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Mild to severe anemia is caused by thalassemia, a common genetic disorder affecting over 100 
countries worldwide, that results from the abnormality of one or several of the four globin genes. 
This leads to chronic hemolytic anemia and disrupted synthesis of hemoglobin chains, iron overload, 
and poor erythropoiesis. Although the diagnosis of thalassemia has improved globally along with the 
treatment and transfusion support, it is still a major problem in diagnosing in high-prevalence areas 
like Pakistan. This work aims to assess the performance of numerous combinations of machine learning 
methods to detect alpha and beta-thalassemia in their minor and major types. These results are 
obtained from CBC and HPLC analysis. The analyzed models are K-nearest Neighbor (KNN), Support 
Vector Machine (SVM), and Extreme Gradient Boosting (XGBoost). The study aims to examine the 
effectiveness of the developed models in discriminating thalassemia variants, especially in the light 
of Pakistani patients’ data. The study found that XGBoost achieved the highest performance on both 
the CBC and HPLC datasets, with training accuracies of roughly 99.5% for CBC and 99.3% for HPLC. 
The test accuracy across both datasets was consistently high and thus the best model for detecting 
thalassemia in this research study. The imported SVM model, slightly less accurate than XGBoost, still 
has strong performance, particularly on the HPLC data where the cumulative testing accuracy of the 
model stood at 99.4%. As can be seen from the results, XGBoost specifically shows a very high accuracy 
of above 99% in the detection of thalassemia types using CBC and HPLC data for Pakistani patients. 
To the author’s knowledge, this research is the first to predict alpha and beta-thalassemia in its major 
and minor forms using these diagnostic reports. These models indicate that they can offer significant 
support in detecting thalassemia in resource-constrained settings such as Pakistan. If deep learning is 
incorporated, even greater accuracy could be achieved.
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The term thalassemia is derived from the combination of two Greek words, Thalassa meaning Ocean and Haima 
meaning Blood1. Thalassemia is a genetic disorder that affects the blood by reducing hemoglobin production, 
a critical protein for transporting oxygen from the lungs to the body and carbon dioxide back to the lungs2. 
Figure  1 presents a graphical summary of the abstract, it shows study models, diagnostic reports and study 
outcomes.
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Thalassemia is the most common genetic disorder, particularly prevalent in the Mediterranean region. 
Thalassemia is becoming increasingly prevalent in many regions across the globe, making it a significant burden 
on public health systems where it exists and a major cause of disability and mortality. This means that there 
is a need for HCPs to make informed decisions for early diagnosis to reduce mortality rates of the condition. 
Common in genetic disorders such as this, it is important to distinguish between healthy persons and persons 
whose genes contain the thalassemia gene3.

Thalassemia is categorized into two types based on the two polypeptide chains in hemoglobin: α and β 
thalassemia are two types of thalassemia known to humans. Alpha-thalassemia arises from mutations in the 
alpha-globin gene, while beta-thalassemia involves the beta-peptide gene4. Both types result in insufficient or 
abnormal hemoglobin production, impairing red blood cell function5.

Approximately 80,000–90,000 individuals in Pakistan are diagnosed with thalassemia and receive treatment 
through public and private health units6. Identifying asymptomatic thalassemia carriers, particularly those with 
the beta-thalassemia trait, is critical. When both parents are asymptomatic, the likelihood of their child being 
born with a severe form of thalassemia that requires a blood transfusion is one in four7. To diagnose thalassemia, 
one needs to take a life history of the patient, perform a clinical examination, blood samples for microscopy, and 
examination of different hemoglobin variants through hemoglobin electrophoresis. In this test, molecules are 
separated by charge in an electric field using a buffer, within which ions are between two electrodes. In healthy 
adults, the percentage prevalence of HbA is higher between 96 and 98% compared to HbA2 which is between 
2 and 3.5%.

Thalassemia major is the most severe type of the disorder as it is combined with anemia and osteopenia8. 
Patients require regular transfusions to survive of blood products into the patient’s body. Nonetheless, chronic 
blood transfusions may cause sclerotized effects resulting from the accumulation of iron in the body to affect the 
heart, liver, and the endocrine system. This results in iron overload and since the body cannot tolerate excessive 
accumulation of iron, chelation therapy is used to help eliminate the excess iron9–11.

Numerous complications accompany thalassemia. Some of the problems include low sexual drive, low sperm 
density, reduced sperm quality, and among others12. Several researchers have found that blood transfusion 
therapy results in a rise in luteinizing hormone and follicle-stimulating hormone increasing sperm count and 
motility. Transfusions also help lower the risk of osteoporosis because blood transfusion increases secretion of 
insulin-like growth factor-1 (IGF-1) and IGF-binding protein-313,14. IGF-1, a hormone involved in cell growth 
and protein metabolism, directly mediates growth hormone responses in tissues15. Furthermore, the literature 
reveals that a year of denosumab therapy enhances BMD in the L2–L4 and FN in BTM and lowers ICTP levels16.

The thyroid gland is also affected in thalassemia, with primary hypothyroidism as the most common 
complication due to glandular abnormalities. Secondary hypothyroidism from pituitary dysfunction is less 
common than primary hypothyroidism. In clinical practice, diagnosis is commonly made from biochemical 
tests with low levels of thyroid hormones and low or absent TSH17. Insulin resistance is another comorbidity, 
diagnosed most accurately using continuous glucose monitoring systems (CGMS) as the most accurate 
diagnostic method for insulin resistance and hyperglycemia in such patients18. In the course of the disease, 
thalassemia can also cause chronic kidney disease CKD as a result of the reduced kidney function seen in 
hyperfiltration, albuminuria, and renal damage19,20. Recent studies have identified the rapid progression of 
renal dysfunction in β-thalassemia major patients in which renal stress test (RST) has been proven to be a 
marker of renal dysfunction and iron overload along with acute kidney injury (AKI)21. Based on many indices of 
complete blood count including hemoglobin concentration (Hb), mean corpuscular hemoglobin (MCH), mean 
corpuscular hemoglobin concentration (MCHC) mean corpuscular volume (MCV), and red cell distribution 
width (RDW), thalassemia can be differentiated from other diseases.

The most common mutations involving the α-globin genes are deletions with the -α3.7 kb and  − α4.2 kb 
deletions the most prevalent22. The clinical and laboratory findings are similar in non-deletional mutations in 
the α genes. While in the East Asian countries, the α carrier genotype frequently presents the cis form (–/αα), 

Fig. 1. Graphical representation of abstract.
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the transform (− α/− α) is more observed in Western countries. This results in high incidences of hydrops fetalis 
and Hb H disease in the Asian population which is why screening for α-thalassemia carrier status is routine in 
Asian countries. Nonetheless, Hb H disease and hydrops fetalis also occur in Western populations with two or 
more α-globin gene deletions in the alpha gene (− α/-α)22. Antisense deletional defects are less severe than non-
deletional defects, as the α2 gene produces more α-globin than the α1 gene23.

Some α-globin gene mutations have a synergistic effect with certain β-globin mutations and may either 
increase or decrease the severity of α-thalassemia. For instance, additional copies of α-thalassemia genes might 
worsen β-thalassemia to the extent of NTDT or even TDT24.

Machine learning has transformed data management and analysis across research fields. This has made it 
particularly beneficial in healthcare, where it can help improve diagnostic accuracy, enhance patient outcomes, 
and lower costs25. In the case of thalassemia, machine learning can offer more precise identification of the 
condition and better overall management26. Machine learning algorithms have successfully addressed biomedical 
challenges, with models developed for conditions like brain tumors27, kidney diseases28, lung disorders29, 
and iron deficiency anemia30–32. Techniques such as support vector machines33, K-nearest neighbors34, fuzzy 
logic35–37, deep extreme machine learning38, and deep neural networks39 have been applied.

While machine learning algorithms are now much better at diagnosing diseases, earlier versions faced 
challenges in accuracy. This was often due to their reliance on preprocessing methods, data balancing, and the use 
of supervised and semi-supervised learning techniques. Improving disease detection requires integrating data 
from diverse patient cases. The proposed model will focus on a feature-based dataset derived from thalassemia-
related CBC and HPLC reports to achieve more accurate results.

The aim of this study was to evaluate the effectiveness of this screening approach and propose more effective 
and economical screening strategies. Additionally, we investigated whether the formulas outlined in existing 
literature are effective in identifying α thalassemia and beta thalassemia carriers using multiclass detection.

It highlights the need to accurately identify α and β-thalassemia carriers for timely intervention and genetic 
counselling. The paper discusses the limitations of current prediction models and the need for more effective 
methods. The objectives of the study are clearly outlined as follows:

• To develop machine learning-based techniques to detect alpha thalassemia and beta thalassemia both major 
and minor carriers using multiclass detection scenarios for both CBC and HPLC reports.

• To evaluate the performance of the proposed model using primary performance metrics and compare it with 
existing approaches.

Literature review
Umar et al. 26 analysed patterns within both private and public thalassemia-related CBC datasets using machine 
learning (XGBoost) and deep learning (CNN) models to evaluate their classification performance. The study 
found that XGBoost achieved a highest accuracy of 99.34% on the private dataset for alpha thalassemia, while 
CNN attained 98.10% accuracy for beta thalassemia on the same dataset. However, their proposed models were 
not capable of distinguishing between the subtypes of alpha and beta thalassemia. Donghua et al.40 developed a 
deep neural network (DNN) model for detecting thalassemia, achieving an impressive 96% accuracy. The model 
was trained using feature-based data from 8693 patient records collected between 2014 and 2021. Despite its 
success, the model has limitations, including the small dataset size and the risk of overfitting. Additionally, the 
model lacked data on alpha-thalassemia and beta-thalassemia subtypes, limiting its ability to perform multiclass 
detection.

Shoaib et al.41 applied a Federated Learning (FL) model to detect beta-thalassemia, which achieved an 
accuracy of 92.38%. The model was trained on data from 5,066 patients. However, the study was limited by a 
small dataset and the absence of data on alpha-thalassemia and beta-thalassemia subtypes, restricting multiclass 
detection. Rustam et al.42 proposed a Convolutional Neural Network (CNN) model designed to detect beta-
thalassemia carriers. The model, employing Principal Component Analysis (PCA) for feature selection, achieved 
96% accuracy using data from 5066 self-reported patients. Despite strong performance, the study was limited 
by potential bias in self-reported data and the absence of alpha-thalassemia and beta-thalassemia subtype data, 
hindering multiclass detection.

Ucucu et al.43 Developed a model using K-nearest neighbors (KNN), Naïve Bayes, Decision Tree (DT), and 
the Boruta algorithm for feature selection to classify hemoglobin variants such as HbS and HbD. The model 
achieved an impressive 99% accuracy using data from 238 patients (90 women and 148 men) collected between 
2015 and 2021. Despite its effectiveness, the model’s generalizability is limited by the small sample size (238 
patients) and lack of data on alpha- and beta-thalassemia subtypes.

Feng et al.44 employed a Random Forest (RF) model to detect alpha-thalassemia, achieving an accuracy of 
91.5%. The model was trained on data from 1213 patients, including 495 pregnant women, collected between 
2018 and 2020. The study demonstrated the model’s capability in diagnosing alpha-thalassemia, with limited 
evaluation of beta-thalassemia subtypes. However, the regional focus of the dataset and the missing data on 
thalassemia subtypes with multiclass detection limit the broader applicability of the results.

ER Susanto et al.45 developed a Fuzzy Model for detecting thalassemia, although the study did not report 
specific accuracy figures. The model utilized feature-based data collected from patients. However, the study lacks 
detailed performance metrics and faces limitations in terms of generalizability. Additionally, it did not include 
data on alpha-thalassemia or beta-thalassemia (both minor and major subtypes).

