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ARTICLE INFO ABSTRACT

Communicated by N. Zeng Neural network models are widely adopted in real-world applications for processing streaming data. However,
these applications often face challenges in terms of accuracy degradation, caused by changes in the data
distribution of the stream data compared to the training data. Two underlying reasons contribute to these
changes. The first, known as the concept drift problem, occurs when there is a change in the correlation
between the input data and the prediction output, making the models trained on the training data no
longer suitable for the new data. The second reason, known as the novelty problem, arises when real-world
data contains unexpected data categories that were not present in the training data, resulting in incorrect
predictions. The research community has divided into different groups and each developed various methods
to detect either concept drift or novelty distribution changes. However, these methods only address one aspect
of the problem and are unable to distinguish between them. This leads to an inappropriate allocation of model
maintenance resources, including the high cost of model retraining and the acquisition of true label data. In
this study, we aim to address this gap by proposing a novel concept drift detection method that is capable
of distinguishing between known labeled concept drift and novelty. Our method is also more efficient than
existing drift detection methods, making it suitable for applications on neural networks.
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1. Introduction when the error rate exceeds some predefined threshold. Such methods
apply univariate statistical tests on the error rate, thus are very efficient
and have low resource footprint. Also, they only reports alarms on
actual accuracy drops, and ignore irrelevant distribution changes, thus
avoid unnecessary model maintenance. However, the major limitation
of such methods is that they are based on true label data, which can
be unavailable in real-world stream data applications. Another strategy
is to apply two-sample testing on the input data to detect distribution
changes. These methods [5,6] need to use multivariate two-sample tests
since the input data often has high dimension. The most noticeable

Stream data is being generated from multiple applications in many
different scenarios, for example, stock market quotes, outputs from var-
ious equipment sensors, social media feeds. Thus, stream data mining
attracts lots of attentions of researchers. Unlike traditional machine
learning problems, stream data present particular challenges to ma-
chine learning models. Particularly, when applying a machine learning
model to real-world data, one of the challenges is the data distribution
of the stream data often changes compared to the training data. Such
unexpected distribution discrepancy of stream data hampers prediction

accuracy. Different groups in research community have attempted to
address this issue in different directions.

One group noticed that the distribution changes occur in the cor-
relation between the input data and the prediction output [1]. The
models trained on the training data no longer suitable for the new data
generated in the real-world applications. This is known as the concept
drift problem and is well studied in research community [2]. The
widely adopted solution is to detect the concept drift and then retrain
the models with latest data to fit the distribution change. The core
algorithm is the concept drift detection method, which can be imple-
mented in different strategies. Error rate-based detection methods [3,4]
monitor the models output and check the prediction values against
true label data. The detection algorithm raises concept drift alarms

* Corresponding author.

advantage of these methods is that they only consume input data, and
do not require true label data. However, they often suffer from poor
performance due to their calculation on the distances between two
high dimensional data samples. They only alert concept drifts according
to the distribution tests. They cannot distinguish distribution changes
caused by new emerging classes from distribution changes caused by
the correlation change. Such distinguishing is valuable knowledge for
further concept drift understanding or model adaptation.

Researchers in another group approach the data distribution change
problem by focusing on the unknown concepts of the data, contrary
to the known concepts in the concept drift problem [7]. They em-
phasize the scenario where the incorrect predictions are not cause by
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the correlation change of the input features and predictions, but the
existence of unseen prediction categories that are not covered by the
training data. Such unknown distribution is named as “novelty”. Novel
problem is a major challenge in neural network applications, such
as video surveillance, object recognition and planetary exploration,
where unexpected objects or subjects appear in footage or image.
In literature, the goal of novelty detection usually means detecting
the out-of-distribution samples one by one. It is also referred as to
open set recognition, outlier detection or anomaly detection. They
mainly target on testing samples as erroneous, fraudulent, or malicious.
Novelty detection methods cannot rely on the error rates, since the
predictions made by the models are no longer trustworthy. Coinci-
dentally when comparing to concept drift detection methods, novelty
detection methods also resolve to high dimensional two-sample tests to
estimate the density difference between training data distribution and
test data distribution. Some methods use parametric tests, for example,
a multivariate Gaussian distribution [8,9] or more complex tests, such
as mixed Gaussian distribution [10,11], and Poisson distribution [12],
to measure the distance between the training and the test data. Other
methods, when it is difficult to anticipate the real-world data distribu-
tion, use non-parametric tests, such as high dimensional kernel density
estimation [13], to measure density difference of the training data and
test data. Similar to concept drift detection methods that use high
dimensional two-sample tests, novelty detection methods also suffers
from performance issues, especially for computer vision tasks based on
neural networks. In addition to recognizing novelty or new concepts,
an effective online learning strategy should also be capable of detecting
changes that occur within known or normal concepts. It is crucial for
the model maintainer to determine whether the decrease in model
accuracy is a result of concept drift or novel data. This information is
essential for determining the most effective maintenance strategy and
for avoiding the high cost of acquiring ineffectual true label data that
is unrelated to the distribution change. The current state of the art
methods in this area has limitations that prevent a full understanding
of the underlying causes of data distribution changes.

Although both concept drift problem and novel problem are well
addressed in the literature and plethora methods have been developed,
there remains a considerable gap in the solutions for these two prob-
lems. One of the key challenges in this field is the inability of existing
methods to distinguish between concept drift and novelty. This results
in a situation where concept drift detection methods may raise an
alarm in the presence of novel data, while novelty detection methods
may report a novelty alarm in the presence of concept drift. This lack
of differentiation can lead to incorrect maintenance actions and an
inappropriate allocation of resources. Moreover, the simultaneous ap-
plication of both concept drift detection and novelty detection methods
is not an effective solution, as they both raise alarms in response to any
change in the data distribution. This can result in an inefficient use of
resources, such as unnecessary model retraining and data acquisition.

In this study, we aim to address this gap by proposing a novel
concept drift detection method that is capable of detecting both concept
drift and novelty, and it also distinguishes between the two types of
distribution changes by producing the type of change. This information
is crucial for model maintainers, who can then adopt the most appro-
priate actions, such as requesting updated labeled data or investigating
new data categories, to keep the model updated. Instead of defining
novelty as examples that do not fit a certain data distribution, we view
novelty as a concept represented by a cluster of new class examples.
In our paper, novelty is not merely an outlier, but rather a distinct
concept within the data. Novelty samples reflected in radial base dis-
tances present higher values. We leverage this property and removing
a percentile value such that higher values of radial distances, which
correspond to the novelty samples, can be excluded. After removing
the predefined percentile of samples with higher radial distances, we
compare distributions of the remaining samples. If the distribution
change are caused by novelty, the remaining samples should have the
same distribution. Otherwise, we consider that the distribution change
are caused by concept drift. The main contributions are:
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» Propose a method that can detect and distinguish stream data
distribution change caused by concept drift and novelty.

» The method is designed to have low memory and computation
footprint with high dimensional input, which make suitable for
neural network models.

« Introduce a theoretical foundation that for the first time make it
possible to analyze concept drift problem and novelty problem in
one framework.

The remaining parts are organized as follows. Section 2 reviews the
established literature on concept drift detection and novelty detection.
In Section 3, we first present a formal definition of the distribution
change phenomenon in stream data mining, and its two possible root
causes, namely concept drift and novelty. After that, we introduce
the distance measurement which is the foundation of our two sam-
ple test statistic. Finally, we present the novelty-aware concept drift
method and its supporting theories. Section 4 illustrates effectiveness
of our proposed method and the computational performance on high
dimensional data in both concept drift and novelty scenarios. Section 5
summarizes our work and directions for future study.

