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In this paper, a closed-form method is developed for the evaluation of time-dependent resilience 
(so named as it is a function of the service time of interest) of an aging object (e.g., a structure 
or system). These structures and systems often suffer from the deterioration of performances in 
a harsh service environment, causing the decline of serviceability. They are thus expected to be 
sufficiently resilient during their service lives, i.e., to have the ability to withstand disruptions 
to their performances. The proposed method takes into account the uncertainty associated with 
the performance deterioration process, the availability of resources that support the performance 
recovery, and the impact of a changing environment. The accuracy and improved efficiency of the 
proposed method are demonstrated through three examples. It is also shown through sensitivity 
analysis that the impact of a changing environment, and the availability of recovery-supporting 
resources play an essential role in the time-dependent resilience. The proposed resilience method 
can also be used to efficiently guide the design of new structures that meet predefined resilience 
goals.

1. Introduction

Structures and infrastructure systems play an essential role in supporting modern societies’ functionalities, but suffer from gradual 
deterioration of performance in their service lives due to environmental attacks such as corrosion [1]. Due to the uncertainties arising 
from the environmental factors and the properties of an object (structure or system), the serviceability cannot be evaluated in a 
deterministic manner. With this regard, resilience assessment has gained significant research interests recently, which probabilistically 
measures the ability of an object to withstand, recover from, and adapt to disruptions [2]. The focus of this paper is on the resilience 
of aging objects within a reference period of interest (e.g., the life cycle), which is referred to as “time-dependent resilience” [3] as 
it is dependent on the considered time duration. The evaluation of time-dependent resilience can be used to determine whether the 
life-cycle performance is satisfactory by comparing the resilience with a target level [3].

In [4], the life-cycle resilience of a deteriorating structure is measured by the accumulative performance loss to hazardous events. 
A renewal-reward process was used to model the occurrence of hazards. However, this resilience model is not applicable when the 
functionality deterioration is caused by continuous environmental factors (e.g., corrosion) but not a discrete hazard process. Ianna-

cone et al. [5] proposed a formula to investigate the effects of infrastructure deterioration on the time-varying ability to recover after 
disruptive events. In [3], an explicit measure for the time-dependent resilience of repairable structures is developed by considering the 
impacts of structural performance deterioration and nonstationary external loads. However, these works have studied the resilience 
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problem in the presence of discrete hazardous events, modeled by a Poisson stochastic process. There are many cases where the per-

formance deterioration of an aging object is dominated by detrimental effects such as aggressive chemical attacks and other physical 
damage mechanisms [6–9]. When the performance of an object degrades to a predefined threshold, interventions (e.g., repair, or 
replacement) must be carried out to restore the deteriorated performance [10,11]. However, the resilience evaluation in the presence 
of gradually deteriorating performance has been limitedly addressed in previous studies. In [12], a simulation-based approach was 
proposed to evaluate the resilience of coastal building foundations considering soil strength deterioration due to water intrusion. The 
impacts of performance deterioration and climate change on resilience were investigated. However, it is computationally more costly 
to employ the Monte Carlo simulation in resilience assessment compared with closed form formulas. Further, explicit solutions may 
offer insights into the resilience problem which otherwise may be difficult to achieve through simulation-based methods.

The research question considered in this paper is: Can we evaluate the time-dependent resilience of an object (e.g., an individual 
structure, or a system) with a closed-form solution, considering the gradual deterioration of performance function? The establish-

ment of such a method will be beneficial for asset owners/policy makers to efficiently and conveniently evaluate the structural and 
infrastructure resilience (e.g., without technical requirements on the skills for conducting Monte Carlo simulation). The resilience 
assessment can be further used to guide resilience-based design, life-cycle management and maintenance optimization [13–16]. For 
example, Ref. [13] summarized the role of resilience in risk-based asset management plans. In [15], a load and resistance factor 
design-like method was developed to guide the resilience-based design of individual structures. In [16], the selection of optimal 
retrofit strategy was studied that minimizes the life-cycle cost and simultaneously satisfies the resilience requirement of infrastruc-

ture.

The novelty of this paper is as follows,

1. A closed-form solution is proposed to evaluate the time-dependent resilience of an object (e.g., an individual structure, or a 
system) considering the gradual deterioration of performance over time.

2. The proposed method can incorporate the impact of a changing environment, where the deterioration rate of performance may 
be accelerated.

3. The proposed resilience method can be used to efficiently guide the design of new structures in the presence of a predefined 
resilience goal.

Three examples are presented in this paper to demonstrate the applicability of the proposed method. It is shown via sensitivity 
analysis that, in the presence of limited resources to recover the deteriorated performance, the resilience would be overestimated if 
considering an unchanged environment.