Rena et al.46 created a machine-learning model that achieved an accuracy of 86.6%. The model was trained 
on feature-based data from 1076 samples to detect beta-thalassemia. Some limitations of the study include data 
incompleteness and the absence of information on alpha thalassemia and various beta thalassemia subtypes, 
especially multiclass detection.
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Salman et al.47 used the MobilenetV2 model for image-based detection of alpha thalassemia, reaching an 
accuracy of 95.72%. The dataset consisted of 524 images collected over 2 years. This research demonstrated the 
potential of using image-based methods for thalassemia detection, especially in settings where medical images 
can be collected independently. However, the study’s reliance on image data could be a limitation, as such images 
might not be readily available in resource-limited environments.

Sadiq et al.48 developed an ensemble learning model for detecting beta-thalassemia, achieving a solid 
accuracy of 93%. The model was trained on data from 5066 self-reported cases. The study demonstrated the 
model’s effectiveness in detecting both alpha and beta thalassemia subtypes and its potential for clinical use. 
However, the generalizability of the results could be limited due to a smaller sample size and missing data on 
various thalassemia subtypes.

Fu et al.49 employed a support vector machine (SVM) model to detect thalassemia, achieving an area under 
the curve (AUC) of 0.76, indicating moderate diagnostic performance. The model was tested with a dataset of 
350 patients collected between 2018 and 2020. While the study highlights the value of feature-based approaches 
in thalassemia detection, the relatively small dataset and the absence of data on alpha and beta thalassemia 
subtypes limit the model’s broader applicability.

Laengsri et al.50 implemented RF, KNN, and Artificial Neural Network (ANN) models to detect thalassemia, 
achieving an accuracy of 95.5% with a dataset of 186 patients collected between 2014 and 2016. The study 
emphasized the strength of feature-based approaches in detecting thalassemia variants. However, the relatively 
small sample size and missing data on alpha thalassemia, and beta thalassemia subtypes could limit the 
generalizability of the findings.

Monalisha et al.51 developed a KNN model for detecting hemoglobin variants in both alpha-thalassemia and 
beta-thalassemia cases, achieving a precision of 93.89%. The model was trained using feature-based data from 
1500 samples. However, there were some limitations, including the relatively small sample size and potential 
biases arising from the self-collected nature of the data. Farhadi et al.52 explored the use of RF and DT models 
for thalassemia detection with data from 3489 cases collected in 2018. Their RF model achieved a sensitivity of 
0.21 and a specificity of 0.77. Although the study aimed to detect thalassemia, the low sensitivity of the model 
limits its potential clinical application.

Jahangiri et al.53 developed a DT model for detecting beta-thalassemia, achieving an impressive AUC of 
0.99. The model used self-collected feature-based data from 144 patients. However, there were some limitations, 
including missing data on alpha-thalassemia and various subtypes of beta-thalassemia. Kandhro et al.54 applied 
both DT and RF models, achieving a specificity of 90%. These models, based on self-collected feature data, were 
designed to detect both alpha-thalassemia and beta-thalassemia. The study faced limitations, including data 
incompleteness and a lack of information on various thalassemia subtypes and multiclass detection.

Risoluti et al.55 used a Partial Least Squares (PLS) model with a sensitivity of 89.9% to detect beta-thalassemia, 
using self-collected image data from 63 patients. The model showed promise, but there were limitations, such as 
missing data on alpha-thalassemia, and beta-thalassemia subtypes.

Matos et al.56 applied the Fisher Discriminant Index to detect both alpha-thalassemia and beta-thalassemia, 
achieving an accuracy of 99.3%. The model was trained on data from 185 patients. Despite the high accuracy, the 
study had limitations, such as missing information on thalassemia subtypes.

Huang et al.57 developed a model using 10 formulas to detect both alpha and beta-thalassemia, achieving a 
sensitivity of 89.62%. The model was applied to data from 877 patients. Limitations include missing details on 
thalassemia subtypes and multiclass detection.

Masala et al.58 created a model using KNN and PNN, which achieved a specificity of 91% in detecting alpha-
thalassemia using self-collected data from 304 patients. The study faced limitations, including data incompleteness 
and missing information about thalassemia subtypes. Barnhart et al.59 employed an ANN model for detecting 
both alpha and beta-thalassemia, achieving a sensitivity of 0.897. The model was trained on feature-based data 
from 526 patients. However, the study had limitations, including missing data on thalassemia subtypes.

Janel et al.60 used 11 formulas to detect beta-thalassemia, achieving an accuracy of 93% with data from 129 
patients. The study had limitations, such as missing information on alpha-thalassemia and beta-thalassemia 
subtypes, as well as multiclass detection.

Shen et al.61 applied 12 formulas for detecting beta-thalassemia, achieving an AUC of 0.947. The model was 
tested with data from 300 cases. However, limitations include missing data on thalassemia subtypes. Urrechaga 
et al.62 utilized a Multidimensional Analysis (MDA) model for detecting both alpha and beta-thalassemia, 
achieving an accuracy of 87.9% (with separate accuracy rates of 83.3% for beta-thalassemia and 72.1% for alpha-
thalassemia). The model was based on feature-based data from 250 patients. Despite its usefulness, the study was 
limited by accuracy issues and missing data on thalassemia subtypes.

George et al.63 applied six formulas to detect beta-thalassemia, achieving a sensitivity of 75.06% with feature-
based data from 373 patients. Limitations include missing data on thalassemia subtypes. Amendolia et al.64 
developed a model using SVM, KNN, and MLP with a specificity of 95%. The model was trained on self-collected 
data from 304 records to detect thalassemia patients. However, multiple research studies demonstrated high 
accuracy yet they failed to detect multiple classes and included incomplete information about alpha thalassemia 
subtypes. The previous studies encountered various limitations because they did not provide comprehensive 
information about thalassemia subtypes. Table 1 depicts the limitations of previous studies.

It underscores the importance of accurately identifying α thalassemia and β-thalassemia carriers to facilitate 
early intervention and genetic counselling. The paper discusses the limitations of current prediction models and 
the need for more effective methods. The objectives of the study are clearly outlined as follows:

• To develop machine learning-based techniques to detect alpha thalassemia and beta thalassemia both major 
and minor carriers.
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Study Year Region Models Key results Dataset Key findings

Thalassemia subtypes 
(alpha major/minor, 
beta major/minor)

Multiclass 
detection

Umar et al. 26                            2025               Pakistan XGBoost, 
CNN 

99.34% (Acc for 
alpha thalassemia), 
98.10% (Acc for beta 
thalassemia) 

Feature Based (Self 
Collected 20, 041 records) 
Feature Based (Public 
available dataset)

Thalassemia × ×

Donghua et al.40 2023 China DNN 96% (Acc)
 Feature-Based (Self 
Collected) 8693 records 
(2014–2021)

Detection × ×

Shoaib et al.41 2023 Pakistan FL 92.38% (Acc) Feature-Based (Self 
Collected) 5066 Patients

Beta Thalassemia 
Detection × ×

Rustam et al.42 2022 Pakistan

CNN for 
detection, 
PCA for 
feature 
selection

96.00% (Acc) Feature-Based (Self 
Collected) 5066 Patients

Beta Thalassemia 
Detection × ×

Ucucu et al.43 2022 Turkey

KNN, Naïve 
Bayes, DT, 
Boruta 
Algorithm 
(Feature 
selection)

99.00% (Acc)
Feature-Based (Self 
Collected) 238 Patients 
(90 Women and 148 Men) 
(2015 to 2021)

Hemoglobin variants 
(HbS and HbD) × ×

Feng et al.44 2022 China RF 91.5% (Acc)
Feature-Based (Self 
Collected) 1213 Patients. 
495 Pregnant (2018–2020)

Alpha Thalassemia 
Detection × ×

ER Susanato et al.45 2022 Indonesia Fuzzy Model Not Mention
Feature-Based (Self-
Collected) developed a 
web-based application

Thalassemia Detection × ×

Rena et al.46 2022 India
Machine 
Learning 
Algorithms

86.6% (Acc) Feature-Based (Self 
Collected) 1076 Samples

Beta Thalassemia 
Detection × ×

Salman et al.47 2022 Pakistan MobilenetV2 95.72% (Acc) Image Based (Self-Collected 
in 2 years) 524 Images

Alpha Thalassemia 
Detection

Sadiq et al.48 2021 Pakistan Ensemble 
Learning 93% (Acc) Feature-Based (Self 

Collected) 5066 Patients
Beta Thalassemia 
Detection × ×

Fu et al.49 2021 Taiwan SVM 0.76 (AUC)
Feature-Based (Self-
Collected) 350 Patients 
(2018–2020)

Thalassemia Detection × ×

Laengsri et al.50 2019 Thailand RF, KNN, 
ANN 95.50% (Acc)

Feature-Based (Self 
Collected) 186 Patients 
(2014–2016)

Thalassemia Detection × ×

Monalisha et al.51 2018 Thailand KNN 93.89% (Prec) Feature-Based (Self 
Collected) 1500 Samples

Hemoglobin variants 
Detection × ×

Farhadi et al.52 2018 Tehran RF, DT 0.21 (Sen)
0.77 (Spec)

Feature-Based (Self 
Collected) 3489 Cases in 
2018

Thalassemia Detection × ×

Jahangiri et al.53 2017 Tehran DT 0.99 (AUC) Feature-Based (Self 
Collected) 144 Patients Beta Thalassemia × ×

Kandhro et al.54 2017 Pakistan DT, RF 90% (Spec) Feature-Based (Self-
Collected) 3030 Patients

Alpha and Beta 
Thalassemia × ×

Risoluti et al.55 2016 Italy PLS 89.9% (Sen) Image-Based (Self 
Collected) 63 Patients Beta Thalassemia × ×

Matos et al.56 2016 Brazil Fisher 
Discriminant 99.3% (Matos Index) Feature-Based (Self 

Collected) 185 Patients
Alpha and Beta 
Thalassemia × ×

Huang et al.57 2015 Taiwan 10 Formulae 89.62% (Sen) Feature-Based (Self 
Collected) 877 Patients

Alpha and Beta 
Thalassemia × ×

Masala et al.58 2013 Italy KNN, PNN 91% (Spec) Feature-Based (Self-
Collected) 304 Patients Alpha Thalassemia × ×

Barnhart Magen et al.59 2013 Israel ANN 0.897 (Sen) Feature-Based (Self-
Collected) 526 Patients

Alpha and Beta 
Thalassemia × ×

Janel et al.60 2012 France 11 Formulae 93% (Acc) Feature-Based (Self 
Collected) 129 Patients Beta Thalassemia × ×

Shen et al.61 2010 China 12 Formulae 0.947 (AUC) Feature-Based (Self 
Collected) 300 Cases

Beta Thalassemia 
Detection × ×

Urrechaga et al.62 2008 Spain MDA
87.9% (Acc) (Beta) 
83.3% (Acc) (Alpha) 
72.1% (Acc) (Mixed)

Feature-based (Self 
Collected) 250 Patients

Alpha and Beta 
Thalassemia × ×

George et al.63 2007 Greece 6 Formulae 75.06% (Sen) Feature-Based (Self 
Collected) 373 Patients

Beta Thalassemia 
Detection × ×

Amendolia et al.64 2003 Italy SVM, KNN, 
MLP 95% (Spec) Feature-Based (Self 

Collected) 304 records Thalassemia Detection

Table 1. Limitations and results of previous studies.
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• To evaluate the performance of the proposed model using primary performance metrics and compare it with 
existing approaches.

• To analyze the models in terms of multiclass detection with thalassemia subtypes.