2. Related work

This literature review covers the research problem and existing so-
lutions relevant to our aim of developing a novelty-aware concept drift
detection method for neural network classification tasks. A rich body
of independent literature already exists for concept drift detection and
novelty detection. Hence, in this section, we review the representative
works from these two distinguished research areas and analyze their
relationships to our method.

2.1. Concept drift detection

Concept drift in machine learning refers to the shift in the distribu-
tion of data that results in decreased model performance [2]. Concept
drift is a well-known issue in the field of machine learning research
that can have a significant impact on the performance of models. The
problem arises when the underlying distribution of the data changes
over time, making it difficult for the model to generalize to new
data [14]. This can result in a decrease in accuracy and an increase
in the number of errors. In online classification tasks, the concept drift
problem arises when prediction performance deteriorates over time due
to changes in the distribution of the data. These changes can be due to
either a shift in the features or the target concept, causing either virtual
or real drift [15]. The latter, also known as concept drift, is a major
challenge in online machine learning applications.

Formally, given a classification task with a feature vector X € R
and class labels y € {1 ... ¢}, an initial set of samples with known labels
is used to train the classifier model P(y|X). Concept drift is defined
as that there exists a time ¢, Py (X, ) # Py (X, ). Since P(X,y) =
P(X) - P(y|X), two types of distribution changes can be observed: (1)
virtual drift, where P, (X) # P, (X), while P, (yX) = Py, (| X);
and (2) real drift or concept drift, where P, (X) = P, (X), while
P,<,0(y|X ) # R>,U(y|X). Concept drift is one of the root causes of
performance degradation in online machine learning applications.

To address this problem, researchers have developed two basic
strategies. The first strategy involves using incremental classifiers.
These models are trained using the latest labeled data, allowing them
to continuously adapt to changes in the underlying distribution of the
data. This approach is effective in dealing with concept drift as it
allows the model to constantly update itself and maintain its accuracy.
However, this approach requires a continuous flow of labeled data and
is dependent on the underlying classifier used. The second strategy is
to use a standalone concept drift detection algorithm. This approach
is classifier-independent and has a wider application scope. The idea
behind this approach is to monitor the distribution of the data stream
and trigger model maintenance when a concept drift occurs. This can
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be done by comparing the distribution of the new data to that of
the historical data and detecting any changes in the distribution. This
information can then be used to retrain the model and ensure that
it continues to perform well even when the distribution of the data
changes. The main focus of this article is on drift detection, which
can be used as an external tool to supervise the data stream and help
maintain the performance of the model.

In the early days of machine learning research, error rate-based drift
detection algorithms were widely used, due to their simplicity and ef-
ficiency. For example, in online classification applications, an increase
in prediction error rate is considered as an indicator of concept drift,
and this triggers a classifier update. The drift detection method (DDM),
first introduced in [16], is considered a seminal work in this area and
lays the foundation for this approach. DDM operates by monitoring the
prediction error rate of a classifier based on instances in the most recent
time window. If the error rate reaches a pre-defined warning level, a
new classifier is trained, and if the error rate exceeds the drift level
threshold, it replaces the existing classifier. Several extensions to DDM
have been developed to better address specific types of drift, such as the
early drift detection method (EDDM) [17], dynamic extreme learning
machine (DELM) [18], and Hoeffding’s inequality-based drift detection
method (HDDM) [19]. A more recent work, EWMA [20], has employed
an exponential weighted moving average (EWMA) chart to test the
significance of changes in error rates, so as to reduce false alarms.
The EWMA chart is a widely used quality control statistic. Despite
the many advances in error rate-based algorithms, they still have a
major limitation — they cannot describe the concept drift. As a result,
they only provide drift alarms, but not any additional information for
classifier maintenance, beyond simply detecting the drift.

In order to detect distribution changes, multivariate two-sample
tests can be applied. These tests compare the distribution of instances
in the training data with the most recent data. In order to perform
these tests efficiently, researchers have proposed different techniques.
Reis et al. proposed a fast drift detection method by extending the
univariate Kolmogorov-Smirnov (KS) test to higher dimensions [21].
In their method, data instances are organized using high-dimensional
random trees. This allows the tree structure to be updated in O(log N)
time when a new instance arrives. After updating the tree, the KS
statistic can be computed in O(1) time, resulting in a sublinear per-
formance suitable for online data stream applications. On the other
hand, Rosenbaum et al. proposed a new statistic for multivariate two-
sample tests [22]. This method counts the number of different types
of pairs formed by optimal non-bipartite matching between instances
from the two samples. Unlike other methods, this approach operates
independently of the distribution and the exact distribution of the
statistic is provided. However, computing the optimal matching has a
complexity of O(N?), making it unfeasible for real-time applications.

Finally, the third category of concept drift detection algorithms is
instance-based distribution tests. These algorithms compare the distri-
butions of instances, rather than features or error rates, to detect drift.
The key idea behind this category is that instances from different time
windows are representative of different concepts, and a shift in the
distribution of instances reflects a concept drift. The theoretical foun-
dation for this approach was first proposed by Kifer et al. [23]. They
provided statistical guarantees for the test and introduced a resampling
procedure to estimate the significance threshold of the test statistic.
This approach is considered distribution-free as it only requires that the
instances in the stream data are generated independently. However, the
exact distribution of the statistic can often be difficult to derive, and as
a result, several different methods have been proposed that follow this
framework. These methods differ mainly in their partitioning strategies
and the statistics used to count regional differences. For example, the
k-dimensional quad-tree (KdqTree) algorithm [24] uses a tree structure
to partition a high-dimensional sample space into hypercubes of similar
size. The Kullback-Leibler divergence is then used to sum the counting
differences for each cell. To address performance issues, bootstrapping
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is used to estimate the significance threshold, and as a result, updating
the tree has a time complexity of O(log N) when new data arrives.
One popular instance-based drift detection method is the Page-Hinkley
test [25]. The Page-Hinkley test is a statistical process control method
and is widely used in quality control applications. The method monitors
the cumulative sum of the deviations between the actual and expected
mean of instances and triggers a drift alarm when the cumulative sum
exceeds a predefined threshold. Another instance-based method is the
two-phase change detection method [26]. The two-phase method starts
with a rough estimation of the mean and covariance of the data stream,
followed by an online adjustment when a drift is detected. When the
mean and covariance change significantly, the method switches to the
second phase, which starts with a full recalculation of the mean and
covariance. The method is effective and efficient, but it relies on the
Gaussian assumption of the data distribution. Another approach was
proposed by Lu et al. [27] who introduced a drift detection method
based on a competence model and case-based reasoning theories. The
competence of a set of labeled instances or the case base describes the
model’s ability (i.e., certainty) to predict an unknown instance using
k-nearest-neighbor (kNN) rules. The algorithm measures the compe-
tence difference to compare the distributions of the two samples and
computes the competence for a given case base by partitioning the
sample space into overlapping hyperspheres. The significance threshold
is determined by permuting the sample data multiple times to estimate
the variance of the competence. Although this method is accurate, it
can be computationally expensive, as computing the competence alone
has quadratic complexity, which is then multiplied by the permutation
process. To address this drawback, Lu et al. [28] presented a method to
mitigate this drawback by introducing an instance reduction procedure
based on the case base. This method helps to reduce the complexity of
the algorithm, making it more suitable for stream data processing.

2.2. Novelty detection

Novelty detection in machine learning and neural network research
has been a topic of interest in recent years due to the increasing need
for robust and accurate methods [29] to identify unusual or unseen
patterns in data. The focus on this area of research stems from its
wide range of applications [30] in various domains such as computer
vision, speech recognition, cybersecurity, video surveillance, object
recognition, and planetary exploration.

