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Abstract
Weather index insurance is a financial tool that enhances climate resilience in agriculture by providing timely compen-
sation linked to objective weather parameters. While payouts in traditional crop insurance are based on actual losses 
experienced by the farmer, WII payouts are triggered when a predetermined index (e.g. temperature or rainfall) exceeds a 
specified threshold. This review paper underscores that the primary challenge associated with WII is its susceptibility to 
basis risk, wherein triggered payouts may not align with actual crop yield losses. This thesis comprehensively reviews 71 
quantitative studies on WII design and pricing. The review findings highlight the potential for machine learning models in 
optimising WII parameters, such as contract dates, strike and exit thresholds, and in developing customised multi-indexes, 
while also exploring the utility of phenological and remote sensing data. The main contribution of this review is a novel 
focus on quantitative and data driven methodologies for WII product design, pricing and evaluating hedging efficiency. 
Additionally, recommendations are suggested to tailor WII design and pricing to different agricultural systems and regions 
with spatial and temporal climate variation, enabling optimisation of risk mitigation to the agricultural communities. This 
review also proposes research gaps to address the multi-faceted nature of basis risk including spatial, design and temporal 
basis risk. With the global demand for WII on the rise, these efforts are pivotal in ensuring that WII evolves into a depend-
able risk management tool capable of safeguarding against extreme crop yield losses effectively.
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1 Introduction

Extreme weather events such as droughts, floods, hail and 
storms have a devastating impact on agricultural crop pro-
duction. These adverse weather conditions can disrupt plant-
ing cycles, critical growth phases, creating stunted growth 
and destroying crops entirely (Verma et al. 2025; Toromade 
et al. 2024; Yuan et al. 2024; Grigorieva et al. 2023). Climate 
change is projected to increase the frequency and severity of 

such events, catalysing adverse conditions for crop growth, 
productivity, and sustainability of agricultural systems 
(Belissa 2024; Wang et al. 2015). IPCC (2023) anticipates 
a rise in crop yield losses, particularly in low and mid-lati-
tude regions, and projects a reduction in the effectiveness of 
standard agronomic adaptation strategies to mitigate climate 
risks from 2 °C to higher levels of warming. Smallholder 
farmers with limited financial reserves, adaptive capacity 
and access to rainfed agriculture may be exposed to long 
term setbacks from a single extreme weather event (Ojo et 

Graphical Abstract
This graphical abstract provides a visual representation of the literature review conducted on Weather Index Insurance (WII) 
product design, pricing and hedging efficiency. Climate change is expected to increase the frequency of extreme weather 
conditions. WII is an innovative financial tool to protect farmers adverse weather events on crop yield. However the primary 
challenge of WII is basis risk when the weather index measured by weather stations or satellite data does not correspond to the 
actual crop yield loss, causing a misalignment in triggered WII payouts to the farmer. This study reviews 71 research papers, 
with a novel focus on studies which utilised quantitative and data-driven methodologies for WII parameter optimisation in 
product design and pricing models. The review identifies the need to explore remote sensing data and machine learning to 
create multi-variable weather indexes with improved accuracy. Further research is required to optimise contract parameters, 
incorporate phenological crop data to reduce basis risk, and develop sophisticated premium-setting models. Future research 
should focus on balancing model complexity with transparency and developing an integrated WII framework to optimise 
risk mitigation for the farmer. As the demand for WII grows, these advancements are critical for transforming WII into a 
reliable risk management tool, and we encourage readers to explore the full article for further insights.
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al. 2024; Zenda 2024; Batungwanayo et al. 2023; Gwam-
bene et al. 2023; Mutengwa et al. 2023). Due to heightened 
exposure to financial vulnerability, the role of crop insur-
ance becomes increasingly critical. Regrettably, traditional 
indemnity crop insurance has often proven to be impracti-
cal, a phenomenon frequently attributed in numerous stud-
ies to information asymmetry, underwriting costs, and the 
expensive claims assessment process (Adelesi et al. 2024; 
Adeyinka 2015; Hatt et al. 2012).

Traditional indemnity crop insurance is susceptible to 
moral hazard as payouts are based on actual losses experi-
enced by the policyholder. It has been estimated that moral 
hazard and adverse selection inflate costs by 30–50%, lead-
ing to premium unaffordability (Powell and Goldman 2016). 
Another new and promising risk management tool to pro-
tect farmers from climate risks is Weather Index Insurance 
(WII). In WII payouts are triggered when a predetermined 
index (e.g. rainfall or temperature) exceeds a specified 
threshold. This subtle distinction enables numerous advan-
tages compared to traditional indemnity crop insurance, par-
ticularly a reduction in moral hazard risk. The World Bank 
(2011) estimates that WII enables administrative costs to be 
reduced by 60% relative to traditional indemnity crop insur-
ance. WII utilises indexes such as rainfall or temperature as 
proxies for crop yield. If an index has been appropriately 
selected, it should be highly correlated with the farmer’s 
crop yields. The benefits of WII in comparison to traditional 
indemnity products have been discussed in many studies 
(Abrego-Perez et al. 2023; Amarnath et al. 2023; Barnett 

and Mahul 2007; Singh 2024). The benefits discussed in 
these studies are broadly categorised and summarised in 
Table 1.

The design of WII products should consider the follow-
ing contract parameters, as summarised in Table 2 (Chen et 
al. 2017).

WII is still relatively a new financial product in many 
regions worldwide however has been successful in many 
developing countries (Lavorato and Braga 2023; Wang et 
al. 2023). India is often cited as having the first WII program 
in the world. This WII program was a rainfall insurance 
program underwritten by ICICI-Lombard General Insur-
ance Company in 2003 for groundnut and castor farmers 
in Andhra Pradesh (Clarke et al. 2012a, b). WII programs 
in India have transitioned from small scale pilot programs 
scattered across the country to large scale programs, which 
is one of the largest in the world (Clarke et al. 2012a, b). 
India’s primary WII scheme is the Restructured Weather 
Based Crop Insurance Scheme (RWBCIS) which has 
been recently redesigned to include recent technological 
advancements to improve protection for farmers (Vishnoi 
et al. 2020). Similarly the Catastrophic Attention to Natural 
Disasters (CADENA) program in Mexico was launched in 
2003 by the Mexican Ministry of Agriculture. This program 
offers WII to maize farmers, and by 2013 the scheme had 
expanded nationwide coverage of over 6 million hectares of 
farms (De Janvry et al. 2016). Furthermore, Kenya’s Kilimo 
Salama (“Safe Farming”) program, launched in 2009, inte-
grated mobile technology to reduce administrative costs 

Contract parameters Description
Index WII will provide a payout based on weather index value measured at closest 

weather station or from remote sensing data
Tick Monetary payout per unit from WII contract
Strike and exit Payout will be initiated when index exceeds strike threshold, with maximum 

payout at exit threshold
Payout function Defines the structure of the payout e.g. linear payout between strike and exit 

thresholds
Premium Price paid by policyholder to insurer to purchase a WII contract
Contract period Start and end date of contract which usually coincides with crop growing season

Table 2 WII contract parameters 

Category Benefits compared to traditional insurance
Adverse selection/moral 
hazard

A farmer is unable to manipulate the actual loss amount since payouts 
are based on an independent index rather than actual crop yield losses

Policy underwriting Since policyholder loss experience does not need to be modelled, the pol-
icy origination process and underwriting costs are significantly reduced

Claims assessment Operating expenditure is minimised since an independent weather index 
determines the payout, eliminating the need for onsite inspections to 
estimate crop yield loss

Prompt access to funds Prompt access to funds is especially needed in developing countries 
where low-income farmers are vulnerable to short-term liquidity gaps

Affordable premiums Reduced policy underwriting and claims assessment expenses, enable 
more affordable WII premiums, facilitating greater accessibility and 
diminishing the need for government subsidies

Table 1 WII benefits compared to 
traditional insurance
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other reviews have focused on specific aspects of WII. A 
review by Singh (2024) focused on WII and climate change, 
including climate risks in agriculture, changing perception 
of WII and climate finance policy. In addition, a review by 
Gairola and Dey (2023) focused on factors that impact the 
willingness to pay for WII. There have been no reviews that 
specifically focus on only WII product development from 
end-to-end parameter selection, premium rating and per-
formance evaluation which is the main contribution of this 
review. Although Benso et al. (2023) covered some aspects 
of WII design and pricing, this study was limited to the 26 
most cited papers published in the past 5 years.