2. Closed-form resilience model with infinite resources

In this section, the resilience (see Definition 1) of a gradually-deteriorating object (e.g., a structure or system) over a reference 
period of [0, 𝑡𝑙] will be derived.

Definition 1. The time-dependent resilience over the reference period of [0, 𝑡𝑙], denoted by Res(𝑡𝑙), is defined as follows [17],

Res(𝑡𝑙) = 𝔼
⎧⎪⎨⎪⎩exp

⎡⎢⎢⎣ 1𝑡𝑙
𝑡𝑙

∫
0

ln𝑄(𝑡)𝑑𝑡
⎤⎥⎥⎦
⎫⎪⎬⎪⎭ (1)

in which 𝔼( ) denotes the mean value of the variable in the brackets, and 𝑄(𝑡) is the performance of an object at time 𝑡, taking a value 
between 0 and 1. It is in some cases more convenient to use the term “nonresilience”, which equals 1 minus the resilience in Eq. (1).

In the presence of environmental attacks, the performance of the object, 𝑄(𝑡), degrades gradually from 1 (i.e., full performance) 
at the initial time (where 𝑡 is time), as shown in Fig. 1. Upon 𝑄(𝑡) reaching a predefined threshold 𝛼 (where 0 < 𝛼 < 1), interventions 
(e.g., maintenance measures) are to be conducted to restore the performance. Let Δ be the time duration for 𝑄(𝑡) degrading from 1 
to 𝛼. We will proceed based on the following assumption.

Assumption 1. Taking into account the uncertainty associated with Δ, the Gamma distribution type is assumed for Δ with a shape 
parameter of 𝑎 and a scale parameter of 𝑏. This is motivated by the fact that Gamma distribution has a support of (0, ∞), and can 
describe different shapes of distribution (it may reduce to Erlang, exponential, chi-squared, Schulz–Zimm and normal distribution 
types with properly selected scale and shape parameters).

Let 𝛿 be the recovery time (i.e., the duration that 𝑄(𝑡) is restored from 𝛼 to 1), which is modeled as a deterministic value due to 
its negligible uncertainty compared with that of Δ. Based on Assumption 1, the probability density function (PDF) of Δ takes a form 
of the following,

(𝑥∕𝑏)𝑎−1 (
𝑥
)

2

𝑓Δ (𝑥) =
𝑏Γ(𝑎)

exp −
𝑏

(2)
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Fig. 1. Time-dependent performance of an aging object over [0, 𝑡𝑙].

in which Γ is the Gamma function. The gradual deterioration process of 𝑄(𝑡) is modeled as follows,

𝑄(𝑡) = 1 −𝐾 ⋅ 𝑡𝜂 (3)

where 𝐾 is a random variable reflecting the deterioration rate, and 𝜂 > 0 is a deterministic parameter that defines the shape of the 
deterioration process. For example, if 𝜂 = 1, then the performance degrades linearly. Other values of 𝜂 (e.g., 0.5, or 2) result in varying 
deterioration rates within [0, Δ]. According to Eq. (3), it follows that 𝛼 = 1 −𝐾 ⋅Δ𝜂 , with which 𝐾 is a generalized inverse Gamma 
variable (see the definition in, e.g., [18]). For a specific case where Δ follows an exponential distribution, then 𝐾 follows an Extreme 
Type II distribution. Similar to Eq. (3), the recovery process is also featured by a shape parameter 𝜃 that allows for the flexibility of 
modeling different recovery shapes, i.e., for 𝑡 ∈ [Δ, Δ + 𝛿], it follows that, 𝑄(𝑡) = 𝛼 + 1−𝛼

𝛿𝜃
(𝑡 −Δ)𝜃 .

The process from initial state to fully restored state is called a “cycle” (the duration of a cycle is Δ + 𝛿). For the 𝑖th cycle within 
[0, 𝑡𝑙] (𝑖 = 1, 2, …), a subscript of “𝑖” is introduced for Δ. Note that the recovery process of 𝑄(𝑡) is supported by the availability of 
resources (e.g., labour, and finance). This section focuses on the resilience problem with “infinite resources”, that is, there is no limit 
on the number of recovery processes. The impact of resource availability on resilience will be later addressed in Sect. 3.