One of the popular approaches for novelty detection is to model the
distribution of the normal data [10]. They assume that the novelty data,
deviating from the expected distribution, has lower likelihood under
the modeled distribution than the normal data. Different distribution
modeling methods were used in literature, including parametric [8]
and non-parametric tests [31]. Parametric tests choose as a priori some
predefined distribution, such as multivariate Gaussian distribution,
mixed Gaussian distribution, or Poisson distribution. The normal data
are considered to follows a specific distribution. These methods flag
instances that are far away from the training data as novelties [8].
However, when the real-world data distribution is unknown or difficult
to anticipate, non-parametric tests, such as high dimensional kernel
density estimation [32], can be used to measure the density difference
between the training and test data distributions. These methods do not
make any assumptions about the data distribution and can be more
robust in detecting novelties in complex and diverse data sets. Despite
the advantages of the two-sample tests, the performance of novelty
detection methods based on these tests can be challenging in high-
dimensional data [33], such as computer vision tasks based on neural
networks. The high dimensionality of the data can make it difficult
to accurately estimate the density difference, leading to a higher rate
of false positive or false negative detection. To address this issue,
researchers have proposed various techniques, such as dimensional-
ity reduction, feature selection, and ensembles of novelty detection
models, to improve the performance of novelty detection methods [34].
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Neural network are often used to enhance the performance of
distribution based novelty detection in high dimensional space [35].
The high representation quality of deep neural networks has signifi-
cantly improved the performance of classic density estimation methods.
Autoencoder (AE) and Variational Autoencoder (VAE) based models
are two of the most widely used deep learning techniques for novelty
detection [36,37]. Autoencoders were first introduced in the field of
unsupervised learning [38], and they learn efficient representations of
unlabeled data by reconstructing the input from the latent embedding.
On the other hand, Variational Autoencoders (VAEs) [39] are a gen-
erative model that encodes input images into latent vectors under the
Gaussian distribution. The advantage of VAEs over autoencoders is that
they not only reconstruct the input data but also generate new samples
by sampling from the learned Gaussian distribution. The learned deep
representation from encoding can be used an representation of the
higher dimensional the input. Methods based on them can perform un-
supervised anomaly detection [36]. Several studies have demonstrated
the effectiveness of AE/VAE-based models for novelty detection in vari-
ous domains, such as computer vision and speech recognition [40]. For
instance, in computer vision, AE/VAE-based models have been used for
anomaly detection in images and video sequences [41]. These models
have also been applied to speech recognition tasks, where they have
been used for detecting unusual or unexpected speech patterns [37].

GANs [42] are a type of deep generative model that consist of two
neural networks: a generator network and a discriminator network.
Unlike Autoencoder, while GANs have been effective in generating
new samples. they do not have the encoder to produce correspond-
ing embedding for a given sample. To overcome this challenge, the
ADGAN [43] (Anomaly Detection GAN) method has been proposed.
This method searches for a good representation in the latent space for
a given sample and if such a representation is not found, the sample is
deemed novelty. However, this method may be with high computation
cost, especially when dealing with large data sets.

Previous works have shown that human perception of images is
largely based on low-frequency components, while deep neural net-
works such as convolutional neural networks (CNNs) can heavily rely
on high-frequency components for decision-making. To address this
issue, researchers have proposed methods to suppress the influence
of high-frequency components, such as CNN kernel smoothing and
spectrum-oriented data augmentation. These methods aim to improve
the performance of CNNs in anomaly detection by reducing their
reliance on high-frequency components. In addition to these methods,
recent works have also found that adversarial attacks on low-frequency
components are difficult to detect, leading to the proposal of meth-
ods that target the phase spectrum. These frequency-based methods
focus mainly on sensory anomaly detection, especially on detecting
adversarial examples.

3. Methodology

The problem we aim to solve is to differentiate concept drift and
novelty further when distribution change has been detected. In this
section, we first present a formal definition of the distribution change
phenomenon in stream data mining, and its two possible root causes,
namely concept drift and novelty. After that, we introduce the distance
measurement which is the foundation of our two sample test statistic.
Finally, we present the novelty-aware concept drift method and its
supporting theories.

3.1. Problem definition

Data stream mining and statistics research are focused on analyzing
the continuous flow of instances generated in real-time. The sequence
of data generated in a stream is denoted as {s,s,,...,s;,...}, i € N*.
The size of the sequence may be unbounded and infinite, making it a
challenging task to analyze.
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In unsupervised data stream mining, each instance is represented
as a d-dimensional vector s; = [xi' s x‘_z, ,x,.d ], where x; € RY represents
the jth feature of the ith sample s;. On the other hand, in supervised
classification tasks, each instance s; = [x},x,, .. ,xf, ;] is represented
as a pair (X;,y;) of input X and classification output Y, with the last
component y; representing the assigned label and taking values from a
finite set of classes with a finite number of values Y = {c¢;, ¢y, ..., ¢, }-
m € Nt, where m € N* is a finite number. In a probabilistic setting,
each observation in the data stream s; can be considered as a pair of
random variables (X;, ;) drawn from the sample space S ¢ RY x R!.
X; =[x, x2,...,x9] takes values in X c R?, and y, € Y c R!. The
underlying process P(X,y) that generates (X;,y;) can be determined
by the probability of observing P(X), and the posterior probability
P(y | X). The classifier, f X — Y, trained on the data sets
(XY, reflects the generating process P(X, y), aiming to make the
probability P(f(X;; X1,y1, X2, ¥, .-, X, ¥,) # ¥;) as small as possible.
This is based on the assumption that the data sets in the stream are
independent identically distributed (i.i.d.) according to the distribution
P(X,y). In other words, the classifier is trained to generalize the un-
derlying generating process and minimize the probability of observing
S Xy, X0,y s Xy ¥) £ 3

In practical applications, the probability distribution of the un-
derlying data generating process P(X,y) is often not consistent over
time. The joint probability distribution P(X,y) can change and cause
a decrease in the performance of previously trained classifiers f
X — Y. This change can occur in two ways. Firstly, it can occur in
the conditional probability of observing y given X, denoted as P(y |
X), leading to real drift, which results in an increase in the error
rate due to a shift in the posterior distribution of class membership.
Secondly, change can occur in the probability of observing X, denoted
as P(X), leading to virtual drift. In this case, only the feature space
{X} changes and does not affect the posterior distribution of class
membership P(y | X). Real drift can be caused by correlation change
between input X and output y, known as concept drift, or caused by
the emergence of unknown concepts, that is new values of y that do not
exist in the label space of training data, known as novelty. Real drift,
in particular, can cause the models to become outdated and produce
incorrect results, as the posterior distribution of class membership
has shifted. This highlights the importance of continuously monitoring
and updating models to adapt to changes in the data distribution.
On the other hand, virtual drift can be easier to handle as it only
affects the feature space and not the posterior distribution. However,
it is still important to detect and adapt to these changes to maintain
the performance of the models. Due to the fact that in real-world
stream data mining applications, true label data is often unavailable,
our method is designed to works under unsupervised conditions. In
classification tasks, the new incoming data sets will be clustered into
several subsets according to their predicted labels y;.. In this paper, we
monitor concepts drifts by supervising the distribution change of each
cluster {X; @ f(X;; X1,y X05 V25 o> Xo V) =y;.}.