The objective of this paper is to conduct a systematic 
review of the literature to identify key future directions for 
WII design and pricing. This review offers a novel in-depth 
focus on quantitative methodologies utilised to derive WII 
parameters (index, strike thresholds, payout), premium rat-
ing and evaluate hedging efficiency in each stage of WII 
product development. In contrast to previous reviews, this 
review is the first to systematically compare the model-
ling techniques, including machine learning and statisti-
cal approaches. This review captures a broad set of studies 

and is widely regarded as a model for WII in Sub-Saharan 
Africa (Muleke et al. 2025). Figure 1 presents a geographic 
distribution of global WII programs.

The challenges that have been cited in these commercial 
implementations are low uptake, distrust in insurers, sparse 
weather station data and basis risk (Barnett and Mahul 2007; 
Cesarini et al. 2021). Basis risk arises when there is a mis-
match between triggered payouts and actual crop yield loss 
(Skees 2008). Further, research is required to optimise WII 
parameters and pricing methodologies, aiming to mitigate 
basis risk in WII (Tan and Zhang 2024; Wang and Abdul-
lah 2024; Zou et al. 2023). Ultimately, reducing basis risk 
will enable WII’s appeal as a risk transfer product, thereby 
increasing demand and take up of this product for both 
farmers and the insurance industry.

Several reviews have explored different dimensions 
of WII, reflecting the growing academic interest in its 
design, implementation, and impact. A review by Singh 
and Agrawal (2019) provided a broad overview of farmer’s 
willingness to pay for WII, demand for WII, adoption of 
WII, climate change impact on WII, subsidy for WII, and 
social protection and welfare impact of WII. Alternatively, 

Fig. 1 Geographic Distribution of Global WII Programs

 

1 3



Advancements in Weather Index Insurance: A Review of Data-Driven Approaches to Design, Pricing and Risk…

abstract. As this research is focused on developing a com-
prehensive framework, only articles that proposed a holistic 
framework for WII design and pricing were selected. For 
example, articles that proposed a premium for WII without 
explaining the pricing methodology were excluded. Fur-
thermore, articles focusing on only one component, such 
as index development or hedging efficiency performance, 
were also excluded. These criteria filtered the search to 
64 articles. A further 7 articles were obtained by reference 
searching, resulting in a total of 71 papers for our literature 
review.

This process of literature identification and filtering is 
illustrated in Fig. 2.

2.1 Overview of Studies

WII has gained popularity in recent years, as shown in 
Fig. 3, which reveals a rise in quantitative WII studies since 
2014. This increase may be attributed to the increased fre-
quency and severity of extreme weather events, wherein 
traditional crop insurance products have failed to provide 
sufficient protection to farmers (Adeyinka 2015).

Drought emerged as the dominant type of weather risk 
targeted in WII studies in the reviewed literature. Other 
studies analysed risks such as excessive rainfall, low tem-
perature, and rainfall deficit. Multi-risks such as high and 
low temperature, were analysed by only five studies. The 
illustration in Fig. 4 presents the most frequently studied 
crops. Wheat, corn and rice were commonly studied crops 
in WII studies worldwide. Multi-crops were analysed by 
only 20% of studies, with the majority focusing on a single 
crop.

The studies were based on 41 different countries, with 
70% of them conducted in developing countries, as shown 
in Fig. 5. Only a few studies were at a macro country level 
(Hohl et al. 2021; Kath et al. 2019; Kusuma et al. 2018). 
Most studies were conducted in specific regions, underscor-
ing the necessity for localised WII contracts with premium 
rates tailored to the variability in weather patterns, terrain, 
and agricultural practices of each region (Poudel et al. 2016; 
Vedenov and Barnett 2004). A few studies segmented the 
study region into homogeneous regions with similar rain-
fall, temperature, and soil quality using clustering models 
(Schmidt et al. 2021; Roberto Valverde-Arias et al. 2020).

across multiple regions and crop types to provide input for 
a global framework for WII design and pricing. By focusing 
on technical and methodological advancements, this review 
provides clarity for future research areas and actionable 
insights for both researchers and practitioners.

This review was guided by the following questions:

1. How has the literature evolved in designing and pricing 
WII to reduce basis risk?

2. What methods are available to assess the hedging effi-
ciency of proposed WII products?

3. What are the promising future research directions?

The findings of this review aim to guide the development 
of more reliable and scalable WII products, ensuring effec-
tive protection for farmers against extreme weather-induced 
crop yield losses. Improving the profitability and risk man-
agement capability of WII will be crucial for the agricultural 
sector to be resilient to extreme weather events and fulfil 
increasing global demand (Amarnath et al. 2023; Osgood 
et al. 2024).

2 Literature Search

PRISMA broad search criteria was used, as initial narrow 
searches missed key articles in the literature. The following 
search criteria was applied to the title, abstract and keyword 
fields.

(“weather index insurance” OR “rainfall index insur-
ance” OR “index insurance” OR “weather index”) AND 
(“pricing” OR “viable” OR “viability” OR premium* OR 
“rating” OR model* OR “design” OR “basis risk”).

This broad search retrieved 508 articles. The criteria 
listed in Table 3 were applied to further refine the search 
results, resulting in 227 articles. Articles were screened for 
relevance to research objectives by reviewing the title and 

Table 3 Eligibility criteria
Inclusion criteria Description
Publication period Published after 2000
Language English language
Document type Peer reviewed journal articles (exclude 

conference papers)
Insurance type WII only (exclude area yield insurance 

and traditional indemnity crop insurance)
Product Focused on crops (exclude livestock)

Fig. 2 Eligibility criteria used for the literature identification
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from reviewed articles, revealing that rainfall indexes were 
most widely used in the literature. In comparison, degree 
day indexes and temperature indexes were adopted in fewer 
studies. While meteorological drought indexes are widely 
used in drought monitoring, fewer WII studies have consid-
ered these indexes (Bokusheva 2018). Limited studies have 
investigated the potential of customised multi-indexes.

3 Weather Index

3.1 Indexes Used in WII Studies

Obtaining an optimised weather index, serving as a proxy 
for crop yields, is a significant step in the development of a 
viable WII product (Hughes et al. 2022). Lu (2021) proposed 
that an optimal index should not fluctuate, have minimal 
human interference, directly influence crop growth, and be 
simple to understand. Table 4 categorises weather indexes 

Fig. 4 Distribution of Crop Types in WII studies

 

Fig. 3 Evolution of WII publications from 2000 to 2022
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(2018) have investigated climate indexes. Mortensen and 
Block (2018) tested several El Nino Southern Oscillation 
indexes based on products in Peru, where El Nino had a 
significant impact on precipitation.

3.1.2 Satellite-Based Indexes

Indexes based on satellite offer the advantage of being 
freely available, continuous, and high spatial resolution 
(Vroege et al. 2021). These indexes are generated by reputa-
ble third-party agencies, hence they cannot be manipulated 
by insurers or farmers and are particularly useful in regions 
with sparse weather station infrastructure (Makaudze and 
Miranda 2010). Platforms such as Sentinel, Landsat and 
MODIS provide diverse spatial and temporal resolutions. 
MODIS provides high frequency data (daily to 8 day) at 
moderate spatial resolution of 250 m to 1000 m. Alterna-
tively Landsat offers higher spatial resolution data of 30 m 
but lower temporal frequency of 16 days. A comparison 
of the spatial and temporal resolution of these platforms 
are presented in Table 5. According to the agroecological 
characteristics of the study region, typical farm size, and 
timing of critical phenological stages of the selected crop, 

3.1.1 Drought Indexes

The Standardised Precipitation Index (SPI) is widely used 
to predict meteorological drought, yet has been applied in 
only a few WII studies (Miquelluti et al. 2022). SPI uses 
standardised values, enabling comparison across locations 
with different climates, unlike absolute metrics such as pre-
cipitation (Bucheli et al. 2021). Crop growth depends on 
diverse factors including soil water storage capacity and 
evapotranspiration (Miquelluti et al. 2022). Consequently, 
Standardised Precipitation Evapotranspiration Index (SPEI) 
was developed as an extension of the SPI, considering the 
impact of insufficient precipitation and extreme tempera-
tures, thus rendering it an ideal index for WII (Hohl et al. 
2021).

Soil moisture has proven to be an effective predictor of 
drought, yet only considered as an index in a few WII stud-
ies (Bucheli et al. 2021; Doms et al. 2018; Okpara et al. 
2017; Vroege et al. 2021). Soil moisture reflects location-
specific details such as water retention capacity, while also 
indicating if there is insufficient water to nourish roots even 
prior to the WII contract start date (Bucheli et al. 2021). Fur-
thermore, only a few studies, such as Mortensen and Block 

Fig. 5 Geographical distribution of WII studies
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explored the potential of three indexes derived from remote 
satellite data: the Vegetation Condition Index (VCI), Tem-
perature Condition Index (TCI), and Vegetation Health 
Index (VHI). Various studies have demonstrated that the 
Normalised Difference Vegetation Index (NDVI), which 
reflects the density and vitality of vegetation, was able to 
accurately predict crop yield (Eze et al. 2020; Makaudze 
and Miranda 2010; Masiza et al. 2022; Roberto Valverde-
Arias et al. 2020).

