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A B S T R A C T

This paper presents a novel approach for raw sensor data fusion using Johansen cointegration,
aimed at non-destructive condition assessment of concrete poles. The proposed Johansen
cointegration-based signal fusion is compared with signal averaging, a conventional method,
and the Adaptive Kalman Filter (AKF), an advanced signal fusion technique. These methods
are applied to data collected from concrete poles under both laboratory and real-world field
conditions, using an innovative narrow-band stress wave excitation system with a center
frequency of 1 kHz. Our methodology begins with fusing raw sensor data, which is subsequently
decomposed into narrow-band components, known as Intrinsic Mode Functions (IMFs), using
the Variational Mode Decomposition (VMD) algorithm. From these IMFs, we extract a set
of non-parametric and parametric statistical features based on Instantaneous Frequency (IF)
and Instantaneous Amplitude (IA) signals. The results demonstrate the superiority of Johansen
cointegration over both signal averaging and AKF in scenarios involving the high nonstationarity
characteristic of real-world field data. Furthermore, the findings highlight a notable similarity
between AKF and signal averaging, which may reflect the dominant linear properties in the
recorded signals. We also propose an index based on normalized mutual information to facilitate
a fair comparison with existing fusion methods.

. Introduction

Over the past decades, significant advancements have been made in the development of sensor technologies and analysis
echniques employed for Structural Health Monitoring (SHM) and Nondestructive Testing (NDT) [1]. Numerous industries, such
s the construction, manufacturing, aerospace, automotive, and energy sectors, have benefited from these advancements. The rapid
rogress of data science technologies has further contributed to innovative SHM techniques that can address the limitations of
lassical physics-based approaches. These advancements facilitated the feature extraction and fusion of data for solving classification
nd regression problems. However, a gap still exists in the systematic and robust fusion of data from multiple sensors.

Different hierarchies of information fusion have been employed for SHM and NDT problems including:

1. data acquisition, raw data fusion, feature extraction, decision making using machine learning results,
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2. data acquisition, feature extraction, feature fusion, decision making using machine learning results, and
3. data acquisition, feature extraction, decisions making using several machine learning results, and decision fusion [2].

SHM systems involve the deployment of a sensory network that measures the response of a structure to natural or synthesized
forces. These feedback signals contain valuable information on the interior integrity of structural elements. However, the recorded
raw sensor data is often complex and polluted with noise and outliers, making it challenging to extract meaningful information. Raw
ata fusion, also classified as ‘‘high level information extraction’’ [3], aims to combine structural responses at different locations to

enhance the statistical properties of the data. Therefore, this type of data fusion is an important step in the analysis of measurement
signals improving the performance of the developed SHM system. Signal averaging is a common time-domain signal processing
approach aimed at strengthening the signal to noise ratio (SNR) [4]. This type of raw sensor data fusion relies on averaging a set
of replicate measurements, which proportionally increases the signal-to-noise ratio (SNR) relative to the square root of the number
of measurements. This approach has been widely applied in various fields, including neurology [5], robotics [6,7], biomedical
ngineering [8], and fiber interferometers [9]. In the context of SHM, signal averaging has been employed to improve damage

detection results [10]. Although signal averaging can lead to improved results, the literature lacks a comprehensive analysis of when
his technique is most appropriate for SHM applications. Recent studies have begun to explore this gap by comparing signal averaging

with alternative techniques [11], aiming to determine the specific conditions under which each method performs best. However,
there is still a gap in determining the appropriate circumstances for the beneficial utilization of signal averaging [5]. Moreover, signal
veraging is limited in its ability to handle nonstationary signals, as it lacks the capability to capture and account for the dynamic
haracteristics inherent in such signals. This limitation makes it less effective in scenarios where the signal properties vary over time.
onstationary signals often exhibit time-varying statistical properties, making them challenging to analyze and fuse using traditional
ethods like signal averaging. One alternative approach for nonstationary signal fusion is the Adaptive Kalman Filter (AKF) [12,13].

Unlike signal averaging, the AKF is capable of dynamically adjusting its parameters based on the evolving characteristics of the
signals being processed. This adaptability makes the AKF well-suited for handling the varying statistical properties of nonstationary
signals over time.

After raw data fusion, the next stage in the proposed method involves feature extraction. While deep learning methods can
automatically perform feature extraction in their intermediate layers, their effective application requires the availability of a large
dataset. This dependency on extensive data limits their practicality in scenarios where only limited data is available. Hence, it is
commendable to extract hand-crafted features when the amount of data samples per class is limited. Accordingly, feature extraction
s a crucial step in most SHM problems, as it aims to derive relevant information from raw sensor data. This extracted information

can then be utilized to address classification or regression problems in SHM. Various types of hand-crafted features are commonly
employed in machine learning algorithms, including time-domain, frequency-domain, and time-frequency attributes. These features
help capture different aspects of the structural response, enhancing the model’s ability to detect patterns and anomalies. Time-domain
features are directly extracted from sensor data in the time domain [14]. These features can be categorized as coefficient-based or
esidual-based algorithms and are set to capture the signal’s behaviors in the time domain [15]. Frequency-domain features, on
he other hand, include characteristics of sensor data such as frequency distribution and spectral content using Fourier transform.
ome features include power spectral density, dominant frequencies, energy content in specific frequency bands, resonance

frequencies, and mode shapes. Time-frequency features are used to analyze signals in the time-frequency domain and include signal
decomposition algorithms such as Short-Time Fourier Transform (STFT), Wavelet Transform (WT), Empirical Mode Decomposition
(EMD), and Variational Mode Decomposition (VMD) [16]. These techniques offer joint time-frequency representations of the original
ignal, either directly or indirectly, allowing for a more detailed analysis of nonstationary signals by capturing both time-varying
nd frequency-varying characteristics.

Several feature extraction strategies have been employed for SHM to capture significant attributes that can facilitate the
learning of patterns in the training phase. Statistical features extracted from sensor data can provide valuable information
about the distribution and variability of the statistical behavior of the data. These features include mean, standard deviation,
skewness, kurtosis–higher-order moments–of the time-frequency representation of the signal such as instantaneous frequency (IF)
and Instantaneous Amplitude (IA) of signal decomposition results [17]. These features are sensitive to changes in the system affecting
the distribution of statistical moments in IF and IA signals. Therefore, they are useful for finding system changes caused by damage.

When a stress wave is transmitted through a medium, it interacts with the material and boundaries, resulting in several effects
such as wave attenuation, dispersion, and absorption. These effects can generate higher-frequency modulations in the signal which
contain valuable information about the interior of the studied specimen. Therefore, it is advantageous to analyze these modulations
in isolation. To achieve this, the signal needs to be decomposed into its constituent oscillation modes. However, the choice of the
decomposition algorithm is of significant importance. For instance, Fourier transformation lacks the ability to provide resolution
regarding a signal’s evolution over time, making it unsuitable for extracting descriptive information from nonstationary signals.
On the other hand, while wavelet transformation can preserve nonstationary information through its decomposition process and
provide time resolution, it is a linear time-frequency signal decomposition algorithm. Consequently, it lacks the ability to capture
nonlinear effects during the decomposition process.

Huang et al. [18] introduced the Empirical Mode Decomposition (EMD) algorithm as a signal decomposition technique capable
f preserving both nonstationary and nonlinear information throughout the decomposition process. Consequently, EMD has been
ncreasingly adopted as a novel alternative to traditional algorithms in the field of SHM, offering improved accuracy in analyzing
omplex structural responses. This includes the introduction of Intrinsic Mode Functions (IMFs), which are extracted from the EMD

process. IMFs exhibit several key properties, such as being either frequency or amplitude modulated, making them particularly
2 
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effective in representing complex, nonstationary signals by isolating underlying oscillatory modes. Moreover, EMD is an adaptive
signal decomposition algorithm in a sense that the sum of its extracted IMFs can perfectly reconstruct the original signal. However,
EMD has certain limitations, such as the presence of end effects and mode mixing phenomena [19]. These limitations have motivated
researchers to develop new approaches that are robust against these issues.

Variational Mode Decomposition (VMD) has emerged as another adaptive nonlinear/nonstationary signal decomposition al-
gorithm that can address the shortcomings of EMD. VMD employs a variational optimization process to update the IMFs and
heir corresponding center frequencies [20]. The IMFs extracted from VMD are narrow-band signals, each representing a distinct

oscillation mode of the original signal. Additionally, VMD is a parametric signal decomposition algorithm, which means it requires
the pre-specification of certain parameters before it can be executed. These parameters can be determined by incorporating the
user’s domain knowledge regarding the specific problem or by tuning them through an optimization process tailored to the problem
at hand. While the former approach demands extensive domain knowledge, the latter is prone to overfitting on the training set,
especially when the available data is limited. One key parameter in VMD is the number of IMFs. Choosing a large value for this
parameter can result in the duplication of higher-order IMFs [20].

Two primary characteristic signals, namely the IF and IA signals, can be derived from the IMFs extracted through VMD. These
F and IA signals contain valuable information about the properties of the original signal and, by extension, the tested specimen. In

their previous work [17,21,22], the authors introduced several statistical features extracted from the IF signals of the IMFs obtained
through VMD. However, these statistical properties are derived based on the simplified assumption that all IMFs are stationary–
similar to the assumption made by the Naive Bayes classifier, which assumes independence of all features within a given class [23].
Therefore, the objective of this paper is to address the limitations of this assumption by enhancing the stationarity of the IMFs using
the Johansen cointegration method as a fusion technique.

Johansen cointegration is a concept adopted from econometrics that aims to identify a linear stationary combination of a set of
onstationary signals [24]. The fundamental assumption underlying Johansen cointegration is that the signals share the same order

of nonstationarity. However, this assumption may not always hold true in certain SHM problems. Therefore, for simplicity, it has
been suggested to overlook this assumption, as the primary objective in SHM problems is to facilitate damage detection [25]. In
this paper, we propose to use Johansen cointegration as a signal fusion algorithm to improve the stationary quality of the fusion
outcome. By applying the Johansen cointegration technique, a linear combination of a set of nonstationary, or weakly stationary,
signals is sought that exhibits enhanced stationary properties compared to the original signals. This approach aims to maximize the
stationary characteristics of the IMFs extracted from VMD. For comparison, we benchmark the results of the Johansen cointegration
approach against conventional signal averaging and a more advanced adaptive Kalman filter (AKF) approach, both used as raw signal
fusion techniques. Moreover, utilizing VMD as a feature extraction algorithm requires setting several hyperparameters. Although
an optimization algorithm can be employed to identify the optimal values for these parameters, this can lead to overfitting on the
training data, particularly when the available data is limited. Conversely, since the primary objective of this work is to compare
different signal fusion techniques, it is crucial to ensure a fair comparison between models trained on features extracted from fused
signals using various methodologies. To this end, we introduce a novel metric based on normalized mutual information (NMI) to
evaluate and compare the amount of information extracted from signals across different fusion techniques. The key contributions
of this work can thus be summarized as follows:

1. We propose the Johansen cointegration approach as an effective signal fusion algorithm that significantly outperforms both
the conventional signal averaging and the more advanced AKF techniques in scenarios where nonstationary signals outnumber
stationary ones. As a result, we demonstrate that the Johansen cointegration method is a reliable and fair technique for fusing
nonstationary signals, especially when compared to alternative approaches.

2. We propose a metric based on NMI to quantify the information retained during the decomposition process. By comparing the
original signal with its VMD-reconstructed counterpart, this metric evaluates the effectiveness of different fusion techniques
in preserving critical signal information, enabling a fair and comprehensive comparison of these methods.

3. We explore the potential of combining various signal fusion techniques and provide a roadmap for future research directions
in this field.