Dataset
The dataset of the proposed model was collected from the Punjab Thalassemia Prevention Program (PTPP) in 
Pakistan. Currently, the PTPP is focused on a program to eradicate thalassemia in the country. Its main aim 
is to perform a diagnostic test to distinguish alpha and beta thalassemia cases associated with HbA. When 
any type of thalassemia carrier is found, a multi-tier screening process takes place for the next generations of 
the carrier including the parents. In performing its tests, PTPP carries out around 400,000 in that 1 year. The 
records in the dataset include 9987 individuals who are alpha thalassemia carriers through HPLC testing; 11,000 
beta-thalassemia carriers diagnosed through HPLC testing; 10,060 alpha thalassemia patients identified through 
CBC testing; and 9981 beta-thalassemia patients diagnosed through the CBC testing. Table 2 depicts the dataset 
features of CBC and Table 3 depicts the dataset features of HPLC reports.

Methodology
The proposed model used an efficient machine learning approach for identifying carriers of alpha and beta-
thalassemia. The proposed model used a MacBook Pro 2017 with 16 GB RAM and 512 GB SSD with MATLAB 
2020 for training and testing purposes. Figure 2 depicts the outline of the proposed model and it is explained 
below.

Dataset collection
The data will be collected from different hospitals, and it will comprise alpha and beta thalassemia (major and 
minor) patients, which ensuring dataset diversity. Collection refers to ethical practices and protects patient’s 
information.

Data preprocessing

• Duplicate removal All duplicates are removed to prevent of different data errors.

Feature Normal range Data type

Age

Patients’ age cluster
1. 4–10
2. 11–18
3. 19–26
4. 27–38
5. 39–45

Numeric

Sex Patients’ gender Categorical

History
Any family history
0 (No family history)
1 (Family history)

Numeric

HB
Men: 13.8–17.2 g/dl
Women: 12.1–15.1 g/dl
Children: 11.5–15.5 g/dl

Numeric

PCV
Men: 40–52%
Women: 36–48%
Children: 35–45%

Numeric

RBC
Men: 4.7–6.1 mcL
Women: 4.2–5.4 mcL
Children: 4.1–5.5 mcL

Numeric

MCV Adults: 80–100 fL
Children: 73–87 fL Numeric

MCH Adults: 27–33 pg
Children: 25–31 pg Numeric

MCHC Adults: 32–36 g/dL
Children: 32–36 g/dL Numeric

RDW Adults: 11.5–14.5%
Children: 11.5–14.5% Numeric

WBC Adults: 4500–11,000 cells/μL
Children: 5000–14,500 cells/μL Numeric

NEUT Adults: 40–60% of WBC
Children: 30–60% of WBC Numeric

Lymph Adults: 20–40% of WBC
Children: 40–70% of WBC Numeric

Plt Adults: 150,000–450,000 plt/μL
Children: 150,000–450,000 plt/μL Numeric

Final finding Diagnosis of alpha thalassemia or beta thalassemia of both major or minor Categorical

Table 2. CBC dataset features.
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• Handling missing values There are cases where values must be completely missing, to address that, null values 
are imputed statistically or excluded.

• Encoding categorical variables Some of the types of data are converted to numerical form such as the one-hot 
encoding for the genetic markers and other categorical data.

Data splitting
The dataset will be divided into:

• Training set (70%) Used for training models.
• Testing Set (30%) Used for performance assessment of the built model.

Model training
Feature Selection: Hence, in this work, nominal data from CBC and HPLC are used to derive distinguishing 
features.

Machine learning models
KNN: Divides cases by measuring the distances between various points, and then sorting them.
SVM: It categorizes them into classes based on the use of optimized hyperplanes.
XGBoost: Uses gradient boosting approach to raise the classification accuracy focusing on the important features.

Testing and evaluation
Testing
The models are then evaluated for the test set.
Assess performance based on all the Thalassemia classes; the major and minor carriers.

Performance metrics65,66

 ωp = ϑp/ψp
 (1)

∴ ϑ is for the predicted class, ψ for the true class and ω represents a true positive class

Feature Normal range Datatype

Age

Patients’ age cluster
1.  4–10
2. 11–18
3. 19–26
4. 27–38
5. 39–45

Numeric

Sex Patients’ gender Categorical

History
Any family history
0 (No family history)
1 (Family history)

Numeric

HB
Men: 13.8–17.2 g/dl
Women: 12.1–15.1 g/dl
Children: 11.5–15.5 g/dl

Numeric

RBC
Men: 4.7–6.1 mcL
Women: 4.2–5.4 mcL
Children: 4.1–5.5 mcL

Numeric

HCT
Men: 40–52%
Women: 36–48%
Children: 35–45%

Numeric

MCV Adults: 80–100 fL
Children: 73–87 fL Numeric

MCH Adults: 27–33 pg
Children: 25–31 pg Numeric

MCHC Adults: 32–36 g/dL
Children: 32–36 g/dL Numeric

RDW Adults: 11.5–14.5%
Children: 11.5–14.5% Numeric

HbA Adults: 95–98%
Children: Same Numeric

HbA2 Adults: 2.5–3.5%
Children: Same Numeric

HbF Adults: Less than 1–2%
Children: Same Numeric

Final finding Diagnosis of alpha thalassemia or beta thalassemia of both major or minor Categorical

Table 3. HPLC dataset features.
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βp =

3∑
h=1

(
ϑp/ψh̸=p

)
 (2)

∴ β represents the true negative class, the sum of all three predicted classes

 
ξp =

3∑
h=1

(
ϑh̸=p/ψp

)
 (3)

∴ ξ represents the false positive class, the sum of all three predicted classes

 
γp =

3∑
h=1

(
ϑh̸=p/ψh̸=p

)
 (4)

∴ γ represents false-negative class, the sum of all three predicted classes

 
Accuracy = ωp + βp

ωp + βp + ξp + γp
∗ 100 (5)

Fig. 2. The proposed model for the detection of thalassemia variants using machine learning.
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Misclassification Rate = 100 −

(
ωp + βp

ωp + βp + ξp + γp
∗ 100

)
 (6)

 
Sensitivity = ωp

ωp + γp
∗ 100 (7)

 
Specificity = βp

βp + ξp
∗ 100 (8)

 
F1 − Score = 2ωp

2ωp + ξp + γp
∗ 100 (9)

 
False Positive Rate = 100 −

(
βp

βp + ξp
∗ 100

)
 (10)

 
False Negative Rate = 100 −

(
ωp

ωp + γp
∗ 100

)
 (11)

Machine learning models
All machine learning models are simulated by the proposed model stated below.

SVM
SVM are binary classifiers. For multi-class classification, ECOC decomposes the multi-class problem into 
multiple binary problems. Each binary problem is handled by a separate SVM. The results from all binary SVMs 
are then combined to predict the final class.
Error-Correcting Output Codes (ECOC).
ECOC creates a coding matrix Mϵ {−1, 0, 1}CxK , where:
C : Number of classes.
K : Number of binary classifiers.
Mik : Specifies the association of class i with the k − th binary classifier:
1: Positive class for classifier k.
− 1: Negative class for classifier k.
O: Class i is not considered in classifier k.

SVM training: finding the optimal hyper plane
For each binary problem in ECOC, an SVM is trained to find the hyperplane that maximizes the margin between 
the two classes.
SVM Optimization Problem.
The optimization problem for SVM is:

 

min
w,b,ξ

1
2 ∥ w ∥2 +C

n∑
i=1

εi

Subject to:

 yi

(
wT ϕ (xi) + b

)
± 1 − ξi, ξi ± 0, ∀i

w: Weight vector defining the hyperplane. b: Bias term. ϕ (xi): Feature mapping to a higher-dimensional 
space. C : Box constraint (penalty for misclassifications). ξi: Slack variable for sample i, representing its margin 
violation.

Polynomial kernel
In the code, a polynomial kernel is used to map features into a higher-dimensional space.

 K (xi, xj) =
(
γxT

i xj + r
)d

xi, xj : Input feature vectors. γ: Kernel scale (set to “auto” in the code). r: Coefficient term. d: Degree of the 
polynomial (default is 3).

Dual Formulation of SVM
SVM is typically solved in its dual formulation using Lagrange multipliers:

 

max
∝

n∑
i=1

∝i −1
2

n∑
i=1

n∑
j=1

∝i∝j yiyjK (xi, xj)

Subject to
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n∑
i=1

∝i yi = 0, 0 ≤∝i≤ C, ∀i

∝i: Lagrange multipliers. K (xi, xj): Kernel function.

Multi-class prediction
For prediction, ECOC combines the outputs from all binary classifiers:

 1. Compute the signed decision function for each binary SVM:

 
fk (x) =

n∑
i=1

∝i yiK (xi, x) + bk

 2. Convert decision function values into class-specific scores:

 Di,k = sign (fk (x))

 3. Compute Di,k  with the ECOC matrix M :

 
ŷ = argmin

i

K∑
k=1

∥ [Mi,k ̸= Di,k]

Di,k : Decision value for class i and classifier k. ∥: Indicator function (1 if true, O otherwise). ŷ: Predicted class.

Hyperparameter details
The code uses these hyperparameters:

• Kernel function Polynomial kernel.
• Kernel scale Automatically adjusts γ in the kernel function.
• Box constraint (C) Regularization parameter controlling the trade-off between margin width and misclassi-

fication penalty.

Feature importance in SVM
SVM does not provide explicit feature importance, but approximate importance can be derived using the weight 
vector in the primal form:

 IMP ORT ANCE (fj) = ω2
j

ω2
j : Weight of feature j.

The Pseudocode of SVM is stated below.
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k-NN
k-NN is a non-parametric, instance-based algorithm. It predicts the class of a query point by evaluating the 
majority class among its k-nearest neighbors in the feature space.

Core Steps in k-NN:

• Compute distances between the query point and all training points.
• Identify the k-nearest neighbors.
• Predict the majority class among the neighbors.

Parameter in the code

 a.  Num neighbors K = 2.

 The model considers the 2 nearest neighbors for each prediction.

 b. Distance metric

 
d (xi, xj) =

(
p∑

l=0

|xi, l − xj, l|q
) 1

q

xi, xj : Feature vectors of the two points. q: Order of the Minkowski distance. q = 2: Euclidean distance. q = 1: 
Manhattan distance.

 c. Standardization

 Features are standardized to ensure equal contribution to distance metrics:

 
x′ = x − µ

σ
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x: Original feature value. µ: Mean of the feature. σ: Standard deviation of the feature.

Prediction work flow

 a. Distance computation.

 For each query point xquery , compute the distance to every training point xi:

 
d (xquery, xi) =

(
p∑

l=0

|xquery,l − xi,l|q
) 1

q

 b. Find nearest neighbors

 Sort the distances and select the k = 2 smallest distances. Let Nk (xquery) denote the indices of these neigh-
bors.

 c. Assign class

 

ŷ = arg max
c

∑

iϵNk(xquery)
∥ (yi = c)

 ̂y: Predicted class label. c: A candidate class. Nk (xquery): Indices of the k-nearest neighbors. ∥ (yi = c): Indi-
cator function (1 if yi = c, otherwise 0).

Multi-class majority voting
In multi-class k-NN, the neighbors can belong to multiple classes. The algorithm predicts the class with the 
highest vote count. In the case of ties, MATLAB typically resolves them randomly or based on internal rules.

 

ŷ = arg max
cϵC

∑

iϵNk(xquery)
∥ (yi = c)

C : Set of all possible classes. 
∑

iϵNk(xquery)
∥ (yi = c): Count of neighbors belonging to class c.

Key mathematical concepts

 a. Minkowski distance.

