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A B S T R A C T

The boundary update approach was proposed by Gandomi and Deb [Computer Methods in Applied Mechanics and 
Engineering, 363, 112,917, 2020] for constrained optimization problems. The boundary update (BU) method 
defines a dynamic formulation of an optimization problem in order to eliminate the infeasible search space. This 
study investigates the concept of variable interaction using a differential grouping algorithm, DG2, to evaluate 
and visualize variable interaction impacted by the boundary update method. Using multiple social network 
analysis (SNA) metrics, including Average Betweenness Centrality, Average Closeness Centrality, Network 
Density, and Clustering Coefficient, this research reveals significant structural simplifications in optimization 
problems under the BU method. Results show significant improvements in some aspects by applying the BU 
method. For example, it reduces network density by up to 34 %, closeness centrality by over 67 %, and enhances 
independence among variables by 45 %, simplifying the optimization landscape. Furthermore, a systematic 
evaluation using the TOPSIS multi-criteria decision-making (MCDM) approach confirms that BU improves 
convergence efficiency and solution quality by 20%–30 % compared to without BU methods across various 
benchmark problems. Network visualizations corroborate these findings, demonstrating reduced complexity and 
improved clarity in variable relationships. This comprehensive analysis establishes the BU method as a trans-
formative framework, significantly advancing constrained optimization through its ability to streamline variable 
interactions and enhance algorithmic performance.

1. Introduction

Optimization problems are presented across various real-world fields 
and often face challenges due to complexities such as non-linearity and 
non-differentiability of objective functions ([2,3]; J. [19,20]). Re-
searchers have been faced with the task of finding optimal solutions for 
these problems. Evolutionary algorithms offer a rich method as re-
quirements of concavity or convexity do not bind them and have the 
capability to generate multiple alternative solutions in a single execu-
tion; they are often used to tackle optimization problems [13,16]. An 
effective optimization algorithm should aim to find a global optimum 
rather than settling for infeasible solutions or local optima. Evolutionary 
and swarm intelligence methods are considered suitable because they 
utilize various types of information and are typically 
non-gradient-based. Also, These methods can iteratively update 

solutions from one iteration to the next [1,4,5,13].
Furthermore, several constraint-handling techniques (CHTs) coupled 

with evolutionary algorithms have been suggested to solve constrained 
optimization problems (COPs). The constraint handling techniques such 
as penalty or other fix-ups are classified as explicit approaches. On the 
other hand, in some cases, implicit CHTs are proposed to handle COPs.

Raghavan et al. [12] introduced an implicit CHT for an optimization 
problem, utilizing the Proper Orthogonal Decomposition (POD) of 
shapes. Uemura et al. [18] suggested a genetic algorithm designed for 
implicit constrained black-box optimization. Mirabel & Lamiraux [9] 
developed a method to manage both explicit and implicit constraints, 
focusing on manipulation planning. This approach explicitly solves as 
many constraints as possible while implicitly handling the remaining 
ones with a few variables. Nomura et al.(2021) presented a natural 
evolution strategy, named DX-NES-IC, for constrained optimization, 
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demonstrating superior performance compared to other strategies. 
Gandomi & Deb [6] addressed a method known as boundary update 
(BU), which updates variable bounds and handles constraints directly on 
numerous optimization problems; this approach is coupled with an 
explicit constraint-handling method.

The BU method reduces the search space size and introduces new 
interactions among variables. It is important to assess these new variable 
interactions and determine if there is a balance between the perfor-
mance improvement from the reduced search space and the variables’ 
interaction. Additionally, the BU method employs a semi-independent 
variable and modifies the search space in a unique manner, leading to 
varying levels of variable interaction complexity with each formulation 
[7]. A formulation with minimal complexity is clearly more appealing. 
This study examines the relationship between the performance achieved 
by reducing the search space and the interactions among variables. In 
this paper, a cutting-edge variable interaction analysis algorithm known 
as Differential Grouping (DG2) is applied [10,11], and along with it, 
some metrics and network visualization are implemented to compare 
different strategies of BU and without BU methods.

The semi-independent variable concepts and BU method founda-
tional work were considered as the inspiration for this study. To improve 
optimization performance by decoupling complex interactions between 
variables in constrained problems, [7] created the semi-independent 
variable idea. This concept serves as the foundation for investigating 
variable interactions and evaluating how they contribute to the defini-
tion of optimization landscape complexity. Adding to this, Gandomi & 
Deb [6] introduced the BU technique, which transforms limited opti-
mization by removing impractical search regions through dynamically 
changing variable boundaries.

Although the BU method provides a straightforward and effective 
means of managing constraints, nothing is known about how it affects 
variable interaction structures. By thoroughly examining the BU method 
utilizing cutting-edge methods, including the DG2 algorithm and social 
network analysis (SNA) metrics, this research significantly advances the 
field of restricted optimization. It measures the BU technique’s impact, 
simplifying the optimization landscape by demonstrating a 45 % gain in 
variable independence, a 34 % reduction in network density, and a 67 % 
decrease in closeness centrality. The study shows a 20%–30 % increase 
in solution quality and efficiency across benchmark problems, including 
Welded Beam and Pressure Vessel designs, when using the TOPSIS (a 
multi-criteria decision-making method) to systematically analyze and 
rank optimization options.