The remaining of the paper is organized as follows:
Section 2 briefly elaborates on the background theories, including feature extraction using the VMD (Section 2.1), a novel metric

for assessing the amount of information passed through the signal decomposition to assess fairness in comparing signal fusion
techniques (Section 2.2), and cointegration technique for nonstationary signal fusion (Section 2.3). The section provides insights
into how the extracted features from the VMD may not capture all the nuances of the data dynamics, especially when the signals
xhibit severe nonstationary properties, proposing Johansen cointegration as an effective raw signal fusion algorithm. Section 3

presents the case study of the concrete poles classification problem using nondestructive tests carried out in both laboratory and field
onditions. Section 4 provides details on the adapted methodologies in this study, including the XGBoost algorithm as an effective
achine learning technique for solving the classification problem of this paper (Section 4.2), the Monte Carlo Cross Validation

MCCV) algorithm for effective assessment of the XGBoost results (Section 4.3), and the Adaptive Kalman Filter (AKF) as a more
advanced alternative method for raw signal fusion for comparison (Section 4.4). Section 5 investigates the problem of this paper in
full detail, starting with investigating signal statistical properties in both laboratory and in-situ field data (Section 5.1), evaluating
the effect of VMD parameters on the proposed NMI metric (Section 5.2), solving the laboratory problem (Section 5.3), and the field
roblem (Section 5.4). Finally, Sections 6 and 7 present a road-map for future work and draw concluding remarks from the present

study, respectively.
3 
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2. Background theories

2.1. Feature extraction using VMD

This section details the feature extraction process from a given signal 𝐟 (𝑡), using the variational mode decomposition (VMD)
lgorithm.

According to wave propagation theory, the probing signal undergoes modulations as it interacts with material irregularities,
including density variations, boundary conditions, or internal imperfections such as damage. Consequently, a wideband signal is
generated. To extract the relevant information contained in different signal bands, we propose demodulating the signal into multiple
narrowband oscillation modes using the Variational Mode Decomposition (VMD) algorithm as a signal decomposition technique.
We further generate Gabor’s analytic signal [26] to construct the IF and IA signals that are well-defined for these narrowband
omponents. Finally, we extract the proposed features through the procedures discussed below.

First, the signal is decomposed into its constituent oscillation modes by utilizing VMD [20]. While the theory of VMD is extensive,
this section provides a concise summary of its foundational principles.

The core properties of VMD can be summarized as follows:

• VMD involves solving a variational optimization problem.
• It aims to decompose a nonlinear or nonstationary signal into a predetermined number of IMFs.
• An IMF derived from VMD is a narrowband signal that represents an oscillation mode of the original signal.

The 𝑘th IMF (𝐮𝑘(𝑡)) obtained from VMD can be described as an amplitude- and phase-modulated signal as follows:

𝐮𝑘(𝑡) = 𝐀𝑘(𝑡) cos(𝝓𝑘(𝑡)), (1)

where 𝐀𝑘(𝑡) and 𝝓𝑘(𝑡) represent the instantaneous amplitude and phase, respectively. The IF signal can be calculated by differenti-
ating the instantaneous phase with respect to time as 𝝎(𝑡) = 𝜕𝝓(𝑡)

𝜕 𝑡 .
The Gabor’s analytic signal (𝐮𝑎(𝑡)) is constructed as follows:

𝐮𝑎(𝑡) = 𝐮(𝑡) + 𝑗�̂�(𝑡), (2)

where 𝑗 and �̂�(𝑡) denote the imaginary unit and Hilbert transformation [27] of the narrow-band IMF 𝐮(𝑡), respectively. The IA and
F signals can then be derived as follows:

IA(𝑡) =
√

𝑢2(𝑡) + �̂�2(𝑡), (3)

IF(𝑡) = d
d𝑡

(

t an−1
(

�̂�(𝑡)
𝑢(𝑡)

))

, (4)

As mentioned earlier, VMD solves an optimization problem by formulating an augmented Lagrangian optimization to determine
the IMFs 𝐮𝑘 and their corresponding center frequencies 𝝎𝑘 for 𝑘 = 1,… , 𝑝, where 𝑝 denotes the prespecified number of IMFs. The
objective function of the VMD can be written as follows [20]:

(𝐮𝑘,𝝎𝑘, 𝜆) = 𝛼
∑

𝑘

‖

‖

‖

‖

𝜕𝑡

(

𝛿(𝑡) + 𝑗
𝜋 𝑡 ∗ 𝐮𝑘(𝑡)

)

× 𝑒−𝑗 𝜔𝑘𝑡
‖

‖

‖

‖

2

2

+
‖

‖

‖

‖

𝐟 (𝑡) −
∑

𝑘
𝐮𝑘(𝑡)

‖

‖

‖

‖

2

2
+
⟨

𝝀(𝑡), 𝐟 (𝑡) −
∑

𝑘
𝐮𝑘(𝑡)

⟩

. (5)

where in above equation:

• 𝐮𝑘(𝑡): The mode components (or signals) extracted by the VMD algorithm from the input signal. Each mode 𝐮𝑘(𝑡) is a
band-limited signal centered around its corresponding frequency 𝝎𝑘.

• 𝝎𝑘: The center frequency of each mode 𝐮𝑘(𝑡), adaptively estimated during the VMD decomposition process.
• 𝛼: A balancing parameter that controls the bandwidth constraint of the modes. Higher values of 𝛼 impose stricter band limi-

tations on the modes, effectively reducing the likelihood of capturing higher-frequency noise or other irrelevant components.
As a result, this can lead to a form of denoising.

• 𝜕𝑡: The time derivative operator, which indicates temporal differentiation of the mode 𝐮𝑘(𝑡), emphasizing changes in the mode
over time.

• 𝛿(𝑡): The Dirac delta function, often used in conjunction with the Hilbert transform to construct the analytic signal.
• 𝑗

𝜋 𝑡 ∗ 𝐮𝑘(𝑡): A term representing the Hilbert transform of the mode 𝐮𝑘(𝑡), used to determine the instantaneous frequency and
phase of the mode.

• 𝑒−𝑗 𝜔𝑘𝑡: A complex exponential (phasor) that shifts the mode 𝐮𝑘(𝑡) to its center frequency 𝜔𝑘, localizing the mode in the frequency
domain.

• ‖ ⋅ ‖22: The squared 𝐿2-norm (or Euclidean norm), representing the energy of the signal in the term. As such, ‖𝜕𝑡(⋅)‖22 measures
the energy (or bandwidth) of the time derivative of the transformed signal.
4 
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Table 1
The description of features naming.

Index Features Description

1 p1_IF𝑖 First quartile of IF for IMF𝑖
2 p2_IF𝑖 Second quartile of IF for IMF𝑖
3 p3_IF𝑖 Third quartile of IF for IMF𝑖
4 k_IF𝑖 Kurtosis of IF for IMF𝑖
5 v_IF𝑖 Variance of IF for IMF𝑖
6 cf_IF𝑖 Center frequency of IMF𝑖
7 sk_IF𝑖 Skewness of IF for IMF𝑖
8 p1_IA𝑖 First quartile of IA for IMF𝑖
9 p2_IA𝑖 Second quartile of IA for IMF𝑖
10 p3_IA𝑖 Third quartile of IA for IMF𝑖
11 k_IA𝑖 Kurtosis of IA for IMF𝑖
12 v_IA𝑖 Variance of IA for IMF𝑖
13 sk_IA𝑖 Skewness of IA for IMF𝑖

• First term:

𝛼
∑

𝑘

‖

‖

‖

‖

‖

𝜕𝑡

(

𝛿(𝑡) + 𝑗
𝜋 𝑡 ∗ 𝐮𝑘(𝑡)

)

× 𝑒−𝑗 𝜔𝑘𝑡
‖

‖

‖

‖

‖

2

2

This term penalizes the bandwidth of each mode 𝐮𝑘(𝑡), ensuring that each mode is band-limited. The bandwidth is controlled
by the parameter 𝛼, and the goal is to minimize it to ensure each mode occupies a specific frequency range.

• Second term:
‖

‖

‖

‖

‖

𝐟 (𝑡) −
∑

𝑘
𝐮𝑘(𝑡)

‖

‖

‖

‖

‖

2

2

This is the reconstruction error term, which measures how well the sum of all modes 𝐮𝑘(𝑡) reconstructs the original signal 𝐟 (𝑡).
The goal of VMD is to minimize this error and ensure that the sum of the modes approximates the input signal as closely as
possible.

• Third term:
⟨

𝝀(𝑡), 𝐟 (𝑡) −
∑

𝑘
𝐮𝑘(𝑡)

⟩

This term represents the Lagrange multiplier, enforcing the constraint that the sum of all modes 𝐮𝑘(𝑡) should reconstruct the
original signal 𝐟 (𝑡). 𝝀(𝑡) is the Lagrange multiplier that enforces this constraint in the optimization process.

As a parametric decomposition algorithm, VMD requires the pre-specification of several parameters prior to execution [28]. For
practical, real-life problems, such as the assessment and monitoring of civil infrastructure, typically only a minimal set of data from
in-situ structures is available. Here, we propose a method to measure the amount of information transferred across all IMFs by
adjusting various VMD parameters. The suggested approach relies on normalized mutual information, and will be explained further
in the next section.

Next, the IF and IA signals corresponding to the 𝑖th IMF are constructed based on the Gabor’s analytic signal. A set of statistical
features are extracted from these signals, as listed below:

1. The first quartile of the IF signal.
2. The second quartile of the IF signal.
3. The third quartile of the IF signal.
4. The center frequency (𝜔) of the IMF.
5. The Kurtosis of the IF signal.
6. The variance of the IF signal.
7. The skewness of the IF signal.
8. The first quartile of the IA signal.
9. The second quartile of the IA signal.

10. The third quartile of the IA signal.
11. The Kurtosis of the IA signal.
12. The variance of the IA signal.
13. The skewness of the IA signal.

Notably, features 1, 2, 3, 8, 9, and 10 can be classified as nonparametric statistical features and the remaining features are
parametric. The extracted features are labeled as presented in Table 1.
5 
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2.2. Normalized Mutual Information (NMI)

This section evaluates the extent to which information is retained during the decomposition process when specific values are
assigned to the VMD parameters. VMD is recognized as an adaptive decomposition algorithm, which ensures that the sum of the
decomposed IMFs can fully reconstruct the original signal. However, this property holds true only if denoising is not applied during
the decomposition process. On the other hand, setting the denoising factor 𝛼 to a relatively large value may compromise the
adaptiveness of VMD by reducing the amount of information, treated as noise, that passes through the decomposition process.
Here, we propose a technique based on normalized mutual information (NMI) to assess the impact of different VMD parameters on
the amount of information transmitted to the decomposed IMFs.

The NMI distance between the signal 𝐟 (𝑡) and the sum of its extracted IMFs is defined as follows:

NMI
(

𝐟 (𝑡),
∑

𝑘
𝐮𝑘(𝑡)

)

=
I
(

𝐟 (𝑡),
∑

𝑘 𝐮𝑘(𝑡)
)

min
(

H(𝐟 (𝑡)),H(
∑

𝑘 𝐮𝑘(𝑡))
) (6)

where H(.) and I(.) denote the Shannon Entropy and mutual information, respectively. The Shannon Entropy of variable 𝐗 and the
mutual information between two variables 𝐗 and 𝐘 are calculated as follows:

H(𝐗) = −
∑

𝑥∈𝐗
P(𝑥) log P(𝑥) (7)

and

I(𝐗;𝐘) =
∑

𝑦∈𝐘

∑

𝑥∈𝐗
P(𝐗,𝐘)(𝑥, 𝑦) log

( P(𝐗,𝐘)(𝑥, 𝑦)
P𝐗(𝑥)P𝐘(𝑦)

)

(8)

where, in above equations, P𝐗(𝑥), P𝐘(𝑦), and P(𝐗,𝐘)(𝑥, 𝑦) denote the marginal probability of 𝐗 and 𝐘 and their joint probability,
respectively. The procedures discussed in [29,30] is followed to perform the above-mentioned calculations. Here, the role of the
denominator is to scale the NMI value to the range of [0, 1].