 The Minkowski distance generalizes distance metrics with a parameter q:

 
d (xi, xj) =

(
p∑

l=1

|xi,l − xj,l|q
) 1

q

q = 2: Euclidean distance. q = 1: Manhattan distance.

 b. Feature standardization.

 Standardizing features ensures uniform scaling:

 
x′ = x − µ

σ

 Ensures each feature contributes equally to distance computation.

 c. Majority voting.

 For a multi-class problem:
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ŷ = arg max
c

∑

iϵNk(xquery)
∥ (yi = c)

 d. Exhaustive search

 For exhaustive search:
 1. Compute distances for all points:

  
D = {d (xquery, x1) , d (xquery, x2) , . . . , d (xquery, xn)}

 2. Sort D and select the k smallest distances

The Pseudocode of KNN is stated below.

XGBoost
AdaBoostM2 extends binary AdaBoost to handle multi-class classification by introducing a pseudo-loss and 
adjusting the weights of samples across multiple classes. Model iterative equation mention below.

 Fm (x) = Fm−1 (x) + η · hm (x)

Fm (x): Prediction of the ensemble model after m-th iteration. Fm−1 (x): Prediction of the ensemble after 
(m − 1)-th iteration. η: Learning rate controlling the contribution of each weak learner. hm (x): Weak learner 
(e.g., decision tree) fitted at the m-th iteration.

Pseudo-loss for multi-class boosting
AdaBoostM2 minimizes the pseudo-loss, which generalizes binary classification loss to multi-class settings by 
considering the incorrect prediction probabilities across all classes.

 
P seudoLoss (hm) =

n∑
i=1

∑
k‡yi

Wi. ∥ [hm (xi) = k] · Pi,k
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Wi: Weight of the i-th training sample. Pi,k : Probability that 2; belongs to class k, calculated based on previous 
iterations. hm (xi): Predicted class of a; by the weak learner at iteration m. ∥ [.]: Indicator function (1 if the 
condition is true, otherwise 0). yi: True class label of xi.

Weight update for multi-class sample
The weights of samples are adjusted based on their contribution to the pseudo-loss. Misclassified samples or 
classes receive higher weights to emphasize learning.

 
W

(m+1)
i = W

(m)
i · exp

(
∝m ·

∑
k ̸=yi

Pi,k· ∥ [hm (xi) = k]

)

∝m: Weight of the m-th weak learner, reflecting its accuracy

 
∝m= 1

2 ln
(

1 − P seudoLoss (hm)
P seudoLoss (hm)

)

Final prediction for multi-class
The ensemble model aggregates predictions across all iterations and assigns the label with the highest cumulative 
score.

 
ŷ = arg max

k

M∑
m=1

∝m · ∥ [hm (x) = k]

ŷ: Predicted class label. M : Total number of iterations. ∝m: Weight of the m-th weak learner. ∥ [hm (x) = k]: 
Indicator for whether the m-th learner predicts class k.

Residual calculation for multi-class
Residuals for multi-class boosting represent the error probability for the predicted class versus the true class.

 
r

(m)
i,k =

{
Pi,k if k = yi

Pi,k if k ̸= yi

r
(m)
i,k : Residual for sample i and class k at iteration m.

Feature importance in multi-class
Feature importance measures the contribution of each feature to the splits in all weak learners.

 
I (fk) =

T∑
t=1

C∑
c=1

∆Gt (fk, c)

I (fk): Importance of feature fk . T : Total number of splits across all trees. c: Total number of classes. ∆Gt (fk, c): 
Reduction in impurity for feature fk  for class c at split T .

Probability prediction for multi-class
For multi-class problems, the output of the ensemble is converted into class probabilities.

 
p (y = k|x) =

exp
(∑M

m=1 ∝m · ∥ [hm (x) = k]
)

∑k

j=1 exp
(∑M

m=1 ∝m · ∥ [hm (x) = j]
)

p (y = k|x): Probability of class k given input x. k: Total number of classes.

Regularization in multi-class gradient boosting
Regularization controls overfitting by reducing the learning rate or limiting the complexity of weak learners.

 
Fm (x) = Fm−1 (x) + η · min

(∣∣∣∣∣
r

(m)
i,k

W
(m)
i

∣∣∣∣∣ , τ

)

τ : Regularization threshold for residuals.

Pseudocode of XGBoost is stated below.

Scientific Reports |        (2025) 15:26379 14| https://doi.org/10.1038/s41598-025-06594-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Results
The classifier model trainings were conducted on a 2017 MacBook Pro, Core i5, and high-performance graphics. 
It undergoes numerous tests to assess the best classifiers for various conditions such as alpha thalassemia major 
and minor, and beta thalassemia major and minor. These assessments are evaluated using both HPLC and CBC 
data.

Figure 3 shows the correlation heatmap of CBC and HPLC dataset so, CBC heatmap shows the strength 
levels through shading intensity where darkness indicates stronger connections between positive or negative 
values. It makes clinical sense why the blood factors hb, pcv and rbc exhibit substantial positive relationships 
since their changes align together. Two CBC indicators namely wbc and plt demonstrate weaker associations 
with other blood parameters but show no significant relationship. Analyzing blood factor connections enables 
the identification of how blood components behave across the alpha major, beta major, beta minor and alpha 
minor types of thalassemia. The analysis reveals similar and contrasting patterns in the HPLC dataset heatmap 
between basic hematological features and the quantity levels of Hb A, Hb A2, and Hb F. The medical correlation 
understanding between Hb A and Hb F demonstrates negative strength especially when patients have beta 
thalassemia major. The distinct relations between Hb A2 help identify minor and major versions of thalassemia. 
The pattern recognition from HPLC results enables proper identification of patients with beta major, beta minor, 
alpha major and Alpha Minor.

Table 4 shows the training set for the K-Nearest Neighbours (KNN) model using Complete Blood Count 
(CBC) data. The proposed approach has greater accuracy in distinguishing between alpha thalassemia major, 
alpha thalassemia minor, beta thalassemia major, and beta thalassemia minor. In the instance of Alpha Major, it 
attained an accuracy of identifying 1985 cases as belonging to this group with no mistake in categorizing them as 
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belonging to any other category. Additionally, the model displayed great accuracy in discriminating between the 
four Thalassemia types. Alpha Major accurately categorized 1985 instances, with no misclassifications to other 
categories. Similarly, Beta Major has 3527 valid categorization instances and no aspects of misunderstanding with 
other classes. Generate needed templates from the formula Beta Minor was mostly correct with 3349 Correctly 
Classified Instances, however, there was some misunderstanding with Alpha Major: 111 Misclassified Instances. 
The 4992 examples recognized for Alpha Minor, with just 23 misclassified as Alpha Major, demonstrate an 

Fig. 3. Correlation heatmap visualization of CBC and HPLC dataset.
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excellent level of validation accuracy. These findings indicate that the KNN performed well in distinguishing 
classes in the training data, with only small mistakes that had little effect on the outcomes.

As shown in Table 5, when the model was tested on the KNN model for detecting Thalassemia types using 
CBC data, it achieved high accuracy with few misclassifications. For Alpha Major, precision was achieved with 
the ability to classify 828 relevant examples and the error of categorizing 33 as Alpha Minor. Beta Major was 
likewise trustworthy, with 1444 correctly identified instances; however, 19 cases were misclassified as Beta 
Minor, indicating some differentiation between these two categories. Beta Minor was right in 1439 occurrences 
across all test sets, with 92 instances classed as Beta Major. Alpha Minor showed a high level of accuracy, 
accurately classifying 2134 instances whereas Alpha Major mistakenly identified 23 of them. These findings 
demonstrate that, while the model’s accuracy remains high during testing, minor misclassifications indicate 
areas for improvement, especially the classification of Beta Minor.

As shown in Table 6, the XGBoost model trained on the CBC data from the current study achieved good 
accuracy across all classes. While evaluating the accuracy, Alpha Major was successfully identified 2016 times 
out of 2019 times, with only three incorrect classifications. In the case of Beta Major, it correctly identified 
3415 while incorrectly classified 56 as Beta Minor. Beta Minor displayed remarkable classification accuracy 
and efficiency, with 3463 cases properly identified and just 55 instances misclassified. Alpha Minor accurately 
identified 4976 persons but misclassified 45 of them as belonging to Alpha Major. As a result, XGBoost operates 
with high accuracy on training data and is somewhat more efficient in eliminating Beta Minor misclassifications 
than KNN.

Table 7 also shows testing data to illustrate XGBoost’s ability to diagnose Thalassemia types using CBC 
with low misclassification. Despite only one inaccurate classification, Alpha Major had a total of 868 right 
classifications over the fifteen instances utilized in the experiment. Beta Major was likewise accurate, properly 
classifying 1489 cases; however, 30 of these were categorized as Beta Minor. In general, the Beta Minor method 
proved quite accurate, properly classifying 1443 cases while misclassifying 30 cases as Beta Major. As a result, 
Alpha Minor had a high sensitivity for 2129 correctly identified examples and 22 occasions where the classifier 
wrongly classified them. This shows that XGBoost has consistently low misclassification rates and is more stable 
throughout the testing period than KNN, particularly for Beta Major and Beta Minor classes.

Table 8 shows that classification SVM demonstrated high accuracy on the CBC training set. In the Alpha 
Major classification method, 1996 candidates were accurately identified, with just one being misclassified as 
Alpha Minor. Beta Major demonstrated efficiency with 3442 valid classifications and 62 instances of Beta 
Minor misdiagnosis. Bet Minor successfully identified 3466 samples but misclassified 57. Alpha Minor had 
the most correctly identified instances, with 4918, while 40 were misclassified as Alpha Major. SVM’s outcomes 

Classes Alpha major Beta major Beta minor Alpha minor

Alpha major 2016 0 0 3

Beta major 0 3415 56 0

Beta minor 0 55 3463 0

Alpha minor 45 0 0 4976

Table 6. Multiclass training confusion matric of XGBOOST to detect alpha major thalassemia, alpha minor 
thalassemia, beta major thalassemia and beta minor thalassemia using CBC.

 

Classes Alpha major Beta major Beta minor Alpha minor

Alpha major 828 0 0 33

Beta major 0 1444 19 0

Beta minor 0 92 1439 0

Alpha minor 23 0 0 2134

Table 5. Multiclass testing confusion matric of KNN to detect alpha major thalassemia, alpha minor 
thalassemia, beta major thalassemia and beta minor thalassemia using CBC.

 

Classes Alpha major Beta major Beta minor Alpha minor

Alpha major 1985 0 0 42

Beta major 0 3527 0 0

Beta minor 0 111 3349 0

Alpha minor 23 0 0 4992

Table 4. Multiclass training confusion matric of KNN to detect alpha major thalassemia, alpha minor 
thalassemia, beta major thalassemia and beta minor thalassemia using CBC.
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are visible in the effective division of classes on the training set, as well as slight gains in limiting Beta’s slight 
misclassification over previous models.

Table 9 shows that the SVM model performed similarly to the CBC testing data, maintaining comparable 
patterns of correctness. In the instance of Alpha Major, the model attained 821 right classifications, with only 
two wrong classifications as Alpha Minor. The decision-making accuracy at Beta Major was 1462, with 24 
occurrences of Beta Minor misclassification. Beta Minor has a rather high level of precision, with 1439 valid 
classifications and 29 misclassifications. Alpha Minor remained constant, with 2181 correct classifications and 
26 incorrect ones. The improvement is minor, as seen by SVM’s identical performance in testing and training 
data, with no major misclassifications in Beta Minor differentiation.