Denote Δ̃𝑚 =
∑𝑚

𝑖=1 Δ𝑖, 𝑚 = 1, 2, …, and define

𝑆0 = 0, 𝑆𝑚 =
𝑚∑
𝑖=1

(Δ𝑖 + 𝛿) = Δ̃𝑚 +𝑚𝛿, 𝑚 = 1,2,… (4)

Let 𝑁(𝑡𝑙) be the number of cycles (see Fig. 1 for illustration) within the time interval [0, 𝑡𝑙], that is, 𝑁(𝑡𝑙) =max{𝑚 ∶ 𝑆𝑚 ≤ 𝑡𝑙}. In 
Eq. (4), each Δ𝑖 follows a Gamma distribution with a shape parameter of 𝑎𝑖 and a scale parameter of 𝑏 for 𝑖 = 1, 2, … 𝑚. Here, the 
shape parameter of each Δ𝑖 is not necessarily identical, which allows for the flexibility of modeling a nonstationary deterioration 
sequence in a changing environment. Since 𝛿 is a deterministic value, an upper bound for 𝑁(𝑡𝑙) exists, i.e., 𝑁(𝑡𝑙) ≤𝑚𝑢 ∶= ⌊ 𝑡𝑙𝛿 ⌋, where ⌊𝑥⌋ denotes the maximum integer that does not exceed 𝑥. For a nonnegative integer 𝑚 = 0, 1, 2, …, it follows that,

ℙ(𝑁(𝑡𝑙) ≤𝑚) = ℙ
(
𝑆𝑚+1 > 𝑡𝑙

)
= 1 −ℙ

(
Δ̃𝑚+1 ≤ 𝑡𝑙 − (𝑚+ 1)𝛿

)
(5)

where ℙ( ) denotes the probability of the event in the brackets. Note that Δ̃𝑚 follows a Gamma distribution according to Eq. (4), with 
a shape parameter of 

∑𝑚
𝑖=1 𝑎𝑖 and a scale parameter of 𝑏 for 𝑚 = 1, 2, …. The cumulative distribution function (CDF) and PDF of Δ̃𝑚

are denoted by 𝐹Δ̃𝑚
(𝑥) and 𝑓Δ̃𝑚

(𝑥), respectively, for 𝑚 = 1, 2, ….

Define an auxiliary variable Δ0, whose CDF is as follows, 𝐹Δ̃0
(𝑥) = 𝟏(𝑥 > 0), where 𝟏( ) is an indicator function, returning a value 

of 1 if the statement in the brackets is true and 0 otherwise. With this, the PDF of Δ0 is 𝑓Δ̃0
(𝑥) = d(𝑥), in which d is the Dirac delta 

function, satisfying ∫ ∞
−∞ d(𝑥)𝑑𝑥 = 1.

Note that 𝐹Δ̃𝑚
(𝑥) = 0 if 𝑥 < 0 for 𝑚 = 0, 1, 2, …. With this, Eq. (5) becomes, ℙ(𝑁(𝑡𝑙) ≤𝑚) = 1 −𝐹Δ̃𝑚+1

(
𝑡𝑙 − (𝑚+ 1)𝛿

)
, 𝑚 = 0, 1, 2, …. 

This further gives the probability mass function (PMF) of 𝑁(𝑡𝑙) as follows,

ℙ(𝑁(𝑡𝑙) =𝑚) = 𝐹Δ̃𝑚

(
𝑡𝑙 −𝑚𝛿

)
− 𝐹Δ̃𝑚+1

(
𝑡𝑙 − (𝑚+ 1)𝛿

)
, 𝑚 = 0,1,2,…𝑚𝑢 (6)

Define the forward recurrence time, denoted by Δ𝑟, as: Δ𝑟 = 𝑡𝑙 −𝑆𝑁(𝑡𝑙). Note that

ℙ(𝑁(𝑡𝑙) =𝑚 ∩Δ𝑟 ≤ 𝑥) = ℙ
(
𝑆𝑚 < 𝑡𝑙 ∩𝑆𝑚+1 > 𝑡𝑙 ∩𝑆𝑚 > 𝑡𝑙 − 𝑥

)
= ℙ
(
max
(
𝑡𝑙 − 𝑥−𝑚𝛿, 𝑡𝑙 −Δ𝑚+1 − (𝑚+ 1)𝛿

)
< Δ̃𝑚 < 𝑡𝑙 −𝑚𝛿

) (7)
3

Since Δ̃𝑚 is independent of Δ𝑚+1, it follows that,
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ℙ(𝑁(𝑡𝑙) =𝑚 ∩Δ𝑟 ≤ 𝑥) =

