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A B S T R A C T

Quasi-zero stiffness (QZS) is highly demanded in passive vibration isolators. Most of the existing 
design methods of QZS vibration isolators are typically based on mechanism designs, where pre- 
defined structural configurations, components, or mechanisms with certain features, such as 
negative stiffness, are required to synthesize the designs. This work introduces topology opti
mization for QZS structure designs, enabling the design of structures without pre-definitions and 
resulting in single-part designs rather than structural assemblies. We propose novel mathematical 
formulations of the objective function based on the QZS force-displacement curve and generic 
mathematical formulations of the optimization problem. An extended moving isosurface 
threshold method is used to solve the formulated optimization problem. In addition, topology 
optimization of metastructures with snap-through features and an alternative design method that 
synthesizes QZS metastructures by combining snap-through structures with positive stiffness el
ements are also presented. The optimized snap-through metastructures are numerically validated 
by nonlinear finite element analysis (NFEA) and experiment, which shows negative stiffness and 
snap-through characteristics. Numerical examples and investigations are presented for the QZS 
structures designed by both optimization and synthesis methods. The NFEA results reveal the QZS 
designs obtained from the two methods can achieve approximately constant stiffness of 0.502 N/ 
mm over a 17 mm displacement range and 0.402 N/mm over a 12 mm displacement range, 
respectively.

1. Introduction

Vibration control aims to effectively reduce or minimize the undesirable and harmful effects caused by vibrations, which is crucial 
in many engineering fields and the natural world [1–3]. One of the most common methods of passive vibration control is to use a 
system to isolate the transmission between the vibration source and the object being controlled. Quasi-zero stiffness (QZS) vibration 
isolation is a typical nonlinear passive vibration isolation technique to isolate vibration with ultralow frequency, which cannot be 
achieved by a linear vibration isolation system [4]. It also has a wider vibration isolation frequency band as compared to a linear 
isolator due to its high-static and low-dynamic stiffness.

Structures with QZS features can be achieved via mechanism designs, where the most notable approach is to combine positive and 
negative stiffness elements. A variety of negative stiffness elements have been studied, with the oblique springs [5] being a common 
type. As compared to the QZS isolator with one pair of oblique springs [5], the isolators with two pairs [6] and three pairs [7] of oblique 
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springs offer wider QZS regions, and the QZS isolator with three pairs of oblique springs [7] exhibits lower transmissibility. Other 
typical negative stiffness elements in the literature include, but are not limited to, X-shaped structures [8,9], curved beams [10,11], 
buckled beams [12,13], magnets [14,15], cam-roller-spring mechanisms [16,17], bistable mechanisms [18,19] and multibody system 
[20]. Some QZS device designs based on metamaterials [21–23], metastructures [24,25], conical shells [26,27], bio-inspired structures 
[28], and other structures and mechanisms [29] are also developed.

It is evident that the existing designs of QZS vibration isolation systems based on the mechanism design require certain pre-defined 
structures or mechanisms with negative stiffness characteristics, and the designs or prototypes are derived based on these mechanisms. 
By contrast, topology optimization studies the optimal geometry configuration and material distribution in a design domain with 
specific constraints, without pre-definition of structural configurations. In addition, the majority of the existing designs are structural 
assemblies, while structural designs obtained via topology optimization are single-part designs.

Topology optimization for metamaterials or metastructures has attracted vast research interests in recent years. Properties of 
metamaterials change with the configuration of their base cells rather than with composition, and their peculiar physical properties are 
not found in nature usually. For example, metamaterials with negative permeability [30–32], negative Poisson’s ratio [33,34], and 
extreme elastic modulus [35,36] were studied. In addition, other functionalities were also achieved, such as cloaking [37–39], mi
crowave absorption [40] and vibration suppression [41]. Recently, QZS metastructures were designed by structural optimization via 
genetic algorithm [42], in which a heuristic searching method was applied. However, there has been a lack of attempts to develop 
mathematical formulations for the topology optimization of QZS metastructures, as well as methods and algorithms to solve the 
optimization problem. This work aims to introduce the topology optimization method to formulate and solve the QZS topology 
optimization problem, where the distinctive feature in comparison with the existing design method is the present method does not 
require pre-defined structural configurations.

Moreover, this paper also considers an alternative design method that synthesizes QZS metastructures by combining positive and 
negative stiffness elements. Inspired by the bistable mechanisms [18,19] with snap-through features as the negative stiffness element, 
we extend our previous work [43] to solve topology optimization of structures with snap-through features [44–49] and use the 
optimized structures as the negative stiffness element. Subsequently, the snap-through metastructures are combined with a simple bar 
as the positive stiffness element to form QZS metastructures.

This study proposes a topology optimization method for QZS metastructures, including novel and generic mathematical formu
lations and an extended moving isosurface threshold (MIST) method to solve the formulated optimization problem. In addition, to
pology optimization of metastructures with snap-through features [43] is further investigated. The objective functions are defined 
based on the force-displacement curve, and the optimization problems are formulated using displacement and reaction force in terms 
of stress and strain of all load steps in nonlinear finite element analysis (NFEA). Numerical examples are provided to verify the present 
formulation and algorithm. The optimized designs are validated by NFEA and/or experiment for QZS or snap-through behaviors.