3.1.3 Customised Indexes

Some studies have considered more innovative and cus-
tomised indexes, which are valuable given the significant 
regional, topographical, and climatic variations in crop 
yield (Sun 2022a, b). A study by Leblois et al. (2014b) uti-
lised a weighted average of cumulative precipitation, where 
the weights corresponded to the water requirements during 
different crop growth periods. Several studies have explored 
multi-indexes derived from combinations of various 
indexes. For instance, Li et al. (2021) argued that a multi-
index derived from meteorological, remote sensing, and 
phenological data was more effective than a single index 
in modelling the multi-dimensional aspects of chilling risk. 
Shi and Jiang (2016) also developed a multi-index for rice 
yield in China, noting that this approach enabled farmers to 
be protected against multi-weather perils. Boyd et al. (2020) 
developed two multi-indexes based on partial least squares 
regression (PLSR) and on principal component regres-
sion (PCR), utilising 31 weather variables as inputs. These 
multi-indexes reduced basis risk more effectively than the 
cumulative precipitation index. Other studies have observed 
that while multi-indexes decrease basis risk and enhance 
accuracy in WII, there is a trade-off between simplicity and 
ease of implementation (Skees 2008; Vedenov and Barnett 
2004).

appropriate satellite platforms should be selected according 
to spatial and temporal resolution requirements.

Remote sensing indexes have been recently explored in 
a few WII studies. A study by Eltazarov et al. (2021) inves-
tigated the accuracy of remote sensing data compared to 
weather station data for potential use in implementing WII 
in Uzbekistan. Another study by Mollmann et al. (2019) 

Table 4 Common indices in WII studies in the literature
Index Count of 

Studies
Rainfall indexes 29
   Cumulative rainfall 23
   Flooding 1
   Rainfall deficit 2
   Rainfall excess 3
 Remote sensing indexes 21
   Enhanced vegetation index (EVI) 1
   Evaporative stress index (ESI) 2
   Land surface temperature (LST) 1
   Normalized difference vegetation index (NDVI) 6
   Soil moisture index (SMI) 4
   Temperature condition index (TCI) 2
   Temperature vegetation index (TVI) 1
   Vegetation condition index (VCI) 2
   Vegetation health index (VHI) 2
Drought indexes 15
   El nino–southern oscillation index (ENSO) 1
   Palmer drought severity index (PDSI) 2
   Ped drought index (PDI) 1
   Standardised precipitation evapotranspiration index 
(SPEI)

5

   Standardised precipitation index (SPI) 6
Degree day indexes 11
   Cooling degree days (CDD) 7
   Growing degree days (GDD) 3
   Heating degree days (HDD) 1
Temperature indexes 6
   Cumulative daily average temperature anomaly 1
   Temperature 5
Multi indexes 5
Other 8
Total 95

Satellite Platform Operator Spatial resolution Temporal 
resolution

Key data products

Sentinel-1 ESA 10 m (SAR) 6–12 days Soil moisture proxy, 
SMI, VSM

Sentinel-2 ESA 10–20 m 5 days NDVI, red edge indices
Landsat 7/8/9 NASA/USGS 30 m 

(multispectral)
16 days NDVI, surface 

reflectance
MODIS NASA 250–1000 m Daily / 8-day LST, FPAR, ET, PET, 

GPP
SMAP NASA ~ 9–36 km 2–3 days Soil moisture (surface)
VIIRS NOAA/NASA 375–1000 m Daily NDVI, VCT, TCI, VHI
CHIRPS UCSB/FEWS NET ~ 5 km Daily Rainfall estimates

Table 5 Comparison of satellite 
platforms

 

1 3



Advancements in Weather Index Insurance: A Review of Data-Driven Approaches to Design, Pricing and Risk…

to localised weather patterns of different regions (Wijesena 
and Pradhan 2024).

3.2 Yield– Index Modelling

In designing a WII product, it is critical to quantitatively 
assess the relationship between the crop yield and the 
weather index to ensure that triggered payouts align with 
crop yield losses (Poudel et al. 2016). A quarter of the stud-
ies analysed in the review developed a WII product without 
explicitly considering this relationship. Regression models 
were commonly used for yield index modelling, as shown 
in Table 6 (Baskot and Stanic 2020; Mazviona 2022; Sun et 
al. 2018; Turvey et al. 2006; Wu et al. 2021;). Linear regres-
sion models often provide a simplified explanation of the 
crop-yield relationship (Lu 2021). Some studies, such as 
Li et al. (2021), tested a variety of models including lin-
ear, logarithmic, inverse, quadratic, cubic, power, and expo-
nential, selecting the model with the highest coefficient of 
determination. Geographically weighted regression models 
have also been used in WII studies, where coefficients vary 
by location (Kusuma et al. 2018; Miquelluti et al. 2022). 
Other studies in the literature have acknowledged that this 
relationship may be non-linear (Biffis and Chavez 2017). 
Kath et al. (2019) employed a generalised additive model 
(GAM) to demonstrate the non-linear relationship between 
rainfall index and wheat yield in Australia. Alternatively, a 
few studies such as Lu (2021), involved local agricultural 
experts in determining an appropriate index for rice yield.

Farmers are typically more concerned with downside 
risk, which would potentially impact the continuation of 
the farm (Conradt et al. 2015). Quantile regression has been 
identified as superior to linear regression in crop yield-
index modelling as it can be tailored to lower quantiles 
and is robust to outliers (Conradt et al. 2015; Dalhaus and 
Finger 2016). Quantile regression has become increasingly 
prevalent in contemporary studies (Conradt et al. 2015; 
Dalhaus and Finger 2016; Dalhaus et al. 2018; Leppert et 
al. 2021; Mollmann et al. 2019; Vroege et al. 2021). Copu-
las are another sophisticated method employed to quantify 
tail dependence for extreme events. Xiao and Yao (2019) 
used copulas to model the tail dependence between corn 
yield and cumulative precipitation. Their study tested three 
copulas (Frank, Clayton and Gumbel copula) and selected 
the copula with the highest p-value. Schmidt et al. (2022) 
investigated the potential of machine learning to estimate 
the complex and nonlinear relationship between crop yield 
and weather variables by applying artificial neural networks 
to wheat and rapeseed yield data in Germany. Significant 
improvement in accuracy was achieved compared to the 
benchmark nonlinear regression model, which utilised soil 
moisture, precipitation, and temperature.

3.1.4 Machine Learning Derived Indexes

Cesarini et al. (2021) explored the potential of machine learn-
ing techniques for improving index design, enhanced with 
satellite data. This study demonstrated that utilising neural 
network and support vector machine models, as opposed to 
logistic regression models, resulted in significant improve-
ments in classifying floods and droughts. Hence, machine 
learning models have the potential to determine which fac-
tors are predictive and ideal for use as an index. Biffis and 
Chavez (2017) leveraged classification and regression trees 
(CART) models to construct optimal weather indexes for 
maize cultivation in Mozambique, incorporating both rain-
fall and excess temperature data. Machine learning tech-
niques allowed for index customisation at the pixel level, 
effectively modelling local climatic variability through 
the identification of non-linear patterns and higher-order 
variable interactions. Blakeley et al. (2020) utilised classi-
fication tree models to predict low yields below the 20th 
percentile using precipitation, evapotranspiration, and SPEI 
variables. Afshar et al. (2021a, b) employed crop simula-
tion models to generate synthetic yield data for training a 
random forest model that utilised both meteorological and 
phenological data. The results highlight the significance of 
crop simulation models and satellite data in creating phenol-
ogy based indexes for WII. Overall, there are limited stud-
ies investigating the potential of machine learning in WII 
design, possibly due to the large amounts of historical data 
required to train machine learning models.