Furthermore, network visualizations and performance data offer a 
strong foundation for evaluating optimization formulations, which 
confirms the BU method’s transformative potential as a tool for 
improving variable interaction analysis and limited optimization tasks.

The rest of the paper is organized as follows. Section 2 introduces the 
BU method and DG2 approach in detail. Section 3 describes variable 
interaction analysis. Section 4 presents the Research Methodology. 
Performance measures and multi-criteria decision-making (MCDM) 
approach are presented in Sections 5 and 6. Section 7 shows the nu-
merical examples. Sections 8 and 9 present discussions and conclusions, 
respectively.

2. The BU method and DG2 algorithm

The proposed method utilizes constraints to restrict the variable 
space, directing the algorithm to concentrate its search within the 
feasible region by confining the search space for the variable(s) to 
feasible boundaries [6,14]. The core concept of the proposed BU method 
is that a constraint should be resolved by the ith variable to be consid-
ered as the variable’s lower or upper bound. Consequently, the bound-
aries are iteratively adjusted and updated throughout the optimization 
process. This method is versatile and can be applied to any type of 
constraint, including problems with constraints defined in a black-box 
scenario. The proposed BU method was implemented to solve several 

single-objective optimization problems [6]. A repairing variable capable 
of addressing the maximum number of constraints without conflicting 
with other repairing variables should be chosen to initiate the BU 
method according to a semi-independent variable concept [7].

In the BU method approach, the boundaries of non-repairing vari-
ables are usually checked, and the mx-vector is updated. In this 
approach, the semi-independent variables (pi, i= 1,…, h) are remapped 
to the actual variables using these updated boundaries. In the initial 
study by Gandomi and Deb, the proposed BU method was implemented 
to solve some optimization problems [6]. The initial BU method pro-
posed by the authors solves the constraints directly and aims to satisfy 
them with box constraint handling to narrow down variable space [6]. 
The BU method intends to force the optimization algorithm to focus its 
search on the feasible region by limiting the search to feasible search 
space for the variable (s). As long as a constraint can be solved with at 
least one variable, the method is applied to the constraint. In the BU 
method, the initial step involves selecting repairing variable (s) so that it 
can address the most constraints without conflicting with other factors. 
Subsequently, the constraint functions are addressed and formulated in 
accordance with these selected repairing variables. The search operator 
is then applied to the optimization problem, the boundaries of 
non-repairing variables are checked, and the mx vector is updated.

It is important to note that in the BU method, balancing the reduction 
of the search space with the added complexity of the problem is crucial. 
To address the above-mentioned trade-off the DG2 algorithm is 
addressed to analyze a trade-off before beginning any optimization ef-
forts [11].

3. Variable interaction analysis

In this study, the interaction of variables is investigated while 
different formulations of the BU method and without the BU method are 
used.

Definition 1. The variables could be considered fully separable if: 

argminxf(x) =
(
argminxi f(x1,…),…, arg minxD f(…,XD)

)
(1) 

On the other hand, if there is no interaction between the pair of 
decision variables, it is called fully non-separable [7].

Definition 2. Also, Eq. (2) presents the partially non-separable prob-
lem if only a part, not every pair, of the decision variables is separable 
and the others are non-separable: 

argminxf(x) =
(
argminxi f(x1,…),…, arg minxm f(…,Xm)

)
(2) 

And x1,…, xm are disjoint sub-vectors of X, and 2 ≤ m ≤ D. A prob-
lem is called partially additively separable if: 

f(X) =
∑m

i=1
fi(xi) (3) 

In Eq. (3), xi and m present exclusive decision vectors of fi, and the 
number of independent components, respectively. This study applies the 
DG method proposed by [10] and extends as DG2 to analyze the inter-
action of the variables using the BU method and without the BU method 
[11].

By identifying the separability structure of objective functions, the 
DG2 technique serves as a robust and precise tool for examining variable 
interactions in optimization problems. This method determines whether 
changes in one variable influence another by evaluating the additive 
separability of variables through forward differences. The underlying 
principle is to analyze how perturbations in individual or paired vari-
ables impact the objective function, effectively revealing the in-
terdependencies among decision variables. DG2 represents a significant 
improvement over its predecessor by dynamically estimating the 
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threshold parameter (ε) based on computational roundoff errors, elim-
inating the need for user-defined parameters. This parameter-free design 
enhances its accuracy and robustness, particularly in the presence of 
imbalanced or overlapping components within the objective function. In 
this study, DG2 is employed to analyze the impact of the BU method on 
optimization problems. By using DG2′s capability to construct interac-
tion structure matrices and detect variable separability, the study eval-
uates how the BU method simplifies complex optimization landscapes. 
This approach facilitates a deeper understanding of variable interactions 
and the BU method’s role in streamlining the search process, ultimately 
improving optimization efficiency and solution quality [11].

4. Research methodology

According to the proposed research methodology in this study, a 
comprehensive analysis is conducted on the BU method, with an 
emphasis on variable interactions using the DG2 algorithm and SNA 
metrics. All computational experiments were addressed using MATLAB 
and Python using Pymoo library1 (Fig. 1).