Fig. 1. Schematic relationships of force-displacement and stress-strain of structures with (a, b) QZS and (c, d) snap-through features, where u and F 
denote the displacement and force; ε and S represent the Green-Lagrange strain and second Piola-Kirchhoff stress; superscripts l and m indicate the 
lower and upper bounds of the QZS region; and subscripts c1 and c2 correspond to the critical points on F-u curves.
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2. Problem formulation and algorithm

Metamaterials are often composed of multiple cells arranged in periodic patterns, where performance can be analyzed based on the 
behavior of the base cell. This paper focuses on the optimal design of a base cell with QZS features. This section presents the math
ematical formulations of topology optimization for QZS metastructures, an optimization method and an algorithm to implement the 
optimization problem. Moreover, in order to design QZS metastructures using structures with snap-through features, formulations and 
an optimization method are also developed for this type of design problem.

2.1. Problem statement of QZS metastructures

In this section, the QZS design problem is defined using the force-displacement curve, followed by deriving the relationships be
tween force-displacement and stress-strain based on the complementary strain energy principle, in order to formulate optimization 
problem for metastructures with QZS features. Let us consider a structure subjected to an enforced displacement u or a force F. The 
force-displacement (F-u) relationships can be illustrated in Fig. 1(a) and (c) for QZS and snap-through features. Consequently, the 
objective functions of QZS metastructures can be defined based on the F-u curves. The design objective of QZS metastructures is to 
achieve constant force in a range of displacements (lu ≤ u ≤ mu), as illustrated in Fig. 1(a). For a structure subjected to an enforced 
displacement, the design objective of the QZS characteristic is mathematically expressed as: 

dF
du

= 0 lu ≤ u ≤ mu (1) 

where u is the displacement and F represents the reaction force at the point with the prescribed displacement.
In order to achieve the constant force, the optimization problem can be defined as minimizing the stiffness in the displacement 

range of lu ≤ u ≤ mu: 

min : J =
∑m

k=l+1

kF − k− 1F
ku − k− 1u (2) 

Thus, it is important to express the reaction force F in the objective function Eq. (2) for a structure subjected to an enforced 
displacement in nonlinear analysis. In this work, we derive an approximated reaction force formula in terms of stress and strain 
histories. For simplicity in the derivations and formulations, instead of considering the variational principle of complementary work 
for the elastic body, only loading increments are considered, in which the force-displacement and stress-strain curves can be treated as 
piecewise linear; in this case, the work done by the enforced displacement and the complementary strain energy are thus approxi
mately equivalent. The detailed derivations are as follows.

When a structure with the QZS or snap-through feature is subjected to enforced displacement u or force F, force-displacement and 
stress-strain relationships can be described in Fig. 1, which reveals that the structural analysis could be highly nonlinear. The nonlinear 
structural analysis could be conducted by incrementally applying external loading (F or u) to the structure. When the loading is 
expressed as a function of time, the approximated equivalence of the work done by the enforced displacement and the complementary 
strain energy for nonlinear structures can be expressed as: 

∫

0Ω

(t+Δt)uiδf b
i d0Ω +

∫

0S

(t+Δt)uiδf s
i d

0S + (t+Δt)uiδf c
i =

∫

0Ω

(t+Δt)εijδSijd0Ω (3) 

where Sij and εij denote the second Piola-Kirchhoff stress and Green-Lagrange strain tensors; fb
i , f s

i and f c
i are tensors of the body force, 

surface traction and concentrated force; ui is the displacement tensor; 0Ω and 0S represent the structural volume and surface area at 
time t = 0.

Eq. (3) can be written in the total Lagrangian formulation of NFEA as: 

kuδF =

∫

0Ω

kεijδSijd0Ω (k = 1, 2, …, n) (4) 

where F and u represent the force and displacement vectors; superscripts k and n denote the kth load increment and the total number of 
load increments in NFEA.

Subsequently, the left-hand side of Eq. (2) is integrated over the loading increment dF = kF − k− 1F, and the right-hand side is 
integrated over the increment dSij = kSij −

k− 1Sij, as shown in Fig. 1(a) and (b). By assuming the force-displacement and stress-strain 
curves are piecewise linear in the segments dF and dSij and applying the trapezoidal rule to evaluate the integrals, the trapezoid areas 
of both integrals (shaded in Fig. 1(a) and (b)) at synchronized load steps k (=1, 2, …, n) are equivalent: 

1
2
( ku + k− 1u

)( kF − k− 1F
)
=

∫

0Ω

1
2
( kεij +

k− 1εij
)( kSij −

k− 1Sij
)
d0Ω (5) 
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where k = 1, 2, …, n.
When the enforced displacement u is only one non-zero displacement u, Eq. (5) degenerates to: 

kF − k− 1F =

∫

0Ω

[
1

ku + k− 1u
( kεij +

k− 1εij
)( kSij −

k− 1Sij
)
]

d0Ω (6a) 

where kF is the magnitude of kF, ku denotes the associated displacement at the kth load step, and k = 1, 2, …, n.
By the summation of Eq. (6a) for k = l, l + 1, …, m-1, m respectively, one can obtain: 

mF − lF =
∑m

k=l+1

∫

0Ω

1
ku + k− 1u

( kεij +
k− 1εij

)( kSij −
k− 1Sij

)
d0Ω (6b) 

The force formulation in Eqs. (6a) and (6b) will be used to formulate topology optimization for QZS metastructures. By using the 
derived force formulation Eq. (6a), the objective function Eq. (2) can be rewritten as: 

J =
∑m

k=l+1

∫

0Ω

1
ku2 − k− 1u2

( kεij +
k− 1εij

)( kSij −
k− 1Sij

)
d0Ω (7) 