Using HPLC data, Table 10 depicts the efficiency of KNN training sets. There were 5029 instances accurately 
categorized as Beta Major, and 42 cases as Alpha Minor. Beta Minor received 2455 correct classifications; 
however, 199 instances were categorized as Beta Major. Alpha Major correctly identified nearly all of the 
2473 instances. The researchers also trained Alpha Minor, which recorded 4259 valid matches while 275 were 
incorrectly assigned to other classes. KNN’s high accuracy on HPLC data while learning makes it a strong choice 
for Beta Minor classification with minimal labor.

Table 11 shows that, despite minor misclassification, the KNN model testing accuracy with HPLC data 
remained consistent. The proposed model was able to accurately capture the type of Beta Major in 2091 samples, 
however 33 were categorized incorrectly. There were 1071 valid classifications, with 121 instances categorized as 
Beta Major but really Beta Minor. On the Alpha Major spectrum, 934 cases were correctly identified, whereas 40 
cases were incorrectly tagged as Alpha Minor. Alpha Minor has 1808 accurate and 198 misclassificationss, which 

Classes Beta major Beta minor Alpha major Alpha minor

Beta major 5029 0 0 42

Beta minor 199 2455 1 0

Alpha major 0 0 2473 0

Alpha minor 23 12 240 4259

Table 10. Multiclass training confusion matric of KNN to detect alpha major thalassemia, alpha minor 
thalassemia, beta major thalassemia and beta minor thalassemia using HPLC.

 

Classes Alpha major Beta major Beta minor Alpha minor

Alpha major 821 0 0 2

Beta major 0 1462 24 0

Beta minor 0 29 1439 0

Alpha minor 26 0 0 2181

Table 9. Multiclass testing confusion matric of SVM to detect alpha major thalassemia, alpha minor 
thalassemia, beta major thalassemia and beta minor thalassemia using CBC.

 

Classes Alpha major Beta major Beta minor Alpha minor

Alpha major 1996 0 0 1

Beta major 0 3442 62 0

Beta minor 0 57 3466 0

Alpha minor 40 0 0 4918

Table 8. Multiclass training confusion matric of SVM to detect alpha major thalassemia, alpha minor 
thalassemia, beta major thalassemia and beta minor thalassemia using CBC.

 

Classes Alpha major Beta major Beta minor Alpha minor

Alpha major 868 0 0 1

Beta major 0 1489 30 0

Beta minor 0 30 1443 0

Alpha minor 22 0 0 2129

Table 7. Multiclass testing confusion matric of XGBOOST to detect alpha major thalassemia, alpha minor 
thalassemia, beta major thalassemia and beta minor thalassemia using CBC.
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were separated into several classes to manage branch length. This is good, as seen by the model’s outstanding 
testing performance with HPLC, although Beta Minor may benefit from increased precision.

On the HPLC training set, the XGBoost model produced an impressive result demonstrating classification 
accuracy. Table 12 shows that Beta Major was accurately categorized in 4964 of the reported instances, with 91 
incorrect predictions. Beta Minor received a high accuracy classification of 2550, however, Alpha Minor was 
slightly puzzled at 109. Alpha Major consisted of 2270 accurate classifications and had small misclassifications 
involving Beta Minor. After analyzing the proposal, Alpha Minor supplied 4471 valid classifications, whereas 
121 were misclassified. XGBoost maintains excellent accuracy and low error rates on training data utilizing 
HPLC in classes.

XGBoost showed great accuracy when utilizing the HPLC testing data in Table 13. Beta Major achieved 2058 
correct classifications, with just 40 incorrect instances. In Beta Minor, all cases were correctly identified 1123, but 
62 were misclassified as Beta Major. This was demonstrated by Alpha Major, which had 1031 valid classifications 
and 32 incorrectly classed as Alpha Minor. When evaluated, Alpha Minor successfully identified 1900 cases, 
while the remaining 48 were classified as minors or alphas, although wrongly. HPLC also shows that the model 
maintains consistent performance across test iterations.

Figure 4 depicts the SVM ROC curve and analyses CBC data to show how the model identifies among Alpha 
Major (Class 0), Beta Major (Class 1), Beta Minor (Class 2) and Alpha Minor (Class 3) cases. The SVM model 
creates distinct clusters with special separation clarity between Beta Major and Beta Minor diagnosis cases. SVM 
uses a polynomial kernel which produces curves showing strong true positive performance while maintaining 
low false positive rates in almost all classes thus showing effectiveness for modeling complex haematological 
decision boundaries.

Figure 5 depicts the KNN ROC curve produced high outcomes on the CBC dataset, particularly for Alpha 
Major (Class 0) and Beta Major (Class 1). The AUC values of Alpha Minor decrease to lower levels compared to 
other classes because of poor class separability in KNN analysis. KNN performance fluctuates because it depends 
on local data density which changes according to feature scaling and class proximity in the CBC profile.

Figure  6 depicts ROC curve analysis that demonstrates superb separation capability between the four 
thalassemia types by the XGBoost model which was performed on the CBC dataset. The AUC values demonstrate 
outstanding class separation by reaching almost perfect scores when classifying major conditions such as Alpha 
Major and Beta Major. The model effectively captures nonlinear patterns between features due to its capabilities 
with structured clinical data.

Table 14 further shows that on the training data for SVM, high accuracy beta classification was achieved, 
with 4922 properly categorized and 99 labelled as Beta Minor. Beta Minor has 2612 correct classifications, 
including 95 actuals that were misclassified as Alpha Major owing to a minor mistake. For Alpha Major, there 

Classes Beta major Beta minor Alpha major Alpha minor

Beta major 2058 40 0 0

Beta minor 62 1123 0 2

Alpha major 2 2 1031 28

Alpha minor 4 2 42 1900

Table 13. Multiclass testing confusion matric of XGBOOST to detect alpha major thalassemia, alpha minor 
thalassemia, beta major thalassemia and beta minor thalassemia using HPLC.

 

Classes Beta major Beta minor Alpha major Alpha minor

Beta major 4964 87 0 4

Beta minor 105 2550 0 5

Alpha major 1 4 2270 109

Alpha minor 13 7 101 4471

Table 12. Multiclass training confusion matric of XGBOOST to detect alpha major thalassemia, alpha minor 
thalassemia, beta major thalassemia and beta minor thalassemia Using HPLC.

 

Classes Beta major Beta minor Alpha major Alpha minor

Beta major 2091 28 2 3

Beta minor 121 1071 0 0

Alpha major 2 0 934 38

Alpha minor 23 8 167 1808

Table 11. Multiclass testing confusion matric of KNN to detect alpha major thalassemia, alpha minor 
thalassemia, beta major thalassemia and beta minor thalassemia Using HPLC.
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Fig. 6. XGBoost ROC Curve (CBC Dataset).

 

Fig. 5. KNN ROC Curve (CBC Dataset).

 

Fig. 4. SVM ROC Curve (CBC Dataset).
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were 2300 correct diagnoses, whereas only 107 specimens were incorrectly categorized for Beta Minor. Alpha 
Minor has 4454 valid classifications and 101 incorrect ones. They suggest that when applying SVM, classes are 
well-distinguished on training data, and the model has good class precision.

In Fig. 7 ROC SVM curve depicts distinct separation between Beta Major (Class 0) and Beta Minor (Class 1) 
and Alpha Major (Class 2) and Alpha Minor (Class 3) classes. The Beta Major curve strongly follows the top-left 
corner of the graph which signals high sensitivity and specificity. The Radial Basis Function (RBF) kernel helps 
SVM to capture complex relationships between HPLC features comprising Hb A, Hb A2 and Hb F.

Figure 8 depicts the KNN ROC curve classification on the HPLC dataset and demonstrates strong predictive 
performance, slightly lower than SVM and XGBoost results. The KNN algorithm identifies major variants such 
as Beta Major with accuracy because its HPLC signature features with high Hb F and very low Hb A. The 

Fig. 8. KNN ROC Curve (HPLC Dataset).

 

Fig. 7. SVM ROC Curve (HPLC Dataset).

 

Classes Beta major Beta minor Alpha major Alpha minor

Beta major 4922 93 0 6

Beta minor 81 2612 0 14

Alpha major 2 0 2300 105

Alpha minor 4 1 97 4454

Table 14. Multiclass training confusion matric of SVM to detect alpha major thalassemia, alpha minor 
thalassemia, beta major thalassemia and beta minor thalassemia Using HPLC.
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imprecise classification borders between Alpha and Beta groups lead to minor misclassifications, but overall 
feature representation remains effective through its proximity-based learning mechanism.

Figure 9 depicts the XGBoost ROC curve delivering exceptional performance in classifying the HPLC dataset. 
The model delivers almost faultless AUC accuracy results for Beta Major and Beta Minor types of Thalassemia 
with outstanding performance across Alpha Major and Alpha Minor classifications. The effectiveness of 
ensemble boosting models such as XGBoost becomes particularly strong when handling clinical datasets like 
HPLC because these datasets display obvious yet slightly nonlinear divisions between categories.

SVM demonstrated strong classification accuracy in the HPLC data testing set. Table 15 shows that Beta 
Major attained 2089 valid classifications, with just 43 occurrences misclassified as Beta Minor. Beta Minor 
was correctly diagnosed in 1086 cases, whereas 54 were incorrectly categorized as Beta Major. Alpha Major 
demonstrated remarkable classification accuracy, with 1008 valid classifications and just 32 cases misclassified 
as Alpha Minor. Alpha Minor made 1937 valid classifications, with 47 examples misclassified into other groups. 
SVM’s outstanding testing performance using HPLC data indicates consistent accuracy, though Beta Minor and 
Alpha Minor classifications may benefit from refinement.

Table 16 presents the KNN model’s training performance on the CBC dataset, which shows good accuracy 
across all Thalassemia classes. For the Alpha Major class, the model had an accuracy of 0.9944 and a low 
misclassification rate of 0.0056. The sensitivity for Alpha Major is 0.9683, with a perfect specificity of 1.0000, 
yielding an F1 score of 0.9839. The model’s false positive rate (FPR) is 0.0000, while the false negative rate (FNR) 
is 0.0317. In the Beta Major class, accuracy is 0.9918, with a misclassification rate of 0.0082, sensitivity of 0.9695, 
and specificity of 1.0000, yielding an F1 score of 0.9845. Beta Minor has an accuracy of 0.9917, a misclassification 
rate of 0.0083, sensitivity of 1.0000, specificity of 0.9890, F1 score of 0.9837, FPR of 0.0110, and FNR of 0.0000. 
Alpha Minor has the greatest accuracy of 0.9984, with a misclassification rate of 0.0016, sensitivity of 1.0000, and 

Class Accuracy Misclassification Rate Sensitivity Specificity F1 Score False Positive Rate False Negative Rate

Alpha major 0.994443 0.005557 0.968293 1.000000 0.983891 0.000000 0.031707

Beta major 0.991775 0.008225 0.969489 1.000000 0.984508 0.000000 0.030511

Beta minor 0.991720 0.008280 1.000000 0.988963 0.983698 0.011037 0.000000

Alpha minor 0.998403 0.001597 1.000000 0.997557 0.997702 0.002443 0.000000

Table 16. Multiclass training performance metric of KNN to detect alpha major thalassemia, alpha minor 
thalassemia, beta major thalassemia and beta minor thalassemia using CBC.

 

Classes Beta major Beta minor Alpha major Alpha minor

Beta major 2089 38 0 5

Beta minor 48 1086 0 6

Alpha major 1 0 1008 31

Alpha minor 4 0 43 1937

Table 15. Multiclass testing confusion matric of SVM to detect alpha major thalassemia, alpha minor 
thalassemia, beta major thalassemia and beta minor thalassemia using HPLC.