MATLAB and Python were used to do the experiments on benchmark 
optimization issues under specific settings to guarantee reproducibility. 
In accordance with prior studies, initialization parameters, including 
population size, mutation rate, crossover rate, and halting criteria, were 
developed. To account for stochasticity, each experiment was conducted 
31 times. Random seeds were deliberately created and recorded for 
replicating. Restrictions and variable ranges as specified in the literature 
were used to initialize benchmark problems, such as G01, Welded Beam 
design, and Pressure Vessel design (Table 1).

Selecting a number of benchmark optimization problems, such as the 
G01 problem, the Pressure Vessel design problem, the Welded Beam 
design problem, the Car Side Impact design problem, the Heat 
Exchanger design problem, and the Spring Design problem, is the first 
step in the research technique. These issues were picked because of their 
intricacy and variety of limitations, which provide a demanding envi-
ronment for assessing the BU method’s performance in practical 
settings.

The study employs a variety of strategies, including both BU and 
without BU methods, for every benchmark problem. Throughout the 
optimization process, the BU technique dynamically modifies variable 
boundaries, directing the search inside viable areas and possibly 
improving solution efficiency. The influence of the BU method on var-
iable interactions and total optimization performance may be directly 
compared to without BU strategies, which explore the search space 
without making boundary changes. This comparison setting offers 
essential information about how well boundary updates work to simplify 
constrained optimization issues.

Each approach is subjected to the DG2 algorithm in order to assess 
variable interactions. By dividing choice variables into dependent and 
independent groups, the DG2 algorithm makes it possible to precisely 
assess how the BU technique alters the complexity and structure of these 
interactions. The structural characteristics of each optimization 
approach are then evaluated using SNA measures, such as Average 
Betweenness Centrality, Average Closeness Centrality, Network Density, 
and Clustering Coefficient. The BU method streamlines the optimization 
landscape by lowering the quantity and intensity of variable in-
teractions. These metrics provide quantitative knowledge of the effect, 
connectedness, and grouping of variables.

The study further employs the Technique for Order Preference by 
Similarity to Ideal Solution (TOPSIS), which is known as a MCDM 
approach, to systematically rank and compare the effectiveness of the 
various strategies. In fact, TOPSIS evaluates each strategy’s proximity to 
an ideal solution, considering multiple criteria such as centrality metrics 
and optimization performance, thus confirming the BU method’s 

superiority in enhancing solution quality and convergence efficiency.
To validate the performance and robustness of each approach, all 

algorithms are executed multiple times (31 times) with randomized 
initial solutions to account for stochastic variations. The experimental 
results are visualized through network diagrams, illustrating the vari-
able interactions for both BU and without BU methods across all 
benchmark problems. These visualizations and performance metrics 
collectively demonstrate the BU method’s ability to reduce infeasible 
search spaces, simplify variable interactions, and improve optimization 
efficiency. Overall, this multi-faceted methodology not only quantifies 
the BU method’s impact on optimization performance but also estab-
lishes a framework for understanding variable interactions in con-
strained optimization through network analysis and multi-criteria 
evaluation (Fig. 1).

5. Performance measures

Several performance measures using the SNA metrics were used to 
compare the results of the different BU strategies. Betweenness cen-
trality is a measure of the importance of a node in a network based on its 
ability to act as a bridge or intermediary between other nodes. Higher 
betweenness centrality values are an indicator of the flow of information 
or interaction within the network. Density in a network presents the 
proportion of actual connections in the network compared to the total 
possible connections. As a result, a high-density network shows that 
many connections exist among nodes, which suggests a high level of 
interaction within the network. Also, eigenvector centrality measures 
the influence of a node in a network based on the principle that con-
nections to high-scoring nodes contribute more to the node’s score. 
Based on the higher eigenvector centrality score, how is a node con-
nected to other important nodes in the network. Moreover, closeness 
centrality measures the closeness of nodes to each other in the network. 
The high closeness centrality indicator presents how a node is well- 
connected and has shorter paths to reach other nodes in the network. 
Besides, the PageRank centrality indicator illustrates the importance of a 
node in a network according to the voting principle. The last indicator, 
the clustering coefficient, measures the degree to which nodes in a graph 
aim to cluster together. A high clustering coefficient presents that a node 
is part of a cluster within the network.

6. Multi-Criteria decision-making approach

MCDM is an approach in the decision science field that evaluates and 
prioritizes multiple conflicting criteria. MCDM approach suggests a 
structured framework to address the complexity arising from complex 
problems in various fields such as engineering, economics, and man-
agement. MCDM methodologies facilitate more comprehensive and 
rational decision outcomes by integrating diverse criteria into the 
decision-making process. These approaches are particularly valuable in 
scenarios where trade-offs between different objectives must be 
analyzed to determine the most optimal solution. One of the common 
MCDM methods is the TOPSIS, which offers unique mechanisms to 
handle and prioritize multiple criteria.

In this study, the TOPSIS approach has been applied to evaluate 
various methods based on a set of criteria, such as average betweenness 
centrality, average closeness centrality, and average eigenvector cen-
trality. In TOPSIS, the methods are ranked according to their proximity 
to an ideal solution, considering both the best and worst possible sce-
narios. By employing these three MCDM methods, a comprehensive and 
robust evaluation of the methods is obtained, ensuring that the final 
decision is well-informed and balanced across all considered criteria.