When the enforced displacement is applied with an equal increment in the NFEA, one can define a constant as: ku − k− 1u = constant 
= d. The objective function can be rewritten using Eq. (6b) as: 

J =
1
d

∑m

k=l+1

( kF − k− 1F
)
=

mF − lF
d

=
1
d2

∑m

k=l+1

1
2k − 1

∫

0Ω

( kεij +
k− 1εij

)( kSij −
k− 1Sij

)
d0Ω

(8) 

It is worth noting that since the enforced displacement is applied with an equal step length in the NFEA in this work, the simplified 
objective function Eq. (8) is used in numerical implementation and computation. However, the derivation for the generalized case Eq. 
(7) is also presented. The objective function in Eqs. (7) or (8) is the complementary energy with a positive constant coefficient, e.g., 1 
/(2k − 1)d2, ensuring it remains non-negative. As J is minimized, it converges toward zero, resulting in QZS. It is also worth noting that 
the proposed objective function with equal displacement increment in Eq. (8) minimizes not only the stiffness dF/du but also the force 
difference δF (= mF − lF) in the range of lu ≤ u ≤ mu. Thus, with this objective function, the stiffness achieved is both quasi-zero (F-u 
curve horizontal) and approximately constant (F-u curve is linear) in a range of lu ≤ u ≤ mu.

Thus, the optimization problem can be mathematically stated as to find xe so that: 

min : J(xe) =
1
d2

∑m

k=l+1

(kεij(xe) +
k− 1εij(xe)

2k − 1

)
( kSij(xe) −

k− 1Sij(xe)
)
d0Ω (9a) 

s.t. :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

nRu(xe) = 0 in 0Ω

∑Ne

e=1
xeVe − Vf V ≤ 0 xe ∈

0Ω

0 < xmin ≤ xe ≤ 1

(9b) 

where xe is the design variable and xmin (= 10− 3) represents the design variable of void material; e represents the eth element and Ne is 
the number of total elements; Vf, Ve, and V are the volume fraction, elemental volume and the total volume of the design domain; 
superscript n represents the total number of load steps; nR is the residual force vector in the final equilibrium state, and in load step 
k::kRu = kFeq −

kFr (k = 1, 2, …, n), where kFr denotes the stress resultant; kReq is the equivalent force vector caused by the enforced 
displacement.

2.2. Problem statement of metastructures with snap-through features

This section presents the formulation of the optimization problem for metastructures with snap-through features, based on the 
force-displacement curve and the principle of virtual work. As illustrated in Fig. 1(c), negative stiffness (see uc1 ≤ u ≤ uc2) is a 
distinctive characteristic of structures with snap-through features, and a snap-through can be achieved only when the applied force is 
larger than its critical one (F>Fc1). Hence, the design optimization of structures with snap-through features can be defined as maxi
mizing displacement u(F) for the applied force F>Fc1. Therefore, to formulate the optimization problem, the displacement u for a 
structure subjected to a force in nonlinear analysis should be derived.

In order to derive the formulation of displacement for a structure subjected to a force, where state variables are displacements, the 
principle of virtual work for nonlinear structures may be expressed as [50]: 

Y. Lu et al.                                                                                                                                                                                                              Computer Methods in Applied Mechanics and Engineering 434 (2025) 117587 

4 



∫

0Ω

(t+Δt)Sijδεijd0Ω =

∫

0Ω

(t+Δt)fb
i δuid0Ω +

∫

0S

(t+Δt)f s
i δuid0S + (t+Δt)f c

i δui (10) 

Eq. (10) can be expressed in the total Lagrangian formulation and integrated as: 

kFδu =

∫

0Ω

kSijδεijd0Ω (k = 1, 2, …, n) (11a) 

∫ku

k− 1u

Fdu =

∫

0Ω

⎛

⎜
⎝

∫
kεij

k− 1εij

Sijdεij

⎞

⎟
⎠d0Ω (k = 1, 2, …, n) (11b) 

Eq. (11b) can be approximated by using the trapezoidal rule to evaluate the integral: 

1
2
( kF + k− 1F

)( ku − k− 1u
)
=

∫

0Ω

1
2
( kSij +

k− 1Sij
)( kεij −

k− 1εij
)
d0Ω (12) 

where k = 1, 2, …, n.
When there is only one non-zero force F in F applied to the structure, Eq. (12) can be degenerated and rearranged as: 

ku − k− 1u =

∫

0Ω

[
1

kF + k− 1F
( kSij +

k− 1Sij
)( kεij −

k− 1εij
)
]

d0Ω (13) 

where the load step k = 1, 2, …, n.
By the summation of Eq. (13) for k = 1, 2, …, n respectively and assuming that 0u = 0, one can obtain: 

nu =

∫

0Ω

[
∑n

k=1

(kSij +
k− 1Sij

kF + k− 1F

)
( kεij −

k− 1εij
)
]

d0Ω (14) 

where nu represents the displacement in the final equilibrium state.
With the displacement formulation in Eq. (14), topology optimization for metastructures with snap-through feature is mathe

matically stated as to find xe for the applied force F (F> Fc1) so that: 

max : J = u(xe) =

∫

0Ω

[
∑n

k=1

(kSij(xe) +
k− 1Sij(xe)

kF + k− 1F

)
( kεij(xe) −

k− 1εij(xe)
)
]

d0Ω (15a) 

s.t. :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

nRF(xe) = 0 in 0Ω

∑Ne

e=1
xeVe − Vf V ≤ 0 xe ∈

0Ω

0 < xmin ≤ xe ≤ 1

(15b) 

where Fc1 is the positive critical force; nRF is the residual force vector in the final equilibrium state, and in load step kkRF =
kFex −

kFr (k 
= 1, 2, …, n), where kFr denotes the stress resultant and kRex is the external force vector.