In unsupervised situations, one commonly employed approach to
detect distribution changes is through the use of two sample testing
methods. These methods aim to determine if two batches of data sets
are from the same underlying distribution, represented by the probabil-
ity density function. If the results of the two sample test are statistically
significant, it is considered that a concept drift has occurred. However,
it is important to note that this approach can lead to a higher rate of
false alarms triggered solely by changes in the distribution between
classes. This is because the change in P(x) does not necessarily translate
to a change in the underlying relationship between the features and
the class labels. This relationship can be better understood through the
Law of Total Probability P(X) = Y .y P(y = ¢;) * P(X | y = ¢;). From
this equation, we can see a changel in the ratio between classes can
also result in a change in P(x), but this does not necessarily mean that
the classification accuracy is impacted. In such cases, it is important to
consider the underlying changes in prior probabilities P(y = ¢;) and the
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corresponding changes in the conditional probabilities P(X | y = ¢;).
However, it is also important to note that the classification boundaries
may remain unchanged even in the presence of such changes. To
address this challenge, stream data mining researchers often focus their
efforts on detecting changes in the distribution of p(X | y = ¢;) rather
than the entire input data set. The assumption is that if the distribution
of a particular class changes, it is possible that the classifier boundary
will change as well. This requires the monitoring and analysis process
is typically performed on a per-class basis. This approach is particularly
useful in dealing with class imbalanced classification problems, where
the majority class may overwhelm the minority class. By monitoring
and analyzing the distributions of each class separately, the impact of
the majority class on the minority class can be minimized. In practice,
we typically test for changes in P(x | y = ¢;) using statistical
methods. These predicted labels are usually available without incurring
additional costs, making the process of detecting changes in distribution
more efficient and cost-effective.

3.2. Radial base distance

For high-dimensional data sets, reducing the dimensionality of the
data sets can provide several key benefits. The first benefit is related to
memory and computation resource efficiency. By reducing the dimen-
sionality of the data sets, it is possible to store only a portion of the
feature set, rather than the entire set. This reduction in the amount of
data stored can help to conserve valuable memory resources and reduce
the computational demands of the analysis process. The second benefit
of reducing the dimensionality of high-dimensional data sets is related
to model accuracy. Removing redundant features can help to improve
the accuracy of models by reducing the potential for over-fitting. Over-
fitting occurs when a model becomes too closely tailored to the training
data, leading to poor generalization performance on unseen data. By
reducing the number of features, it is possible to avoid over-fitting and
to improve the accuracy of the models used in stream data mining and
machine learning.

In this regard, our approach involves extracting a single feature for
use as the input for detection. One popular dimension reduction method
that can be used in this context is principal component analysis (PCA).
PCA assumes that variance corresponds to the information content of
the data set, and the method is widely used for reducing the dimen-
sionality of high-dimensional data sets. In our approach, we choose
a distance metric that has enough discrimination power to accurately
represent the original high-dimensional points in memory. In contrast
to other distance based methods that might choose the centroid of the
data set, we instead choose a fixed point, denoted as B = (b, b,, ..., b,).
We name it as radial base, which can be defined as follows:

Definition 3.1 (Radial Base). The radial base is a fixed point we choose,
which locates in the subspace of the entire feature space. It has the
following property: distance from it is more sensitive to change in the
directions of the subspace.

For any n dimensional sample X = (x;,x,,...,x,), the Euclidean
distance from radial base B is named as radial distance, denoted as

d(X): d(X)=|X = Bl =/ Xi_,(x; — b;)?

From the above equation, if we want to enlarge the sensitivity of d(X)
with respect to x; the derivative along x;, denoted as %, should be
9d(X) _ x;=b; '

made larger. = o = N

From the above equation, we can refer that if the x;—b; is larger relative
to the other features x; — b;, the derivative KXX) will be larger. That
means the radial distance feature d will be more sensitive to the change
of x;. The radial base should be relatively close to the data set, but
the values of the features that are of primary interest in the detection
process are relatively far from the mean. Algorithm 1 presents the radial

base initialization process. The radial distance is the feature we perform
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drift detection on. This approach allows us to more effectively capture
the important information contained in the data set, while reducing
the memory requirements and computational demands of the analysis
process.

To ensure that the radial distance feature is more sensitive to
changes in the features related to a particular class, a radial distance
base is chosen separately for each class. In neural networks, each class
has its own feature subspace more related with it. The choice of a
separate radial distance base for each class ensures that the radial
distance feature is more sensitive to changes happen in that subspace.
By carefully choosing the location of the radial distance base, we
can control the sensitivity of the subspace and better understand the
changes occurring in the data set over time. This ability to control the
sensitivity for changes in the subspace provides a flexible and efficient
tool for detecting changes and making informed decisions about how to
adapt our models to these changes. Radial distance also has a property
that will help to differentiate concept drift from novelty. For each
class samples, if they have part of new class samples in it, the radial
distance feature of new class samples should be larger than the existing
class samples. If we remove this larger percentile radial distances, the
remaining part should have the same distribution with the training data
set radial distances. But if the distribution change are concept drifts, the
remaining part still have different distribution with the training data set
radial distances. By utilizing this property of radial distances, we can
further differentiate concept drift from the novelty.

Fig. 1 illustrates an exemplary concept drift data sets, reflected on
probability density function (PDF) and cumulative distribution func-
tion of radial base distances. Sub-figure (a) illustrates two-dimensional
samples from training data set and test data set in different colors,
generated by multivariate Gaussian distribution with different means
to simulate the concept drift. The radial base distances of the samples
are computed against the radial base on the dimension where the
distribution change occurs, displayed as dashed line. Sub-figure (b)
demonstrates the PDF variation of the radial base distances of the two
sample sets. Sub-figure (c) demonstrates the CDF variation of the radial
base distances of the two sample sets.

Comparatively, Fig. 2 illustrates an exemplary novelty data sets,
reflected on probability density function (PDF) and cumulative dis-
tribution function of radial base distances. Sub-figure (a) illustrates
two-dimensional samples from training data set and test data set in
different colors, generated by multivariate Gaussian distribution. No-
ticeably, the distribution of the majority of the test samples (marked
in orange crosses) does not change comparing to training samples.
However, some test samples (marked in orange triangles) are gener-
ated by multivariate Gaussian distribution with different means and
variances to simulate the novelty. The radial base distances of the
samples are computed against the radial base on the dimension where
the distribution change occurs, displayed as dashed line. Sub-figure (b)
demonstrates the PDF variation of the radial base distances of the two
sample sets. Sub-figure (c) demonstrates the CDF variation of the radial
base distances of the two sample sets.

3.3. Novelty-aware concept drift detection

In our proposed method, we store the data points in an efficient
manner. Specifically, we utilize a set of radial distances to represent
the data points, rather than the original data points themselves. This
is because distances are simply real numbers with one dimension,
allowing for a significant reduction in memory usage compared to
other representations. To adjust the discrimination power of the radial
distances for different subspaces of the data sets, we introduce the
concept of a radial base, which is a flexible and adjustable parameter.
Given a specific class of data set {s;*} with class label ¢, the radial
distances between sf" and the radial base B are computed, denoted as
dist] = ‘ sf" — B% ‘ These radial distances serve as a new representation
of the data points, generating a new data set {distf"

} from the original
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Fig. 1. Concept drift reflected on probability density function (PDF) and cumulative distribution function of radial base distances. Sub-figure (a) illustrates two-dimensional samples
from training data set and test data set in different colors, generated by multivariate Gaussian distribution with different means to simulate the concept drift. The radial base
distances of the samples are computed against the radial base on the dimension where the distribution change occurs, displayed as dashed line. Sub-figure (b) demonstrates the
PDF variation of the radial base distances of the two sample sets. Sub-figure (c) demonstrates the CDF variation of the radial base distances of the two sample sets.
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Fig. 2. Novelty reflected on probability density function (PDF) and cumulative distribution function of radial base distances. Sub-figure (a) illustrates two-dimensional samples
from training data set and test data set in different colors, generated by multivariate Gaussian distribution. Noticeably, the distribution of the majority of the test samples (marked
in orange crosses) does not change comparing to training samples. However, some test samples (marked in orange triangles) are generated by multivariate Gaussian distribution
with different means and variances to simulate the novelty. The radial base distances of the samples are computed against the radial base on the dimension where the distribution
change occurs, displayed as dashed line. Sub-figure (b) demonstrates the PDF variation of the radial base distances of the two sample sets. Sub-figure (c) demonstrates the CDF

variation of the radial base distances of the two sample sets.
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Algorithm 1: Radial Base Distances

input : X, training data set of a specific class;
ZL, activation of layer L in neural network model;
v, threshold of layer activation values, by default 0.5;
4, integral multiplier of Z j!‘(x) , by default 2.
output: radial distance base.
referential radial distances.