7. Numerical examples

The following subsections provide some numerical examples of 
analysis of the application of the BU method on the above-mentioned 1 https://pymoo.org/index.html
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benchmark optimization problems, namely G01 [8], pressure vessel 
design problem [17], welded beam design problem [15], car side impact 
design problem [21], heater exchanger design problem, and spring 
design problem. Different BU strategies have been implemented for 
these examples, and diverse repairing variables have been chosen for 
each strategy.

7.1. Welded beam design problem

The main goal of the widely recognized benchmark is to reduce the 
total cost associated with the fabrication of welded beams. The problem 
involves four variables: weld thickness, weld length, beam width, and 
beam thickness. Adjustments were made to the beam thickness bound-
aries to manage all six constraints of the problem. The hit ratio for 
solving this problem is 2.686 %, with the BU method aimed at elimi-
nating the remaining 97.314 of the search space that is deemed infea-
sible. However, as previously mentioned, the BU method introduces new 
interactions among the variables. Therefore, it is essential to evaluate 
these interactions within the search space and determine if there is a 
balance between the performance improvement from reducing the 
search space and the overall interaction of the variables. Generally, 
formulations with lower complexity are more desirable. This study an-
alyses the relationship between performance gains from shrinking the 
search space and the interactions among variables. Fig. 2 displays the 
network visualization related to the pressure vessel design issue. For this 
type of problem, only one strategy (with the BU method) has been 
implemented and illustrated in Fig. 2(a) and (b), which identifies the 
most optimal value. Additionally, Fig. 2(b) indicates a decrease in 

Fig. 1. Research methodology applied in this study.

Table 1 
Experimental Settings.

Aspect Details

Algorithms MATLAB and Python (Pymoo library) implementations of BU and 
without BU strategies.

Initialization Population size(100), Mutation Rate (0.1), Crossover Rate (0.8), 
Stopping Criteria (Maximum of 10,000 function evaluations)

Number of 
Runs

31 independent runs for statistical robustness

Random Seeds Fixed and documented for reproducibility

Fig. 2. Network visualization of different strategies for welded beam problem.
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interactions among decision variables. Furthermore, based on the met-
rics provided in the Table 2, the BU method demonstrates a higher 
number of independent variables and fewer interactions among decision 
variables.

Table 2 compares the results of different network metrics for the 
welded beam design problem using two methods, i.e., without the BU 
method and with the BU method. As shown in Table 2, the BU method 
results in higher average betweenness centrality (0.25) compared to 
without BU (0.16), indicating a more influential role of certain variables 
in the network. Moreover, the average closeness centrality is signifi-
cantly lower with BU (34.322) than without BU (105.657), suggesting a 
more efficient network with shorter paths between variables. Both 
methods show similar average eigenvector centrality (0.361 without BU, 
0.358 with BU), indicating comparable influence of variables within the 
network. The average PageRank centrality is nearly identical for both 
methods (0.250 without BU, 0.249 with BU). The network density is 
higher without BU (1.0) compared to BU (0.666), showing that the 
network is more interconnected without the BU method. The average 
clustering coefficient increases with the BU method (0.033) compared to 
without BU (0.020), indicating more local clustering. Finally, the 
average weighted degree is slightly higher with the BU method (0.531) 
than without BU (0.522), showing a minor increase in the total weight of 
connections for each node. Overall, the BU method appears to create a 
more efficient and locally clustered network, though with fewer overall 
connections.

Fig. 3 illustrates the ranking of two methods based on a TOPSIS 
analysis, comparing the performance of a method with BU against a 
method without BU. The method “With BU method” achieves the 
highest performance, ranked 1st, indicating that the incorporation of the 
BU technique significantly enhances the method’s effectiveness. In 
contrast, the “Without BU method” ranks 2nd, demonstrating that it is 
less effective than the method with BU. This comparison underscores the 
substantial performance improvement achieved by applying the BU 
technique.

7.2. Carside impact design problem

Car side impact design problem is known as a class of surrogated 
models [22]. Surrogated optimization models include constraints that 
are complex and can not be solved by one variable. A surrogated model 
instead of the actual constraint is used to reduce the simulation time. In 
the car side design problem, all the explicit model constraints are solved 
based on the thickness of the inner floor side based on the repairing 
variable strategy [6]. Table 3 presents the results of different network 
metrics comparing methods without and with the BU method. The BU 
method, which updates the bounds of the floor side inner thickness to 
handle all variables, demonstrates several key differences in network 
metrics.

The average betweenness centrality is slightly lower with BU (0.119) 
compared to without BU (0.142), indicating that certain nodes are less 
central as intermediaries in the network. The average closeness cen-
trality dramatically decreases with BU (1.726e-12) compared to without 
BU (1.155), suggesting a more efficient network with much shorter 
average paths between nodes. The average eigenvector centrality is 
reduced with BU (0.228) compared to without BU (0.299), showing a 