It is worth noting that when F < Fc1, negative stiffness will not occur and the optimized design will not exhibit snap-through 
behavior; if F is too large, the NFEA computation may not converge. The applied force is required to be sufficiently large to induce 
negative stiffness but not large enough to diverge NFEA. Thus, the difficulties in topology optimization for structures with snap- 
through features include determining the applied force and handling negative stiffness computation.

2.3. Solution method

This section discusses the solutions to Eqs. (9) and (15) to present an effective solving method. The topology optimization of QZS 
metastructures, as formulated in Eq. (9), can potentially be solved using various methods, such as density-based or level-set methods. 
The sensitivity analysis or level-set function could be developed for such methods based on the proposed objective function in Eqs. (7)
or (8), which may involve challenges. In this work, a moving isosurface threshold method (MIST) will be applied due to its features: 
clear topology representations, unnecessary explicit sensitivity formulations, and effectiveness in handling highly nonlinear problems 
[51] in topology optimization.

The MIST method describes and updates the structural topology by the intersection of a physical response function surface (Φ) and 
an isosurface threshold level (t). The objective function in MIST is typically expressed in an integral form over the design domain Ω, 
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and the response function is derived as the integrand. Thus, although explicit sensitivity analysis is not performed in the MIST, the 
response function can provide gradient/sensitivity information (dJ/dxe) for topology update in a similar manner, as it reflects the 
nodal structural/physical response with respect to the objective function in Ω. Based on the present formulation in Eq. (9), the response 
function of optimization for QZS metastructures can be derived as the integrand of the objective function in Eq. (9a): 

ΦQZS =
1
d2

∑m

k=l+1

1
2k − 1

( kεij +
k− 1εij

)( kSij −
k− 1Sij

)
(16) 

For optimization of metastructures with snap-through features, the objective function Eq. (15a) is the final state displacement nu, 
which is expressed as an integral over Ω. Therefore, the response function is selected correspondingly as the integrand of Eq. (15a): 

Φu =
∑n

k=1

1
kF + k− 1F

( kSij +
k− 1Sij

)( kεij −
k− 1εij

)
(17) 

To impose the prescribed volume fraction constraint in Eq. (9b) and (15b), the objective function Eq. (9a) or (15a) can be expressed 
as below [52,53], with the response function Φ being Eqs. (16) or (17). 

J(xe) =

∫

Ω

Φ(xe)H(Φ − t)dΩ (18) 

where H is the Heaviside function and t is the isosurface threshold value. Once t is calculated corresponding to the prescribed volume 
fraction, design variables are computed by [52,53]: 

xe =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 if Φ ≥ t (at all nodes of element e)

0 if Φ < t (at all nodes of element e)
Aepj

Ae
else

(19) 

where Apj and Ae are the projection area of Φ ≥ t within element e and the element area.
The optimal solutions of topologies Ω and design variables xe can be solved by implementing the iterative process of the MIST with 

the response function Eqs. (16) or (17), and the implementation is detailed in the Appendix. The details can be referred to [52,53] for 
the basic MIST algorithm and [54] for the optimization of nonlinear structures. In the present implementation, MATLAB is employed to 
code the algorithm, and MSC NASTRAN is used as the FEA solver.

3. Numerical examples

This section presents design cases for topology optimization of metastructures with QZS or snap-through features via numerically 
studying the problem formulated in Eqs. (9) and (15) using the extended MIST algorithm detailed in Section 2.3. The MIST solver 
parameters are chosen as: initial dynamic move limit k0

mv = 0.5; xmin = 10− 3; prescribed volume fraction Vf = 0.2; filter radius rmin 

= 4 × element size; and material penalty factor p = 1 and increases by 0.05 per iteration until reaches 3. The materials are initialized 
as uniformly distributed in the design domain (xe = Vf ), and no specified initial distribution is required. The definitions of the solver 
parameters and implementation are detailed in the Appendix. In the case studies, both geometrical and material nonlinearities are 
considered. In the NFEA, the nonlinear elasticity properties are input via tabular data, where the elasticity properties (linear and 

Table 1 
Material properties of polyurethane: linear and nonlinear.

Young’s modulus Poisson’s ratio
49.5 MPa 0.292
Strain (m/m) Stress (MPa)
0 0
0.05 2.48
0.10 4.95
0.20 8.80
0.30 12.30
0.40 15.20
0.50 17.50
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nonlinear) of the polyurethane material used in this study are listed in Table 1.

3.1. QZS metastructures

Fig. 2(a) illustrates a QZS metastructure design case, including dimension and loading and supporting conditions. The computa
tional model simplified using symmetry conditions is depicted in Fig. 2(b), where the dimension of the design domain is 100 × 50 and 
an 80 × 40 mesh is applied. It is worth noting that a fixed constraint should be imposed at the bottom point along the symmetry axis 
(see Fig. 2(a)). However, applying a fixed boundary condition can result in significant complementary strain energy concentration at 
that point, causing material accumulation in the region. In this study, we relax and approximate the fixed boundary condition with a 
typical flexible constraint: an artificial spring, as shown in Fig. 2(b).