∞

∫
0

[
𝐹Δ̃𝑚

(
𝑡𝑙 −𝑚𝛿

)
− 𝐹Δ̃𝑚

(
max
(
𝑡𝑙 − 𝑥−𝑚𝛿, 𝑡𝑙 − 𝑦− (𝑚+ 1)𝛿

))]
⋅ 𝑓Δ𝑚+1

(𝑦)𝑑𝑦

= 𝐹Δ̃𝑚

(
𝑡𝑙 −𝑚𝛿

)
−

∞

∫
0

𝐹Δ̃𝑚

(
max
(
𝑡𝑙 − 𝑥−𝑚𝛿, 𝑡𝑙 − 𝑦− (𝑚+ 1)𝛿

))
⋅ 𝑓Δ𝑚+1

(𝑦)𝑑𝑦

= 𝐹Δ̃𝑚

(
𝑡𝑙 −𝑚𝛿

)
− 𝐹Δ̃𝑚

(
𝑡𝑙 − 𝑥−𝑚𝛿

)
⋅

∞

∫
𝑥−𝛿

𝑓Δ𝑚+1
(𝑦)𝑑𝑦

−

𝑥−𝛿

∫
0

𝐹Δ̃𝑚

(
𝑡𝑙 − 𝑦− (𝑚+ 1)𝛿

)
⋅ 𝑓Δ𝑚+1

(𝑦)𝑑𝑦

(8)

Combining Eqs. (6) and (8), one can obtain the conditional CDF of Δ𝑟 on 𝑁(𝑡𝑙) =𝑚, denoted by 𝐹Δ𝑟|𝑁(𝑡𝑙)=𝑚(𝑥), by noting that,

𝐹Δ𝑟|𝑁(𝑡𝑙)=𝑚(𝑥) = ℙ(Δ𝑟 ≤ 𝑥|𝑁(𝑡𝑙) =𝑚) =
ℙ(𝑁(𝑡𝑙) =𝑚 ∩Δ𝑟 ≤ 𝑥)

ℙ(𝑁(𝑡𝑙) =𝑚)
(9)

Further, the conditional PDF of Δ𝑟 on 𝑁(𝑡𝑙) =𝑚 is evaluated as follows,

𝑓Δ𝑟|𝑁(𝑡𝑙)=𝑚(𝑥) =
𝑔(𝑥,𝑚)

ℙ(𝑁(𝑡𝑙) =𝑚)
(10)

in which 𝑔(𝑥, 𝑚) takes a form of the following for 𝑚 = 0, 1, 2, … 𝑚𝑢 according to the Leibniz integral rule,

𝑔(𝑥,𝑚) = 𝑓Δ̃𝑚

(
𝑡𝑙 − 𝑥−𝑚𝛿

)
⋅
[
1 − 𝐹Δ𝑚+1

(𝑥− 𝛿)
]
+ 𝐹Δ̃𝑚

(
𝑡𝑙 − 𝑥−𝑚𝛿

)
⋅ 𝑓Δ𝑚+1

(𝑥− 𝛿)

− 𝐹Δ̃𝑚

(
𝑡𝑙 − (𝑥− 𝛿) − (𝑚+ 1)𝛿

)
⋅ 𝑓Δ𝑚+1

(𝑥− 𝛿)

= 𝑓Δ̃𝑚

(
𝑡𝑙 − 𝑥−𝑚𝛿

)
⋅
[
1 − 𝐹Δ𝑚+1

(𝑥− 𝛿)
] (11)

From Eq. (10), it is observed that,

∞

∫
0

𝑔(𝑥,𝑚)𝑑𝑥 = ℙ(𝑁(𝑡𝑙) =𝑚) (12)

Remark 1. An alternative approach to derive 𝑔(𝑥, 𝑚) in Eq. (10) is as follows. Note that,

lim
𝑑𝑥→0

𝑔(𝑥,𝑚) ⋅ 𝑑𝑥 = ℙ(𝑥 <Δ𝑟 ≤ 𝑥+ 𝑑𝑥 ∩𝑁(𝑡𝑙) =𝑚)

= ℙ(𝑡𝑙 − (𝑥+ 𝑑𝑡) ≤ 𝑆𝑚 < 𝑡𝑙 − 𝑥 ∩Δ𝑚+1 + 𝛿 > 𝑥)

= ℙ(𝑡𝑙 − (𝑥+ 𝑑𝑡) −𝑚𝛿 ≤ Δ̃𝑚 < 𝑡𝑙 − 𝑥−𝑚𝛿 ∩Δ𝑚+1 > 𝑥− 𝛿)

= 𝑓Δ̃𝑚

(
𝑡𝑙 − 𝑥−𝑚𝛿

)
⋅
[
1 − 𝐹Δ𝑚+1

(𝑥− 𝛿)
]
⋅ 𝑑𝑡

(13)

which yields the same result as in Eq. (11).