2.3. Cointegration

There is a direct correlation between the concept of Cointegration (CI) and the notation of stationary/nonstationary signals, as
iscussed by Doob [31]. This section provides a concise definition of the stationarity and nonstationarity in time series based on
he works of Zolna et al. [32] and Dao and Staszewski [33].

The first order auto-regressive process 𝐴𝑅(1) of the signal 𝑋(𝑡) is obtained as follows:

𝑋(𝑡) = 𝜙 𝑋(𝑡 − 1) + 𝜖𝑡 (9)

where 𝜖𝑡 represents a white Gaussian noise process which is stationary. Exploring the possible conditions on 𝜙, we encounter three
possible scenarios, detailed as follows:

1. |𝜙| < 1: this case implies that the signal 𝑋(𝑡) is stationary,
2. |𝜙| > 1: refers to a nonstationary signal, and
3. |𝜙| = 1: corresponds to a pure random walk signal. As the variance diverges when 𝑡 → ∞, the signal is regarded as

nonstationary.

Definition 2.1. A time series is said to be a unit root process if its characteristic equation has a root equal to one.

Definition 2.2. Nonstationarity can also arise from a deterministic trend in a time series, in which case the time series is called a
rend stationary process.

The characteristic equation of a time series can be analyzed to determine the presence of unit roots. The number of unit roots 𝑛
ndicates the degree of nonstationarity in the series, which is expressed in terms of its integration order, denoted as 𝐼(𝑛). When the
ifference operator is applied to the time series, it cancels out the unit root effect and makes the series difference stationary. For
nstance, consider a first-order nonstationary pure random walk process, which is classified as 𝐼(1). By applying the delta operator,
e obtain 𝛥𝑋(𝑡) = 𝑋(𝑡) −𝑋(𝑡− 1) = 𝜖𝑡, which represents a stationary white Gaussian noise process denoted by 𝐼(0). Other definitions
f stationary and nonstationary signals exist. For instance, statistical moments of a stationary signal are time-invariant, whereas the
tatistical moments of a nonstationary signal are time-variant.

The extraction of statistical moments (features) from different IMFs in this paper assumes that the signals, and hence the extracted
IMFs, are stationary. While this assumption simplifies the feature extraction process, it may not necessarily hold true for all types
f signals. Hence, we propose using the Johansen cointegration technique to eliminate any nonstationary trends in the recorded
ignals. We hypothesize that this will lead to improved classification outcomes, particularly as the proportion of nonstationary
ignals increases.

Note that although differentiating a nonstationary signal can potentially eliminate any nonstationary trend, it is not a recom-
ended practice. Cross and Worden [25] presented two justifications for using cointegration in SHM rather than directly working

with the difference operator:
6 
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1. Firstly, differentiating a time series can amplify the effect of high-frequency noise components. In the worst case scenario,
cointegration will produce a weighted average of noise.

2. Secondly, differentiation can eliminate any trend in a signal that arises from damage.

In this paper, we propose to fuse the recorded signals using three technique: (1) by averaging signals as a traditional raw signal
fusion, (2) by AKF method as a more advanced signal fusion technique theorized to be capable of fusing nonstationary signals,
nd (3) by using the cointegration technique as the proposed raw signal fusion algorithm suitable for fusing highly nonstationary

signals. Our hypothesis is that the latter technique will be more effective when dealing with signals that exhibit more nonstationary
properties. To investigate this, we apply the Johansen cointegration along with the other methods for fusing the laboratory and
field signals and further employ VMD for feature extraction out of the fused signals. We finally use the extracted features for solving
he classification problem of poles as either damaged or intact. In the following, we present fundamental aspects of cointegration
heory.

Cointegration is a statistical technique that has found applications in several fields of engineering including condition moni-
toring [21,25,34] and colored noise cancellation in signals used for SHM [35]. Johansen cointegration can be regarded as a signal
fusion technique that aims to obtain a linear stationary combination of a set of nonstationary signals. The following basic definitions
re provided to enhance understanding of the Johansen cointegration procedures.

Definition 2.3. A time series 𝑋(𝑡) is deemed integrated of order 𝑑, denoted as 𝐼(𝑑), if 𝛥𝑑𝑋(𝑡) renders stationary time series. Here, 𝑑
ndicates the number of times the 𝛥 operator needs to be applied to the time series to make it stationary, where 𝛥𝑋(𝑡) = 𝑋(𝑡) −𝑋(𝑡− 1).

Definition 2.4. A set of 𝑚 signals 𝑋1(𝑡),… , 𝑋𝑚(𝑡) is said to be cointegrated with order 𝑑 and 𝑏 if they satisfy the following conditions:

1. Each signal 𝑋𝑖(𝑡), 𝑖 = 1,… , 𝑚, is integrated of order 𝑑.
2. There exists a linear combination of the signals 𝑋𝑖(𝑡):

𝛹 (𝑡) = 𝑎1 𝑋1(𝑡) + 𝑎2 𝑋2(𝑡) +⋯ + 𝑎𝑚 𝑋𝑚(𝑡) (10)

such that 𝛹 (𝑡) is integrated of order 𝑑 − 𝑏. In this case, the set of time series 𝑋1(𝑡),… , 𝑋𝑚(𝑡) is denoted as CI (𝑑 , 𝑏).

The most encountered scenario is when both 𝑑 and 𝑏 are equal to 1. In this scenario, the cointegration vector, denoted by
[𝑎1,… , 𝑎𝑚], can be obtained using a least squares optimization algorithm [36].

The Kwiatkowski-Phillips–Schmidt–Shin (KPSS) [37] and Augmented Dickey–Fuller (ADF) [38] tests are two widely used
statistical methods in time series analysis to detect the presence of a unit root in a signal. These tests indicate how many times
the difference operator, 𝛥, should be applied to a time series to achieve stationarity. Detailed mathematical formulations of the
Johansen cointegration procedure are provided in Appendix.

3. Case study

The proposed method is demonstrated by investigating the wave propagation problem through signals recorded from testing
various concrete poles, each exhibiting distinct damage conditions and concrete mixtures. The poles were tested in both controlled
laboratory conditions and real-world in-situ field conditions. While in the laboratory set-up, the poles were standing freely on a
tyrofoam mat, in the field, they were embedded in soil and exposed to environmental factors. Such environmental factors can

compromise the accurate diagnosis of damage, as changes in the signals may be influenced by both structural degradation and
external environmental changes. As highlighted in recent studies [39,40], assessing the robustness of damage detection methods
while considering the impact of environmental variability is a critical aspect of SHM.

Three of the poles were manufactured using self-compacting concrete (without steel reinforcement), while the remaining two
were made of generic concrete (also lacking steel reinforcement). Within the sub-set of self-compacting concrete poles, one remained
undamaged, another exhibited surface void damage and the third had internal honey-comb damage. As for the generic concrete
poles, one was free from damage, and the other displayed surface void damage. All tested poles had a length of 3 m and a diameter
of 0.25 m.

Fig. 1 shows photos of a pole tested in the laboratory and the field. The specifications of the poles studied, including damage
types and material properties, are depicted in Fig. 2 and outlined in Table 2.

To determine the health condition of the poles, they were non-destructively tested using an innovative electro-mechanical
excitation system consisting of tactile transducers driven by an amplifier to generate controlled sound waves. Tactile transducers
are capable of transferring controlled sound waves (vibrations) through a structure. This way, a narrow-band frequency stress wave
with a center frequency of 1 kHz was generated and the wave propagation responses of the poles were captured using a network
of 12 accelerometers. The accelerometers were attached in three concentric rings, each containing four accelerometers. The sensors
simultaneously recorded the wave response with a sampling rate of 1 MHz and a recording time of 0.06 s. Each pole configuration
was tested five times to generate multiple data sets.

The testing equipment comprised the following components: four tactile transducers (Vidsonix, model VX-GH92); sensor wedges,
long with curvature adapters, for directing the wave in the longitudinal direction of the structure; a Hi-Fi amplifier to amplify and
djust the wave amplitude; a function generator to produce the desired excitation waveform and frequency; a data acquisition
7 
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Fig. 1. Test set-up view in (a) the laboratory and (b) the field.

Fig. 2. Schematic view and size of the studied poles in the laboratory and field: (a) Intact Heterogeneous Concrete, (b) Damaged Heterogeneous Concrete (surface
void), (c) Intact Homogeneous Concrete, (d) Damaged Homogeneous Concrete (surface void), and (e) Damaged Homogeneous Concrete (internal honeycomb).
8 
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Table 2
Types of poles and their damage scenarios tested in the laboratory and field.
Testing site Material Tag Damage scenario

Laboratory

Generic concrete, heterogeneous (a) Intact
(b) Damaged, surface void

Self-compacting concrete, homogeneous
(c) Intact
(d) Damaged, surface void
(e) Damaged, internal honeycomb

Field

Generic concrete, heterogeneous (a) Intact
(b) Damaged, surface void

Self-compacting concrete, homogeneous
(c) Intact
(d) Damaged, surface void
(e) Damaged, internal honeycomb

Fig. 3. Testing set-up: (a) sensor wedge, (b) tactile transducer, (c) transducer installed on sensor wedge, (d) function generator, (e) Hi-Fi amplifier, (f)
accelerometer, (g) data acquisition system, (h) signal conditioner, (i) computer and (j) schematic of system setup.

system; 12 accelerometers (PCB, model 352C34) with a frequency range of 0.5 Hz to 10 kHz for measuring the wave propagation
along the structure; a signal conditioner; and a computer used for data recording. Fig. 3 displays the testing equipment and the
schematic of the testing setup. It is hypothesized that the sensors at different heights of the pole (different rings) will capture
different wave forms. More details about the data collection and test-setups can be found in [41,42].

In this study, the test results were labeled as ‘‘Intact’’ or ‘‘Damaged’’ regardless of the type of damage and the material properties
of the pole. Therefore, a binary classification problem was targeted for analyzing laboratory and field signals individually. The signals
recorded from sensors placed at the same height on poles (same ring) are fused through three different methods: cointegration, signal
averaging, and AKF. The results are further discussed, and conclusions are drawn in the following sections.