In QZS design problems, an enforced displacement u is applied, as formulated in Section 2.1. The displacement u requires to be 
sufficiently large to induce nonlinear deformation but not too large to converge in the NFEA. Thus, the applied enforced displacement u 
should be carefully chosen and coupled with the artificial spring stiffness. For spring stiffness kSpring=3N/mm, three different selections 
u = 17, 16, and 15 mm are computed and presented in Fig. 3(a)–(c) respectively. For the enforced displacement u > 17mm with 
kSpring=3N/mm, the nonlinear deformations are too large and the NFEA may diverge. The displacement range to achieve QZS (constant 
force) is 50 % to 55 % of the applied enforced displacement, i.e., lu = 0.5nu and mu = 0.55nu.

The optimized topologies in Fig. 3(a)–(c) comprise a thin beam-like part next to the symmetry axis to provide positive stiffness in 
the vertical direction and an oblique part to possibly provide negative stiffness. It is observed that the designs with identical spring 
stiffness kSpring have similar width of the beam-like part, and the angle of the oblique part and the location, shape, and size of the cavity 
at the top-right corner are affected by the magnitude of the enforced displacement u. The convergence histories of the objective 
function J of these three cases are plotted in Fig. 4(a), where the optimized objective function J = 5.871, 6.088, and 6.327 N/mm for 
Fig. 3(a)–(c) respectively. Fig. 4(a) indicates the iterative optimization processes are stable overall and converge fast, although some 
oscillations are observed. The possible cause of the oscillations could be the reaction force calculations in NFEA. In addition, the 
topologies for the design case in Fig. 3(a) at a number of iterations are listed in Table 2 to illustrate the evolution of topologies and 
material distributions from initially uniform material distribution, where It. represents the iteration.

It is observed that the objective function achieved for Fig. 3(a)–(c) are low (~6.0 N/mm) but not true quasi-zero. However, the 
force differences δF = mF − lF of these cases are plotted in Fig. 4(b), which shows the forces are approximately constant (δF < 1 N) in 
the displacement range). In addition, the force-displacement curves and stiffness of those designs require full NFEA simulations to 
validate the QZS behaviors in Section 4.

In addition, the choice of artificial spring stiffness is also studied. It should be noted that if a spring is too stiff, the boundary 
condition will approach fixed support. Hence, kSpring of 4 and 5 N/mm are selected, and the coupled enforced displacement u should 
also be re-selected to avoid divergence in NFEA. The optimized topologies for u = 12 mm kSpring=4N/mm, u = 11 mm kSpring=5N/mm, 
and u = 13 mm kSpring=5N/mm are depicted in Fig. 3(d)–(f), where their objective function values are 7.325. 8.173, and 7.808 N/mm. 
Compared with Fig. 3(a)–(c) with kSpring=3N/mm, a larger artificial spring stiffness can generally lead to a larger width of the beam- 
like vertical part connected to it.

This example demonstrates the effectiveness and efficiency of the present method to minimize the stiffness and produce structures 
with positive and negative stiffness elements to achieve QZS. However, a vertical spring appears in the optimized designs. While 
vertical springs can be easily integrated into the optimized design in both numerical and experimental tests, as well as in practical 

Fig. 2. Schematics of QZS metastructure design case studies (a) design domain and (b) computational model; and schematics of snap-through 
metastructure design case studies (c) design domain and (d) computational model.
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Fig. 3. QZS metastructure design problem: optimized topology of (a) enforced displacement u = 17 mm spring stiffness k = 3N/mm, (b) u = 16 mm 
k = 3N/mm, (c) u = 15 mm k = 3N/mm, (d) u = 12 mm k = 4N/mm, (d) u = 11 mm k = 5N/mm, and (e) u = 13 mm k = 5N/mm.

Fig. 4. QZS metastructure design problem: iterative histories of (a) the objective functions and (b) force differences for spring stiffness k = 3N/mm 
and enforced displacement u = 17 mm (Fig. 3(a)), u = 16 mm (Fig. 3(b)), and u = 15 mm (Fig. 3(c)).
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Table 2 
Iterative histories of topologies for design case k = 3N/mm and u = 17 mm (Fig. 3(a)).

Fig. 5. Snap-through metastructure design problem: (a) optimized topology and (b) iterative histories of the objective function and applied load, 
with topologies at iteration (It.) 1, 5, 20, and 40.
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applications for vibration isolators, we present an approach to remove the springs by restoring the fixed boundary condition, as 
discussed in Section 4.4.

3.2. Metastructures with snap-through feature

This example presents the design of metastructures with snap-through features. The design domain and computational model of the 
QZS design problem are revised for snap-through features and shown in Fig. 2(c) and (d), where an 80 × 40 mesh is applied. For the 
snap-through problem, a force instead of enforced displacement is applied, as formulated in Section 2.2, and the magnitude should be 
selected in a similar manner to the enforced displacement in the QZS problem. In NFEA for an applied force, an arc-length approach 
should be adopted to effectively deal with the negative stiffness.

The optimized topology for applied force F = 150 N is shown in Fig. 5(b). The structure layout is comparable to the curved beams 
with snap-through behaviors used in the existing QZS devices [11,18,25]. The convergence histories of the objective function are 
plotted in Fig. 5(b). It can be seen that the iterative optimization process is relatively stable with some oscillations. Since the arc-length 
approach is exploited in NFEA to deal with negative stiffness, the actual applied load at the final state is not 150N. Thus, the computed 
displacements at the final state, i.e., the objective function, may oscillate until the optimal design is obtained. In addition, the actual 
applied loads at the final state are also plotted in Fig. 5(b) against iteration numbers.