Various weather perils from excessive rainfall to drought 
conditions have a substantial impact on crop yield. These 
multifaceted weather perils cannot be adequately repre-
sented by a single weather index. A potential area of future 
research is to utilise machine learning algorithms to cre-
ate a multi-index that combines meteorological variables. 
Machine learning algorithms are particularly effective in 
optimal feature selection and dimensionality reduction, 
allowing for the identification of variables which closely pre-
dict the multi-index. Methods such as principal component 
analysis (PCA) can also be employed to reduce dimension-
ality (Chaparro et al. 2024). Machine learning models can 
also facilitate the development of weather indexes tailored 

Table 6 Yield index models for WII studies
Crop yield - index model Count of studies
Regression model 16
Correlation 14
Quantile regression 8
Generalised additive model 3
Geographically weighted regression 2
Copulas 2
Total 45
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in Cameroon, while Taib and Darus (2019) investigated the 
universal kriging method to interpolate the CDD index from 
five weather stations in Malaysia. Chen et al. (2017) utilised 
interpolation to derive indices in China, but only for regions 
beyond a 25 km radius. A study by Leppert et al. (2021) 
compared interpolated CDD indexes using three interpola-
tion methods: inverse-distance weighting, regression krig-
ing and ordinary kriging. The regression kriging method 
was most effective at reducing spatial basis risk with a risk 
reduction of 2–3% compared to the closest weather sta-
tion index. As expected, spatial basis risk was reduced as 
the distance between the county and the nearest weather 
station increased. A study by Boyd et al. (2019) assessed 
the performance of seven interpolation techniques (regres-
sion, nearest neighbour, inverse distance weighting, regres-
sion based inverse distance weighting, regression kriging, 
ordinary kriging, and spatiotemporal regression kriging) for 
forage crop yield in Ontario, Canada. Boyd et al. (2019) rec-
ommended that while governments or insurance companies 
may invest in additional weather stations to improve spatial 
basis risk, an alternative may be to enhance existing data 
with satellite-based data.

Additionally, remote sensing data, which offers granular, 
high-resolution data that is closer to the actual site of crops 
than weather station data, can be used to address spatial 
basis risk. The potential of remote sensing data to enhance 
WII design has been discussed in multiple studies (Blakeley 
et al. 2020; Cesarini et al. 2021) Furthermore as described 
in Sect. 3.1.4, machine learning models offer the ability to 
integrate a vast volume of remote sensing data, facilitating 
the development of predictive multi-weather indexes. These 
indexes can capture localised weather patterns and climate 
variability at a granular regional level, thereby mitigating 
spatial basis risk. A study by Wijesena and Pradhan (2024) 
utilised a neural network model to develop a multi-weather 
index using a combination of remote sensing index, includ-
ing NDVI, EVI, EVI, LST and VHI. This composite index 
captured the interrelated nature of weather perils impacting 
crop yield including water storage capacity, sunlight, photo-
synthesis, drought and temperature variation, which would 
not have been possible with a single index. In addition due 

Although complex yield-index models may provide 
superior goodness of fit, they require significant histori-
cal data. Historical crop yield data may not be reliable due 
to changes in farming practices, fertilisers and irrigation 
(Chen et al. 2017), as well as technological advancements 
(Kusuma et al. 2018). As a result, about 50% of studies spe-
cifically mentioned applying yield detrending to the data. 
However, even with appropriate detrending, reliable crop 
data would still be limited to 30 to 40 annual observations 
per region (Vedenov and Barnett 2004).

4 Basis Risk

WII is susceptible to basis risk, which occurs when there 
is a mismatch between WII payouts and actual crop yield 
losses (Chen et al. 2017). Various studies have attempted 
to quantify basis risk in the literature. Ultimately, reducing 
basis risk will ensure that WII is an effective risk manage-
ment tool enabling greater demand for both farmers and the 
insurance industry. The three components of basis risk are 
summarised in Table 7.

The following sections discuss current developments in 
basis risk analysis in the literature.

4.1 Spatial Basis Risk

Spatial basis risk arises due to the differences in index val-
ues and the actual location of crops. Studies have observed 
that weather data should be measured within 20 km to 
30 km from a farm to reduce basis risk (Chen et al. 2017). 
Furthermore, spatial basis risk can be reduced if WII is tar-
geted against catastrophic events, which typically exhibit a 
stronger spatial correlation (Bokusheva 2018). Interpolating 
indexes is a common methodology in the literature to reduce 
spatial basis risk. A few studies in this literature review 
investigated the potential of interpolated indexes, primar-
ily in developing countries where there is likely to be a low 
density of weather stations.

Leblois et al. (2014b) utilised the inverse distance 
weighting interpolation technique for weather station data 

Basis Risk Type Definition Studies
Spatial basis risk Basis risk due to discrepancies in the index value 

measured at the weather station compared to the 
policyholder’s actual location

(Chen et al. 2017)
(Leppert et al. 2021)
(Taib and Darus 
2019)

Design basis risk Basis risk due to design of the WII product e.g. 
choice of index selected

(Bokusheva 2018)
(Conradt et al. 2015)
(Poudel et al. 2016)

Temporal basis risk Basis risk due to misalignment in the timeframe of 
WII contract dates and crop growing season

(Conradt et al. 2015)
(Dalhaus and Finger 
2016)
(Kapphan et al. 2012)

Table 7 Categories of basis risk 
type
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crop sowing dates may be difficult for the insurer to verify, 
the literature has often discussed that incorporating crop 
phenology data would be a cost-effective and comprehen-
sive tool to reduce temporal basis risk (Kath et al. 2019). 
However, only a few studies have explicitly incorporated 
crop phenology information into WII design to determine 
optimal contract dates (Bucheli et al. 2021; Conradt et al. 
2015; Dalhaus and Finger 2016; Kapphan et al. 2012; Tappi 
et al. 2022).

A study by Kapphan et al. (2012) used growing degree 
days (GDD) to model the occurrence dates of four phenol-
ogy phases for maize crop production: emergence, vegeta-
tive period, grain filling, and maturity. Conradt et al. (2015) 
leveraged GDD to determine annual variable insurance con-
tract dates for wheat in Kazakhstan. The study concluded 
that flexible contract dates led to a reduction in farmers’ 
downside risk exposure. Similarly, Dalhaus and Finger 
(2016) utilised GDD to predict occurrence dates of stem 
elongation and anthesis phases for wheat, which is par-
ticularly sensitive to drought. This study demonstrated that 
phenological data significantly increased the expected util-
ity. However, phenological patterns can vary widely across 
regions, requiring detailed regional data and potentially 
leading to more localised models with limited coverage.

The current literature has mainly considered these basis 
risks in isolation, failing to adopt a more integrated and 
holistic approach to basis risk management which consid-
ers their interdependencies. There is potential to combine 
the aforementioned methodologies into a WII product that 
addresses the multi-faceted nature of basis risk including 
spatial, design and temporal basis risk. For instance, remote 
sensing data and phenological data can be combined to 
develop a multi index which addresses both spatial and tem-
poral risk, while also considering hybrid design features. 
Synthesising the above methodologies will create a more 
robust framework and enable a comprehensive WII product.

5 WII Product Design

Ideally, a quantitative approach is required to derive WII 
parameters (strike, exit and payout function) that optimise 
the hedging efficiency (Chen et al. 2017). Hohl et al. (2021) 
recommended several iterations from initial setting of the 
WII parameters to the final parameter selection to optimise 
affordability and risk reduction for end beneficiaries.

5.1 WII Strike and Exit Thresholds

The setting of strike and exit thresholds is a critical consid-
eration in WII design. Table 8 summarises the methodolo-
gies used to set strike and exit thresholds in the literature.

to the granular nature of remote sensing data the weather 
index captured nuanced localised weather patterns, hence 
reducing spatial basis risk.

4.2 Design Basis Risk

Design basis risk can result from selecting an index that 
inadequately predicts crop yield losses. Examining the rela-
tionship between crop yield and weather variables has been 
identified as a critical step in WII design. If the correlation 
between the weather index and crop yield is weak, then WII 
may not accurately reflect the farmer’s risk profile (Poudel 
et al. 2016). A study by Leblois et al. (2014a) quantified 
basis risk as the difference in percentage of utility gain 
from WII contract compared to an area yield index insur-
ance (AYII) contract. In AYII, the indemnity is based on 
the yield in a specified area (e.g. district), and the payout 
is triggered if the actual yield is below the insured yield in 
the area, regardless of the actual farmer’s yield (Xiao and 
Yao 2019). Xiao and Yao (2019) proposed three variations 
of “double trigger” insurance products to reduce basis risk. 
These hybrid products combine indemnity payouts from 
both a WII contract and an AYII contract. Overall, there 
have been few WII studies that have considered innovative 
modifications to WII product design, to reduce design basis 
risk.

Some studies in the literature have reported a weak 
correlation between crop yield and the selected weather 
index (Masiza et al. 2022). Masiza et al. (2021) used par-
tial dependence plots from a random forest model to deter-
mine that, in addition to surface moisture, precipitation, and 
GDDs, non-weather variables such as seed variety, fertil-
iser, and machinery ownership also significantly impacted 
crop yield. Hence, this study recommended exploring meth-
ods to incorporate non-weather factors into index insurance 
design.