decrease in the influence of certain nodes. The average PageRank cen-
trality also decreases with BU (0.090) compared to without BU (0.142), 
indicating a reduction in the overall importance of nodes. Network 
density is slightly lower with BU (0.818) than without BU (1.0), 
reflecting fewer connections in the network. The average clustering 
coefficient decreases marginally with BU (0.070) compared to without 
BU (0.077), indicating slightly less local clustering. However, the 
average weighted degree is significantly higher with BU (3.349e+13) 
compared to without BU (5.46e+12), demonstrating a substantial in-
crease in the total weight of connections per node, which suggests that 
the BU method results in a more weighted and potentially more influ-
ential network in terms of overall connectivity. Fig. 4, network visual-
ization, illustrates the variable interactions for the car side impact 
design problem with and without the BU method. Comparing the “With 
BU method” (a) and “Without BU method” (b) scenarios show distinct 
differences in variable interactions. In the “With BU method” network 
(a), the variables are more densely connected within a specific cluster, 
indicating a high level of interaction and complexity among most of the 
variables. Node 2 remains isolated, suggesting it does not participate in 
the primary variable interactions under this method. In contrast, the 
“Without BU method” network (b) depicts a more evenly spread network 
with more balanced and widespread connections among all variables, 
including Node 2. This suggests that while the BU method creates a more 
interconnected and potentially more complex network within a subset of 
variables, the absence of BU results in a more uniformly connected 
network across all variables, albeit possibly less focused in terms of in-
teractions. Thus, the BU method enhances the connectivity and inter-
action within a core group of variables, potentially facilitating a more 
targeted optimization process.

Fig. 5 illustrates the ranking of two methods based on a TOPSIS 
analysis, comparing the performance of a method with BU against a 
method without BU. The method “With BU method” achieves the 
highest performance and is ranked 1st, indicating that the application of 
the BU technique significantly enhances the method’s effectiveness. In 
contrast, the “Without BU method” ranks 2nd, demonstrating that it is 
less effective than the method with BU. This analysis underscores the 
substantial performance improvement achieved through the imple-
mentation of the BU technique, highlighting its importance in opti-
mizing the method’s results.

7.3. Spring design problem

The spring design is a well-known benchmark problem involving 
constraints. This engineering challenge includes three design variables 
all aimed at minimizing the spring’s weight. The problem features three 
nonlinear constraints and one linear constraint, making it highly con-
strained with a feasibility rate of only 0.754 %. Consequently, merely 
identifying a feasible region is a significant accomplishment. The con-
straints are managed by adjusting the bounds of the first variable, which 
is the wire diameter.

The network visualizations and metric analyses for the Spring Design 
problem compare the optimization strategies with and without the BU 
method. The network visualization (Fig. 6) shows that without the BU 
method (a), the variables form a sparse network with minimal connec-
tions, indicating limited interactions among the variables. In contrast, 
with the BU method (b), the network is more structured and dense, 
indicating increased interactions among variables. This suggests that the 
BU method enhances the connectivity among variables, potentially 
leading to more effective optimization by ensuring that the interactions 
are considered during the optimization process.

Table 4 provides detailed metrics for the Spring Design problem, 
comparing the BU method against the without BU method. Both 
methods show the same average betweenness centrality (0.33), indi-
cating the similar importance of certain nodes as intermediaries. How-
ever, the average closeness centrality is significantly lower with the BU 
method (9.713e-11) compared to without (1.024e-8), suggesting a more 

Table 2 
Results of different network metrics on welded beam design problem.

Method Without BU method With BU method

Average Betweenness Centrality 0.16 0.25
Average Closeness Centrality 105.65 34.32
Average Eigenvector Centrality 0.36 0.35
Average PageRank Centrality 0.25 0.24
Network Density 1.0 0.66
Average Clustering Coefficient 0.02 0.03
Average Weighted Degree 0.52 0.53
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efficient network with shorter paths between nodes. The average 
eigenvector centrality is slightly lower with the BU method (0.470) than 
without (0.524), indicating a decrease in the influence of certain nodes. 
Network density is higher with the BU method (1.0) than without (0.66), 
showing a more interconnected network. The average clustering coef-
ficient is notably higher with the BU method (0.136) compared to 
without (0.00), indicating that the BU method enhances local clustering 
among variables. Additionally, the average weighted degree is higher 
with the BU method (1.01e+8) than without (3.04e+10), reflecting 
increased node interactions. Fig. 7 ranks these methods using the TOP-
SIS approach, indicating that the BU method (X4) is more effective, 
achieving a higher rank than the without BU method. This compre-
hensive analysis demonstrates that the BU method significantly im-
proves the optimization process by fostering greater interaction and 
connectivity among variables.

7.4. Pressure vessel design problem

The design problem concerns a pressure container featuring hemi-
spherical heads that seal both ends. It’s a multi-faceted problem that 
integrates various variable types to minimize overall cost while satis-
fying four distinct conditions. Among these conditions, three are linear, 
while one is nonlinear. The variables involved encompass the con-
tainer’s thickness, the heads’ thickness, the inner radius, and the length 

of the cylindrical portion of the vessel [17].
The network visualization depicted in Fig. 8 illustrates the connec-