The snap-through feature of this design will be tested in the next section. Please note this paper focuses on the experimental 
validation of snap-through structures and their use in synthesizing QZS metastructures, while the topology optimization of these 
structures is extended from our previous work [43]. Additional design cases involving bistable or multi-stable structures with 
snap-through features can also referred to [43].

4. Numerical and experimental validation

In this section, metastructures with QZS or snap-through features are verified via numerical NFEA simulations and/or experimental 
tests. The QZS metastructure designs obtained using the present optimization method in Section 3.1 are numerically investigated and 
validated by NFEA; the snap-through structure obtained in Section 3.2 is experimentally studied and compared with NFEA simulations. 
Moreover, QZS metastructures composed of the optimized snap-through structure (as negative stiffness elements) are also numerically 
validated, as well as post-processed QZS metastructures without artificial springs.

4.1. Validation of QZS metastructures

The optimized QZS metastructures in Fig. 3 are validated via numerical NFEA simulations. The optimized topologies are converted 
to CAD models and imported to the FEA software NASTRAN. It should be noted that the mirror symmetry condition in topology 
optimization is not applied in the NFEA validation, as buckling of the vertical beam-like part may occur. Instead, the full-scale 
structures are numerically studied in NFEA, including the artificial spring. The boundary conditions are identical to those used in 
the structural optimization.

The NFEA results of the optimized structure in Fig. 3(a) are shown in Fig. 6. Fig. 6 plots the F-u curve of the NFEA results, where 
embedded figures show deformations and nonlinear von Mises stress distributions at displacements u = 10, 20, and 27 mm. If the 
enforced displacement is larger than 27 mm, the vertical beam-like part will buckle and lead to divergence of the NFEA. However, as 
the enforced displacement u ≤ 17 mm in the topology optimization studies, the current computations are sufficient for validation 
purposes. The F-u curve in Fig. 6 indicates the design can achieve a quasi-zero 0.502 N/mm stiffness over a 17 mm range (10 to 27 

Fig. 6. Force-displacement curve and deformation with nonlinear von Mises stress contour of the optimized QZS metastructure in Fig. 3(a).
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mm), and the objective function value calculated over the displacement range is 8.538 N/mm. It is evident that the proposed objective 
function can effectively achieve the QZS design objective. The stiffness given by 

( kF − k− 1F
)
/
( ku − k− 1u

)
are also plotted over 

displacement in Fig. 6, which shows the F-u curve is approximately constant QZS.
Similarly, NFEA computations are conducted for the designs in Fig. 3(b)–(d), and the F-u curves are plotted in Fig. 7. The stiffness 

for those designs are 0.630, 0.534, and 1.482 N/mm in the same displacement range of Fig. 6, while the objective function values over 
the displacement range are 10.717, 9.074, and 25.187 N/mm. The quasi-zero stiffness results from numerical simulations in this 
section validate the present QZS metastructure designs and the proposed optimization method. In the topology optimization, the case 
Fig. 3(a) obtains the lowest objective function values, and in the NFEA simulation, it also shows the lowest stiffness among all design 
cases, which also confirms the validity of the optimization method.

Figs. 6 and 7 show that the optimal designs of metastructures with constant QZS are successfully obtained using the present 
formulation and algorithm. Although the optimized designs include a vertical spring, it is worth noting that in vibration isolator 
applications for QZS structures, vertical springs are commonly utilized and can be easily integrated with the optimized design in 
practice. However, we present an approach to remove the springs, as discussed in Section 4.4.

4.2. Validation of snap-through metastructures

The optimized design for snap-through features in Fig. 5(a) is fabricated, and its snap-through behaviors are experimentally tested. 
The measured F-u curves and deformation are compared with those computed by NFEA.

The optimized design in Fig. 5(a) was fabricated using polyurethane (ET90A+MOCA), whose material properties are given in 
Table 1. The specimens, with dimensions shown in Fig. 8(a), were cut from polyurethane plates using waterjet technology. Aluminum 
sheets were bonded to the left and right side surfaces of the specimens to facilitate the experimental setup. Fig. 8(b) shows the setup, 
where clamps fix the specimens, ensuring that only the curved sections deform during loading and unloading, while the straight 
sections experience minor to no deformation.

Fig. 7. Force-displacement curves of the optimized QZS metastructures in Fig. 3(a)–(d).

Fig. 8. Experimental testing of snap-through metastructure (a) dimension of specimens and (b) experimental setup.
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Before testing, the NFEA simulation is conducted using NASTRAN. Material nonlinearity of the aluminum sheets is neglected as 
their deformations are small and linear. Loading and boundary conditions are identical to the experimental tests. The F-u curve of the 
NFEA results is plotted in Fig. 9, where embedded figures show deformations and nonlinear von Mises stress distributions at 5 
characteristic points at F = Fc1, 0 (unstable state), Fc2, 0 (2nd stable state), and nF (final state). The F-u curve indicates that snap- 
through as well as bistable state behaviors can be achieved.

The experiment testing was conducted in the versatile testing machine INSTRON-3366. In the experimental testing, loading and 
unloading rates were 5 mm/min; the displacement-controlled testing was programmed in the testing software Bluehill 3 so that 
compressive and tensile forces could be recorded and unloading curves could be obtained.