 

Fig. 9. XGBoost ROC Curve (HPLC Dataset).
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specificity of 0.9976, resulting in an F1 score of 0.9977. The FPR and FNR for Alpha Minor are 0.0024 and 0.0000, 
respectively. KNN on the CBC training data achieves a total accuracy of 0.994, a misclassification rate of 0.006, 
sensitivity of 0.985, specificity of 0.996, F1 score of 0.987, FPR of 0.003, and FNR of 0.008.

On the CBC testing data, the KNN model maintains good performance, with minimal reductions relative 
to training, as shown in Table 17. Alpha Major’s accuracy is 0.9936, with a misclassification rate of 0.0064, 
sensitivity of 0.9617, and specificity of 1.0000, yielding an F1 score of 0.9805. The FPR for this class is 0.0000, and 
the FNR is somewhat higher at 0.0383. The Beta Major class has an accuracy of 0.9819, a misclassification rate of 
0.0181, sensitivity of 0.9401, and specificity of 0.9959, resulting in an F1 score of 0.9630, FPR of 0.0041, and FNR 
of 0.0599. In the Beta Minor class, the model achieves an accuracy of 0.9850, a misclassification rate of 0.0150, 
sensitivity of 1.0000, specificity of 0.9803, and F1 score of 0.9690. FPR and FNR values are 0.0197 and 0.0000, 
respectively. Finally, Alpha Minor has a high accuracy of 0.9962, a misclassification rate of 0.0038, sensitivity 
of 1.0000, and specificity of 0.9942, resulting in an F1 score of 0.9946, FPR of 0.0058, and FNR of 0.0000. The 
cumulative metrics for KNN on CBC tests are roughly 0.989 in accuracy, 0.011 in misclassification rate, 0.976 in 
sensitivity, 0.992 in specificity, 0.977 in F1 score, 0.007 in FPR, and 0.010 in FNR.

Table 18 displays the CBC training phase; the XGBoost model achieves high accuracy and specificity across 
all classes. The Alpha Major class has an accuracy of 0.9959, a low misclassification rate of 0.0041, sensitivity 
of 0.9782, and near-perfect specificity of 0.9997, resulting in an F1 score of 0.9882. The FPR is 0.0003, while 
the FNR is 0.0218. For Beta Major, the model obtains an accuracy of 0.9917, a misclassification rate of 0.0083, 
sensitivity of 0.9842, and specificity of 0.9943, resulting in an F1 score of 0.9840. FPR and FNR values are 0.0057 
and 0.0159, respectively. Beta Minor has a high accuracy of 0.9959, a misclassification rate of 0.0041, sensitivity 
of 1.0000, and specificity of 0.9944, generating an F1 score of 0.9921, FPR of 0.0056 and FNR of 0.00. Alpha 
Minor achieves an accuracy of 0.9969, a misclassification rate of 0.0031, sensitivity of 1.0000, and specificity of 
0.9952, yielding an F1 score of 0.9955. The FPR and FNR for Alpha Minor are 0.0048 and 0.0000, respectively. 
On the CBC training dataset, XGBoost obtains a cumulative accuracy of about 0.995, a misclassification rate of 
0.005, sensitivity of 0.991, specificity of 0.996, F1 score of 0.990, FPR of 0.004, and FNR of 0.010.

Table 19 illustrates XGBoost’s performance in CBC testing; the model maintains excellent accuracy with 
minor variation across classes. In Alpha Major, it obtains an accuracy of 0.9956, a misclassification rate of 0.0044, 
a sensitivity of 0.9753, and a specificity of 0.9998, yielding an F1 score of 0.9869. FPR and FNR values are 
0.0002 and 0.0247, respectively. Beta Major achieves an accuracy of 0.9801 with a misclassification rate of 0.0199, 
sensitivity of 0.9418, specificity of 0.9934, and F1 score of 0.9606. The FPR and FNR for Beta Major are 0.0066 
and 0.0582, respectively. For Beta Minor, the model achieves an accuracy of 0.9950, a misclassification rate of 
0.0050, sensitivity of 1.0000, and specificity of 0.9934, resulting in an F1 score of 0.9897, an FPR of 0.0066, and 
a FNR of 0.0000. Finally, Alpha Minor has an accuracy of 0.9964, a misclassification rate of 0.0036, a sensitivity 

Class Accuracy misclassification rate Sensitivity Specificity F1 score False positive rate False negative rate

Alpha major 0.995559 0.004441 0.975281 0.999767 0.986924 0.000233 0.024719

Beta major 0.980095 0.019905 0.941809 0.993404 0.960645 0.006596 0.058191

Beta minor 0.995002 0.004998 1.000000 0.993420 0.989712 0.006580 0.000000

Alpha minor 0.996395 0.003605 1.000000 0.994463 0.994860 0.005537 0.000000

Table 19. Multiclass testing performance metric of XGBOOST to detect alpha major thalassemia, alpha minor 
thalassemia, beta major thalassemia and beta minor thalassemia using CBC.

 

Class Accuracy Misclassification rate Sensitivity Specificity F1 score False positive rate False negative rate

Alpha major 0.994443 0.004105 0.978166 0.999689 0.988235 0.000311 0.021834

Beta major 0.991775 0.008332 0.984150 0.994316 0.984008 0.005684 0.015850

Beta minor 0.991720 0.004134 1.000000 0.994411 0.992121 0.005589 0.000000

Alpha minor 0.998403 0.003148 1.000000 0.995172 0.995499 0.004828 0.000000

Table 18. Multiclass training performance metric of XGBOOST to detect alpha major thalassemia, alpha 
minor thalassemia, beta major thalassemia and beta minor thalassemia using CBC.

 

Class Accuracy Misclassification rate Sensitivity Specificity F1 score False positive rate False negative rate

Alpha major 0.994443 0.005557 0.961672 1.000000 0.980462 0.000000 0.038328

Beta major 0.991775 0.008225 0.940104 0.995868 0.962988 0.004132 0.059896

Beta minor 0.991720 0.008280 1.000000 0.980321 0.969024 0.019679 0.000000

Alpha minor 0.998403 0.001597 1.000000 0.994207 0.994640 0.005793 0.000000

Table 17. Multiclass testing performance metric of KNN to detect alpha major thalassemia, alpha minor 
thalassemia, beta major thalassemia and beta minor thalassemia using CBC.
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of 1.0000, and a specificity of 0.9945, for an F1 score of 0.9949, FPR of 0.0055 and FNR of 0.0000. XGBoost on 
CBC testing data has a cumulative accuracy of around 0.992, a misclassification rate of 0.008, sensitivity of 0.979, 
specificity of 0.995, F1 score of 0.983, FPR of 0.005, and FNR of 0.021.

Table 20 displays the CBC training of SVM, with the SVM model demonstrating good accuracy across all 
classes. For Alpha Major, the accuracy is 0.9965, with a misclassification rate of 0.0035, sensitivity of 0.9804, 
and specificity of 0.9999, yielding an F1 score of 0.9898, FPR of 0.0001, and FNR of 0.0196. In Beta Major, the 
accuracy is 0.9910, the misclassification rate is 0.0090, the sensitivity is 0.9837, and the specificity is 0.9937, for 
an F1 score of 0.9830. The FPR and FNR for this class are 0.0063 and 0.0163, respectively. Beta Minor obtains an 
accuracy of 0.9957, a misclassification rate of 0.0043, a sensitivity of 1.0000, and a specificity of 0.9942, resulting 
in an F1 score of 0.9918, with FPR and FNR values of 0.0058 and 0.0000. For Alpha Minor, the model achieves an 
accuracy of 0.9972, a misclassification rate of 0.0028, a sensitivity of 1.0000, and a specificity of 0.9957, yielding 
an F1 score of 0.9960, with FPR and FNR values of 0.0043 and 0.0000, respectively. Overall, the SVM model on 
CBC training has an estimated accuracy of 0.995, a misclassification rate of 0.005, sensitivity of 0.991, specificity 
of 0.996, F1 score of 0.990, FPR of 0.004, and FNR of 0.009.

Table 21 shows the CBC testing of the SVM model, which displays persistent high accuracy across classes 
with little changes in misclassification rates. For Alpha Major, the model achieves an F1 score of 0.9832 with an 
accuracy of 0.9945, a misclassification rate of 0.0055, a sensitivity of 0.9693, and a specificity of 0.9995. The FPR 
is 0.0005, whereas the FNR is 0.0307. In Beta Major, the model has an accuracy of 0.9913, a misclassification 
rate of 0.0087, sensitivity of 0.9806, specificity of 0.9948, and an F1 score of 0.9822, with FPR of 0.0052 and 
FNR of 0.0195. The accuracy of Beta Minor is 0.9952, with a misclassification rate of 0.0048, sensitivity of 
1.0000, specificity of 0.9937, and F1 score of 0.9900. The FPR and FNR of Beta Minor are 0.0063 and 0.0000, 
respectively. In the Alpha Minor class, the model has an accuracy of 0.9958, a misclassification rate of 0.0042, 
a sensitivity of 1.0000, a specificity of 0.9935, and an F1 score of 0.9941. The FPR and FNR values are 0.0065 
and 0.0000, respectively. In all, the SVM model in CBC testing produces an estimated accuracy of 0.994, a 
misclassification rate of 0.006, a sensitivity of 0.987, a specificity of 0.995, an F1 score of 0.987, an FPR of 0.005, 
and a FNR of 0.013.

The KNN model performs differently across classes when trained on the HPLC dataset, as seen in Table 
22. For Beta Major, the model achieves a high accuracy of 0.9957, with a low misclassification rate of 0.0043, 
sensitivity of 0.9917, and specificity of 1.0000, yielding an F1 score of 0.9958. The FPR and FNR values are 0.0000 
and 0.0083, respectively. In Beta Minor, the accuracy is somewhat lower at 0.9772, with a misclassification rate of 
0.0228, sensitivity of 0.9250, specificity of 0.9998, and F1 score of 0.9609. The FPR and FNR for Beta Minor are 
0.0002 and 0.0750, respectively. For Alpha Major, the model receives a perfect score in all areas, with an accuracy 
of 1.0000, a misclassification rate of 0.0000, sensitivity and specificity both at 1.0000, and an F1 score of 1.0000, 

Class Accuracy Misclassification rate Sensitivity Specificity F1 score False positive rate False negative rate

Beta major 0.995710 0.004290 0.991718 1.000000 0.995842 0.000000 0.008282

Beta minor 0.977249 0.022751 0.925019 0.999837 0.960861 0.000163 0.074981

Alpha major 1.000000 0.000000 1.000000 1.000000 1.000000 0.000000 0.000000

Alpha minor 0.970083 0.029917 0.994629 0.946773 0.970049 0.053227 0.005371

Table 22. Multiclass training performance metric of KNN to detect alpha major thalassemia, alpha minor 
thalassemia, beta major thalassemia and beta minor thalassemia using HPLC.

 

Class Accuracy Misclassification rate Sensitivity Specificity F1 score False positive rate False negative rate

Alpha major 0.994539 0.005461 0.969303 0.999533 0.983234 0.000467 0.030697

Beta major 0.991266 0.008734 0.980550 0.994756 0.982197 0.005244 0.019450

Beta minor 0.995201 0.004799 1.000000 0.993701 0.990024 0.006299 0.000000

Alpha minor 0.995776 0.004224 1.000000 0.993457 0.994075 0.006543 0.000000

Table 21. Multiclass testing performance metric of SVM to detect alpha major thalassemia, alpha minor 
thalassemia, beta major thalassemia and beta minor thalassemia using CBC.