The remaining of this section is aimed to derive the explicit solution for Res(𝑡𝑙).
First, for the time interval of [0, Δ1], according to Eq. (3), one has,

Δ1

∫
0

ln𝑄(𝑡)𝑑𝑡 =

Δ1

∫
0

ln

(
1 − 1 − 𝛼

Δ𝜂
1
𝑡𝜂

)
𝑑𝑡 = 𝜓1(𝜂, 𝛼) ⋅Δ1 (14)

in which 𝜓1(𝜂, 𝛼) = ln𝛼 − (𝛼 − 1) ⋅Φ𝐿

(
1 − 𝛼,1,1 + 1

𝜂

)
, where Φ𝐿 is the Lerch transcendent, defined as Φ𝐿(𝑥, 𝑦, 𝑧) =

∑∞
𝑖=0

𝑥𝑖

(𝑖+𝑧)𝑦 .

If some representative values of 𝜂 are considered, the expression of 𝜓1(𝜂, 𝛼) can be simplified. For example, with 𝜂 = 0.5, 1 or 2 
4

(corresponding to square-root, linear or parabolic deterioration shape, respectively), it follows that,
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𝜓1(𝜂, 𝛼) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2(𝛼 − 2)𝛼 ln𝛼 − 𝛼2 + 4𝛼 − 3
2(𝛼 − 1)2

, 𝜂 = 0.5

𝛼 ln𝛼
𝛼 − 1

− 1, 𝜂 = 1

2 tanh−1
(√

1 − 𝛼
)

√
1 − 𝛼

+ ln𝛼 − 2, 𝜂 = 2

(15)

Next, for the time interval of [Δ1, Δ1 + 𝛿], it follows that,

Δ1+𝛿

∫
Δ1

ln𝑄(𝑡)𝑑𝑡 =

Δ1+𝛿

∫
Δ1

ln
(
𝛼 + 1 − 𝛼

𝛿𝜃
(𝑡−Δ1)𝜃

)
𝑑𝑡 =

𝛿

∫
0

ln
(
𝛼 + 1 − 𝛼

𝛿𝜃
𝜏𝜃
)
𝑑𝜏 = 𝜓2(𝜃, 𝛼) ⋅ 𝛿 (16)

where 𝜓2(𝜃, 𝛼) =
𝛼−1
𝛼

Φ𝐿

(
𝛼−1
𝛼
,1,1 + 1

𝜃

)
.

With some specific values of 𝜃, one has,

𝜓2(𝜃, 𝛼) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2𝛼2 ln𝛼 + 𝛼(4 − 3𝛼) − 1
2(𝛼 − 1)2

, 𝜃 = 0.5

𝛼 ln𝛼
𝛼 − 1

− 1, 𝜃 = 1

2𝛼 tan−1
(√

1
𝛼
− 1
)

√
𝛼(1 − 𝛼)

− 2, 𝜃 = 2

(17)

Based on Eqs. (14) and (16), the resilience in Eq. (1) is rewritten as follows,

Res(𝑡𝑙) = 𝔼

{
exp

[
1
𝑡𝑙

(
𝜓1

𝑁(𝑡𝑙)∑
𝑖=1

Δ𝑖 +𝜓2𝑁(𝑡𝑙)𝛿 +𝐻(Δ𝑟)

)]}
(18)

where 𝐻(Δ𝑟) = ∫ 𝑡𝑙
𝑡𝑙−Δ𝑟

ln𝑄(𝑡)𝑑𝑡. Note that 
∑𝑁(𝑡𝑙)

𝑖=1 Δ𝑖 +𝑁(𝑡𝑙)𝛿 +Δ𝑟 = 𝑡𝑙 , with which

Res(𝑡𝑙) = 𝔼
{
exp
[
1
𝑡𝑙

(
𝑁(𝑡𝑙)𝛿(𝜓2 −𝜓1) +𝐻(Δ𝑟) −𝜓1Δ𝑟 +𝜓1𝑡𝑙

)]}
(19)

Based on the law of total probability, one has,

Res(𝑡𝑙) =
𝑚𝑢∑
𝑚=0

ℙ(𝑁(𝑡𝑙) =𝑚) ⋅ 𝔼

{
exp
[
1
𝑡𝑙

(
𝑁(𝑡𝑙)𝛿(𝜓2 −𝜓1) +𝐻(Δ𝑟) −𝜓1Δ𝑟 +𝜓1𝑡𝑙

)]|||||𝑁(𝑡𝑙) =𝑚

}

=
𝑚𝑢∑
𝑚=0

ℙ(𝑁(𝑡𝑙) =𝑚) ⋅

𝑡𝑙−𝑚𝛿

∫
0

𝔼
{
exp
[
𝑚𝛿

𝑡𝑙
(𝜓2 −𝜓1) +

𝐻(𝑥) −𝜓1𝑥

𝑡𝑙
+𝜓1

]}
⋅ 𝑓Δ𝑟|𝑁(𝑡𝑙)=𝑚(𝑥)𝑑𝑥

=
𝑚𝑢∑
𝑚=0

𝑡𝑙−𝑚𝛿

∫
0

exp
[
𝑚𝛿

𝑡𝑙
(𝜓2 −𝜓1) −

𝜓1𝑥

𝑡𝑙
+𝜓1

]
⋅ 𝔼
{
exp
[
𝐻(𝑥)
𝑡𝑙

]}
⋅ 𝑔(𝑥,𝑚)𝑑𝑥

(20)