4.3 Temporal Basis Risk

Generally, WII contracts have fixed calendar periods dur-
ing which the index is measured. Temporal basis risk occurs 
because the insurance contract period does not align with 
the actual growing season when crops are most sensitive to 
extreme weather (Dalhaus et al. 2018). Temporal basis risk 
refers to the misalignment between WII payout and actual 
crop yield losses, arising from discrepancies between the 
timing of actual weather events and the coverage period 
specified in WII contract. For instance, if a weather event 
that significantly damages crops occurs after the contract 
end dates then a corresponding payout will not be triggered, 
hence undermining the fairness of insurance coverage and 
exposing policyholders to unmitigated risk. Since actual 
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parameters are not influenced by outliers and can robustly 
adapt to diverse regions with different climate conditions 
(Leblois et al. 2014a).

A study by Choudhury et al. (2016) applied an innova-
tive technique of determining optimal strike and exit values 
through cluster modelling of index and crop yield, a method 
also used in other studies such as Eze et al. (2020) and 
Kusuma et al. (2018). Cluster analysis aims to maximise the 
similarity of observations within each cluster while maxi-
mising the differences between clusters. Ideally, weather 
variables reflecting drought conditions should be grouped 
with low crop yield, and conversely, the same for high crop 
yield. The average values in the cluster reflect the strike and 
exit thresholds.

Interestingly, a study by Roberto Valverde-Arias et al. 
(2020) developed two intuitive thresholds based on NDVI 
index: an economic threshold relating to the minimum yield 
to break even and cover production costs, as well as a physi-
ological threshold related to extreme weather events where 
total investment cannot be recovered. Additionally, two eco-
nomic thresholds were further determined for rainfed and 
irrigated crops separately, as they have different production 
costs.

5.2 WII Payout Structure

A proportion of studies did not justify the selection of the 
payout value or payout structure, although it is a fundamen-
tal component of WII design. Alternatively, most studies 
employed a simplifying assumption to only consider a unit 
payout and calculated a single pure premium rate (Mazvi-
ona 2022; Miquelluti et al. 2022; Poudel et al. 2016). Azka 
et al. (2021) selected an appropriate payout for their pro-
posed WII product for rubber plantations by interviewing 
rubber farmers. A study by Hohl et al. (2021) defined the 
payout as the total estimated yield multiplied by production 
costs. However, the authors proposed that payout can also 
be calculated by multiplying the average projected yield and 
commodity prices. A study by Lu (2021) for rice yield WII 
in China also utilised the market price of rice to propose a 
suitable payout. Another common technique is setting the 
payout as the value that maximises the hedging effective-
ness of the WII contract (Doms et al. 2018; Mollmann et al. 
2019; Xiao and Yao 2019).

Various payout structures are discussed in the literature, 
however most commonly, a linear payout structure was 
adopted where payout is linearly proportional to the inten-
sity of the index between strike and exit thresholds (Chen 
et al. 2017; Hohl et al. 2021; Leppert et al. 2021). Alterna-
tively, Azka et al. (2021) proposed a payout of 50% when 
the index was between the strike and exit threshold, and 
100% when the index exceeded the exit threshold. A less 

The simplest method of setting the strike threshold is to 
equate it to the historical average index (Erec and Muss-
hoff 2011; Erec et al. 2012). A more refined method is to set 
the strike level as the average of the crop yield (Chen et al. 
2017; Dalhaus et al. 2018; Leppert et al. 2021; Miquelluti et 
al. 2022). This is calculated by inputting the average yield 
into a yield-index regression function, which predicts the 
corresponding index. This methodology is widely used in 
the literature and is superior to using historical index data, 
since strike threshold is derived from the insured variable 
(Mollmann et al. 2019).

Ideally, a WII product should be targeted against cata-
strophic events rather than average losses, to improve both 
demand and affordability and decrease spatial basis risk 
(Bokusheva 2018). Consequently, many studies have set the 
strike level to be one to two standard deviations below the 
average index (Hohl et al. 2021; Shibabaw et al. 2023). An 
alternative method is to set the strike value to a percentile, 
such as the 70th percentile of crop yield, to tailor WII to 
extreme weather events (Conradt et al. 2015). This was the 
most common methodology adopted in the literature (Azka 
et al. 2021; Doms et al. 2018; Lu 2021; Weber et al. 2015).

Algorithmic optimisation is a sophisticated method for 
parameter setting in WII that is designed to maximise effi-
ciency. This methodology selects the optimal strike, exit, 
and payout value that optimises hedging efficiency, and 
has been utilised in multiple WII studies (Leblois et al. 
2014a; Poudel et al. 2016; Xiao and Yao 2019). While this 
method optimises the WII contract, it can be argued that it 
is less transparent than previously discussed methods. Fur-
thermore, algorithmic optimisation can lead to overfitting. 
Weather data is inherently unpredictable and often suffers 
from the presence of outliers. Overfitting occurs when 
the optimisation algorithm captures random noise in the 
training data, rather than the underlying weather patterns. 
Overfitting is especially pronounced when the optimisa-
tion algorithm is too complex and becomes too closely fit-
ted to the training data. Cross-validation ensures that the 

Table 8 Methodologies for strike threshold setting in the literature
Strike setting methodology Count of 

Studies
Index percentile 12
Yield-index regression 8
Historical average index value 7
Predefined definition (e.g. critical temperature that 
impacts crops)

5

Algorithmic optimisation 4
Cluster analysis 3
Index standard deviation 2
Set to offset production costs 1
Other 3
Total 45

1 3



Advancements in Weather Index Insurance: A Review of Data-Driven Approaches to Design, Pricing and Risk…

Historical payouts are derived by applying the WII trigger 
conditions to past weather patterns, identifying occurrences 
where weather conditions would have triggered a payout. 
The price of WII product is determined as the average pay-
out generated from historical triggers and is the equivalent 
of the expected loss over time. Although this method is 
simple to implement, it has several shortcomings, such as 
requiring long and consistent weather data, and catastrophic 
losses may be under or over-represented due to the limited 
historical observations (Hohl et al. 2021). The robustness of 
results is also undermined by completeness of data and out-
liers in weather time series data. This method also assumes 
that there are no trends in the data and the assumption that 
the historical loss rate is an appropriate estimator for the 
future loss rate (Wu et al. 2021). This assumption is increas-
ingly questionable with evidence of unpredictable impacts 
of climate change (Mortensen and Block 2018).

6.2 Index Simulation

Fitting a probability distribution is another common pricing 
methodology, as illustrated in Table 9. Parametric distribu-
tions, including the gamma, beta, lognormal, and weibull 
distributions, have been tested in the literature (Hao et al. 
2005). Overall, gamma distribution was commonly applied 
to index data by numerous studies due to its skewed long 

common payout structure is a lump sum payment triggered 
when the index reaches the strike value (Darus and Taib 
2019). Overall, the payout structure of WII products have 
not been widely studied in the literature.

6 WII Premium Rating

Table 9 provides a summary of various pricing methodolo-
gies for WII in the literature. Among the limited studies 
investigating premium rating, historical burn rate analysis 
or index simulation was often implemented. Only a few 
studies have explored time series models that incorporate 
seasonal dynamics.

6.1 Historical Burn Analysis

Historical burn analysis has been identified in this literature 
review as the most common pricing methodology to deter-
mine the premium for WII studies, as depicted in Table 9. 
This pricing methodology has gained significant traction in 
the literature due to its simplicity and independence from 
a parametric distribution (Clarke et al. 2012a, b; Taib and 
Benth 2012; Shah 2016; Miquelluti et al. 2022). This meth-
odology involves calculating historical weather data for at 
least 30 years for a given location (Darus and Taib 2019). 

Pricing methodology Description Count of studies Examples of studies
Historical burn rate 
analysis

Average expected payout from WII 
realisations on historical index data

22 (Chen et al. 2017)
(Clarke et al. 2012a, b)
(Dalhaus et al. 2018)
(Erec et al. 2012)
(Hohl et al. 2021)
(Miquelluti et al. 2022)
(Shah 2016)
(Taib and Benth 2012)
(Wu et al. 2021)

Index simulation Historical index data is fitted to a 
parametric distribution (e.g. gamma 
distribution). The index value is simu-
lated using the estimated parametric 
distribution. The premium is the mean 
of expected payouts from the simulated 
index data

14 (Hao et al. 2005)
(Husak et al. 2007)
(Kath et al. 2019)
(Li et al. 2021)
(Lu 2021)
(Martin et al. 2001)
(Poudel et al. 2016)

Time-series models An autoregressive time series model 
with seasonality is fitted to daily or 
weekly index data over a long histori-
cal period to capture time dynamics

4 (Darus and Taib 2019)
(Shibabaw et al. 2023)

Black Scholes WII products can be modelled as put 
options and Black Scholes option 
pricing formula can be applied to the 
pricing of WII

3 (Azka et al. 2021)
(Baskot and Stanic 
2020)
(Mazviona 2022)

Copulas The tail dependence between weather 
index and crop yield during extreme 
weather events is modelled using 
copulas

3 (Bokusheva 2018)
(Hidayat and Gunardi 
2019)
(Kölle et al. 2021)

Other 7

Table 9 Summary of WII pricing 
methodologies
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(Shibabaw et al. 2023). For example, Benth et al. (2007) 
proposed a seasonal continuous-time autoregressive process 
to model temperature using 40 years of daily observations in 
Sweeden. Wanishsakpong and Owusu (2020) successfully 
fitted auto-regressive integrated moving-average (ARIMA) 
and the auto-regressive integrated moving average with 
exogenous variables (ARIMAX) models to predict tem-
perature in Thailand. In addition, there are few comparative 
studies that have compared the premium from time series 
models to traditional pricing methods. A study by Darus and 
Taib (2019) demonstrated that although the continuous-time 
autoregressive model had a higher WII premium than both 
historical burn rate analysis and exponential index simula-
tion, it also had a greater probability of getting money back 
for farmers.