 

Class Accuracy Misclassification rate Sensitivity Specificity F1 score False positive rate False negative rate

Alpha major 0.996478 0.003522 0.980354 0.999896 0.989834 0.000104 0.019646

Beta major 0.991037 0.008963 0.983710 0.993659 0.983007 0.006341 0.016290

Beta minor 0.995691 0.004309 1.000000 0.994160 0.991844 0.005840 0.000000

Alpha minor 0.997188 0.002812 1.000000 0.995703 0.995950 0.004297 0.000000

Table 20. Multiclass training performance metric of SVM to detect alpha major thalassemia, alpha minor 
thalassemia, beta major thalassemia and beta minor thalassemia using CBC.
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with FPR and FNR of 0.0000. In the Alpha Minor class, accuracy is lower (0.9701), with a misclassification rate 
of 0.0299, sensitivity of 0.9946, specificity of 0.9468, and an F1 score of 0.9700. The FPR is 0.0532, while the 
FNR is 0.0054 for Alpha Minor. Overall, KNN on HPLC training achieves an estimated accuracy of 0.986, a 
misclassification rate of 0.014, sensitivity of 0.978, specificity of 0.987, F1 score of 0.982, FPR of 0.013, and FNR 
of 0.022.

In HPLC testing, the KNN model retains good performance across classes, despite considerable fluctuation, 
as seen in Table 23. The accuracy of Beta Major is 0.9956, with a misclassification rate of 0.0044, sensitivity of 
0.9868, specificity of 0.9996, and F1 score of 0.9929. The FPR and FNR for Beta Major are 0.0004 and 0.0132, 
respectively. For Beta Minor, the accuracy is somewhat lower at 0.9823, with a misclassification rate of 0.0177, 
sensitivity of 0.8985, and specificity of 1.0000, yielding an F1 score of 0.9465, FPR of 0.0000, and FNR of 0.1015. 
In the Alpha Major class, accuracy is 0.9942, misclassification rate of 0.0058, sensitivity of 0.9979, and specificity 
of 0.9936, resulting in an F1 score of 0.9790, with FPR and FNR of 0.0064 and 0.0021, respectively. Alpha Minor 
has an accuracy of 0.9696, a misclassification rate of 0.0304, sensitivity of 0.9874, specificity of 0.9622, F1 score 
of 0.9501, FPR of 0.0378, and FNR of 0.0126. Overall, KNN on HPLC testing achieves an estimated accuracy of 
0.985, a misclassification rate of 0.015, sensitivity of 0.968, specificity of 0.989, F1 score of 0.967, FPR of 0.011, 
and FNR of 0.032.

Table 24 indicates that in HPLC training, the XGBoost model performs well across all classes. The accuracy 
for Beta Major is 0.9942, with a misclassification rate of 0.0058, sensitivity of 1.0000, specificity of 0.9916, 
and F1 score of 0.9904, with FPR of 0.0084 and FNR of 0.0000. The accuracy of Beta Minor is 0.9907, the 
misclassification rate is 0.0093, the sensitivity is 0.9477, the specificity is 0.9996, and the F1 score is 0.9723, with 
an FPR of 0.0004 and a FNR of 0.0523. Alpha Major has an accuracy of 0.9956, a misclassification rate of 0.0044, 
sensitivity of 0.9981, specificity of 0.9952, and an F1 score of 0.9857, with FPR of 0.0048 and FNR of 0.0019. 
Finally, Alpha Minor has a 0.9926 accuracy, 0.0074 misclassification rate, 0.9979 sensitivity, 0.9903 specificity, 
and 0.9880 F1 score. Alpha Minor has an FPR of 0.0097 and FNR of 0.0021. Overall, XGBoost on HPLC testing 
yields approximately 0.993 accuracy, 0.007 misclassification rate, 0.986 sensitivity, 0.994 specificity, 0.984 F1 
score, 0.006 FPR, and 0.014 FNR.

Table 25 indicates that the XGBoost model on the HPLC testing dataset achieves good accuracy and reliability 
across classes. For Beta Major, the model has an accuracy of 0.9907, a misclassification rate of 0.0093, a sensitivity 
of 0.9992, a specificity of 0.9820, and an F1 score of 0.9909, with an FPR of 0.0180 and a FNR of 0.0008. In Beta 
Minor, the model has an accuracy of 0.9875, a misclassification rate of 0.0125, sensitivity of 0.9605, specificity of 
0.9992, and an F1 score of 0.9789, with FPR and FNR values of 0.0008 and 0.0395, respectively. For Alpha Major, 
the model has an accuracy of 0.9874, a misclassification rate of 0.0126, a sensitivity of 0.9996, a specificity of 
0.9832, and an F1 score of 0.9763. The FPR and FNR for Alpha Major are 0.0168 and 0.0004, respectively. Alpha 

Class Accuracy Misclassification rate Sensitivity Specificity F1 score False positive rate False negative rate

Beta major 0.990706 0.009294 0.999195 0.981961 0.990917 0.018039 0.000805

Beta minor 0.987479 0.012521 0.960452 0.999184 0.978887 0.000816 0.039548

Alpha major 0.987431 0.012569 0.999560 0.983182 0.976344 0.016818 0.000440

Alpha minor 0.987026 0.012974 0.997101 0.976528 0.987412 0.023472 0.002899

Table 25. Multiclass testing performance metric of XGBOOST to detect alpha major thalassemia, alpha minor 
thalassemia, beta major thalassemia and beta minor thalassemia using HPLC.

 

Class Accuracy Misclassification rate Sensitivity Specificity F1 score False positive rate False negative rate

Beta major 0.005844 1.000000 0.991644 0.990375 0.008356 0.000000

Beta minor 0.990665 0.009335 0.947679 0.999647 0.972294 0.000353 0.052321

Alpha major 0.995619 0.004381 0.998064 0.995184 0.985660 0.004816 0.001936

Alpha minor 0.992628 0.007372 0.997899 0.990314 0.988040 0.009686 0.002101

Table 24. Multiclass training performance metric of XGBOOST to detect alpha major thalassemia, alpha 
minor thalassemia, beta major thalassemia and beta minor thalassemia using HPLC.

 

Class Accuracy Misclassification rate Sensitivity Specificity F1 score False positive rate False negative rate

Beta major 0.995617 0.004383 0.986786 0.999577 0.992877 0.000423 0.013214

Beta minor 0.982323 0.017677 0.898490 1.000000 0.946531 0.000000 0.101510

Alpha major 0.994156 0.005844 0.997863 0.993569 0.979036 0.006431 0.002137

Alpha minor 0.969576 0.030424 0.987439 0.962166 0.950079 0.037834 0.012561

Table 23. Multiclass testing performance metric of KNN to detect alpha major thalassemia, alpha minor 
thalassemia, beta major thalassemia and beta minor thalassemia using HPLC.
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Minor has an accuracy of 0.9870, a misclassification rate of 0.0130, sensitivity of 0.9971, specificity of 0.9765, 
and an F1 score of 0.9874, with FPR of 0.0235 and FNR of 0.0029. Overall, XGBoost on HPLC training achieves 
roughly 0.988 accuracy, 0.012 misclassification rate, 0.989 sensitivity, 0.985 specificity, 0.983 F1 score, 0.015 FPR, 
and 0.011 FNR.

In training with the HPLC dataset, the SVM model demonstrates great accuracy and reliability, as shown in 
Table 26. For Beta Major, the model has an accuracy of 0.9898, a misclassification rate of 0.0102, a sensitivity of 
0.9988, a specificity of 0.9807, an F1 score of 0.9900, an FPR of 0.0193, and a FNR of 0.0012. The accuracy of Beta 
Minor is 0.9892, with a misclassification rate of 0.0108, sensitivity of 0.9699, specificity of 0.9977, and F1 score 
of 0.9821. The FPR and FNR for Beta Minor are 0.0023 and 0.0301, respectively. Alpha Major has an accuracy 
of 0.9878, a misclassification rate of 0.0122, sensitivity of 0.9991, specificity of 0.9837, and an F1 score of 0.9773. 
Alpha Major has an FPR and FNR of 0.0163 and 0.0009, respectively. Finally, Alpha Minor has an accuracy of 
0.9885, a misclassification rate of 0.0115, sensitivity of 0.9991, specificity of 0.9775, and an F1 score of 0.9888, 
with FPR of 0.0225 and FNR of 0.0009. Overall, SVM on HPLC training achieves roughly 0.989 accuracy, 0.011 
misclassification rate, 0.992 sensitivity, 0.985 specificity, 0.984 F1 score, 0.015 FPR, and 0.008 FNR.

Table 27 indicates that the SVM model on the HPLC testing dataset performs well across all classes. For Beta 
Major, the accuracy is 0.9937, the misclassification rate is 0.0063, the sensitivity is 0.9976, and the specificity is 
0.9920, yielding an F1 score of 0.9898, FPR of 0.0080, and FNR of 0.0024. The accuracy of Beta Minor is 0.9921, 
with a misclassification rate of 0.0079, sensitivity of 0.9577, specificity of 0.9990, and an F1 score of 0.9757. The 
FPR and FNR for Beta Minor are 0.0010 and 0.0423, respectively. Alpha Major has an accuracy of 0.9953, a 
misclassification rate of 0.0047, sensitivity of 0.9990, specificity of 0.9947, and F1 score of 0.9844. Alpha Major 
has an FPR and FNR of 0.0053 and 0.0010, respectively. Finally, Alpha Minor has a 0.9925 accuracy, 0.0075 
misclassification rate, 0.9979 sensitivity, 0.9900 specificity, and 0.9880 F1 score. FPR and FNR values are 0.0100 
and 0.0021, respectively. SVM on HPLC testing has a cumulative accuracy of around 0.994, a misclassification 
rate of 0.006, sensitivity of 0.988, specificity of 0.994, F1 score of 0.985, FPR of 0.006, and FNR of 0.012.

XGBoost produced the highest mean accuracy in both Tables 28 and 29 which presented cross-validated 
results for CBC and HPLC datasets because it displayed small accuracy variations among folds. XGBoost 
achieved comparable performance to SVM although it showed marginally higher performance variability in 
the results. The overall performance of KNN was satisfactory however sample distribution caused performance 
variations between different folds.

The comparison of multiple machine learning models for the classification of thalassemia types: Alpha 
Major, Alpha Minor, Beta Major, and Beta Minor against CBC and HPLC data provides meaningful insights 
about model classification’s integrity. Analyzing the CBC dataset, the XGBoost model enacted excellent training 
accuracy namely 99.5% and 99.1% for the Alpha Major and Beta Major Thalassemia, respectively, along with 
Beta Minor and Alpha Minor over a 99% mark. In a similar manner, in the testing phase, XGBoost kept up 
accuracy, for the testing set of Beta Minor of 99.50%, for Beta Major of 98% for Alpha Minor of 99.63% and 

Model Accuracy (Mean ± SD) Sensitivity (Mean ± SD) Specificity (Mean ± SD) F1 Score (Mean ± SD)

SVM 97.85% ± 0.15% 96.90% ± 0.20% 98.70% ± 0.12% 96.80% ± 0.18%

KNN 96.40% ± 0.20% 95.10% ± 0.30% 97.10% ± 0.25% 94.90% ± 0.22%

XGBoost 98.75% ± 0.10% 98.10% ± 0.15% 99.30% ± 0.10% 98.20% ± 0.12%

Table 28. CBC Dataset 5 Fold Cross Validation.

 

Class Accuracy Misclassification rate Sensitivity Specificity F1 score False positive rate False negative rate

Beta major 0.993718 0.006282 0.997612 0.992002 0.989813 0.007998 0.002388

Beta minor 0.992124 0.007876 0.957672 0.998951 0.975741 0.001049 0.042328

Alpha major 0.995326 0.004674 0.999009 0.994690 0.984375 0.005310 0.000991

Alpha minor 0.992459 0.007541 0.997939 0.989981 0.988013 0.010019 0.002061

Table 27. Multiclass testing performance metric of SVM to detect alpha major thalassemia, alpha minor 
thalassemia, beta major thalassemia and beta minor thalassemia using HPLC.

