
The inherent flexibility of the approach enables it to be extended
to any scenario that requires collaborative model training on
distributed, heterogeneous datasets.

E. Conceptual Basis for Integrating WSN with Large-Scale
Knowledge Discovery

An interesting extension of our work involves integrating the
current system with WSNs to support large-scale knowledge

discovery. By combining data from static WSN nodes with
mobile data acquired by drones and UGVs, the system could
achieve a richer and more comprehensive understanding of
the monitored environment. Prior studies (e.g., [26] and [27])
have demonstrated the effectiveness of WSNs in environmental
monitoring, suggesting that a hybrid approach could further
enhance decision-making in disaster management.

F. Alternative Optimization Methods

While our current approach utilizes SGD with momentum,
this method may occasionally converge to local optima rather
than a global optimum. Future work could explore alterna-
tive optimization methods, such as adaptive learning rate tech-
niques (e.g., Adam and RMSprop) or second-order optimization
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methods, which may offer improved convergence properties and
further enhance model performance.

VII. CONCLUSION

We present an FL framework for SHM that integrates spatial
crowdsourcing drone services with the IoDT to enable real-
time data acquisition in postdisaster contexts. The framework
employs EfficientNetV2 for automated damage detection and
introduces PC-FedAvg to mitigate the effects of non-IID client
data and device heterogeneity. Experimental validation on the
Concrete Crack Images for Classification dataset demonstrated
a validation accuracy of 99.55%, substantially outperforming
FedAvg, FedProx, and FedPer. By limiting aggregation to high-
quality client updates and performing local model adaptation,
our approach reduces computational and communication over-
head compared with centralized methods. Deployment of this
framework can improve the reliability, scalability, and privacy of
SHM systems in challenging environments, thereby facilitating
timely and accurate damage assessment and supporting efficient
allocation of recovery resources.

Future work will explore adaptive optimization algorithms,
such as Adam and RMSprop, to accelerate convergence and
avoid local optima. We will investigate advanced security mea-
sures, including differential privacy and secure aggregation, to
defend against adversarial manipulation and model inversion
attacks. Integration with heterogeneous WSNs will be examined
to expand coverage and improve data fusion. In addition, we
plan to extend this FL framework to domains, such as healthcare
imaging analysis and smart city infrastructure monitoring. These
efforts aim to enhance the robustness, security, and versatility
of distributed sensing applications.
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