6.5 Copula Models

There have been limited studies exploring copula based 
WII design. Shah (2016) priced rainfall index insurance 
in Andhra Pradesh region in India using t copulas, which 
have a thick tail distribution. The study produced similar 
results to historical burn analysis. The study concluded 
that copulas would be better suited to regions with extreme 
rainfall, since historical burn rate analysis may be unreli-
able due to scarce data. A similar comparative study was 
performed by Hidayat and Gunardi (2019) who simulated 
a thousand data points for price, yield and rainfall index 
based on both the fitted lognormal probability distribution, 
as well as the Frank and Joe copula. A study by Bokusheva 
(2018) utilised three types of Archimedean copulas for grain 
farms located in Kazakhstan. This study discussed that com-
plex pricing methodologies such as copulas which require 
many observations in the tail of the distribution are limited 
by the seasonality of agricultural data which typically has 
only one or two annual observations of crop yield. Kölle 
et al. (2021) discovered that the Gumbel copula which has 
a strong dependence structure in the left tail of joint dis-
tribution was better able to capture the strong relationship 
between extreme weather and olive oil yield, in comparison 
to the Gaussian copula. Table 10 provides a summary of the 
advantages and disadvantages of pricing methodologies.

7 WII Hedging Efficiency

Testing the hedging efficiency of a WII contract is essen-
tial to evaluate the risk-reducing capabilities. Almost 50% 
of studies from this review did not consider the hedging 
efficiency of their proposed pricing frameworks. Table 11 
summarises the hedging efficiency measures applied in the 
studies that did consider hedging efficiency. Furthermore, 

tail, which is suited to crop yield losses from extreme 
weather events (Kath et al. 2019; Li et al. 2021; Martin et al. 
2001; Poudel et al. 2016). Martin et al. (2001) and Poudel et 
al. (2016) both fitted a gamma distribution to rainfall data, 
where maximum likelihood estimation (MLE) was used to 
estimate parameters. Tests such as chi-square, Anderson-
Darling and Kolmogorov-Smirnov test were used to deter-
mine the best fitting distribution to empirical data (Erec and 
Musshoff 2011). Index values were simulated from the esti-
mated distribution to calculate the premium, and for each 
simulation, the expected payouts were calculated. The fair 
premium is calculated as the expected payout (Mollmann et 
al. 2019).

6.3 Black-Scholes Option Pricing

Various studies have applied the Black-Scholes formula 
to determine the premium of WII (Filiapuspa et al. 2019; 
Jewson and Zervous 2003; Okine 2014). The Black-Scholes 
method was traditionally used to price European put options 
(Black and Scholes 1973). A European put option will trig-
ger the payoff if the share price is less than or equal to the 
strike threshold at a certain time. Hence, the payout structure 
of a WII product can be realised as a put option, and thus the 
Black-Scholes option pricing can be applied to estimate WII 
premiums. Jewson and Zervous (2003) demonstrated how 
the Black and Scholes (1973) partial differential equations 
can be applied to pricing of weather options. Moreover, 
Okine (2014) applied this methodology to calculate premi-
ums for rainfall index insurance in Ghana. Okine showed 
that rainfall data distribution approximately followed a log-
normal distribution, validating the application of the Black 
Scholes method. The study also demonstrated the impact 
of various index triggers on the price of WII premium. A 
similar study was performed by Filiapuspa et al. (2019) 
which was applied to rainfall index insurance for rice yield 
in Banten province, Indonesia. However, the Black-Scholes 
model requires restrictive assumptions such as assuming the 
underlying weather index data follows a lognormal distribu-
tion, which may not be accurate for all geographic regions 
(Mazviona 2022; Okine 2014). Alternatively, more suitable 
methods for pricing WII have evolved in the literature.

6.4 Time-series Models

More sophisticated methods for pricing WII have evolved 
in the literature, such as autoregressive time-series models 
which can capture seasonality yet require data over a long 
historical period. To select the appropriate time series model 
to use, studies have used the Mann-Kendall trend test to 
determine if there is a trend component in data and a partial 
autocorrelation function plot to check if the data is cyclical 
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a crucial step to ensure that the model generalises well and 
ensures the robustness of predictions.

The following section explains various methodologies 
utilised in the literature to evaluate WII risk reduction.

7.1 Standard Deviation and Semi Deviation

Standard deviation is a simple method to understand risk 
measures used in WII studies. Studies that used standard 
deviation often considered other sophisticated risk measures 
as well (Erec and Musshoff 2011; Erec et al. 2012; Kusuma 
et al. 2018). However, standard deviation is a realistic risk 
measure only if losses follow a normal distribution. In real-
ity, crop yield losses will adhere to an asymmetric distri-
bution and farmers are likely to be risk averse. Measures 
such as semi variance are superior to standard deviation, as 
they consider only downside risk. This measure has been 
frequently applied in WII studies (Miquelluti et al. 2022; 
Sun 2022a, b; Sun et al. 2018).

7.2 Utility Functions

Utility functions have also been used in WII to evaluate per-
formance. The choice of utility function should be carefully 
selected to derive sensible results. WII studies generally 
investigated the expected utility using either the expo-
nential function (Conradt et al. 2015), or the power utility 
function (Xiao and Yao 2019). The power utility function 
represents constant relative risk aversion (CRRA), while the 
exponential function represents constant absolute risk aver-
sion (CARA). Some studies used fieldwork to calibrate the 

these studies often compared multiple hedging efficiency 
methods. When performing these hedging efficiency tests, it 
is essential to test on out of sample (holdout) data to avoid 
overfitting of fitted parameters and overestimating the risk 
reduction (Leblois et al. 2014a). Few studies specifically 
mentioned that hedging efficiency tests were performed 
on out-of-sample data. Overfitting is when a model fits 
too closely to noise in the training data rather than under-
lying weather patterns. Certain studies may misleadingly 
show exceptional hedging efficiency performance on train-
ing data. However on unseen test data, the performance of 
hedging efficiency is likely to be suboptimal, making direct 
comparisons across different studies in the literature mis-
leading. Testing hedging efficiency on out-of-sample data is 

Table 11 Metrics to evaluate hedging efficiency in WII products
Hedging efficiency methods Count of studies
Certainty equivalent income 9
Semi variance 9
Expected utility 7
Mean root square loss 6
Expected shortfall 5
Standard deviation 4
Value at risk 3
Spectral risk measures 2
Claims ratio 2
Coefficient of variation 1
Conditional tail expectation 1
Quantile risk premium 1
Relative volatility 1
Other 4
Total 55

Pricing 
methodology

Disadvantages Advantages

Historical burn 
rate analysis

Extensive historical data is required
Historical data may be unreliable
Trends are not considered
Historical data may not cover catastrophic 
losses

Simple to calculate and easy to understand
Minimal modelling assumptions
Easy to implement

Fitted probabil-
ity distribution

Sensitive to distributional assumptions
Trends are not considered
Dependent on the quality of historical data

Confidence interval of the mean can be 
determined
Span of the confidence interval can be 
used to quantify the risk loading required
Index values outside the range of observed 
data can be predicted (e.g. catastrophic 
events)

Black Scholes Confined to unrealistic assumptions e.g. 
assumes index data follows lognormal 
distribution

Simple to calculate
Closed-form solution is useful as a theo-
retical benchmark

Time Series 
models

Daily or weekly data required
Complexity increases with nonlinearity

Model considers the trends and seasonal 
effects
Obtains probabilistic information on index

Copulas Fewer benchmark studies are available
Computationally intensive and requires 
significant historical data
Complex to explain to stakeholders

Ideal for modelling extreme weather 
conditions
Captures nonlinear and tail dependence

Table 10 Advantages and 
disadvantages of WII pricing 
methodologies
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7.5 Expected Shortfall

Expected shortfall (ES) overcomes the shortcomings of 
VaR. ES is the conditional expectation of loss given that the 
loss is beyond the VaR threshold.