1 forall input x in X do

2 get layer activations Z%(x) for input x;

3 foreach neuron j in layer L do

4 L find Z jL(x) as the mean activation value of neuron j

given all x,,,;,;

5 initialize vector B as radial distance base

6 B=A*(neuron j in L: ZJ.L(x));

7 find threshold activation value ¢ of all values in B according to
threshold y;

8 foreach value b in B do

9 if b <t then

10 L set b 1= ZjL(x);

11 initialize R := empty list;

12 forall input x in X do

13 get activation Z%(x) for input x;

14 compute Dist(Z*(x), B), the distance from activation vector
to base vector;

15 append Dist(Z%(x), B) to R;

16 return B as the radial distance base; R as the referential radial
distances.

data set { sfk }. The process is repeated for subsequent batches of data,
yielding a sequence of corresponding distance data sets that represent
the evolution of the original data set over time. To detect potential
drifts in the data distribution, we must choose methods that are suitable
for one-dimensional settings. One such method is the Kolmogorov—
Smirnov (KS) test, which can be used to compare the distribution of
the new data set {dist*, } to that of the original data set {disr;* }.If
the two distributions are found to be different, it can be inferred that
the two data sets come from different distributions, thereby indicating
the presence of a drift in data set {sf" }.

If a neural network has / layers, with g, g,, ..., g neurons in each
layer, the vector representation of each layer’s outputs, denoted as Z',
72, ..., Z', will have the dimensionality g;, g,, ..., g The dimension
of this representation is equal to the number of neurons in the layer Z*
and is typically quite large. The nodes ziL in the hidden layer Z* of the
network can be calculated using the equation ziL = f(w - x + b), where
w represents the weights, b is the bias vector, and f is the activation
function. Neural network’s hierarchical learning architecture allows
them to automatically extract representations of varying complexities
from the input data. We choose a vector representation of some selected
hidden layer to represent the original input data. In comparison to
the original input data, activation values are a more meaningfully
extracted representation, and testing for concept drift on these values
can make the detection process more efficient. Our detection method
can be applied to an already trained neural network model during the
reference stage, when the model is being used to process new data.
Our method chooses one of the layer’s activation values as the inputs
for the drift detection process. If a concept drift occurs, the outputs of
the medium layers in the network will also reflect the drift. Activation
values of different layers provide different levels of representation of
the data, and using our method on the outputs of different layers can
help us to identify different sources of concept drift, which can inform
the development of appropriate remedial measures. The output layer

Neurocomputing 617 (2025) 128933

is typically more constrained in structure than the hidden layers, and
typically represents the final classification results. This layer is less
likely to contain many of the original features present in the input data.
The activation function is a crucial component of the calculation
and is typically chosen from among several commonly used functions,
such as the hyperbolic tangent (Tanh) function, the logistic function,
or the rectified linear unit (Relu) function. These activation functions
are characterized by their S-shaped curve, which maps the real-valued
input to a small value range, such as between zero and one. The
outputs of each neuron tend to cluster around these values, poten-
tially simulating the behavior of biological neurons. In classification
settings, the nodes in each layer of the neural network possess two
important properties. Firstly, the activated neurons for samples of the
same category are similar, and secondly, the activated neurons for
samples of different categories are different. We leverage these two
properties by detecting drifts on each class cluster. For each class clus-
ter, we can choose the radial base based on the dimensions with higher
(A% Z5y if (zP) > percentile(ZL, y)

values B(ZL,y) = < - / >(A is

zk otherwise

the integral multiplier of Z I.L(x), V4 jL(x) is the mean activation value of
neuron j given all x,,.,,), as these are more likely to provide useful
information for that class. In particular, for a specific class of data
cluster, some neurons may have values that are higher, while others
may be lower and near zero. By considering only the dimensions with
higher values, we can increase the accuracy and efficiency of the
drift detection method. By adjusting the location of the radial distance
base, we can effectively tune the sensitivity of detection methods on
different features. This is particularly useful when applied to neural
network models, because the activated neurons for samples of different
categories are different.

When comparing two batches of one-dimensional radial distance
data sets in the drift detection phase, our method utilizes the KS test
instead of a permutation test. This further reduces the computation
cost, while still providing robust results in many cases. It is important
to note that our method may not perform as well in situations where
changes to unrelated features for that class cluster, as it introduce a bias
that affects the accuracy of the results. But changes in related features
are more prevalent, as is often the case in real-world applications. In
addition to its low computation cost, another advantage of our method
is that it reduces the data storage requirements by using radial distances
as the sole feature representation for each data point. Unlike traditional
multidimensional two-sample test methods, our method does not re-
quire the restoration of the entire high-dimensional data set. Instead,
we only need to compute and store the radial distances. This results in
a significant reduction in memory requirements. The complexity of the
proposed algorithm is O(n) for computing high-dimensional distance
from each sample point to the radial base and O((n + m)log(n + m)) for
computing the KS-test statistics.

In order to distinguish novelty from concept drift, we further
examine difference in the radial base distances {dist** } for these two
types of distribution changes. Novelty samples reflected in radial base
distances present higher values. We leverage this property and selecting
a percentile value d(P) = percentile(distfjﬂ,P), (P is the re-sampling
percentile), such that higher values of radial distancesD;est={distfeksr,
distfjﬂ > d(P)}, which correspond to the novelty samples can be ex-
cluded. The remaining radial distances of the test samples D,,,,={dist; ,
dist’* < d(P)}should have same distribution as those of the train-
ing samples D, ={dist;" . dist* =~ < d(PD}(P1 is the training
re-sampling percentile)). Thus, we first apply KS test on remaining
test samples D,,,, against training samples D,,,;,, Then we apply KS
test again on the full samples{dist™* 3}, {dist’* }. If the first test

frain test

KS(D,,5> Dyrai) indicates same distribution but second test KS({dist’*

train

%, {distfé‘ﬂ }does not, that means the test data has novelty distribution

change. On the other hand, if both tests indicate different distributions,
that means the test data has concept drift distribution change.
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Fig. 3. Concept drift and novelty distribution changes reflected on radial base distances between training data and test data. Sub-figure (a) illustrates the partial higher values
of radial distances caused by the novelty distribution change from the test data (marked in orange curve). Given a percentile to exclude these high values, the remaining radial
distances of the test data and the training data present same distributions. Sub-figure (b) illustrates the overall higher values of radial distances caused by the concept drift
distribution change from the test data (marked in orange curve). Given a percentile to exclude the high values, the remaining radial distances of the test data and the training

data still present significantly different distributions.

Fig. 3 illustrates the difference between concept drift and novelty
distribution changes, reflected on radial base distances between train-
ing data and test data. Sub-figure (a) illustrates the partial higher values
of radial distances caused by the novelty distribution change from the
test data (marked in orange curve). Given a percentile to exclude these
high values, the remaining radial distances of the test data and the
training data present same distributions. Sub-figure (b) illustrates the
overall higher values of radial distances caused by the concept drift
distribution change from the test data (marked in orange curve). Given
a percentile to exclude the high values, the remaining radial distances
of the test data and the training data still present significantly different
distributions.

Algorithm 2 provide our novelty-aware concept drift detection
method using activation outputs of neural network’s hidden layer.