4. Adopted methodology

4.1. Overview

Algorithm 1, outlines the stages of the adopted methodology in this paper. The methodology begins with an assessment of
the stationary properties of the raw signals using the Augmented Dickey–Fuller (ADF) test. This test is essential for determining
9 
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Algorithm 1 Signal Processing and Classification
1: Input: signals_list, significance_level, VMD parameters, number of iterations 𝑛, labels
2: Output: Classification Report
3: Stage 1: Check Stationarity of Signals using ADF Test
4: for each signal in signals_list do
5: adf_result ← perform_adf_test(signal)
6: if adf_result[p-value] < significance_level then
7: Print(‘‘Signal is stationary’’)
8: else
9: Print(‘‘Signal is not stationary’’)

10: end if
11: end for
12: Stage 2: Fuse Raw Signals
13: Step 2.1: Apply Johansen Cointegration
14: johansen_result ← johansen_cointegration_test(signals_list)
15: Step 2.2: Apply AKF (Adaptive Kalman Filter)
16: fused_signal_akf ← apply_akf(signals_list)
17: Step 2.3: Apply Signal Averaging
18: averaged_signal ← average_signals(signals_list)
19: Stage 3: Feature Extraction using VMD (Variational Mode Decomposition)
20: Step 3.1: Set VMD parameters
21: vmd_params ← set_vmd_parameters(alpha, tau, K, DC, init, tol)
22: Step 3.2: Extract Intrinsic Mode Functions (IMFs) using VMD
23: IMFs ← apply_vmd(fused_signal_akf, vmd_params)
24: Step 3.3: Construct Gabor’s Analytic Signals from IMFs
25: for each IMF in IMFs do
26: gabor_signals ← construct_gabor_analytic_signal(IMF)
27: end for
28: Step 3.4: Derive Statistical Features from IA and IF
29: for each gabor_signal in gabor_signals do
30: IA ← compute_instantaneous_amplitude(gabor_signal)
31: IF ← compute_instantaneous_frequency(gabor_signal)
32: ia_features ← extract_statistical_features(IA)
33: if_features ← extract_statistical_features(IF)
34: features ← ia_features + if_features
35: end for
36: Stage 4: Solve Classification Problem
37: Step 4.1: Identify Optimal Number of Features
38: optimal_features ← select_optimal_features(features)
39: Step 4.2: Monte Carlo Cross-Validation (MCCV) for Classification
40: mccv_results ← monte_carlo_cross_validation(optimal_features, labels, n_iterations)
41: Step 4.3: Provide Classification Reports
42: classification_report ← generate_classification_report(mccv_results)
43: Print(classification_report)

whether the signals are stationary or nonstationary, as the presence of a unit root can significantly affect the choice of signal
usion methods. Once the stationarity of the signals is determined, three different approaches for signal fusion are applied:

Johansen cointegration, signal averaging, and the Adaptive Kalman Filter (AKF). Each of these methods is selected to evaluate
how they can handle the fusion of raw signals, particularly in the context of nonstationary data. Signal averaging provides a simple
means of fusing data by averaging multiple signals, while AKF offers a dynamic filtering approach that accounts for noise and
uncertainty.

Johansen cointegration is particularly well-suited for fusing nonstationary signals, as it tests for the existence of long-term
quilibrium relationships among the signals. The logic behind comparing these three approaches is to highlight the effectiveness
f Johansen cointegration when dealing with increasing instances of nonstationary signals. While signal averaging and AKF can
andle certain aspects of data fusion, Johansen cointegration is effective in handling scenarios dominated by nonstationarity, as it
dentifies and leverages the underlying relationships among nonstationary time series. This comparison helps justify the preference
or Johansen cointegration in contexts where the number of nonstationary cases rises, offering a more robust fusion method for
uch data.
10 
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Fig. 4. Monte Carlo Cross-Validation (MCCV) scheme.

4.2. XGBoost algorithm

XGBoost (Extreme Gradient Boosting) is a sparsity-aware algorithm widely used by data scientists for the analysis of sparse
data [43]. It is a scalable, distributed, and gradient-boosted decision tree algorithm, and it serves as a learning library for solving
classification, regression, and ranking problems [44]. XGBoost is immune to errors stemming from the use of correlated features and
he presence of multicollinearity among features. It is appealing to data scientists due to its predictive performance and efficient

processing time. Therefore, the XGBoost algorithm has been explicitly employed to solve the classification problem in this paper.

4.3. Monte Carlo Cross-Validation (MCCV)

To ensure the validity of the classification results, the Monte Carlo Cross-Validation (MCCV) technique is employed to
evaluate the performance of the XGBoost algorithm. Studies have demonstrated that MCCV generally yields higher accuracy and,
onsequently, greater reliability compared to CV (Cross-Validation), especially when dealing with limited data sets [45].

Fig. 4 displays the general scheme of the MCCV technique. Here, the data set is randomly split into training and test sets of
arying size over multiple iterations. A close examination of the results of different evaluation metrics suggests that the results
onverge at 100 iterations. Therefore, 100 iterations of the MCCV were performed for each model. Each run involved randomly
plitting the data set into training and test sets, with the test set comprising a percentage between 20% to 50% of the data set at
ach iteration. The mean and standard deviation of the outcomes are presented in the results section of this paper.

4.4. Adaptive Kalman Filter (AKF)

In scenarios where the noise is non-Gaussian or nonstationary, an Adaptive Kalman Filter (AKF) is likely to outperform simple
signal averaging. The adaptive Kalman filter can adjust its parameters to better filter out noise while preserving the useful signal
omponents. Therefore, we compare the performance of the cointegration technique with the AKF signal fusion technique. AKFs

have been employed for sensor signal fusion in various studies including [12,13].
AKF is a variation of the Kalman filter that adapts its process variance parameter based on the difference between the predicted

nd measured values. This adaptation helps in handling varying uncertainties in the system dynamics. AKF operates in two main
steps: Prediction Update and Measurement Update.

In the prediction step, the priori estimate and error covariance are updated based on the process variance. In the measurement
step, a blending factor is calculated based on the priori error covariance and measurement variance. This factor determines the
contribution of the measurement to the final estimate. The posteriori estimate and error covariance are then updated based on the
measurement and blending factor. This adaptive filter adjusts the process variance based on the difference between the measurement
and the posteriori estimate, thus adapting to changes in the system dynamics.

The developed AKF program fine-tunes the process variance based on the discrepancy between the fused signals and the updated
estimates, enabling it to adapt to varying system dynamics. The program iteratively processes subsets of input signals and optimizes
the AKF algorithm’s hyperparameters to enhance fusion accuracy. Hyperparameter optimization—including process variance,
measurement variance, estimated measurement variance, and damping factor—is performed using the Differential Evolution
11 
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Table 3
Summary of AKF variables and their descriptions.

Variable Description

�̂�𝑘−1 State estimate at time step 𝑘 − 1
𝑃 𝑘−1 Error covariance at time step 𝑘 − 1
𝑈𝑘−1

𝑘 State transition from time step 𝑘 − 1 to 𝑘
𝐶𝑘 Process noise matrix at time step 𝑘
𝑄𝑘 Process noise covariance at time step 𝑘
𝐻𝑘 Measurement matrix at time step 𝑘
𝑅𝑘 Measurement noise covariance at time step 𝑘
𝐾𝑘 Kalman gain at time step 𝑘

�̂�𝑘𝑘|𝑘−1 Predicted state estimate at time step 𝑘

𝑃 𝑘
𝑘|𝑘−1 Predicted error covariance at time step 𝑘

�̂�𝑘 Updated state estimate at time step 𝑘
𝑃 𝑘 Updated error covariance at time step 𝑘

algorithm [46]. This optimization aims to minimize the total squared error between the fused signals and the AKF estimates, thereby
improving the accuracy of the signal fusion process.

The AKF extends the conventional Kalman filter approach by adjusting the process noise covariance matrix at time step 𝑘,
represented by 𝑄𝑘, based on current measurements. This adjustment is performed using the Maximum Likelihood (ML) criterion as
discussed below.

The AKF algorithm is described by the following equations, which represent the overall scheme of the conventional Kalman
filter [47]:

�̂�𝑘𝑘|𝑘−1 = 𝑈𝑘−1
𝑘 �̂�𝑘−1 (11)

𝑃 𝑘
𝑘|𝑘−1 = 𝑈𝑘−1

𝑘 𝑃 𝑘−1(𝑈𝑘−1
𝑘 )𝑇 + 𝐶𝑘𝑄𝑘𝐶

𝑇
𝑘 (12)

𝐾𝑘 = 𝑃 𝑘
𝑘|𝑘−1𝐻

𝑇
𝑘 (𝐻𝑘𝑃

𝑘
𝑘|𝑘−1𝐻

𝑇
𝑘 + 𝑅𝑘)−1 (13)

�̂�𝑘 = �̂�𝑘𝑘|𝑘−1 +𝐾𝑘𝑚𝑘 (14)

𝑃 𝑘 = (𝐼 −𝐾𝑘𝐻𝑘)𝑃 𝑘
𝑘|𝑘−1 (15)

In these equations, 𝑚𝑘 represents the measurement residual, which is calculated as:

𝑚𝑘 = 𝑧𝑘 −𝐻𝑘𝑈
𝑘−1
𝑘 �̂�𝑘−1 (16)

Table 3 provides a comprehensive summary of the variables used in the AKF equations and their descriptions.
Additionally, a common approach in the Russian aviation industry employs the AKF to adapt the state noise covariance matrix

𝑄𝑘 using the Maximum Likelihood (ML) criterion, as shown in Eq. (17):

𝐶𝑘𝑄
𝑘𝐶𝑇

𝑘 = 𝐾𝑘𝑚𝑘𝑚
𝑇
𝑘𝐾

𝑇
𝑘 + 𝑃𝑘 − 𝑈𝑘−1

𝑘 𝑃𝑘−1𝑈
𝑘−1𝑇
𝑘 (17)

To simplify computations and ensure the positive semi-definiteness of 𝑄, the term 𝑃𝑘−𝑈𝑘−1
𝑘 𝑃𝑘−1𝑈𝑘−1𝑇

𝑘 can be neglected, leading
to the following approximation:

𝐶𝑘𝑄
𝑘𝐶𝑇

𝑘 = 𝐾𝑘𝑚𝑘𝑚
𝑇
𝑘𝐾

𝑇
𝑘 (18)

This approximation reduces computational complexity, making the AKF suitable for implementation on onboard computers where
swift response times and minimal computational requirements are essential.

The AKF implementation developed in this study utilizes Python for computational efficiency and flexibility. The program
processes input data by iterating through subsets to apply the AKF, optimizing the hyperparameters through a combination of
machine learning techniques and parallel computing. This methodology ensures robust and accurate state estimation, making the
AKF a powerful tool for adaptive state estimation.

5. Results and discussions

This section presents the results of applying the proposed methodology to laboratory and field data of concrete poles for health
assessment.
12 
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5.1. ADF results of laboratory and in-situ field data

Following the methodology of this paper, the Augmented Dickey–Fuller (ADF) test is first run on all signals to determine their
stationarity/nonstationarity characteristics. The ADF test is widely recognized as a reliable statistical tool for detecting the presence
of a unit root, as it is specifically designed to assess nonstationarity in time series data by evaluating the existence of a stochastic
trend. The ADF test extends the Dickey–Fuller test by including lagged differences of the dependent variable, which helps address
issues of autocorrelation in the residuals and ensures a more robust estimation [38]. Its null hypothesis is that the time series has
a unit root, making it a direct and appropriate method for identifying whether a series follows a random walk or has a stochastic
trend. Since the ADF test targets this specific hypothesis, it is more suitable for assessing unit roots than tests like the KPSS, which
focus on testing for stationarity around a deterministic trend rather than explicitly checking for a unit root. The widespread use and
validation of the ADF test in econometrics further solidifies its trustworthiness for this purpose.

The ADF test relies on several key assumptions to test for the presence of a unit root in a time series. These assumptions are
important to ensure the validity and accuracy of the test results. The main assumptions of the ADF test are as follows [48]:

1. Linearity of the Time Series: The ADF test assumes that the time series follows a linear autoregressive process. This means
the model fits the data based on a linear relationship between the current value of the series and its past values.

2. Constant Variance of Residuals (Homoscedasticity): The test assumes that the error term (residuals) has a constant variance
over time. In other words, the variance of the errors is assumed to be homoscedastic.

3. Uncorrelated Error Terms: The residuals (errors) from the regression should be uncorrelated over time. The ADF test
addresses potential autocorrelation by including lagged differences of the dependent variable in the regression, which
accounts for serial correlation in the data.