ES at a confidence level of α% is defined in Eq. 3 (Acerbi 
2002):

ESα = E [R| R < V aRα ]  (3)

where, R is again the density function of wealth.
Several WII studies have used ES (Bokusheva 2018; 

Conradt et al. 2015; Mollmann et al. 2019) in calculating 
hedging efficiency.

7.6 Spectral Risk

Both VaR and ES do not consider the degree of risk aversion 
of the farmer. VaR only provides a point estimate while ES 
assumes farmers are risk neutral because losses that exceed 
the VaR threshold are equally weighted (Miquelluti et al. 
2022). Hence, Acerbi (2002) proposed the use of spectral 
risk measures to overcome these limitations. Spectral risk is 
defined in Eq. 4 (Acerbi 2002):

Mθ =
∫ 1

0
θ (w) .qwdw (4)

where, qw is the quantile function for wealth and θ(w) is 
the weighting function which captures the risk aversion of 
farmers.

For example, if the weights follow an exponential func-
tion, then larger weights are applied for higher levels of 
the cumulative probability distribution which represent 
extreme losses. In addition, the exponential parameters can 
be adjusted according to the degree of risk aversion of farm-
ers. Farmers with higher risk aversion will have weights 
that increase more rapidly as losses increase. Although the 
spectral risk measure is superior, this literature review has 
only identified two studies where this risk measure has been 
utilised (Conradt et al. 2015; Miquelluti et al. 2022).

8 Machine Learning Applications in WII 
Product Design

Various machine learning algorithms have been applied 
in WII design including; random forests, support vec-
tor machines (SVM), artificial neural networks (ANN), 
and XGBoost. The performance of these algorithms vary 
depending on data structure, data heterogeneity, outliers, 
temporal and spatial resolution (Agarwal and Tarar 2021; 

risk aversion parameters to the specific study region (Leb-
lois et al. 2014a), while other studies relied on the literature 
to determine sensible parameter values. Additionally, most 
studies input a range of coefficients of risk aversion into 
these functions to test various scenarios from risk-neutral 
to very risk-averse (Dalhaus et al. 2018; Dalhaus and Finger 
2016).

7.3 Certainty Equivalent

Another method of testing hedging efficiency is to employ 
a utility function to calculate the certainty equivalent (CE). 
Certainty equivalent is defined as the guaranteed return that 
a farmer would accept, rather than taking a gamble at a 
higher, but uncertain return.

The certainty equivalent function is defined in Eq. 1 
(Vinel and Krokhmal 2017):

CE = U−1 (E [U (X)]) (1)

In Eq. 1, CE represents the certainty equivalent of an uncer-
tain loss X and U is the utility function. A rational inves-
tor should be indifferent between accepting CE value or the 
uncertain X (Vinel and Krokhmal 2017).

This was the most common method applied in the litera-
ture review (Leblois et al. 2014a; Martin et al. 2001; Vede-
nov and Barnett 2004; Xiao and Yao 2019). The CE measure 
is again highly dependent on the choice of a sensible utility 
function. A study by Leblois et al. (2014a) calculated CE 
using two utility functions, the exponential function and the 
power utility function.

7.4 Value at Risk and Expected Shortfall

In financial economics, Value at Risk (VaR) is used to mea-
sure the maximum expected loss with a specified probabil-
ity level. It has also been used in WII to calculate hedging 
efficiency (Erec et al. 2012; Vedenov and Barnett 2004). For 
example, a study by Erec et al. (2012) calculated hedging 
efficiency using a 90% confidence level for VaR.

VaR at a confidence level of α% is defined in Eq. 2 
(Jorion 1996):

P r(R < V aRα ) = α  (2)

where, R is the density function of wealth.
However WII studies have argued that VaR can be mis-

leading since it does not capture the distribution of the loss 
in the tail. Two portfolios can have the same VaR but very 
different extreme losses.
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where there is large variation in weather and soil conditions, 
which is often the case due to limited historical data (Sheth 
et al. 2022). The gradient boosting machine, XGBoost and 
random forest also provide interpretability which is useful 
for drawing insights for WII product design (Gupta et al. 
2022). ANN is suitable for modelling highly complex time 
series and high resolution remote sensing data with non-
linear relationships (Osisanwo et al. 2017). A comparative 
summary of selected machine learning algorithms in WII 
product design is presented in Table 12.

Limited studies have investigated the potential of 
machine learning in WII design. A summary of the WII 
studies with machine learning applications in the literature 
is summarised in Table 13. Existing research has inves-
tigated the potential of machine learning in a variety of 

Osisanwo et al. 2017; Nitze et al. 2012). Crop yield is 
dependent on the complex non-linear relationships between 
weather variables such as temperature, precipitation, soil 
conditions and agronomic management practises (Debnath 
2024; Sidhu et al. 2023; Bali and Singla 2022). Advanced 
machine learning algorithms such as gradient boosting 
machine models can effectively capture these interactions in 
crop modelling (Anakal et al. 2025; Leo et al. 2021). It was 
found that XGBoost was able to further enhance the predic-
tive capabilities of gradient boosting machine model with 
greater efficiency and optimisation, though this requires 
larger weather datasets to observe a material improvement 
(Li et al. 2023; Gnanavel and Nandhini 2022; Shahhosseini 
et al. 2021). On the other hand, random forests have been 
noted to be robust to noisy weather data and perform well 

Table 12 Comparison of selected machine learning algorithms for WII product design
Algorithm Strengths Limitations Data requirements Interpret-

ability
Gradient Boost-
ing Machine 
(GBM)

Interpretability via SHAP/feature gain
Simple due to fewer hyperparameters
Customisable loss functions

Sensitive to overfitting in 
noisy weather datasets

Moderate Moderate

XGBoost Accurate and efficient
Interpretability via SHAP/feature gain
Handles imbalanced classification problems e.g. predict 
extreme crop yield failure

Sensitive to overfitting in 
noisy weather datasets
Less transparent

Moderate Moderate

Artificial Neural 
Network (ANN)

Effective for modelling complex non-linear relationships 
between weather and crop yield
Scalability with large weather datasets
Effective for high-dimensional weather datasets

Very sensitive to overfitting in 
noisy weather datasets
Require hyper parameter tun-
ing to mitigate overfitting
Computationally intensive

High Low

Support Vector 
Machine (SVM)

Effective for high-dimensional weather datasets
Suited for binary classification

Poor scalability for large 
granular datasets
Sensitive to hyperparameters

Low–Moderate High

Random Forest 
(RF)

Robust to overfitting in noisy weather data
Ability to handle missing data (common in weather station 
data)
Generally lower performance compared to other algorithms

Challenging to model tempo-
ral dependencies

Moderate Moderate

WII Design Description Studies
Reducing Basis 
Risk

Reduction of basis risk in WII design utilising machine 
learning algorithms.

Schmidt et al. (2022)
Chen et al. (2024)

Index 
Development

Determine which factors are most predictive to use as an 
index utilising machine learning models.

Cesarini et al. (2021)
Biffis and Chavez 
(2017)
Blakeley et al. (2020)

Insurance Payout Optimal functional form of insurance payout using machine 
learning.

Chen et al. (2024)

Climate Change Utilisation of machine learning models to design WII as an 
adaption strategy for climate change.

Zhang et al. (2022)

Plant Phenology Determine plant phenological growth stages, as well as 
improve predictive capabilities of machine learning models 
utilising phenological data.

Zou et al. (2024)
Afshar et al. (2021a, 
b)

Spatial 
Downscaling

Generate reliable high resolution climate data with large 
geospatial coverage using machine learning.

Eltazarov et al. 
(2023)

Interpretable Index Development of a transparent and interpretable WII index 
using machine learning.

Wijesena and Prad-
han (2024)

Table 13 Summary of WII 
studies with machine learning 
applications
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their global economic importance. Hence this underscores 
the necessity for localised WII contracts with WII param-
eters calibrated to the variability in weather patterns, ter-
rain, and agricultural practices of underrepresented regions 
and crops (Poudel et al. 2016; Vedenov and Barnett 2004). 
The following section explains how WII design and pric-
ing could be tailored to different regions and agricultural 
systems, to enable optimisation of risk mitigation to agri-
cultural communities.

9.1 Developing Countries

Remote sensing data has vast potential for developing coun-
tries which lack a network of reliable weather station infra-
structure, particularly Sub-Saharan African nations which 
face challenges in data collection due to inadequate infra-
structure and political instability (Black et al. 2016; Enenkel 
et al. 2018; Masiza et al. 2022; Tadesse et al. 2015). These 
countries may not have reliable long term historical crop 
yield and meteorological data, and should hence rely on 
simpler methods for premium modelling such as historical 
burn analysis or index simulation. Leveraging more sophis-
ticated methodologies such as machine learning may lead to 
overfitting due to limited data points.