Fig. 10 illustrates the F-u curves measured in the experiment. The curve of loading and unloading was obtained in the test with a 
maximum displacement of 80 mm, consistent with the NFEA. In Fig. 10, the F-u curve and deformation predicted by NFEA are also 
given. By observing the F-u curve and embedded image at F ≈ Fc2 obtained in the experiment and those predicted by the NFEA, it can be 
seen that the NFEA results correlate well with those recorded in the experiment. Both the NFEA and experimental results reveal the 
negative stiffness, snap-through and bistable state behaviors of the optimized design. The good correlation between the experimental 
and FEA results also shows the reliability of the FEA validation for the QZS metastructure in Section 4.1.

In addition, it is observed that the optimized design exhibits the hysteretic behavior, as shown in the loading and unloading curve in 
Fig. 10. Since the present study focuses on quasi-static validations, hysteresis effects are not considered in the numerical analysis. 
However, hysteresis is a critical factor that should be taken into account in dynamic analysis.

4.3. Synthesis of QZS metastructures and validation

Since the previous section proves the snap-through and negative stiffness behaviors of the optimized snap-through metastructure in 
Fig. 5(a), the design is exploited to synthesize QZS metastructures. The optimized design with negative stiffness is combined with a 
vertical bar of width D to provide positive stiffness, as depicted in Fig. 11(b), and the corresponding combination of their F-u curves is 
shown in Fig. 11(a). The synthesized full-scale structures (see Fig. 11(c)) with different widths D are numerically studied in NFEA.

The NFEA results for the case D = 0.5 mm are plotted in Fig. 12, including the F-u curve and deformations and nonlinear von Mises 
stress distributions at displacements u = 10, 15, and 22 mm. It is observed that the vertical beam-like part starts to buckle at the 
enforced displacement u = 22 mm. Therefore, as divergence occurs, no further NFEA results are presented beyond this point. The F-u 
curve indicates the design can achieve a quasi-zero stiffness of 0.402 N/mm in a range of 12 mm (10 to 22 mm).

Different choices of width D are also numerically computed, as shown in Fig. 13. The stiffness obtained for D = 0.6 mm and 0.8 mm 
are 1.719 and 4.373 N/mm, respectively. Evidently, the positive stiffness of the beam should exactly balance the negative stiffness of 
the snap-through structure. It is realized in the D = 0.5 mm case, while the larger widths in other cases result in too high positive 
stiffness. In practice, the positive stiffness elements should be carefully calculated based on the F-u curve of the negative stiffness 
component (e.g., Fig. 10). The coupling between the positive and negative stiffness elements could provide guidance for the selection 
of the width D. Thus, to avoid this further calculation, the direct topology optimization method is recommended as compared to the 

Fig. 9. Snap-through behaviors of the specimen where embedded figures present deformation with nonlinear von Mises stress contour at char
acteristic points.
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synthesis method.

4.4. Extension: removal of artificial springs for optimized QZS metastructures and validation

The proposed optimization method can produce metastructures with QZS characteristics but initially involves the artificial spring. 
This section extends the present method by introducing an approach to remove the spring. As discussed in Section 3.1, the spring is 
employed to approximate the fixed boundary condition. Thus, the spring could be removed by restoring the fixed boundary condition.

To effectively adjust the structures based on boundary conditions, the equivalence of displacements must be maintained. As shown 
in Fig. 14(c), for both the original and adjusted designs, the vertical (y-axis) displacements should be consistent. This can be simplified 
to ensuring equivalent axial displacements in the beam-like part. Hence, the adjustment focuses on modifying the width of the beam- 
like segment by considering the equivalence of axial displacements: 

NL
EDT

+
N

kSpring
=

NL
ED∗T (20) 

where N denotes the axial force; E represents Young’s modulus; L is the length of the beam; D and D∗ are the original and adjusted width 
(assume constant along L) of the beam; and T is the thickness of the beam.

The adjustment presented in Fig. 14 is based on the designs in Fig. 3(a), where kSpring = 3 N/mm. The adjusted D∗ in Fig. 14(b), 

Fig. 10. Results measured in the experiment and predicted by the NFEA for the snap-through metastructure design where the embedded figure 
present deformation for Loading at F ≈ Fc1l and F ≈ Fc2 and for NFEA simulation at F ≈ Fc2.

Fig. 11. Synthesis of QZS metastructure by combining snap-through metastructures with positive stiffness elements: (a) combining force- 
displacement curves, (b) combining structures, and (c) synthesized design.
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Fig. 12. Force-displacement curve and deformation with nonlinear von Mises stress contour of the synthesized QZS metastructure with width D =
0.5 mm.

Fig. 13. Force-displacement curves of the synthesized QZS metastructure with different widths D = 0.5, 0.6, and 0.8 mm.

Fig. 14. Post-processing of QZS metastructure (a) original optimized design with spring and (b) adjusted single-part design; and (c) boundary 
conditions of the original and adjusted designs.
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estimated using Eq. (20), is 0.3 mm, which is numerically simulated via NFEA. Fig. 15 plots the F-u curve obtained from the NFEA, 
along with the deformations and nonlinear von Mises stress distributions, at displacements u = 10, 15, and 20 mm. The NFEA results 
show that the stiffness compromises to 3.392 N/mm (compared to the original design of 0.502 N/mm) due to the removal of the spring. 
The stiffness given by 

( kF − k− 1F
)
/
( ku − k− 1u

)
are also plotted over displacement in Fig. 15. The value is small and nearly constant, 

though not true quasi-zero.
In addition, other selections of width D∗=0.2 and 0.4 mm are also numerically investigated for comparison purposes. The F-u curves 

are depicted in Fig. 16, where the stiffness obtained for D∗=0.2 and 0.4 mm are 1.544 and 5.188 N/mm, respectively. It is evident that 
the adjustment effectively removes the spring while maintaining low stiffness. However, further fine-tuning of D∗ may be needed in 
practice to achieve true quasi-zero stiffness.