where the item 𝔼 
{
exp
[
𝐻(𝑥)
𝑡𝑙

]}
, as will be derived in the following, has been conditional on Δ𝑟 = 𝑥. With this regard, let Δ′

𝑚+1 be 
such a Δ𝑚+1 that satisfies Δ′

𝑚+1 + 𝛿 ≥ 𝑥, i.e., the PDF of Δ′
𝑚+1 is the same as that of Δ𝑚+1 except its lower tail being truncated at 

𝑥 − 𝛿. With this, the PDF of Δ′
𝑚+1 is expressed as follows,

𝑓Δ′
𝑚+1

(𝑦) =
⎧⎪⎨⎪⎩
0, if 𝑦 < 𝑥− 𝛿

𝑓Δ𝑚+1
(𝑦)

1 − 𝐹Δ𝑚+1
(𝑥− 𝛿)

, otherwise
(21)

To derive 𝔼 
{
exp
[
𝐻(𝑥)
𝑡𝑙

]}
, the following two cases need to be considered, as shown in Fig. 2: at time 𝑡𝑙 , the performance is either 
5

in the gradual deterioration process (Case 1) or in the recovery process (Case 2).
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Fig. 2. Illustration of performance function at time 𝑡𝑙 .

Combining the two scenarios in Fig. 2, it follows that,

𝔼
{
exp
[
𝐻(𝑥)
𝑡𝑙

]}
=

∞

∫
𝑥

exp
⎛⎜⎜⎝ 1𝑡𝑙

𝑥

∫
0

ln
(
1 − 1 − 𝛼

𝑦𝜂
𝑡𝜂
)
𝑑𝑡
⎞⎟⎟⎠ ⋅ 𝑓Δ′

𝑚+1
(𝑦)𝑑𝑦

+

𝑥

∫
𝑥−𝛿

exp
⎛⎜⎜⎝ 1𝑡𝑙

𝑦

∫
0

ln
(
1 − 1 − 𝛼

𝑦𝜂
𝑡𝜂
)
𝑑𝑡
⎞⎟⎟⎠ ⋅ exp

⎛⎜⎜⎝ 1𝑡𝑙
𝑥−𝑦

∫
0

ln
(
𝛼 + 1 − 𝛼

𝛿𝜃
𝑡𝜃
)
𝑑𝑡
⎞⎟⎟⎠ ⋅ 𝑓Δ′

𝑚+1
(𝑦)𝑑𝑦

=

∞

∫
𝑥

exp
(
𝑦

𝑡𝑙
⋅𝜓3

(
𝑥

𝑦
, 𝛼, 𝜂

))
⋅ 𝑓Δ′

𝑚+1
(𝑦)𝑑𝑦+

𝑥

∫
𝑥−𝛿

exp
(
𝑦

𝑡𝑙
⋅𝜓1(𝛼, 𝜂) +

𝑥− 𝑦

𝑡𝑙
𝜓4

(𝑥− 𝑦

𝛿
, 𝛼, 𝜃
))

⋅ 𝑓Δ′
𝑚+1

(𝑦)𝑑𝑦

(22)

where

𝜓3(𝜌, 𝜂, 𝛼) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2((𝛼 − 1)2𝜌− 1) ln
(
1 + (𝛼 − 1)

√
𝜌
)
+ (𝛼 − 1)

(
2
√
𝜌− (𝛼 − 1)𝜌

)
2(𝛼 − 1)2

, 𝜂 = 0.5( 1
𝛼 − 1

+ 𝜌
)
ln (1 + 𝜌(𝛼 − 1)) − 𝜌, 𝜂 = 1

2 tanh−1
(
𝜌
√
1 − 𝛼
)

√
1 − 𝛼

+ 𝜌
[
ln
(
1 + 𝜌2(𝛼 − 1)