In addition, metrics which evaluate hedging efficiency 
should be adapted to the socioeconomic circumstances of 
the agricultural community in the study region. For example 
famers in developing countries would have a higher level of 
risk aversion, in comparison to farmers in developed coun-
tries due to limited liquid assets and savings available to 
absorb catastrophic crop yield losses. Therefore, in order 
to capture the vulnerabilities of these agricultural commu-
nities, metrics such as spectral risk measure should have 
parameters calibrated to reflect high risk aversion.

9.2 Temporal Variation

Premium rating methodologies can be tailored to the study 
region. Since historical burn analysis and index simula-
tion employ a long-term historical average and do not 
dynamically adjust to present weather patterns, they are not 
appropriate for application in regions with significant tem-
poral changes in weather. Time series modelling or machine 
learning techniques that can dynamically calibrate to recent 
weather patterns is more suitable for these regions. This 
is applicable to countries such as the United States which 
have diverse weather patterns, where the Mid-West expe-
riences distinct seasonal changes, while West coast has 
milder weather conditions (Wang et al. 2016). Similar cer-
tain countries such as India (Singh and Agrawal 2020) and 
China (Xu et al. 2013) experience a Monsoon season which 
causes temporal variation between dry and wet conditions. 

domains; from index development, payout structure optimi-
sation, integration of phenological data, and climate change. 
The development of predictive weather indices is the most 
common application of machine learning models (Cesarini 
et al. 2021; Blakeley et al. 2020; Biffis and Chavez 2017), 
whereas the application of machine learning to optimise 
other WII contract parameters and premium rating remains 
a prospective area for future research.

Machine learning algorithms require large datasets to 
train effectively. Insufficient records may lead to overfitting, 
where the model captures random noise rather than the true 
underlying weather patterns, which is especially common 
for more complex machine learning models such as neural 
networks. This weakens generalisation when the model is 
applied to different weather seasons and regions. If the rela-
tionship between weather and yield is poorly predicted, it 
can lead to basis risk, impacting the farmer’s confidence in 
WII. These challenges can be overcome by adopting inter-
polation and satellite derived data as discussed previously. 
In addition, data augmentation and crop simulation mod-
elling are other strategies, however have not been widely 
explored in the literature. A study by Afshar et al. (2021a, b) 
utilised a crop simulation model to overcome data scarcity 
by generating a database of synthetic rice yield data for Odi-
sha, India. A robust WII product can be developed, as the 
APSIM (Agricultural Production System sIMulator) crop 
model enables the generation of rice yields across diverse 
weather conditions and management practices. Similarly, 
a study by Wijesena and Pradhan (2025) also utilised data 
augmentation to generate 10 random neighbourhood val-
ues for crop yield, increasing coverage of the domain space 
elevenfold, and enabling the development of a more robust 
WII product.

9 Adapting WII To Diverse Agricultural 
Systems

It is evident from Fig. 5 that there is a disproportion-
ate number of WII studies based in China, Germany and 
United States. This regional clustering is likely attributed 
to the prevalence of high resolution weather and crop yield 
data and institutional support for research data. The remain-
ing studies are widely distributed across diverse regions 
such as Sub-Saharan Africa, South America and Southeast 
Asia. There are fewer studies in these regions due to data 
constraints and limited agricultural research funding. The 
diverse agroecological conditions in these regions introduce 
heterogeneity, highlighting the need for caution when gen-
eralising findings from the literature to smallholder farmer 
contexts. Similarly Fig. 4 highlights the focus of WII stud-
ies on cereal grains such as wheat, corn and rice, reflecting 
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10 Conclusions and Future Research 
Direction

Despite advancements in WII, several critical research gaps 
remain. Key challenges include reliance on simplified index 
structures, limited integration of remote sensing data and 
multi-peril indexes. Methodological challenges persist in 
optimising contract parameters, pricing premiums, align-
ing coverage with crop phenology, and reducing basis risk. 
Additionally, few studies have explored integrated end to 
end frameworks for WII product design, pricing and evalu-
ation. Interpretable machine learning methods are also 
required to address the trade-off between model complexity 
and the need for transparency in real-world implementation. 
These research gaps are discussed further in the following 
section.

1. Remote Sensing Data Based Weather Indexes.
 WII primarily focuses on simple variable rainfall-

based indexes, constrained by limited weather station 
data. There is potential to further expand into drought 
indexes, which have been extensively used in drought 
monitoring as they capture long term water deficits 
rather than short term precipitation trends. Furthermore, 
remote sensing data offers the benefit of high-resolu-
tion and real-time data with broader coverage, offering 
potential for development of more accurate indexes and 
scalable WII products.

2. Multi Peril Weather Indexes.
 There is potential to develop more multi-faceted indexes 

which capture this impact of multiple perils on crop 
yield, rather than reliance on single variable indexes. 
One of the greatest challenges in developing a multi-
variable index is precisely determining how to combine 
the various indexes to form a single index. Machine 
learning offers significant potential to develop a highly 
accurate index since it naturally handles multidimen-
sional data and captures non-linear relationships.

3. Quantitative WII Contract Parameter Optimisation.
 Few studies have leveraged a quantitative approach 

for parameter optimisation of contract parameters such 
as strike, exit, and payout structures. There has been a 
greater focus on developing accurate weather indexes, 
while methodologies to optimise contract parameters 
and minimise basis risk have generally been overlooked.

4. WII Basis Risk: Spatial, Temporal and Design.
 As regional weather indexes cannot perfectly capture 

localised weather patterns, basis risk is an inherent limi-
tation of WII. Further research is required to decompose 

Similarly, countries which are expansive in size, are also 
susceptible to diverse weather conditions such as Australia 
which is impacted by El Nino and La Nina climate phe-
nomena, with distinct weather conditions in south and north 
(Kath et al. 2019).

Several crops also exhibit variability in sowing and har-
vest dates year on year. For instance, rice crop has significant 
variability in sowing and harvesting dates due to variability 
in rainfall in Southeast Asia (Afshar et al. 2021a, b; Ward 
and Makhija 2018). Similarly corn and soybean is also 
impacted by weather patterns in precipitation and tempera-
ture (Osei et al. 2023; Wijesena and Pradhan 2024). Crops 
and regions which are susceptible to temporal fluctuation 
in sowing and harvest date, would particularly benefit from 
phenological data to reduce temporal basis risk.

9.3 Spatial Variation

Countries with significant spatial variability in climate con-
ditions should design and price WII at a more granular level 
to account for these localised weather patterns. For instance 
Australia has significant spatial heterogeneity due to its vast 
size which spans multiple climate zones and diverse topog-
raphy (Kath et al. 2019). While the north of the country 
has more tropical conditions, the middle of the country has 
more arid conditions and the south has a more pronounced 
seasonal variation. Consequently, premium setting, weather 
index development and setting strike and exit thresholds 
should be implemented at an appropriate regional granular-
ity which have more homogenous climate conditions.

9.4 Catastrophic Weather Events

Lastly the strike and exit thresholds should be adapted to 
localised weather patterns. In geographical regions is sus-
ceptible to low frequency, yet high severity weather events 
which impact crop yield, then a higher strike threshold is 
more suitable. For instance certain countries are more sus-
ceptible to catastrophic natural disasters such as bushfires in 
Australia (Wittwer and Waschik 2021), droughts in USA (Lu 
et al. 2020), cyclones in Bangladesh (Rahaman and Esraz-
Ul-Zannat 2021), and typhoons in Philippines (Yuen et al. 
2022). A higher strike threshold ensures that WII provides 
protection from catastrophic events, while maintaining an 
affordable premium for farmers. Alternatively, regions that 
are impacted by milder weather events, such as excessive 
precipitation or flooding, which only have a moderate but 
recurring impact on crop yields, would be more suited to a 
lower strike threshold. Strike and exit thresholds should be 
carefully designed to optimise risk protection according to 
local weather conditions.
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studies tend to focus on one component of this frame-
work, rather than taking a comprehensive end-to-end 
approach. Developing a framework would support the 
implementation of coherent and scalable WII products.

As machine learning and remote sensing data continue to 
advance, these future research areas will enable the devel-
opment of data driven, robust and transparent WII products. 
Reliable risk management tools will reduce income vola-
tility associated with extreme weather. This may facilitate 
greater investment in innovative technology such as fertilis-
ers and irrigation systems to improve agricultural productiv-
ity. Consequently, not only will WII enhance the resilience 
of farming communities, but also improve the productivity 
of the agricultural industry, leading to improved long term 
food security and economic stability.
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