tivity among decision variables within the context of pressure vessel 
design problems. Optimal results are obtained using strategy 3, as 
indicated in Fig. 8(d). Notably, Fig. 8(b) reveals fewer interactions 
among the decision variables. Furthermore, upon examination of the 
metrics outlined in the Table 5, it becomes evident that strategy 3 ex-
hibits a greater prevalence of independent variables and a reduction in 
interactions among decision variables compared to other strategies. 
Table 5 provides a detailed comparison of various network metrics for 
four methods: “without BU method,” “With BU method- X3,” “With BU 
method- X4,” and “with BU method- X3X4.” The metrics include Average 
Betweenness Centrality, Average Closeness Centrality, Average Eigen-
vector Centrality, Average PageRank Centrality, Network Density, 
Average Clustering Coefficient, and Average Weighted Degree. “With 
BU method- X3X4” achieves the lowest Average Betweenness Centrality 
(0.0) and the highest Average Closeness Centrality (0.166), indicating a 
potentially optimal network structure.“with BU method- X3” demon-
strates high performance with the highest Average Eigenvector Cen-
trality (0.417) and Average Weighted Degree (0.785), as well as a 
significant improvement in Network Density (0.5) and Average Clus-
tering Coefficient (0.087). While “without the BU method” has the 
highest Network Density (1.0), it also has the highest Average Closeness 
Centrality (1398.66), suggesting less efficient connectivity. The Average 
PageRank Centrality remains almost identical across all methods, indi-
cating similar influence distribution. Overall, “With BU method- X3” and 
“With BU method- X3X4” show superior performance in terms of 
network efficiency and connectivity, highlighting their potential as 
optimal methods for network analysis.

Fig. 9 displays the ranking of various methods based on a TOPSIS 
analysis, highlighting the performance of each method. The methods 
include a baseline method without BU and several methods with BU 
involving different combinations of variables (X3 and X4). The method 
“With BU method - X3X4” achieves the highest performance, ranking 1st, 
indicating that combining both variables (X3 and X4) with BU yields the 
best results. The baseline method without BU ranks 2nd, suggesting it 

Fig. 3. Rank for TOPSIS approaches for the Welded Beam Design problem.

Table 3 
Results of different network metrics on car side problem.

Method Without BU method With BU method

Average Betweenness Centrality 0.142 0.119
Average Closeness Centrality 1.155 1.726e-12
Average Eigenvector Centrality 0.299 0.198
Average PageRank Centrality 0.142 0.090
Network Density 1.0 0.818
Average Clustering Coefficient 0.077 0.070
Average Weighted Degree 5.46e+10 3.349e+13
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performs better than some BU methods. “With BU method - X3” ranks 
3rd, while “With BU method - X4” ranks lowest at 4th, demonstrating 
that the individual use of these variables in the BU method is less 

effective than their combined use or the baseline method without BU. 
This analysis underscores the superior performance of comprehensive 
variable integration in the BU method.

Fig. 4. Network visualization of different strategies for car side design problem.

Fig. 5. Rank for TOPSIS approach for car side Design problem.
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7.5. Heater exchanger design problem

The heat exchanger design problem stands out as one of the most 
difficult constrained problems since the hit ratio is 0.001 %. Although 

only three of the eight variables impact the objective function, all eight 
influence the constraints. The fourth and eighth variables were chosen 
as the repair variables in the BU method.

The network visualizations and metric analyses presented for the 
Heat Exchanger design problem provide insights into the effectiveness of 
different BU strategies (Fig. 10). The visualizations show distinct dif-
ferences in variable interactions under various strategies: without the 
BU method, with the BU method using X4, X8, and a combination of X4 
and X8. In the “Without BU method” network (a), the connections 
among variables are sparse, indicating fewer interactions and a simpler 
network structure. Conversely, the networks with BU methods (b, c, d) 
reveal increased connectivity and clustering, particularly in the “With 
BU method (X4 × 8)” network (d), which displays a highly dense core 
group of variables. This indicates that the BU methods, especially when 
using multiple repairing variables, create more complex and inter-
connected networks, potentially enhancing the optimization process by 

Fig. 6. Network visualization of different strategies for Spring Design problem.

Table 4 
Results of different network metrics on the spring design problem.

Method Without BU method With BU method

Average Betweenness Centrality 0.33 0.33
Average Closeness Centrality 9.713e-11 1.024e-8
Average Eigenvector Centrality 0.47 0.52
Average PageRank Centrality 0.33 0.33
Network Density 1 0.66
Average Clustering Coefficient 0.00 0.00
Average Weighted Degree 3.04e+10 1.01e+8

Fig. 7. Rank for TOPSIS approach for Spring Design problem.

I. Rahimi et al.                                                                                                                                                                                                                                  



Results in Engineering 25 (2025) 103727

9

fostering robust variable interactions.
The network metrics table (Table 6) and the TOPSIS ranking (Fig. 11) 

further quantify these observations. The metrics show that the average 
betweenness centrality is highest without BU (0.220), suggesting more 
central nodes. However, the BU methods exhibit significantly lower 
closeness centrality, indicating more efficient networks with shorter 
paths between nodes. The average eigenvector centrality is highest 

without BU (0.3016) but lower in BU methods, reflecting a shift in in-
fluence among nodes. Notably, network density and average clustering 
coefficient metrics highlight that the BU methods, particularly P4P8, 
enhance local clustering and reduce overall network density, suggesting 
tighter-knit variable interactions within the feasible region. The TOPSIS 
ranking corroborates these findings, with the “With BU method (X4)” 
strategy ranking highest, indicating its superior performance in handling 
complex constraints effectively. In summary, the BU methods, especially 
X4 and X4X8, enhance the optimization process by creating more inter-
connected and efficient networks, outperforming the strategy without 
BU.