)
− 2
]
, 𝜂 = 2

(23)

and

𝜓4(𝜌, 𝜃, 𝛼) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2𝛼2 ln𝛼
𝜌

+ (1 − 𝛼)
(
𝛼 − 1 + 2𝛼√

𝜌

)
+ 2
(
(𝛼 − 1)2 − 𝛼2

𝜌

)
ln
(
𝛼 +
√
𝜌− 𝛼
√
𝜌
)

2(𝛼 − 1)2
, 𝜃 = 0.5

𝛼 ln
(
1 + 1−𝛼

𝛼
𝜌
)

𝜌(1 − 𝛼)
+ ln (𝛼 + 𝜌(1 − 𝛼)) − 1, 𝜃 = 1

2𝛼 tan−1
(
𝜌
√

1
𝛼
− 1
)

𝜌
√
𝛼(1 − 𝛼)

+ ln
(
𝜌2 + 𝛼(1 − 𝜌2)

)
− 2, 𝜃 = 2

(24)

Denote

𝐽1(𝑥, 𝑦,𝑚) = exp
[
𝑚𝛿

𝑡𝑙
(𝜓2 −𝜓1) −

𝜓1𝑥

𝑡𝑙
+𝜓1 +

𝑦

𝑡𝑙
⋅𝜓3

(
𝑥

𝑦
, 𝜂, 𝛼

)]
⋅ 𝑓Δ𝑚+1

(𝑦) ⋅ 𝑓Δ̃𝑚

(
𝑡𝑙 − 𝑥−𝑚𝛿

)
(25)

and

𝐽2(𝑥, 𝑦,𝑚) = exp
[
𝑚𝛿

𝑡𝑙
(𝜓2 −𝜓1) +𝜓1 +

𝑥− 𝑦

𝑡𝑙

(
𝜓4

(𝑥− 𝑦

𝛿
, 𝜃, 𝛼
)
−𝜓1

)]
⋅ 𝑓Δ𝑚+1

(𝑦) ⋅ 𝑓Δ̃𝑚

(
𝑡𝑙 − 𝑥−𝑚𝛿

)
(26)
6

Combining Eq. (20) and (22), one has,
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Res(𝑡𝑙) =
𝑚𝑢∑
𝑚=0

⎡⎢⎢⎢⎣
𝑡𝑙−𝑚𝛿

∫
0

∞

∫
𝑥

𝐽1(𝑥, 𝑦,𝑚)𝑑𝑦𝑑𝑥+

𝑡𝑙−𝑚𝛿

∫
0

𝑥

∫
𝑥−𝛿

𝐽2(𝑥, 𝑦,𝑚)𝑑𝑦𝑑𝑥
⎤⎥⎥⎥⎦ (27)

Eq. (27) presents the proposed closed-form solution for the time-dependent resilience in Eq. (1), by fully taking into account the 
uncertainties associated with the performance function over [0, 𝑡𝑙]. The accuracy and improved efficiency (compared with simulation-

based method) will be later addressed in Sect. 4.

3. Closed-form resilience model with limited resources

Recall that in Eq. (27), the resilience model has been derived without considering the limit on the maximum number of recovery 
processes. There are many cases in engineering practice that, due to the budget/resource constraint, the deteriorated performance, 
upon reaching the threshold 𝛼, can be recovered for at most 𝜅 times, where 𝜅 is a nonnegative integer. This is the motivation for a 
revised form of Eq. (27) by taking into account the impact of 𝜅 on resilience. In particular, such an impact dominates when 𝑆𝜅 ≤ 𝑡𝑙 , 
or equivalently, 𝑁(𝑡𝑙) ≥ 𝜅.

Based on the definition of time-dependent resilience in Eq. (1), using the law of total probability, it follows that,

Res(𝑡𝑙, 𝜅) = 𝔼
⎧⎪⎨⎪⎩ exp

⎡⎢⎢⎣ 1𝑡𝑙
𝑡𝑙

∫
0

ln𝑄(𝑡)𝑑𝑡
⎤⎥⎥⎦
|||||||𝑁(𝑡𝑙) ≤ 𝜅 − 1

⎫⎪⎬⎪⎭ ⋅ℙ(𝑁(𝑡𝑙) ≤ 𝜅 − 1)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
part 1

+ 𝔼
⎧⎪⎨⎪⎩ exp

⎡⎢⎢⎣ 1𝑡𝑙
𝑡𝑙

∫
0

ln𝑄(𝑡)𝑑𝑡
⎤⎥⎥⎦
|||||||𝑁(𝑡𝑙) ≥ 𝜅

⎫⎪⎬⎪⎭ ⋅ℙ(𝑁(𝑡𝑙) ≥ 𝜅)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
part 2

(28)

in which the resilience is rewritten as Res(𝑡𝑙, 𝜅) because it is also a function of 𝜅.