4. Experimental evaluation

In this section, we evaluate the proposed novelty-aware concept
drift detection method with eight experiments, grouped into four sec-
tions. Experiment 1 visualizes the proposed statistic — radial based
distance, demonstrating differences between concept drift and novelty
distribution changes. Experiments 2-5 are designed to show the dis-
tribution change detection accuracy of the proposed method and the
impact of various data dimensions and sample sizes on the accuracy and
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Algorithm 2: Novelty-aware Concept Drift Detection (NACD)

input : X, new input data samples from test dataset or stream,
predicted as a specific class;
ZL, activation of layer L in neural network model;
P, re-sampling percentile;
B, radial distance base;
Dist, distance function, by default Euclidean;
R, referential radial distances;
T, mutable list of testing radial distances, by default
empty list;
0, confidence threshold for drift detection, by default
0.05.

output: boolean concept drift detection result.
boolean novelty detection result.

get activation Z%(X) for input X;

compute T = Dist(Z*(X), B), the distance from activation
vector to base vector;

append Dist(Z1(x), B) to the end of T;

N

w

get the test percentile value d(P) according to percentile P;

re-sample test samples 7, according to P;

re-sample retraining samples R, according to P1;

apply Kolmogorov-Smirnov test to R, and T, and get P-value
KS(R,.T,);

if KS(R,.T,) < 0 then

N o uh

®

9 L return True (drift), False (no novelty);
10 else
11 apply Kolmogorov-Smirnov test to R and T and get P-value

KS(R,T);
12 if KS(R,T) < 6 then
13 L return False (no drift), True (novelty);

14 else
15 L return False (no drift), False (no novelty)

efficiency. Experiments 6-7 apply our method to neural networks with
real-world image classification data sets, to verify its detection accuracy
for both concept drift and novelty. Finally, experiment 8 demonstrates
the impact of different choices of algorithm parameters on the detection
accuracy.

4.1. Novelty-aware radial base distance

Our method is based on the radial base distance statistic, to measure
the distribution changes of neural network layer activation. Radial base
distance not only serves as the foundation of the proposed detection
method, the statistic itself is a general tool with the potential for
developing new test methods. Thus, we first design experiment to
further demonstrate the behavior of the statistic under different kinds
of data distribution changes.

Experiment 1. Algorithm visualization

In this experiment, we generate two sample sets in Gaussian dis-
tribution, with different parameters to simulate radial base distances
computed from data samples with concept drift and novelty distribution
changes between training data and test data. As illustrated in Fig. 4,
sub-figure (a) shows the distribution difference between training data
(marked in blue line) and test data (marked in orange bar) with concept
drift distribution change. The training data is generated in Gaussian
distribution with mean 0, and the test data with mean 0.5. They have
same variance 1.0. Sub-figure (b) shows the distribution difference
between training data (marked in blue line) and test data (marked in
orange and green bars) with novelty distribution change. The training
data is generated in Gaussian distribution with mean 0, variance 1.0.
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Fig. 4. Two sample sets generated in Gaussian distribution, with different parameters
to simulate radial base distances computed from data samples with concept drift and
novelty distribution changes between training data and test data. Sub-figure (a) shows
the distribution difference between training data (marked in blue line) and test data
(marked in orange bar) with concept drift distribution change. The training data is
generated in Gaussian distribution with mean 0, and the test data with mean 0.5.
They have same variance 1.0. Sub-figure (b) shows the distribution difference between
training data (marked in blue line) and test data (marked in orange and green bars)
with novelty distribution change. The training data is generated in Gaussian distribution
with mean 0, variance 1.0. The test data consists of two parts. The majority of the
test samples are still generated with mean 0.5 and variance 1.0. A small part of test
samples are generated with mean 0.2, variance 0.1. This is to simulate the high values
of the radial base distances caused by the novelty samples.

The test data consists of two parts. The majority of the test samples
are still generated with mean 0.5 and variance 1.0. A small part of test
samples are generated with mean 0.2, variance 0.1. This is to simulate
the high values of the radial base distances caused by the novelty
samples.

In the proposed algorithm, we sort the radial base distances in
ascending order for training data, test data with concept drift and test
data with novelty respectively. As illustrated in Fig. 5, the radial base
distances of the training data (marked in blue line) present a smooth
curve, which is considered as the reference. The radial base distances
of the test data with concept drift (marked in orange line) show overall
higher values, but remain the smooth curve. The radial base distances
of test data with novelty (marked in green line) first show a smooth
curve in low value range, then a noticeable increase in the high value
range, which is caused by the novelty samples. With percentile set to
800 (out of total sample size 1000), P1 and P2 are the radial base
distance values corresponding to the percentile for both concept drift
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Table 1
Additional parameters of comparison methods used in the experiments.

Method Parameter Symbol Value
Ours Percentile threshold c 0.8
CM Euclidean distance threshold d, 0.05
MMD Kernel bandwidth a 0.01
KDQ Maximum number of points in a cell T 20
Minimum side length of a cell 8 0.01
LDD Neighborhood ratio P 0.1
Drift significance level a 0.05

data and novelty data. R1 and R2 are the referential percentile on the
radial base distances of the training data corresponding to P1 and P2
respectively.

Finally, we re-sampled radial base distances for the training data
according to the referential percentiles, and compare them with the
percentile samples of the radial base distances of the test data with
concept drift and novelty. As illustrated in Fig. 6, sub-figure (a) shows
that the re-sampled radial base distances of the test data with concept
drift (marked in orange line) overall have higher values than the re-
sampled radial base distances of the training data (marked in blue line).
Sub-figure (b) shows that the re-sampled radial base distances of the
test data with novelty (marked in green line), have the almost same
distribution as the re-sampled radial base distances of the training data
(marked in blue line).

This experiment shows that the re-sampled radial base distances
for both training data and test data will have different distribution for
concept drift but same distribution for novelty. This property of the
radial base distances is the foundation of the proposed novelty-aware
concept drift detection method.

4.2. Drift and novelty detection

In this section, we design experiments with synthetic data to first
show the detection accuracy of the proposed method for both concept
drift and novelty, and then extend the data to various dimensions and
sample sizes to show their impact on its accuracy and efficiency.

For comparison, we choose four representative works of distribution
change detection method — competence model-based drift detection
(CM) [27], Maximum mean discrepancy(MMD) [6], local drift degree-
based drifted instance selection algorithm(LDD) [44], and kdg-tree
based change detection method(KDQ) [45]. Unless indicated otherwise,
the training data and test data are generated with multivariate Gaussian
distribution with 15 dimensions, mean 1.0 in each dimension and cor-
relation 1.0 between dimensions. The window size for distribution tests
is set to 200; the significance level is set to 5% for all the algorithms.
Algorithm specific parameters are listed in Table 1. We repeat the full
process 10 times, and report the mean detection accuracy.

Experiment 2. Detection accuracy

In this experiment, we evaluate the performance of the proposed de-
tection method against the various magnitude of distribution changes.
First, for the test data, we introduce an offset ranging in (0.004, 0.005,
0.006, 0.007) to simulate concept drift. A total of 100 batches of
training data and test data are generated, and we apply our method,
CM, MMD, KDQ and LDD to the batches to compare their concept drift
detection accuracy. As shown in Fig. 7(a), the detection accuracy of
all five methods increase as the offset of the drift increases. However,
our method outperforms other methods by a large margin in all cases.
This indicates that our method has higher sensitivity on concept drift
distribution changes.