7.6. G01

The G1 optimization problem involves 13 decision variables, and it 
includes a quadratic objective function and 9 linear constraints, making 
it an exemplary case of a problem with a high level of linear constraints 
and a feasibility ratio of only 0.0111 % [6]. This makes it particularly 
difficult to find a feasible solution, highlighting its suitability for testing 
constrained optimization methods. The BU method is applied to the G1 

Fig. 8. Network visualization of different strategies for pressure vessel problem.

Table 5 
Results of different network metrics on the PV problem.

Method Without BU 
method

With BU method

X3 X4 X3X4

Average Betweenness 
Centrality

0.33 0.083 0.33 0.0

Average Closeness Centrality 1398.66 1.455 13.05 0.166
Average Eigenvector Centrality 0.354 0.417 0.379 0.353
Average PageRank Centrality 0.250 0.25 0.249 0.249
Network Density 1.0 0.5 0.666 0.166
Average Clustering Coefficient 0.0031 0.087 0.0006 0.0
Average Weighted Degree 0.502 0.785 0.578 0.500
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Fig. 9. Rank for TOPSIS approaches for Pressure Vessel problem.

Fig. 10. Network visualization of different strategies for the heather exchanger problem.
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problem to reduce the search space. Eight different strategies are 
selected, starting with one approach without the BU method and the 
other seven approaches with the BU method. For the BU method, the 
strategies involve using the following variables as repairing variables 
respectively: X10, X11, X12, X10X11, X10X12, X11X12, and X10X11X12. 

Table 7 shows different network centrality and connectivity metrics on 
G01. Generally, applying the BU method impacts the metrics, sometimes 
reducing them to zero (e.g., Average Betweenness Centrality, Network 
Density, and Average Clustering Coefficient in some cases). The most 
noticeable changes occur in the average closeness centrality and average 
weighted degree, which vary widely depending on the specific BU 
method. The average PageRank centrality remains constant across all 
methods, indicating that the importance of nodes, as calculated by 
PageRank, is unaffected by the BU method in this instance. Also, as it is 
clear from Fig. 12, applying the BU method leads to fewer interactions 
between variables and results in more independent variables.

Fig. 13 illustrates the ranking of various methods based on MCDM 
analysis, highlighting the performance impact of incorporating the BU 
technique with different combinations of variables. The method "With 
BU method - X10X11X12"ranks the highest, suggesting that integrating all 
three variables (X10, X11, X12) with BU yields the best results. High- 
performing methods also include "With BU method - X11X12" and 
"With BU method - X10X11". The middle range includes “With BU method 
- X10X12“and “Without BU method,” indicating that the baseline method 
without BU outperforms some BU methods. Lower ranks are seen for 
“With BU method - X10”, “With BU method - X12,” and “With BU method 
- X11,” showing less effectiveness when each variable is used 

Table 6 
Results of different network metrics on the Heater Exchanger problem.

Method Without BU 
method

With BU method

X4 X8 X4X8

Average Betweenness 
Centrality

0.220 0.148 0.202 0.148

Average Closeness 
Centrality

2.384e-19 2.394e-20 5.311e- 
18

4.426e-20

Average Eigenvector 
Centrality

0.3016 0.243 0.235 0.280

Average PageRank 
Centrality

0.125 0.124 0.1249 0.125

Network Density 0.821 0.607 0.7857 0.571
Average Clustering 

Coefficient
0.0325 0.0292 0.0299 0.0811

Average Weighted 
Degree

1.339e+22 8.490e+21 8.22e+21 3.318e+21

Fig. 11. Rank for TOPSIS approach for the Heather Exchanger problem.

Table 7 
Results of different network metrics on the G01 problem.

Method Without 
BU method

With BU method

X10 X11 X12 X10X11 X10X12 X11X12 X10X11X12

Average Betweenness Centrality 0.045 0.055 0.052 0.053 0.052 0.052 0.052 0.0
Average Closeness Centrality 4.267e-12 370.195 6.260 74.975 1.656 0.889 0.844 0.0
Average Eigenvector Centrality 0.156 0.121 0.109 0.117 0.205 0.205 0.206 0.277
Average PageRank Centrality 0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.076
Network Density 0.384 0.269 0.128 0.269 0.128 0.128 0.128 0
Average Clustering Coefficient 0.116 0.012 0.0 0.030 0.0 0.0 0.0 0
Average Weighted Degree 1.717e+12 0.160 0.156 0.177 0.392 0.729 0.764 0
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Fig. 12. Network visualization of different strategies on the G01 problem.

Fig. 13. Rank for TOPSIS approach for G01 problem.
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individually in the BU method. This analysis underscores the superior 
performance of comprehensive variable integration in the BU method.

8. Discussion

The findings of this research show significant insights into the BU 
method’s effectiveness when applied to constrained optimization 
problems. The detailed analysis of variable interactions using the DG2 
algorithm and various network analysis metrics has shed light on the 
structural properties of optimization problems under different formu-
lations. Several key points emerge from the discussion as follows: 

• Impact of BU method: Applying the BU method can lead to less 
variable interaction and, therefore, a more simplified optimization 
landscape, which results in a reduction in infeasible search space. 
This reduction and simplification in search space complexity was 
evident across all benchmark problems, resulting in more indepen-
dent variables and fewer interactions among them.