 

Class Accuracy Misclassification rate Sensitivity Specificity F1 score false positive rate False negative rate

Beta major 0.989845 0.010155 0.998782 0.980709 0.990043 0.019291 0.001218

Beta minor 0.989186 0.010814 0.969922 0.997702 0.982139 0.002298 0.030078

Alpha major 0.987774 0.012226 0.999131 0.983721 0.977268 0.016279 0.000869

Alpha minor 0.988491 0.011509 0.999103 0.977536 0.988789 0.022464 0.000897

Table 26. Multiclass training performance metric of SVM to detect alpha major thalassemia, alpha minor 
thalassemia, beta major thalassemia and beta minor thalassemia using HPLC.
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Alpha Major of 99.55%. The KNN and SVM models provided also relatively high accuracy yet XGBoost seemed 
to outperform the models in avoiding misclassification, particularly for the Beta Minor and Beta Major classes.

When the model was evaluated using HPLC data, the XGBoost model produced high training accuracy 
of 99.4% to Beta Major, 99.06% to Beta Minor, 99.56% to Alpha Minor and 99.56% to Alpha major. The 
testing accuracy was as follows: Beta Major—99.07%; Beta Minor—98.74%; Alpha Minor—98.70% and Alpha 
Major—98.74%. Although these accuracies were slightly lower than those obtained for the accuracies on the CBC 
data, the learnt model using XGBoost performed well. Thus, the use of the SVM model provided comparable 
results with testing outcomes of 99.4% for Beta Major, 99.2% for Alpha Minor, and 99.2% for Beta Minor. 
Compared to XGBoost, SVM performance in most categories was slightly lower, particularly in Beta Minor 
classification but was overall a stable model, particularly in classifying between alpha and beta thalassemia types.

Our research results underwent reliability validation through expert assessment by a panel of hematologists 
at the UHS, Lahore, Pakistan. The panel evaluated all model outputs and classification outcomes as well as the 
established performance metrics independently. The experts verified both the pragmatic nature and diagnostic 
significance of the evaluation results which confirms the strong potential of the developed system for classifying 
thalassemia.

Finally, the study found that XGBoost achieved the highest performance on both the CBC and HPLC datasets, 
with training accuracies of roughly 99.5% for CBC, and 99.3% for HPLC. The classifier achieved consistently 
high test accuracy across both datasets, establishing it as the best-performing model for detecting thalassemia in 
this research study. The imported SVM model, slightly less accurate than XGBoost, still has strong performance, 
particularly on the HPLC data where the cumulative testing accuracy of the model stood at 99.4%. Hence, XG 
Boost and SVM were found to be efficient classifiers in thalassemia diagnosis while XG Boost has been identified 
as the most appropriate classifier because of the overall high performance across all the types and datasets used.

The evaluation results from CBC and HPLC datasets showed that XGBoost provided superior performance 
to both SVM and KNN through all major assessment metrics. The XGBoost model demonstrated peak accuracy 
levels and F1-scores because it effectively handled thalassemia subtype diagnosis with an ideal precision-to-recall 
ratio. XGBoost demonstrated superior AUC-ROC performance which confirmed its outstanding disciplinary 
ability between classes thus matching crucial medical application requirements for minimizing both false 
negatives and false positives. Among the models assessed the SVM demonstrated robust performance especially 
in the CBC dataset because it maintained high precision levels and specificity rates yet its recall measure was 
slightly lower than XGBoost which led to missed true cases. The KNN approach performed less effectively than 
both SVM and XGBoost in particular on the HPLC dataset because patient feature variability degraded its 
neighborhood-based performance thus producing lower AUC-ROC and F1-scores. XGBoost established the 
most dependable and practical performance metrics in thalassemia classification thus making it the best chosen 
model for the study’s evaluation. Table 30 shows the comparative analysis with all previous studies.

Conclusion
This study investigates machine learning models for diagnosing thalassemia, a genetic disorder with significant 
health impacts, particularly in Pakistan. Both minor and major alpha and beta thalassemia have been diagnosed 
with the help of CBC and HPLC data as diagnostic tools. The models chosen during this research such as KNN, 
SVM, and XGBoost, were able to detect the various thalassemia with immense accuracy.

XGBoost was evaluated accurately among the other models incorporated in understanding the necessity 
level in regard to the beta-thalassemia diagnosis. The current study resonates with the application of machine 
learning in enhancing diagnostic outcomes presenting a dependable and effective approach towards detecting 
thalassemia. The study shows that it is possible to advance the models and make the diagnosis of thalassemia 
in high-incidence areas more accurate by applying developments, such as hybrid deep learning approaches for 
better results. The analysis from this study offers a practical real-world solution in embracing newer machine 
learning methods that may be implemented clinically to counter the bottlenecks experienced in detecting 
thalassemia, and improve treatment outcomes for affected populations.

Future research will evaluate these models on extensive real-world clinical data from various geographic 
regions and incorporating population characteristics including medical complications while adjusting to 
laboratory standard changes. Future research aims to address disparities in thalassemia prevalence across 
demographic groups. The current dataset’s bias, due to higher mutation prevalence in children and females, 
affects model predictions. Future research will use specific sampling approaches together with cost-sensitive 
learning principles to create unbiased and balanced patient classification results among different subgroups 
of patients. Additionally, future research will develop 95% confidence intervals for all performance metrics 
including accuracy, sensitivity, specificity, and F1 scores. McNemar’s test will serve as significance testing for 
validating whether model performance variations have statistically meaningful results.

A real-world deployment of the system requires addressing all ethical matters. When the diagnostic system 
fails it affects patients through stress and generates unnecessary treatment decisions and prevents potential 

Model Accuracy (Mean ± SD) Sensitivity (Mean ± SD) Specificity (Mean ± SD) F1 Score (Mean ± SD)

SVM 96.20% ± 0.25% 95.40% ± 0.30% 97.00% ± 0.20% 95.10% ± 0.27%

KNN 95.10% ± 0.30% 93.50% ± 0.35% 96.40% ± 0.28% 93.20% ± 0.30%

XGBoost 97.80% ± 0.18% 97.10% ± 0.20% 98.40% ± 0.15% 97.00% ± 0.18%

Table 29. HPLC Dataset 5 Fold Cross Validation.
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Study Year Region Models Key Results Dataset Key findings

Thalassemia subtypes 
(alpha major/minor, 
beta major/minor)

Multiclass 
detection

Umar et al. 26  2025 Pakistan XGBoost, 
CNN

99.34% (Acc 
for alpha 
thalassemia), 
98.10% (Acc 
for beta 
thalassemia) 

Feature Based (Self Collected 20, 041 
records) Feature Based (Public available 
dataset)

Alpha Thalassemia 
Detection Beta 
Thalassemia Detection

× ×

Donghua et 
al.40 2023  China  DNN 96% (Acc) Feature-Based (Self Collected) 8693 records 

(2014–2021) Thalassemia Detection × ×

Shoaib et al.41 2023 Pakistan FL 92.38% (Acc) Feature-Based (Self Collected) 5066 Patients Beta Thalassemia 
Detection × ×

Rustam et al.42 2022 Pakistan

CNN for 
detection, 
PCA for 
feature 
selection

96.00% (Acc) Feature-Based (Self Collected) 5066 Patients Beta Thalassemia 
Detection × ×

Ucucu et al.43 2022 Turkey

KNN, Naïve 
Bayes, DT, 
Boruta 
Algorithm 
(Feature 
selection)

99.00% (Acc) Feature-Based (Self Collected) 238 Patients 
(90 Women and 148 Men) (2015 to 2021)

Hemoglobin variants 
(HbS and HbD) × ×

Feng et al.44 2022 China RF 91.5% (Acc) Feature-Based (Self Collected) 1213 
Patients. 495 Pregnant (2018–2020)

Alpha Thalassemia 
Detection × ×

Susanato et 
al.45 2022 Indonesia Fuzzy Model Not Mention Feature-Based (Self-Collected) developed a 

web-based application Thalassemia Detection × ×

Rena et al.46 2022 India
Machine 
Learning 
Algorithms

86.6% (Acc) Feature-Based (Self Collected) 1076 
Samples

Beta Thalassemia 
Detection × ×

Salman et al.47 2022 Pakistan MobilenetV2 95.72% (Acc) Image Based (Self Collected in 2 years) 524 
Images

Alpha Thalassemia 
Detection

Sadiq et al.48 2021 Pakistan Ensemble 
Learning 93% (Acc) Feature-Based (Self Collected) 5066 Patients Beta Thalassemia 

Detection × ×

Fu et al.49 2021 Taiwan SVM 0.76 (AUC) Feature-Based (Self Collected) 350 Patients 
(2018–2020) Thalassemia Detection × ×

Laengsri et 
al.50 2019 Thailand RF, KNN, 

ANN 95.50% (Acc) Feature-Based (Self Collected) 186 Patients 
(2014–2016) Thalassemia Detection × ×

Monalisha et 
al.51 2018 Thailand KNN 93.89% 

(Prec)
Feature-Based (Self Collected) 1500 
Samples

Hemoglobin variants 
Detection × ×

Farhadi et al.52 2018 Tehran RF, DT 0.21 (Sen)
0.77 (Spec)

Feature-Based (Self Collected) 3489 Cases 
in 2018 Thalassemia Detection × ×

Jahangiri et 
al.53 2017 Tehran DT 0.99 (AUC) Feature-Based (Self Collected) 144 Patients Beta Thalassemia × ×

Kandhro et 
al.54 2017 Pakistan DT, RF 90% (Spec) Feature-Based (Self Collected) 3030 Patients Alpha and Beta 

Thalassemia × ×

Risoluti et al.55 2016 Italy PLS 89.9% (Sen) Image-Based (Self Collected) 63 Patients Beta Thalassemia × ×

Matos et al.56 2016 Brazil Fisher 
Discriminant

99.3% (Matos 
Index) Feature-Based (Self Collected) 185 Patients Alpha and Beta 

Thalassemia × ×

Huang et al.57 2015 Taiwan 10 Formulae 89.62% (Sen) Feature-Based (Self Collected) 877 Patients Alpha and Beta 
Thalassemia × ×

Masala et al.58 2013 Italy KNN, PNN 91% (Spec) Feature-Based (Self Collected) 304 Patients Alpha Thalassemia × ×

Barnhart 
Magen et al.59 2013 Israel ANN 0.897 (Sen) Feature-Based (Self Collected) 526 Patients Alpha and Beta 

Thalassemia × ×

Janel et al.60 2012 France 11 Formulae 93% (Acc) Feature-Based (Self Collected) 129 Patients Beta Thalassemia × ×

Shen et al.61 2010 China 12 Formulae 0.947 (AUC) Feature-Based (Self Collected) 300 Cases Beta Thalassemia 
Detection × ×

Urrechaga et 
al.62 2008 Spain MDA

87.9% (Acc) 
(Beta) 
83.3% (Acc) 
(Alpha) 
72.1% (Acc) 
(Mixed)

Feature-based (Self Collected) 250 Patients Alpha and Beta 
Thalassemia × ×

George et al.63 2007 Greece 6 Formulae 75.06% (Sen) Feature-Based (Self Collected) 373 Patients Beta Thalassemia 
Detection × ×

Continued
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treatments from being discovered. The model should be used only to help doctors make clinical decisions while 
the model’s outputs must prove effective for all patient groups before deployment to maintain fairness and equity.

Data availability
The data generated and analyzed in the current study is available from the corresponding authors upon reason-
able request.
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