Next, this time for the test data, we apply an offset ranging in (0.02,
0.025, 0.03, 0.035) to a small portion of the samples (20%) to simulate
novelty samples. A total of 100 batches of training data and test data
are generated, and we apply our method, CM, MMD, KDQ and LDD
to the batches to compare their novelty detection accuracy. As shown

10
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Fig. 5. Radial base distances sorted in ascending order for training data, test data with
concept drift and test data with novelty respectively. The radial base distances of the
training data (marked in blue line) present a smooth curve, which is considered as
the reference. The radial base distances of the test data with concept drift (marked in
orange line) show overall higher values, but remain the smooth curve. The radial base
distances of test data with novelty (marked in green line) first show a smooth curve in
low value range, then a noticeable increase in the high value range, which is caused
by the novelty samples. With percentile set to 800 (out of total sample size 1000),
P1 and P2 are the radial base distance values corresponding to the percentile for both
concept drift data and novelty data. R1 and R2 are the referential percentile on the
radial base distances of the training data corresponding to P1 and P2 respectively.

in Fig. 7(b), the detection accuracy of all five methods increase as the
offset of the novelty increases. However, our method outperforms other
methods in four cases and ranks the second in the remaining one case.
This indicates that our method has relatively high sensitivity on novelty
distribution changes.

Experiment 3. High dimension

In this experiment, we evaluate the impact of various dimensions of
the data on the detection accuracy of proposed method. First, for the
test data, we introduce an offset 0.007 to simulate concept drift. How-
ever, for different batches, the offset is applied to different dimensions
varying in range 3-7. A total of 100 batches of training data and test
data are generated, and we apply our method, CM, MMD, KDQ and
LDD to the batches to compare their concept drift detection accuracy.
As shown in Fig. 8(a), the detection accuracy of all five methods
increase as the offset is applied to more dimensions. However, our
method outperforms other methods in most cases. With similar settings,
we fix the number of drift dimensions to 7, and vary the number of
total dimensions of the data in range 20-70. As shown in Fig. 8(b),
the detection accuracy of all five methods remains unchanged as total
dimension increases. However, our method outperforms other methods
in all cases. This indicates that our method has higher sensitivity on
concept drift distribution changes in higher dimensions.

Next, for the test data, we introduce an offset 0.035 to a small part
of the test samples (20%) to simulate novelty. However, for different
batches, the offset is applied to different dimensions varying in range
3-7. A total of 100 batches of training data and test data are generated,
and we apply our method, CM, MMD, KDQ and LDD to the batches to
compare their concept drift detection accuracy. As shown in Fig. 9(a),
the detection accuracy of all five methods increase as the offset is
applied to more dimensions. Our method has similar performance as
CM but lower than MMD. With similar settings, we fix the number
of drift dimensions to 7, and vary the number of total dimensions of
the data in range 20-70. As shown in Fig. 9(b), the detection accuracy
of all three methods remains unchanged as total dimension increases.
Our method ranks the second in most cases and lower than MMD.
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Fig. 6. Radial base distances re-sampled for the training data according to the
referential percentiles, and compared with the percentile samples of the radial base
distances of the test data with concept drift and novelty. Sub-figure (a) shows that
the re-sampled radial base distances of the test data with concept drift (marked in
orange line) overall have higher values than the re-sampled radial base distances of
the training data (marked in blue line). Sub-figure (b) shows that the re-sampled radial
base distances of the test data with novelty (marked in green line), have the almost
same distribution as the re-sampled radial base distances of the training data (marked
in blue line).

This shows that our method has comparative sensitivity on novelty
distribution changes in different dimensions.

Experiment 4. Window size

In this experiment, we evaluate the impact of various window sizes
of the data on the detection accuracy of proposed method. First, for
the test data, we introduce an offset 0.007 to simulate concept drift.
For different batches, the window sizes of training data and test data
vary in range (100, 150, 200, 250). A total of 100 batches of training
data and test data are generated, and we apply our method, CM,
MMD, KDQ and LDD to the batches to compare their concept drift
detection accuracy. As shown in Fig. 10(a), the detection accuracy of
all three methods increase as the window size increases. However, our
method outperforms other methods in most cases. This indicates that
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Fig. 7. Concept drift and novelty distribution change detection accuracy against the
various magnitude of distribution changes. For the test data, in sub-figure (a), an offset
ranging in (0.004, 0.005, 0.006, 0.007) is introduced to simulate concept drift; in sub-
figure (b), an offset ranging in (0.02, 0.025, 0.03, 0.035) is applied to a small portion
of the samples (20%) to simulate novelty samples. A total of 100 batches of training
data and test data are generated, and we apply our method, CM, MMD, KDQ and LDD
to the batches to compare their concept drift detection accuracy.

our method has higher sensitivity on concept drift distribution changes
with different window sizes.

Next, for the test data, we introduce an offset 0.035 to a small part
of the test samples (20%) to simulate novelty. For different batches,
the window sizes of training data and test data vary in range (100,
150, 200, 250). A total of 100 batches of training data and test data
are generated, and we apply our method, CM, MMD, KDQ and LDD
to the batches to compare their concept drift detection accuracy. As
shown in Fig. 10(b), the detection accuracy of all five methods increase
as the window size increases. However, our method outperforms other
methods in all cases. This shows that our method has comparative
sensitivity on novelty distribution changes with different window sizes.
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Fig. 8. Detection accuracy of concept drift distribution changes in different dimensions.
A total of 100 batches of training data and test data are generated. In sub-figure (a),
fix the number of total dimensions to 15 and vary the number of drift dimensions in
range 3-7. In sub-figure (b), With similar settings, fix the number of drift dimensions
to 7, and vary the number of total dimensions of the data in range 20-70.

Experiment 5. Efficiency

Our method requires a one-time preprocessing step to transform the
input data into a suitable one-dimensional value. This step involves cal-
culating the distance from the radial base, which has a time complexity
of O(n), where n is the number of data points. In the K-S test stage, the
complexity is O((n + m)log(n + m)). The computational complexity of
MMD is at least O(n?). The CM method also have a time complexity
of O(n?) and Permutation Test in CM method adds an additional factor
of N to the complexity, resulting in O(N x »?). N is the number of
permutations. In this experiment, we measure the computation time
cost of proposed method with data sets of various dimensions and
window sizes and compare it with other methods. The running times
are obtained in a server environment with Intel Xeon 2.60 GHz CPU,
256 GB memory and 64 bit Red Hat Linux Operating System. The
programs are implemented in Python 3.9 with numpy, scipy library
stack. No parallel computation is used for easier performance analysis.

The result is shown in Fig. 11. The key observations is that, the
detection process of our method is very efficient, outperforms other
methods by approximately two magnitudes. Sub-figure (a) shows the
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Fig. 9. Detection accuracy of novelty distribution changes in different dimensions. A
total of 100 batches of training data and test data are generated. In sub-figure (a), fix
the number of total dimensions to 15 and vary the number of novelty dimensions in
range 3-7. In sub-figure (b), With similar settings, fix the number of novelty dimensions
to 7, and vary the number of total dimensions of the data in range 20-70.

computation time of detection methods with data of different number
of dimensions, ranging in 20-70. Sub-figure (b) shows the computation
time of detection methods with data of different window sizes, ranging
in 100-250. Our method is about 100 times faster than other methods.
As the number of dimensions increase, the computation time of all
three method increases linearly. Noticeably, comparing to our method
and other methods computation time increases faster as window size
increases. LDD consumes the most computation time.

4.3. Real-world data

In this section, we establish experiments to apply the proposed
method to neural networks on real-world image classification tasks,
to verify its detection accuracy for both concept drift and novelty.
We use the CIFAR-10 data set [46], which is a image classification
benchmark data set. The data set consists of 60000 32 x 32 color
images in 10 classes, with 6000 images per class. There are 50 000
training images and 10 000 test images. The data set is divided into five
training batches and one test batch, each with 10 000 images. The test
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Fig. 10. Detection accuracy of concept drift detection and novelty detection on data
with different window sizes in range 100-250. A total of 100 batches of training data
and test data are generated. Sub-figure (a) shows the number of detected concept drift
out of 100. Sub-figure (b) shows the number of detected novelty.

batch contains exactly 1000 randomly-selected images from each class.
The training batches contain the remaining images in random order,
but some training batches may contain more images from one class than
another. The classes are completely mutually exclusive. The base neural
network used for the detection methods has a typical convolutional
neural network structure, as shown in Table 2.