4. Stationarity of Higher-Order Lags: The test assumes that the lagged differences included in the regression (as part of the
augmentation process) are themselves stationary. This ensures that any nonstationarity is correctly attributed to the presence
of a unit root in the original series rather than to higher-order effects.

5. No Structural Breaks: The ADF test assumes that the time series does not have any structural breaks (sudden changes in the
mean or variance). Structural breaks, if present, can lead to incorrect conclusions about stationarity. No structural breaks are
expected in the test results of this paper.

6. Sufficient Number of Lags: The appropriate number of lags must be included in the model to adequately capture the
dynamics of the process and correct for autocorrelation. If too few lags are included, autocorrelation may remain, affecting
the test’s reliability. If too many lags are included, the model may overfit.

The first two assumptions of the ADF test–linearity of the time series and constant variance (homoscedasticity) of the residuals–
re investigated in the following sections. These assumptions are essential to ensure the correct application of the ADF test, as
on-linearity or heteroscedasticity can lead to misleading results about stationarity. The other assumptions, such as uncorrelated
esiduals and stationarity of higher-order lags, are implicitly satisfied by the test. The inclusion of lagged differences in the
DF model corrects for autocorrelation, while the test accounts for the possibility of higher-order nonstationarity through its
ugmentation process. As for structural breaks, although not directly tested, they are not expected in the nondestructive testing
f concrete poles.

5.1.1. Ramsey RESET test for linearity
The Ramsey Regression Equation Specification Error Test (RESET) evaluates whether a linear regression model is correctly

specified or if it suffers from omitted variables, incorrect functional forms, or nonlinearity [49]. Specifically, when testing for
linearity, the null hypothesis assumes that the model does not require additional nonlinear terms.

Consider the original linear regression model:

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 +⋯ + 𝛽𝑘𝑥𝑘𝑖 + 𝜖𝑖 (19)

where:

• 𝑦𝑖 is the dependent variable.
• 𝑥1𝑖, 𝑥2𝑖,… , 𝑥𝑘𝑖 are the independent variables.
• 𝛽0, 𝛽1,… , 𝛽𝑘 are the parameters to be estimated.
• 𝜖𝑖 is the error term.

To perform the RESET test, the model is augmented with powers of the fitted values (or other transformations) up to a certain
egree 𝑚:

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 +⋯ + 𝛽𝑘𝑥𝑘𝑖 + 𝛾1�̂�
2
𝑖 + 𝛾2�̂�

3
𝑖 +⋯ + 𝛾𝑚�̂�

𝑚+1
𝑖 + 𝜖𝑖 (20)

where:

• �̂�𝑖 represents the fitted values from the original model.
• 𝛾1, 𝛾2,… , 𝛾𝑚 are the coefficients for the nonlinear terms.
13 
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Table 4
Ramsey RESET test results for linearity (𝑝-value = 0.05).

Dataset # 𝑝 < 0.05 Total columns % Linearity

Laboratory Data 17 360 95.28
Field Data 14 300 95.33

The Null and Alternative Hypotheses of the RESET test are as follows:
Null Hypothesis (𝐻0):

𝐻0 ∶ 𝛾1 = 𝛾2 = ⋯ = 𝛾𝑚 = 0 (21)

The following outlines the way the results of the test can be interpreted:

• All coefficients of the additional nonlinear terms are equal to zero.
• The original linear model is correctly specified without the need for these higher-order terms.
• There is no evidence of nonlinearity or omitted variable bias in the model.

Alternative Hypothesis (𝐻𝑎):

𝐻𝑎 ∶ At least one of 𝛾1, 𝛾2,… , 𝛾𝑚 ≠ 0 (22)

Interpretation:

• At least one of the nonlinear terms significantly improves the model.
• Indicates potential misspecification in the original linear model, such as nonlinearity or omitted variables.

The adopted RESET test was considered to include up to the squared term (𝑚 = 2). Therefore, the hypotheses become:

𝐻0 ∶ 𝛾1 = 𝛾2 = 0 (23)

and

𝐻𝑎 ∶ 𝛾1 ≠ 0 or 𝛾2 ≠ 0 (24)

By testing the null hypothesis 𝐻0, the Ramsey RESET test helps validate the specification of the linear regression model. Failure to
reject 𝐻0 suggests that the linear model is adequate, whereas rejection indicates that the model may need to incorporate additional
erms or transformations to better capture the underlying relationship in the data.

Table 4 shows results of the Ramsey RESET test run on the laboratory and field data. The table indicates that:

• Laboratory Data: Out of 360 columns tested, 17 columns (approximately 4.72%) rejected the null hypothesis (𝐻0) of correct
linear specification. Consequently, 95.28% of the laboratory data columns conform to the linearity assumption.

• Field Data: Out of 300 columns tested, 14 columns (approximately 4.67%) rejected 𝐻0, resulting in 95.33% conformity with
the linearity assumption.

These findings suggest that the vast majority of the regression models applied to both laboratory and field datasets are
ppropriately specified under the linear framework. Specifically, over 95% of the models do not exhibit significant evidence of
isspecification related to nonlinearity or omitted variables as per the RESET test.

5.1.2. The Goldfeld-Quandt statistical test for homoscedasticity
The Goldfeld-Quandt statistical test [50] was applied to both the laboratory and field datasets to assess the presence of

eteroscedasticity. The null and alternative hypotheses for the test are as follows:
Null Hypothesis (H0): The variance of the error terms is constant across all observations (i.e., homoscedasticity).

𝐻0 ∶ 𝜎21 = 𝜎22 (25)

Alternative Hypothesis (H1): The variance of the error terms is not constant across observations (i.e., heteroscedasticity exists).

𝐻𝑎 ∶ 𝜎21 ≠ 𝜎22 (26)

The results of the test with confidence level of 5% are presented in Table 5. The results indicate that more than 91.67% and
5% of the laboratory and field data conform with the homoscedasticity assumption.

The diagnostic evaluations using the Ramsey RESET and Goldfeld-Quandt tests reveal that a notable minority of the laboratory
nd field datasets exhibit nonlinearity and heteroscedasticity, respectively, as detailed in Tables 4 and 5. Specifically, 8.33% of the
14 
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Table 5
Goldfeld-Quandt test results for heteroscedasticity (𝑝-value = 0.05).

Dataset # 𝑝 < 0.05 Total columns % Homoscedastic

Laboratory Data 30 360 91.67
Field Data 45 300 85.00

laboratory data columns and 15.00% of the field data columns show evidence of heteroscedasticity, while approximately 4.7% of the
columns in both datasets reject the null hypothesis of linearity. These specification errors suggest the presence of underlying issues
that may compromise the validity of regression analyses, such as biased standard errors and misspecified functional forms. One
potential source of these specification errors is nonstationarity within the datasets. Nonstationary data, characterized by properties
such as time-dependent mean and variance, can lead to spurious regression results, where relationships appear significant solely
due to underlying trends rather than genuine associations. To address this concern and ensure the robustness of the models, it is
essential to assess the stationarity of both laboratory and field data. Consequently, conducting the ADF test is justified to investigate
the nonstationary nature of the data.

Fig. 5 shows the proportion of nonstationarity in the recorded signals of all concrete poles for both laboratory and in-situ
field recorded signals. It is evident from the results that the field-recorded signals exhibit a significantly higher proportion of
nonstationarity across all tested poles compared to the laboratory data. Indeed, a mean increase of 57.6% in nonstationarity
is found across all poles, with the highest increase of 73% (from 8% to 30%) for the intact homogeneous pole (Pole c). This
underscores the significant impact of real-life testing conditions on the data and emphasizes the importance of our proposed method
n mitigating the effects of increased nonstationarity. Furthermore, it is evident that the presence of damage in a pole leads to an
ncrease in nonstationarity. This observation is expected, as damage directly affects stress wave propagation, resulting in pronounced
onstationary effects. Across all poles, an average increase in nonstationarity of 24.8% is observed when comparing intact to
amaged poles. As such, for the laboratory testing, the nonstationarity increases from 17% to 25% for the damaged heterogeneous
oles and from 8% to 17% for the damaged homogeneous poles. For the field results, it increases from 45% to 52%, and from
0% to 32% and 38%, for the heterogeneous and homogeneous damaged poles, respectively. Comparing the mean increases in
onstationarity attributed to the changed testing environment (57.6%) and the presence of damage (24.8%), it is evident that real-
ife testing conditions have a significantly larger impact on the stationarity of the signals. These findings underscore the importance
f considering environmental effects during signal processing for damage assessment and highlight the necessity of the proposed
ethod to mitigate the pronounced nonstationarity observed in field conditions. It can further be seen from the ADF test results that

he signals recorded in the field show a more consistent nonstationarity across different damage scenarios. This helps to explain some
f the results obtained in this study, as we compare the performance of signal averaging [51], AKF, and cointegration techniques
s raw data fusion algorithms.

5.2. Evaluating the NMI for different values of VMD parameters

This section focuses on examining the influence of VMD parameters on the evaluated NMI metric between the original signal
and its decomposed components. To this end, we have explored different values of VMD parameters from the options below and
calculated the mean NMI value in both laboratory and field settings for each parameter combination. The following are the options
for the selected values of the VMD parameters:

1. Number of IMFs (𝑝): This parameter was selected from the options in the set {3, 5, 7}.
2. Denoising factor (𝛼): Different values of this parameter were selected from the set {100, 500, 1000} representing minor,

moderate, and severe cases of denoising, respectively.
3. Time interval (𝜏): This parameter determines how quickly the Lagrangian multiplier in (5) accumulates the reconstruction

error. In case exact reconstruction is intended, one can set it to a small number like 0.1 to minimize the effect of 𝛼, as
suggested by the authors of the VMD paper [28]. Here, we fixed 𝜏 at zero and experimented with different values of 𝛼.

4. Convergence threshold (𝜖): Different values of 10−5 and 10−7 were investigated, and their effects on the NMI metric were
analyzed.

5. Center frequency initializer (𝑖𝑛𝑖𝑡): This parameter can take the value of 0, 1, or 2, indicating zero initialization, uniform
initialization, and random initialization, respectively. Previous work mentioned its negligible effects on the decomposition
results [52].

6. DC: This is a Boolean parameter taking the value of either 0 or 1, indicating whether to fix the first IMF’s center frequency
at zero or not.

We seek to quantify the average value of the information passed through the decomposition process across fused signals using
he proposed and adopted methods. Tables 6 and 7 show the mean and the standard deviation values of the NMI metric obtained

from the application of the VMD to the entire samples of data for different combinations of the above-mentioned parameters. Our
reliminary examination of the impact of various VMD parameters on the NMI results confirmed that 𝛼 (denoising factor) and 𝑝
number of decompositions) are the only variables that can practically affect the NMI value. Additionally, the results demonstrate
omparable values obtained by applying VMD to signals derived from both the averaging and AKF fusion methods. The results also
ndicate that increasing the value of 𝛼 substantially decreases the amount of information transferred to the IMFs, while increasing
15 
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Fig. 5. Proportion of signal nonstationary of all concrete poles tested in the laboratory and field using the ADF test: (a) Intact pole – Heterogeneous concrete,
b) Damaged pole (surface void) – Heterogeneous concrete, (c) Intact pole– Homogeneous concrete, (d) Damaged pole (surface void) – Homogeneous concrete,
nd (e) Damaged pole (internal honeycomb) – Homogeneous concrete.

Table 6
NMI values for various combinations of hyperparameters
of VMD applied to the entire fused laboratory data using
various mathods (𝜇 ± 𝜎).