The zero stiffness of the optimal designs of the metastructure with QZS feature and the modified designs by removing the artificial 
spring have not been obtained, but the stiffness is sufficiently low for a vibration isolator with high-static and low-dynamic stiffness. 
Additionally, as the low stiffnesses shown in Figs. 13 and 16 are almost constant, the obtained metastructures can be applied in vi
bration isolation systems with variable mass and could potentially solve the challenge of vibration isolation for variable mass using 
QZS isolators.

5. Conclusions

This study investigates the topology optimization of QZS metastructure designs. We propose (1) mathematical formulations of the 
objective function based on the QZS force-displacement curve; (2) novel and generalized mathematical formulations of the optimi
zation problem using force and displacement expressed in terms of stress and strain of all load steps in NFEA; and (3) an extended 
moving isosurface threshold (MIST) method to solve the formulated optimization problem. Additionally, mathematical formulations 

Fig. 15. Force-displacement curve and deformation with nonlinear von Mises stress contour of the adjusted QZS metastructure with width 
D∗=0.3 mm.

Fig. 16. Force-displacement curve of the adjusted QZS metastructure with width D∗=0.3 mm and comparisons with D∗=0.2 and 0.4 mm.
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and optimization method are also presented for snap-through features, as well as a design approach that synthesizes QZS meta
structures by exploiting snap-through behaviors. Based on the obtained numerical and experimental results, the following conclusions 
could be drawn: Based on the obtained numerical and experimental results, the following conclusions could be drawn: (1) the derived 
theoretical formulation and optimization algorithm can effectively optimize the design of structures with QZS, as metastructures with 
constant QZS are successfully obtained using the present formulation and algorithm; (2) negative stiffness, snap-through, and bistable 
state behaviors of the optimized design are observed in both numerical simulations and experimental tests, demonstrating the 
effectiveness of the optimization method for the snap-through features; (3) it is feasible to synthesize QZS structures on the basis of the 
snap-through and QZS with an artificial spring, as constant QZS is achieved in the synthesized metastructures using snap-through 
structures and QZS structures by removing an artificial spring.

It is important to note that the present work focuses on proposing the problem formulation for metastructures with QZS features 
and presenting a solution method via the MIST, while the optimized QZS metastructures are validated only through FEA simulations, 
as experiments have not been conducted. However, for the snap-through metastructures, both FEA and experimental validations have 
been performed. Fig. 10 shows a good correlation between the experimental and FEA results for the snap-through metastructure, 
supporting the reliability of the FEA simulations for validating the QZS metastructure. In future work, static and dynamic tests will be 
carried out for the QZS metastructures obtained by topology optimization for vibration isolation.
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Appendix

This section presents the numerical implementations of the MIST method, as well as detailed solution procedures. The iterative 
solution procedures implemented by MATLAB are illustrated as follows, with I being the iteration number.

Step 1: Initialization 

• Define design domains Ω0 and design variables x0
e .

• Define FEA parameters.
• Define solver parameters: material penalty factor p; initial dynamic move limit k0

mv; xmin; prescribed volume fraction Vf ; and filter 
radius rmin.

Step 2: Structural analysis (NFEA) 

• Update material properties by:

De(xe) = xe
p D0 (A1)

where De and D0 denote the elasticity/constitutive matrix of the eth element and that of the base solid material; p is the material 
penalty factor.

For the QZS problem: 

• Solve nonlinear analysis subjected to enforced displacement:
• Extract kεij and kSij, and kF (k = 1, 2, …, n).

For the snap-through problem: 

• Solve nonlinear analysis subjected to applied force.
• Extract kεij, kSij (k = 1, 2, …, n).

Step 3: Update topology and design variables 
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• Calculate the response function ΦI by Eq. (16) for QZS feature or Eq. (17) for snap-through feature; filtered with radius rmin; and 
normalized.

• Determine the threshold level tI by a standard bisection method for the prescribed volume fractions Vf .
• Intersect the 3D surface ΦI and isosurface tI, and generate the topologies ΩI and design variables 

(
xI

e
)0 by Eq. (19).

• Updated design variables xI
e in a relaxed form: 

xI
e = xI− 1

ε + kmv

((
xI

e
)0

− xI− 1
ε

)
(A2a) 

xI
e =

{
xI

e, for xI
e ≥ xmin

0, for xI
e < xmin

(A2b) 

where kmv is the dynamic move limit, which is halved when an oscillation of objective function occurs until kmv reaches the 1 /23 of k0
mv. 

Eq. (A2b) indicates the removal of low-density elements from NFEA [54] with the criterion xI
e < xmin.

Step 4: Termination check 

• Calculate termination criteria: 

ΔΦI =
1

Vf Nn

[
∑Nn

rn=1

⃒
⃒ΦI(rn) − ΦI− 1(rn)

⃒
⃒

]

(A3) 

where Φk(rn) is the Φ value at node rn and Nn is the total number of nodes. 

• If the difference ΔΦk reaches a criterion value (e.g., 10− 3) and/or a certain number of iterations (e.g., 100) are reached, the iterative 
optimization procedures terminate. Otherwise, the iteration will go back to Step 2 with I = I+ 1.

Data availability

The necessary information for replicating the results is presented in the manuscript. Further details regarding the implementation 
are available upon request from the corresponding author. 
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