Experiment 6. Concept drift detection

In this experiment, we evaluate the performance of the proposed de-
tection method with real-world image classification data with concept
drift. As shown in Fig. 12(a), non-modified CIFAR-10 images are used
as training data for the neural network. Then for the test data, as shown
in Fig. 12(b), Gaussian blurring is applied to the CIFAR-10 images to
simulate concept drift.

We apply our method, CM, MMD, KDQ and LDD to two randomly
selected layers of the base neural network, namely F1 and F3 as listed
in Table 2, to detect the concept drift in the test data. Fig. 13(a)
shows the concept drift detection result on neural network layer F1
for different concept drift intensity, which is simulated by varying the
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Fig. 11. Computation time of the detection methods on data with concept drift and
novelty. Lower values means higher computation efficiency. Sub-figure (a) shows the
computation time of detection methods with data of different number of dimensions,
ranging in 20-70. Sub-figure (b) shows the computation time of detection methods
with data of different window sizes, ranging in 100-250. Our method is about 100
times faster than other methods.

kernel bandwidth parameter of the Gaussian blur within range 0.46-
0.47. Fig. 13(b) shows the concept drift detection result on neural
network layer F3 for different concept drift intensity, which is simu-
lated by varying the kernel bandwidth parameter of the Gaussian blur
within range 0.55-0.60. The results show that the proposed method
achieves relatively high accuracy comparing to other methods. KDQ
and CM detect less drifts than other three methods on layer F1. MMD
detects less drifts than other four methods on layer F3.

Experiment 7. Novelty distribution change detection

In this experiment, we evaluate the performance of the proposed
detection method with real-world image classification data with nov-
elty. As shown in Fig. 14(a), non-modified CIFAR-10 images are used as
training data for the neural network. Then for the test data, as shown
in Fig. 14(b), new image categories that was not used for training is
added to test data to simulate novelty distribution change.

We apply our method, CM, MMD, KDQ and LDD to two randomly
selected layers of the base neural network, namely F1 and F3 as
listed in Table 2, to detect the novelty distribution change in the test
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Table 2
Convolutional neural network structure used as the base neural network for concept drift and novelty
distribution change detection.

Layer ID Layer type Parameters

Cco Conv2d size 3 x 32, kernel size 3 x 3, stride 1 x 1, padding 1 x 1

C1 BatchNorm2d size 32, eps 1e—05, momentum 0.1

C2 ReLU

C3 Conv2d size 32 X 64, kernel size 3 x 3, stride 1 x 1, padding 1 x 1
C4 ReLU

C5 MaxPool2d kernel size 2, stride 2, padding 0, dilation 1

Cc6 Conv2d size 64 x 128, kernel size 3 x 3, stride 1 x 1, padding 1 x 1
Cc7 BatchNorm2d size 128, eps 1e—05, momentum 0.1

Cc8 ReLU

c9 Conv2d size 128 x 128, kernel size 3 x 3, stride 1 x 1, padding 1 x 1
C10 ReLU

C11 MaxPool2d kernel size 2, stride 2, padding 0, dilation 1

Cl12 Dropout2d probability 0.05

C13 Conv2d size 128 x 256, kernel size 3 x 3, stride 1 x 1, padding 1 x 1
Cl4 BatchNorm2d size 256, eps 1e—05, momentum 0.1

C15 ReLU

Cl6 Conv2d size 256 x 256, kernel size 3 x 3, stride 1 x 1, padding 1 x 1
C17 ReLU

C18 MaxPool2d kernel size 2, stride 2, padding 0, dilation 1

FO Dropout2d probability 0.1

F1 Linear in features 4096, out features 1024

F2 ReLU

F3 Linear in features 1024, out features 512

F4 ReLU

F5 Dropout2d probability 0.1

F6 Linear in features 512, out features 10

bird bird bird bird

bird

(a) CIFAR-10 original images

bird bird bird bird

bird

(b) CIFAR-10 images with Gaussian blur as concept drift

Fig. 12. CIFAR-10 data set is used for neural network training and concept drift detection. In sub-figure (a), non-modified CIFAR-10 images are used as training data for the
neural network. Then for the test data, as shown in sub-figure (b), Gaussian blurring is applied to simulate concept drift.
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Fig. 13. Concept drift detection result of our method, MMD and CM on two randomly
selected layers of the base neural network, namely F1 and F3 as listed in Table 2.
Sub-figure (a) shows the concept drift detection result on neural network layer F1 for
different concept drift intensity, which is simulated by varying the kernel bandwidth
parameter of the Gaussian blur within range 0.46-0.47. Sub-figure (b) shows the
concept drift detection result on neural network layer F3 for different concept drift
intensity, which is simulated by varying the kernel bandwidth parameter of the
Gaussian blur within range 0.55-0.60.

data. Fig. 15(a) shows the novelty concept drift detection result on
neural network layer F1 for different number of novelty samples added,
within range 20-40. Fig. 15(b) shows the novelty detection result on
neural network layer F3 with similar settings. The results show that the
proposed method achieves relatively high accuracy comparing to other
methods. Noticeably, the detection accuracy of our method and MMD
increases faster than other three methods as the number of novelty

samples increases.
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Parameter analysis

In this part, we demonstrates the impact of different choices of
algorithm parameters on the detection accuracy.

Experiment 8. The impact of percentile and multiplier on detection accuracy
There are two parameters in out method: Percentile (resampling
percentile in novelty distribution change detection) and Multiplier

(integral multiplier of Z/.L(x) in radial base). Both concept drift and
novelty distribution change are evaluated using the CIFAR-10 image
data set. Gaussian blurring of kernel bandwidth 0.56 is applied to
simulate concept drift; 20% of images from new class are added to
simulate novelty distribution change. The result is shown in Fig. 16.
We can see that for concept drift detection, (1) larger Percentile leads
to higher accuracy, which is expected since more samples are used for
the detection; (2) small Multiplier greatly impedes detection accuracy,
yet values larger than 4 have no difference and yield similar result.
Contrastingly, for novel distribution change detection, (1) best result is
acquired using a Percentile lower than but close to the proportion of
the novel samples, which is expected since this maximizes the number
of novel samples used for distinguishing them; (2) Multiplier between
2 and 4 yields best result, since the novel samples only increases a
part of the radial base distances, while overly large multipliers increase
the overall distances which dominate the partial distance distribution
change. Thus, the recommended multiplier is 2 to 5; the percentile
should be chosen according to the estimated proportion of possible
novel samples.

5. Conclusion and further study

In conclusion, the study focuses on the challenges faced by neural
network models in processing streaming data. The research community
has attempted to address these challenges, but existing methods are
unable to distinguish between concept drift and novelty, leading to
inappropriate allocation of model maintenance resources. The proposed
concept drift detection method is novel and capable of distinguish-
ing between the two, making it a promising solution to the problem
of accuracy degradation in real-world applications. Additionally, the
method is more efficient than existing drift detection methods, making
it suitable for use in large-scale neural network applications. Our next
goal is to develop adaptive model maintenance algorithms based on the
statistics output by our new concept drift detection method results. An
alternative research direction could be to extending the algorithm to
regression models and other non-classification tasks.
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bird

cat cat - cat 7 cat cat

(b) CIFAR-10 images not exist in training data as novelty

Fig. 14. CIFAR-10 data set is used for neural network training and novelty detection. In sub-figure (a), non-modified CIFAR-10 images are used as training data for the neural
network. Then for the test data, as shown in sub-figure (b), new image categories that was not used for training is added to simulate novelty distribution change.
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neural network layer F3, with similar settings.
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