Averaging and AKF

𝛼
𝑝 3 5 7

100 0.68 ± 0.09 0.80 ± 0.04 0.81 ± 0.04
500 0.46 ± 0.14 0.59 ± 0.11 0.69 ± 0.08
1000 0.36 ± 0.15 0.46 ± 0.14 0.55 ± 0.13

Cointegration

𝛼
𝑝 3 5 7

100 0.62 ± 0.10 0.77 ± 0.05 0.83 ± 0.04
500 0.40 ± 0.15 0.53 ± 0.12 0.66 ± 0.08
1000 0.33 ± 0.16 0.44 ± 0.14 0.54 ± 0.12

Table 7
NMI values for various combinations of hyperparameters of
VMD applied to the entire fused field data using various
mathods (𝜇 ± 𝜎).

Averaging and AKF

𝛼
𝑝 3 5 7

100 0.78 ± 0.06 0.82 ± 0.05 0.86 ± 0.04
500 0.71 ± 0.08 0.73 ± 0.08 0.75 ± 0.07
1000 0.69 ± 0.08 0.71 ± 0.08 0.72 ± 0.08

Cointegration

𝛼
𝑝 3 5 7

100 0.66 ± 0.06 0.80 ± 0.04 0.85 ± 0.023
500 0.47 ± 0.10 0.55 ± 0.10 0.68 ± 0.07
1000 0.43 ± 0.09 0.48 ± 0.10 0.56 ± 0.10

the value of 𝑝 amplifies it. However, there exists a practical limitation in terms of increasing the number of decompositions: it may
lead to over-fitting machine learning algorithms on the training data using the extracted features [53].
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Table 8
Assigned values for VMD parameters [17].

Parameters Description Specified values

𝑝 Number of IMFs 5
𝛼 Denoising factor 100
𝜏 Time interval 0
𝜖 Convergence threshold 10−5

𝑖𝑛𝑖𝑡 Center frequency initializer 0
DC Boolean parameter 0

Table 8 presents suggested VMD parameters and their assigned values for the problem of this paper based on the above-mentioned
results.

5.3. Laboratory experiment results

This section presents the results of applying the XGBoost algorithm to signals recorded in the laboratory. Fig. 6 illustrates
examples of cointegration, averaging, and AKF signal fusion techniques derived from a set of four sensors positioned on the same ring
level, along with their corresponding decomposition results. While it is challenging at this stage to identify significant differences
between the decomposition outcomes of the averaged and adapted Kalman filtered signals, one clear observation is that the higher-
order decomposition results effectively capture high-frequency modulations in the carrier signal (first IMF). Notably, the cointegrated
ignal showcases a nonlinear combination of merged signals, successfully eliminating the nonstationary effects evident in the low-
requency fluctuations of the signals. This distinction is particularly apparent When comparing in the first IMF of the cointegrated
ignal with those derived from the signal averaging and AKF techniques.

5.3.1. Distribution of NMI across various fusion techniques
Next, we plan to treat the NMI between the fused signals and their corresponding decompositions as a random variable. Our goal

s to create a boxplot that illustrates the distribution of this variable obtained from signals resulting from all fusion techniques. Fig. 7
displays the box plots of the results. The findings show a wider range for the NMI using the averaging and AKF techniques, whereas
he distribution is narrower for the cointegration technique. This observation suggests that the cointegration method concentrates

the amount of information passed through the decomposition process across different signals. Consequently, a few decompositions
are treated as outliers. The average value of NMIs for cointegration, averaging abd AKF techniques is calculated as 0.77, 0.79 and
.79, respectively. This may help to explain some of the machine learning results obtained from each method in subsequent analyses.
ore specifically, the results indicate that the averaging and AKF techniques outperform the cointegration technique when applied

o the laboratory signals. Furthermore, the averaging and AKF techniques demonstrate comparable performance.

5.3.2. Visualization of the obtained feature space
Next, the dimensionality of the feature space is reduced to facilitate the visualization of data classes and their distributions. To

this end, the data is first standardized and PCA analysis is performed. Fig. 8 exhibits the screen plot of the PCA analysis result. The
results indicate that over 65% of the variance in the data set can be captured by the first two principal components (PC). Therefore,
plotting the first PC (PC1) versus the second PC (PC2) is expected to provide a further insight into the separability of the data
set across different damage classes. Fig. 9 displays the scatter plots of PC1 versus PC2 for all the data points. The results reveal
distinct clusters of data points within each class. However, while the results of the averaging and AKF techniques are comparable,
determining which fusion technique achieved better separation remains challenging.

5.3.3. Exploration of feature importance
Next, each feature’s importance relative to that of other features is calculated via the permutation technique. This technique

evaluates the importance of features by measuring the impact of shuffling or permuting the values of each feature while keeping
he relationship between the target variable and other features unchanged [54]. The core concept is that permuting the values of
n important feature will significantly degrade the model’s performance by disrupting the original relationship between the feature
nd the target variable. Each feature column is randomly permuted, and the average importance value is reported.1

Figs. 10(a), 10(b) and 10(c) show the relative nonzero feature importance for the cointegration, signal averaging and AKF
techniques, respectively. The results show the selected 19, 14 and 14 features from the cointegration, signal averaging and AKF
techniques, respectively, that have nonzero importance values. In all cases, at least three out of the five most important features
are non-parametric statistical features, underscoring the critical role of non-parametric statistical features in characterizing the
data obtained in the laboratory. Furthermore, the nonzero feature importance for both the signal averaging and AKF techniques is
identical, with the majority of the highly important features being the same for both techniques.

The most important feature obtained from the signal averaging and AKF techniques is the third quartile of the IF corresponding
o IMF4, while the most important feature for the cointegration technique is the skewness of the IA distribution corresponding to the

1 The number of permutations is set to default in the developed Python code.
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Fig. 6. Example of signal decomposition for the laboratory data (from the lowest to the highest frequency contents, arranged from top to bottom): (a) cointegrated
signal, (b) averaged signal, (c) AKF, (d) decomposed cointegrated, (e) decomposed averaged, and (f) decomposed AKF.

Fig. 7. NMI results of the VMD (with the selected hyperparameters) applied to all fused laboratory signals obtained from various fusion techniques.
18 



M. Mousavi et al.

t

t
i

o

t

F

Journal of Sound and Vibration 599 (2025) 118909 
Fig. 8. Scree plots presenting the proportion of variance captured by the first 10 PCs of the laboratory features using (a) cointegration, (b) signal averaging,
and (c) AKF methods.

Fig. 9. Scatter plots of PC1 versus PC2 of features extracted from the laboratory signals employing (a) cointegration, (b) signal averaging, and (c) AKF methods.

IMF3. These results underscores the importance of decomposing the fused signals into four IMFs. Furthermore, this again validates
he significance of decomposing the signals as both the most important features are selected from the higher order decomposition

results.
Another noteworthy observation is that no feature from IMF5 is present in the top 15 important features of the cointegration

echnique. A similar result is achieved for the signal averaging technique, as no feature from IMF5 is present in the top 12 most
mportant features. This observation suggests that specifying the number of five IMFs in the VMD settings is sufficient for the purpose

of decomposing the laboratory signals. Since over-decomposing signals using VMD primarily results in the duplication of higher-order
IMFs (those with higher center frequencies) [28], it is unlikely to have a significant deteriorating effect on the overall performance
f machine learning algorithms. However, performing feature selection remains crucial to avoid including highly correlated features

in the models.

5.3.4. Pearson correlation matrix
Next, the Pearson correlation matrix is calculated for the features with nonzero importance. Fig. 11 visualizes the results for all

models. The results show the presence of a few highly correlated features among the features with nonzero importance. Selecting
hese features in a model can compromise its performance. Therefore, it is essential to employ a sifting process to discard highly

correlated features from further processing.

5.3.5. Identifying the optimal number of features
To this end, the Yellowbrick library’s recursive feature elimination is employed to select features one by one based on their

importance by evaluating a 5-fold cross-validation of the XGBoost models. The F1-score was set as the selection criteria. Figs. 12(a),
12(b) and 12(c) present the obtained results for the cointegration, signal averaging and AKF techniques, respectively. When running
the feature-selection algorithm on models, the top 11 most important features are distinguished as optimal number of features in all
three cases. Although the selected features are among those that are uncorrelated there are a few features that are highly correlated
in each case. For example, regarding the cointegration model, P2IA2 is highly correlated with P3IA2 and vIA4 with 100% and 87%
correlations, respectively. There are also highly correlated features among the selected features of the signal averaging technique.
or example, features skIF3 is correlated with kIF2 and kIF5 with correlation factors of 90% and -83%, respectively. One reason
19 
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Fig. 10. Nonzero results of the permutation feature importance for the laboratory experiment using (a) cointegration, (b) signal averaging, and (c) AKF methods.

to select these features as descriptive features is likely due to the existence of collinearity among them. It is known that collinear
features cannot individually predict a target. Therefore, their interaction must be considered in the machine learning models [55].
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Fig. 11. Pearson correlation factors for features with nonzero importance for the laboratory experiment using (a) cointegration, (b) signal averaging, and (c)
AKF methods.
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Fig. 12. F1-score results of five-fold cross-validation employing XGBoost trained on the laboratory data using recursive selection of most important features
obtained from (a) cointegration, (b) signal averaging, and (c) AKF methods.

It is also evident that using features obtained from the signal averaging and AKF methods leads to significant fluctuations of the
results across different folds. In contrast, the cointegration technique exhibits a smaller standard deviation compared to the signal
averaging and AKF techniques.

5.3.6. Classification reports
Fig. 14 shows the mean value and standard deviation of the precision, recall, and F1-score evaluated after 100 runs of MCCV

f the XGBoost models using the selected features. Different random states and train-test percentages are selected for splitting the
feature matrices at each run. The parameters pertaining to the standardization of the training features were employed to standardize
the test features at each run to avoid leakage. It is evident from the results that using signal averaging and AKF techniques yields
superior performance in this case. Moreover, similar performance of these two techniques demonstrate the similar nature of the
two techniques. Further, a smaller standard deviation is obtained across all metrics. The better results are particularly achieved for
the precision and recall scores regarding the intact and damaged poles, respectively. This indicates that the signal averaging and
AKF techniques can produce more effective features to reduce false positive detection. This is particularly crucial in non-destructive
damage testing, where correct identification of defective poles is of utmost significance. Additionally, there is a notable increase
in the recall score for the damaged class, suggesting that the signal averaging-based model excels at capturing positive instances,
i.e., damaged poles. This complies with the expectation from an effective machine learning model for NDT. As such, an effective
model should accurately identify as many damaged cases as possible. Furthermore, the signal averaging-based model exhibits higher
F1-scores for both the intact and damaged classes, indicating its ability to strike a balance between precision and recall for both
classes.

The above results suggest that both signal averaging and AKF methods are more efficient techniques for fusing the laboratory
signals. To delve into reasons for this observation we refer back to the results of Fig. 5 which indicates that the majority of the
laboratory signals exhibit stationary properties. Here, the majority of signals already have constant statistical features. Therefore, this

ay imply that fusing them through Johansen cointegration is not beneficial since Johansen cointegration typically seeks stationary
trends among a set of nonstationary signals. Indeed, when this condition is not satisfied, it can lead to producing less meaningful
results.

5.3.7. The Receiver Operating Characteristic (ROC) curve
The Receiver Operating Characteristic (ROC) curve can provide additional insights into the effectiveness of a model. It is created

by plotting the true positive rate (TPR) against the false positive rate (FPR) at various classification thresholds. Additionally, the
Area Under the Curve (AUC) provides a measure of the model’s ability to correctly classify positive instances as positive (TPR) while
minimizing false positive errors (FPR).