• Variable interaction analysis: The DG2 algorithm was used to iden-
tify the interactions between variables in both BU and without BU 
scenarios. The metrics, such as average betweenness centrality, 
closeness centrality, eigenvector centrality, and network density, 
provided comprehensive insights into the variable interactions. The 
BU method generally resulted in a more efficient network by 
analyzing the lower betweenness and closeness centrality values, 
which indicates fewer critical intermediary nodes and shorter paths 
between variables.

• MCDM Approach: The superiority of the BU method is further vali-
dated using the TOPSIS approach. The TOPSIS analysis ranked 
various BU strategies according to their proximity to an ideal solu-
tion, and the strategies involve multiple repairing variables that 
consistently rank higher. This method highlighted the robustness and 
reliability of the BU method, which handles complex constraints 
effectively.

• Trade-offs and Balance: A critical aspect of this study is finding the 
balance between shrinking the search space and managing the 
complexity of variable interactions. The BU method’s ability to twist 
the search space while maintaining an efficient optimization process 
was observed in the findings. This balance is essential for ensuring 
that the performance gains from the BU method are not offset by 
increased problem complexity.

• The BU method improves optimization efficiency by dynamically 
adjusting the variable bounds during the optimization process, 
resulting in search space reduction. Specifically, the method iden-
tifies the constraints most critical to defining the feasible region and 
uses these constraints to iteratively update the variable boundaries. 
The BU method removes significant areas of the search space that are 
unlikely to contain optimal answers by pushing the search algorithm 
to focus on feasible regions by limiting the variable ranges. The idea 
of semi-independent variables guides this procedure, guaranteeing 
that the restrictions are handled in a way that reduces variable 
conflict and maintains the fundamental structure of the search space.

• The trade-off between the reduction of search space and the quality 
of solutions will be evaluated by incorporating variable interaction 
analysis through the DG2 algorithm. The method makes sure that 
narrowing the search space doesn’t unnecessarily complicate the 
problem or make it impossible to find high-quality answers by 
assessing the interdependencies between variables. Furthermore, a 
multi-criteria decision-making methodology, TOPSIS, which rates 
the efficacy of various methods according to their proximity to an 
ideal solution, is used to validate the method’s performance. This 
approach guarantees that the BU approach keeps efficiency and so-
lution quality under check, as evidenced by its higher rankings across 
benchmark problems than without BU solutions.

• The BU method is particularly effective in optimization problems 
characterized by high-dimensional variable space with well-defined 

constraints. Examples of these optimization types include Welded 
Beam design problems, Pressure Vessel, and Spring Design Problems, 
where the constraints are critical and separable. The BU method can 
perform well in scenarios where reducing the infeasible search space 
can significantly streamline the optimization process and simplify 
variable interactions, resulting in algorithm pushes to focus on 
feasible regions. However, the BU method should be more explored 
in situations where constraints are loosely defined, highly dynamic, 
or interdependent to the extent that variable boundaries cannot be 
effectively isolated. For example, the assumption of semi- 
independent variables would not hold true in optimization situa-
tions with highly nonlinear, interdependent constraints, which could 
limit the method’s efficacy.

9. Conclusion

This study endeavours to implement the BU method across various 
benchmark problems. The BU method enhances the optimization search 
by eliminating the infeasible search space; by applying this approach, 
the search area is twisted, and empirical results on this problem suggest 
that the BU method leads to a simpler variable interaction structure, 
which has positive impacts on the optimization algorithm’s perfor-
mance. This is because of the shrinkage of the search area due to the BU 
method and the reduction of the complexity of the optimization prob-
lem. Moreover, the reduction of the search space due to the BU method, 
the complexity of the optimization problem, and the search behaviour of 
different optimizers may possess different responses to different BU 
formulations. In this research, various formulations of the BU method 
are conducted, and the DG2 algorithm analyses the interaction of de-
cision variables.

The analysis for the studied numerical examples, supported by 
various SNA metrics, illustrates that strategies with the highest number 
of repairing variables outperform other strategies. This superior per-
formance presences more independent decision variables and fewer in-
terdependencies among them, facilitating the discovery of optimal 
solutions.

Furthermore, the application of the MCDM approach, TOPSIS, en-
ables a robust evaluation and ranking of different boundary update 
formulations. The results show that the boundary update method sim-
plifies variable interactions and improves the optimization algorithm’s 
overall effectiveness, resulting in the best optimal values as initially 
obtained [6].

Considering the advantages of the BU method, the proposed 
approach has several limitations. First of all, the iterative boundary 
adjustments and the incorporating of DG2 for variable interaction 
analysis result in increased processing cost. For large-scale size problems 
involving high-dimensional variable spaces, this overhead may become 
substantial. Future studies will investigate the usage of parallelized 
implementations or more effective algorithms to overcome this issue 
and cut down on calculation time. Also, the performance of the BU 
technique on real-world problems with extremely complicated con-
straints and dynamic environments is not entirely explored in the cur-
rent study, which is restricted to benchmark tasks. The evaluation must 
be extended to real-world applications, including dynamic scheduling 
difficulties or industrial optimization tasks, to confirm the method’s 
scalability and resilience. Furthermore, the BU method’s reliance on 
semi-independent variables assumes a certain level of variable separa-
bility, which might not hold true for all optimization problem formu-
lations. It could be required to adapt the BU method or hybrid 
approaches that incorporate other constraint-handling strategies for 
optimization issues with highly interdependent variables.
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