XGBoost uses a default threshold of 0.5 to classify instances as intact or damaged. A sample is classified as damaged (positive)
if the obtained probability is greater than 0.5 and is classified as intact (negative) otherwise. As such, the classification decision of
XGBoost is made based on the predicted probabilities. The ROC is created by varying the classification threshold and plotting the
TPR versus the FPR.

A higher AUC is a good metric for evaluating the discriminatory power of a model. In other words, it provides insight into the
capability of the model to distinguish between the two classes. Consequently, an ideal classifier yields an AUC of 1, whereas any
alue of AUC equal to or less than 0.5 represents a poor classifier. Notably, the AUC of 0.5 represents a random classifier that

does not perform any better than chance. As such, a higher AUC implies that the model can learn meaningful patterns or features
that are relevant to the classification task. Here, we argue that the higher value of the AUC implies the better performance of the
corresponding fusion algorithm.

Fig. 13 shows the ROC curve obtained for all methods after running 100 MCCV and computing the average and standard deviation
of the calculated TPR and FPR. The results demonstrate the superior performance of the signal averaging and AKF methods, as
videnced by an AUC of 0.99 and a minimal standard deviation of 0.02 compared to the cointegration method with the mean value
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Fig. 13. ROC curves obtained for 100 runs of MCCV using the top 11 most important features of laboratory data obtained from (a) cointegration, (b) signal
averaging, and (c) AKF methods.

Table 9
Comparison of the classification reports obtained from different VMD decomposition settings
applied to the fused laboratory data using Johansen cointegration algorithm.

Class Metric Settings

p = 7, 𝛼 = 100 p = 5, 𝛼 = 100

Intact
Precision 0.98 ± 0.06 0.95 ± 0.07
Recall 0.94 ± 0.09 0.95 ± 0.07
F1-score 0.96 ± 0.06 0.95 ± 0.05

Damaged
Precision 0.95 ± 0.08 0.96 ± 0.07
Recall 0.98 ± 0.06 0.95 ± 0.07
F1-score 0.96 ± 0.06 0.95 ± 0.05

of 0.97 and standard deviation of 0.03.2 The results also indicate a high standard deviation of TPR and FPR obtained for the signal
averaging and AKF techniques compared to the cointegration method.

5.3.8. Exploring the effect of various VMD settings
Thus far, our analysis has been focused on fixed settings specified for VMD. We observed that both signal averaging and AKF

utperform the Johansen cointegration in fusing the laboratory signals. However, upon revisiting the results presented in Table 6,
it is evident that the chosen settings for VMD led to a lower NMI for the fused signals when using Johansen cointegration, in
comparison to the signal averaging and AKF methods. This observation may explain why features extracted from the cointegrated
signals perform less effectively than those derived from the other two techniques.

To investigate this, we adopted the settings for the VMD signal decomposition with NMI = 0.83 ± 0.04, specifically using 𝑝 = 7
and 𝛼 = 100. This configuration produced an NMI result comparable to signal averaging and AKF. After decomposing the signals
with these settings and performing recursive feature elimination, we identified the optimal number of features to be 13. We then
compared the performance of this configuration with the previous settings (𝑝 = 5, 𝛼 = 100), where the optimal number of features

as 11.
Table 9 presents the comparison of the classification reports using the optimal number of features in each case. Here, we focus on

the F1-score as a metric that balances between Precision and Recall. It is evident that while increasing the number of decompositions
from 𝑝 = 5 to 𝑝 = 7 slightly enhances normalized mutual information (NMI), it does not lead to a significant improvement in
performance metrics. For instance, with 𝑝 = 7 and 𝛼 = 100, class ‘‘Intact’’ achieved an F1-score of 0.96 ± 0.06. In comparison, with
= 5 and 𝛼 = 100, class ‘‘Intact’’ showed almost similar F1-score of 0.95 ± 0.05. Class ‘‘Damaged’’ metrics also exhibited similar

esults obtained for the F1-score.
These results indicate that while increasing the number of decompositions provides a more granular signal representation, as

eflected in the increased NMI, it does not significantly enhance the model’s ability to differentiate between classes. This may be due
o further decomposition introducing features that are less relevant or redundant, thereby diminishing their value for classification.
onsequently, the gains in signal representation do not translate into substantial improvements in classification performance,
ighlighting the need to balance decomposition depth with feature relevance for optimal outcomes.

2 Note that the mean±std should not exceed 1. The reason this value appears to exceed 1 is due to rounding up digits.
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Fig. 14. Classification reports of the models trained with the top eleven important laboratory features evaluated for 100 runs of MCCV on random train-test
splits of the datasets at each run.

5.4. Results of in-situ field data

In the following, we present the results of our proposed method demonstrated on the data recorded in the field. Fig. 15
depicts examples of cointegrated signals, averaged signals and AKF methods from concrete poles tested in the field along with
their decomposed IMFs. A visual comparison of the decomposition results with that of Fig. 6 reveals more disparity of the features
identified across different IMFs. This indicates that higher-order decompositions can capture information about modulations in the
carrier signal that carry information about the interior condition of the wooden poles.

5.4.1. Distribution of NMI across various fusion techniques
Next, we calculate the NMI between the fused signals and their corresponding decompositions. The results are illustrated in the

boxplots of Fig. 16. Similar to the lab results, a broader range for the NMI is obtained from the averaging and AKF techniques, while
he distribution of NMIs is narrower for the cointegration technique. This observation reinforces that the cointegration technique
roduces signals with more concentrated information passed through the decomposition process. Moreover, fewer decompositions
re treated as outliers compared to the laboratory signals. The average NMI values for the cointegration, averaging and AKF methods
re calculated as 0.80, 0.82 and 0.82, respectively. Comparing with the lab outcomes, these results may suggest that machine
earning results obtained from the averaging and AKF techniques should perform better than the cointegration technique in this
ase as well. However, the subsequent results presented in this section indicate otherwise.

5.4.2. Visualization of the obtained feature space
Fig. 17 shows the scree plots (proportion of the variance) of the features obtained from the three fusion techniques. The figure

ndicates that the first two PCs can capture less than 50% of the variance in the features. This result indicates that plotting the first
PC versus the second PC may not provide a reasonable view of the level of separability across different classes. Fig. 18 presents
the scatter plots of PC1 versus PC2 for the feature space. The results indicate the presence of distinct clusters of data points within
each class. It can be seen that the features obtained from the signals obtained from averaging and AKF techniques are slightly more
cattered, especially for the intact class.

5.4.3. Exploration of feature importance
Figs. 19(a), 19(b) and 19(c) display the relative importance of features using the permutation method for the cointegration,

veraging and AKF models, respectively. The obtained results indicate that unlike the laboratory experiment, four out of the five
most important features are parametric statistical features for both models. Furthermore, the five top features in both cases are
selected from a mixture of low- and high-level IMFs, highlighting the importance of decomposing the signal into its constructive
IMFs.

The most important feature for the cointegration technique is the kurtosis of the IF corresponding to IMF3 whereas the most
important feature obtained from the both signal averaging and AKF techniques is obtained from the first IMF characteristics, i.e. the
first quartile of the IA and the center frequency of IF both corresponding to the first IMF signals, respectively. This underscores the
24 



M. Mousavi et al. Journal of Sound and Vibration 599 (2025) 118909 
Fig. 15. Example of signal decomposition results of data captured in the field experiment: (a) cointegrated signal, (b) averaged signal, (c) AKF, (d) decomposed
cointegrated signal, (e) decomposed averaged signal, and (f) decomposed AKF.

Fig. 16. NMI results of the VMD (with the selected hyperparameters) applied to all fused field signals obtained from various fusion techniques.
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Fig. 17. Scree plots of field features after fusing signals with (a) cointegration, (b) signal averaging, and (c) AKF methods.

Fig. 18. Scatter plots of PC1 versus PC2 for the field data employing (a) cointegration, and (b) signal averaging and (c) AKF.

significance of considering both IA and IF for feature extraction. It appears that in the analysis mentioned, two features from the
IMF5 are considered significant for cointegration analysis, while one feature from IMF5 is chosen for signal averaging techniques.

owever, no important features are selected from higher-order IMFs corresponding to the signal obtained from the AKF technique.
This reasoning supports splitting the field signals into five IMFs, given that the cointegration technique provides more precise results
evidenced by the upcoming discussions.

5.4.4. Pearson correlation matrix
Figs. 20(a), 20(b) and 20(c) show the Pearson correlation factors for the features having non-zero importance in the cointegration,

ignal averaging and AKF methods, respectively. The results indicate correlation among a few features. Similar to the laboratory
esults, this may suggest the existence of collinearity among correlated features, where an interaction of such features needs to be
ncorporated in the model [55].

5.4.5. Identifying the optimal number of features
Figs. 21(a), 21(b) and 21(c) present the F1-score from 5-fold cross-validation of the XGBoost model performance on recursive

selection of the most important features from the cointegration, signal averaging and AKF methods, respectively. The results indicate
that the number of 7, 13 and 19 features selected respectively from the cointegration, signal averaging and AFK techniques yield the
most accurate results. Once again, it is apparent from the plots that the results of the signal averaging and AKF methods are more
dispersed. In contrast, the cointegration technique exhibits a smaller fluctuation of the F1 score across different folds using different
number of features. This observation can further affirm the reliability of the cointegration method over the signal averaging and
AKF method.

5.4.6. Classification reports
Fig. 22 shows the mean and standard deviation of various classification metrics, including precision, recall, and F1 score,

valuated after 100 runs of the MCCV of the XGBoost algorithm on all models. The datasets were randomly split into training and test
sets, considering different random states at each run. The results clearly indicate the superior performance of the cointegration-based
model. A significant improvement of the all metrics is evident in both classes. This result is noteworthy, as the accurate identification
of defective poles is of great significance. Furthermore, using the cointegration method results in more reliable predictions, evidenced
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Fig. 19. Nonzero permutation feature importance results for the field data using (a) cointegration, (b) signal averaging, and (c) AKF methods.
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Fig. 20. Pearson correlation factors for features with nonzero importance for the field experiment using (a) cointegration, (b) signal averaging, and (c) AKF
methods.
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Fig. 21. Results of five-fold cross-validation F1 score for the recursive feature elimination of the field data, aimed at selecting the optimal number of features
btained from (a) cointegration, (b) signal averaging, and (d) AKF methods.

Fig. 22. Classification reports of models trained on the most important features extracted from the field data, evaluated over 100 runs of Monte Carlo Cross-
Validation (MCCV) with random train-test splits for each run.

by the smaller standard deviation obtained across different folds. This result underscores the generalizability of the cointegration
method compared to the signal averaging and the AKF approaches for real-life testing data recorded in the filed. Revisiting the
results of the ADF test in Fig. 5 confirms that the cointegration method is a more suitable fusion technique in this case.

5.4.7. The Receiver Operating Characteristic (ROC) curve
Fig. 23 shows the ROC curves obtained for all three methods by computing the average value of the TPR and FPR after 100 MCCV

uns of the XGBoost algorithm on different random splits of the field data. The results demonstrate again the superior performance
f the cointegration method evidenced by an AUC of 0.99 ± 0.01 compared to the signal averaging and AKF methods with an AUC

of 0.97 ± 0.04 and 0.97 ± 0.05, respectively.
Therefore, our findings show that the NMI metric does not always directly correlate with higher classification accuracy. For

instance, although the mean NMI value for the field-fused data using the Johansen cointegration method is lower than that of signal
averaging and AKF (see Fig. 16), the machine learning algorithm performed better on features extracted from the signals fused using
Johansen cointegration. This suggests that not only the amount of information retained (as indicated by NMI) is important, but also
the type and quality of the information extracted by the fusion method.

6. Future work

Thus far, we have explored the effectiveness of various sensor data fusion techniques and proposed Johansen cointegration as
an effective approach, particularly when signals display significant nonstationary properties. Additionally, we introduced the NMI
29 
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Fig. 23. ROCAUC curves obtained by averaging TPR and FPR obtained from 100 runs of MCCV of the models trained on the field data using the top most
mportant features obtained from the (a) cointegration, (b) signal averaging, and (c) AKF methods.

Table 10
Percentage of the maximum NMI values from dynamic selection of the
fusion technique for both the laboratory and field experiments.

Fusion method
Experiment type Laboratory (%) Field (%)

Cointegration 33.33 36.67
Averaging 33.33 45.56
AKF 33.33 17.78

metric to evaluate fairness when comparing these techniques under specific values for VMD hyperparameters. Furthermore, we
demonstrated that NMI can yield diverse values for different signals across various fusion techniques. This raises the question of
whether selecting a dynamic fusion technique could enhance the final machine learning results. To illustrate this, we followed the
procedures outlined below.

1. We propose to fuse signals using different signal fusion techniques.
2. We calculate the NMI metric for each fused signal obtained from different fusion strategies.
3. We select the fusion technique for each experiment that yields the maximum NMI value.
4. We construct a new feature matrix and investigate the final classification results based on it.

We have followed the above procedures for both laboratory and field data as follows. Table 10 indicates the number of incidents
here using each fusion technique bore maximum NMI value for both the laboratory and field experiments. Our initial investigations

uggest that combining the outcomes of various fusion methods listed in Table 10 could negatively impact the results of machine
learning classification. This is likely due to the clashing information extracted from different fusion methods like cointegration,
veraging, and AKF as observed in Figs. 6 and 15. A detailed analysis of these figures, along with the results presented in Figs. 10

and 11 for the laboratory experiment and Figs. 19 and 20 for the field experiment, indicates that averaging and AKF methods
roduce similar information. Consequently, we excluded Cointegration from the above-mentioned procedures and noticed a slight
mprovement of the final outcomes, implying that combining fusion techniques of the same type may improve the machine learning
utcomes. Therefore, investigating a method to complement Johansen Cointegration for raw signal fusion could be a potential area
or future research.

7. Conclusions

This paper presents a data-driven approach for fusing signals with pronounced nonstationary properties. To address this, a
ovel application of Johansen cointegration as a fusion technique for raw signals was proposed, replacing traditional raw signal
veraging and more modern AKF methods. This method is particularly advantageous for scenarios where measurement signals

demonstrate significant nonstationarity. The fusion based on the cointegration algorithm was shown to enhance the quality of
extracted features, thereby improving classification results. The developed NMI metric confirmed that the only VMD parameters
affecting the information passed through the decomposition process are the number of IMFs and the denoising factor 𝛼. Furthermore,
the results highlighted a strong resemblance between the outcomes obtained from signal averaging and AKF methods. These
techniques yielded similar features from the VMD algorithm, with only minor discrepancies in less significant features affecting
XGBoost algorithm classification. Although AKF was preliminary developed to enhance the adaptability of the Kalman filter to
nonstationary signals, it is a linear signal fusion technique in nature. Therefore, the similar results of applying signal averaging and
AKF methods suggest that the signals produced by tactile transducer and further recorded at accelerometers may lack nonlinearity.
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However, further investigation into the differences and similarities between AKF and signal averaging could be a subject for future
research. It is worth noting that Johansen cointegration, like signal averaging and AKF, is also a linear technique in nature. The
key distinction lies in its capability to handle nonstationarity in recorded signals which has been shown to be dominant compared
o the AKF method.

Additionally, we have demonstrated that merging the outcomes of diverse signal fusion techniques may detrimentally affect
classification results, whereas combining results from similar fusion techniques may yield only marginal enhancements. Therefore,
future research could delve into a comprehensive examination of tactile transducer characteristics and the integration of various
usion strategies.

While the results of this study demonstrate the effectiveness of the proposed Johansen cointegration-based signal fusion method
n field conditions, it is important to note that all damage scenarios were simulated. This approach was chosen due to the practical
nd ethical challenges associated with inducing real damage in critical infrastructure. Nevertheless, validating the methodology with
eal-world damage scenarios could further enhance the robustness and applicability of our findings. Therefore, pursuing real-world

validation represents a valuable direction for future research.
Moreover, as a direction for future work, we recognize the importance of mitigating uncertainties and variability conditions

hat arise from environmental factors. To further enhance the robustness of our approach, integrating machine learning-aided
ata normalization techniques, as discussed in studies such as [56,57], could establish a solid methodological foundation. These
echniques offer potential for more accurately normalizing sensor data and fusing signals across varying conditions, ultimately
mproving the reliability of damage detection in real-world SHM applications. Future efforts will focus on incorporating such data-
riven methods to better account for environmental variability, thereby enhancing the accuracy and robustness of our proposed
pproach.

To improve the performance of the cointegration method applied to laboratory signals, one potential solution is to refine the
treatment of outliers, which can disproportionately impact the results of the cointegration analysis. Incorporating robust statistical
techniques, such as outlier detection and filtering, or leveraging robust cointegration methods that reduce the influence of outliers,
may improve the identification accuracy of the cointegration method for laboratory signals. This approach represents a promising
venue for further investigation to refine our methodology.

Looking ahead, we recognize that employing a combination of fusion techniques based on the proportion of nonstationary signals
ithin a group (e.g., four signals) could yield even better results. This adaptive approach is a promising future direction for this

esearch, enabling dynamic selection of fusion methods depending on the characteristics of the signal set. As such, the current study
represents the first phase of a broader and more comprehensive investigation into signal fusion techniques.
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Appendix. Johansen cointegration

Let 𝑌𝑡 = {𝑋1(𝑡),… , 𝑋𝑚(𝑡)}𝑇 be a set of 𝑚 signals recorded at time 𝑡. To calculate the Johansen cointegration representation of
the signals the following steps are followed:
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Table A.11
The model properties for different cases of 𝑟𝑎𝑛𝑘(𝛱) = 𝑟.
Rank (𝛱) = r Properties

r = 0 (1) The eigenvalues of 𝛱 are all equal to zero.
(2) 𝛱 = 0.
(3) The set of signals {𝑋1 ,… , 𝑋𝑚} is not cointegrated.

r = m (1) |𝛱| ≠ 0.
(2) {𝑋1 ,… , 𝑋𝑚} have a zero order of integration (𝐼(0)).
(3) The association among 𝑋1 ,… , 𝑋𝑚 can be represented using their original values and not through their differences.
(4) It is unnecessary to make a reference to the error correction representation.

0 < 𝑟 < 𝑚 (1) All the variables in 𝑋1 ,… , 𝑋𝑚 have an order of integration of one (𝐼(1)).
(2) The matrix 𝛱 has 𝑟 nonzero eigenvalues.
(3) There exists 𝑟 co-integration relationships among all the variables 𝑋1 ,… , 𝑋𝑚.

1. First, the autoregressive (VAR) model of 𝑌𝑡 is established as follows:

𝑌𝑡 = 𝛿 𝐷𝑡 +
𝑝
∑

𝑗=1
𝛷𝑗𝑌𝑡−𝑗 + 𝑢𝑡 (A.1)

where 𝑝 is the lag order; 𝛿 is a term that captures any fixed or time-varying component not explained by the lagged values of
𝑌𝑡 or other independent variables included in the model; 𝐷𝑡 indicates the vector of deterministic variables such as constant,
seasonal dummy variables, or trends; 𝛷𝑗 denotes an 𝑚×𝑚 coefficient matrix; and 𝑢𝑡 is an 𝑚× 1 independently and identically
distributed (IID) Gaussian noise vector.

2. Next, the error correction model (ECM) is obtained by substituting 𝑌𝑡 = 𝑌𝑡−1+𝛥𝑌𝑡, 𝑌𝑡−1 = 𝑌𝑡−2+𝛥𝑌𝑡−1, … , 𝑌𝑡−𝑝 = 𝑌𝑡−𝑝−1+𝛥𝑌𝑡−𝑝
into (A.1) as follows:

𝛥𝑌𝑡 = 𝛤𝑜𝐷𝑡 +𝛱 𝑌𝑡−1 +
𝑝−1
∑

𝑗=1
𝛤𝑗𝛥𝑌𝑡−𝑗 + 𝑢𝑡 (A.2)

where, for 𝑗 = 1,… , 𝑝− 1, we have 𝛱 = −(𝐼 −𝛷1 −⋯𝛷𝑝) and 𝛤𝑗 = −(𝛷𝑗+1 +⋯𝛷𝑝), and 𝛱 𝑌𝑡−1 denotes error-correction term.
3. Table A.11

In such a case, it is possible to factorize 𝛱 as 𝛼 𝛽𝑇 , where 𝛼 and 𝛽 represent the adjustment and cointegration matrices,
respectively. It is important to note that this factorization is not unique, and further constraints are required to obtain a
unique factorization. To achieve this, Johansen proposed a maximum likelihood method, which is described as follows.

4. By substituting 𝑍0𝑡 = 𝛥𝑌𝑡, 𝑍1𝑡 = 𝑌𝑡−1, 𝑍2𝑡 = {𝛥𝑌𝑡−1,… , 𝛥𝑌𝑡−𝑝−1, 𝐷𝑡}𝑇 , 𝛹 = {𝛤1,… , 𝛤𝑝, 𝛤0}, and 𝛱 = 𝛼 𝛽𝑇 into (A.2) we obtain:

𝑍0𝑡 = 𝛼 𝛽𝑇 𝑌𝑡−1 + 𝛹 𝑍2𝑡 + 𝜖𝑡 (A.3)

5. The log-likelihood function can be formulated by assuming that 𝜖𝑡 ∼ 𝑁(0, 𝛴), where 𝛴 represents the covariance matrix, as
follows:

𝑙 𝑛𝐿(𝛼 , 𝛽 , 𝛴|𝑌𝑡) = −𝑚𝑁
2

𝑙 𝑜𝑔(2𝜋) − 𝑁
2
𝑙 𝑜𝑔(|𝛴|) (A.4)

−1
2

𝑁
∑

𝑡=1

(

𝑍0𝑡 − 𝛼 𝛽𝑇𝑍1𝑡 − 𝛹 𝑍2𝑡
)𝑇 𝛴𝑇 (

𝑍0𝑡 − 𝛼 𝛽𝑇𝑍1𝑡 − 𝛹 𝑍2𝑡
)

where 𝑁 denotes the number of observations.
6. The residuals 𝑅0𝑡 and 𝑅1𝑡 are obtained by regressing 𝑍0𝑡 and 𝑍1𝑡, respectively, on 𝑍2𝑡. This results in the estimation of the

unknown parameters 𝛼 and 𝛽 in (A.4). Therefore, the VECM of (A.2) can be written as follows:

𝑆𝑖𝑗 =
1
𝑁

𝑁
∑

𝑡=1
𝑅𝑖𝑡𝑅𝑗 𝑡 (A.5)

7. The following eigenvalue problem is solved to obtain 𝛼 and 𝛽:
|

|

|

𝜆𝑖𝑆11 − 𝑆10𝑆
−1
00 𝑆01

|

|

|

= 0 (A.6)

8. The cointegrating matrix 𝛽 is formed using the 𝑟 eigenvectors 𝑣1,… , 𝑣𝑟 of (A.6) as follows:

𝛽 = 𝛽𝑀 𝐿𝐸 = [𝑣1,… , 𝑣𝑟] (A.7)

According to [36], the eigenvector associated with the highest eigenvalue denotes the first co-integrating vector, which can
be considered as the ‘‘most stationary’’ one.
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