With Eq. (27), “part 1” of Eq. (28) is evaluated as follows,

𝔼
⎧⎪⎨⎪⎩ exp

⎡⎢⎢⎣ 1𝑡𝑙
𝑡𝑙

∫
0

ln𝑄(𝑡)𝑑𝑡
⎤⎥⎥⎦
|||||||𝑁(𝑡𝑙) ≤ 𝜅 − 1

⎫⎪⎬⎪⎭ ⋅ℙ(𝑁(𝑡𝑙) ≤ 𝜅 − 1)

=
min(𝑚𝑢,𝜅−1)∑

𝑚=0

⎡⎢⎢⎢⎣
𝑡𝑙−𝑚𝛿

∫
0

∞

∫
𝑥

𝐽1(𝑥, 𝑦,𝑚)𝑑𝑦𝑑𝑥+

𝑡𝑙−𝑚𝛿

∫
0

𝑥

∫
𝑥−𝛿

𝐽2(𝑥, 𝑦,𝑚)𝑑𝑦𝑑𝑥
⎤⎥⎥⎥⎦

(29)

The second part of Eq. (28) is associated with the case of 𝑆𝜅 < 𝑡𝑙 , as will be discussed next. Define Δ𝑟,𝜅 = 𝑡𝑙 −𝑆𝜅 . Note that,

ℙ
(
𝑁(𝑡𝑙) ≥ 𝜅

⋂
Δ𝑟,𝜅 ≤ 𝑥

)
= ℙ
(
𝑆𝜅 ≤ 𝑡𝑙

⋂
𝑡𝑙 − 𝑆𝜅 ≤ 𝑥

)
= ℙ(𝑡𝑙 − 𝑥 ≤ Δ̃𝜅 + 𝜅𝛿 ≤ 𝑡𝑙)

= 𝐹Δ̃𝜅
(𝑡𝑙 − 𝜅𝛿) − 𝐹Δ̃𝜅

(𝑡𝑙 − 𝜅𝛿 − 𝑥)

(30)

with which

ℙ
(
Δ𝑟,𝜅 ≤ 𝑥|𝑁(𝑡𝑙) ≥ 𝜅

)
=
𝐹Δ̃𝜅

(𝑡𝑙 − 𝜅𝛿) − 𝐹Δ̃𝜅
(𝑡𝑙 − 𝜅𝛿 − 𝑥)

ℙ
(
𝑁(𝑡𝑙) ≥ 𝜅

) (31)

This yields the conditional CDF of Δ𝑟,𝜅 on 𝑁(𝑡𝑙) ≥ 𝜅, and further the conditional PDF, denoted by 𝑓Δ𝑟,𝜅 |𝑁(𝑡𝑙)≥𝜅 (𝑥), as follows,

𝑓Δ𝑟,𝜅 |𝑁(𝑡𝑙)≥𝜅 (𝑥) =
𝑓Δ̃𝜅

(𝑡𝑙 − 𝜅𝛿 − 𝑥)

ℙ
(
𝑁(𝑡𝑙) ≥ 𝜅

) , 0 ≤ 𝑥 ≤ 𝑡𝑙 − 𝜅𝛿 (32)

Denote Δ0,𝑖 =
Δ𝑖

(1−𝛼)1∕𝜂 , 𝑖 = 1, 2, …. Within the time interval [𝑆𝜅 , 𝑡𝑙], the two quantities Δ0,𝜅+1 and Δ𝑟,𝜅 are compared to determine 
the performance scenario at time 𝑡𝑙 , as illustrated in Fig. 3. Conditional on Δ0,𝜅+1 = 𝑥, if Δ𝑟,𝜅 > 𝑥 (see Case 1 in Fig. 3), then the 
performance function 𝑄(𝑡) degrades to zero before time 𝑡𝑙 , with which ∫ 𝑡𝑙

𝑆𝜅
ln𝑄(𝑡)𝑑𝑡 = 0. Otherwise (i.e., Δ𝑟,𝜅 ≤ 𝑥, see Case 2 in Fig. 3), 
7

it follows that,
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Fig. 3. Illustration of time-dependent resilience affected by 𝜅.

𝑡𝑙

∫
𝑆𝜅

ln𝑄(𝑡)𝑑𝑡 =

𝑡𝑙

∫
𝑆𝜅

ln
(
1 −

(𝑡− 𝑆𝜅 )𝜂

𝑥𝜂

)
𝑑𝑡 =

Δ𝑟,𝑘

∫
0

ln
(
1 − 𝑡𝜂

𝑥𝜂

)
𝑑𝑡 = 𝜓5

(Δ𝑟,𝜅

𝑥
, 𝜂

)
⋅Δ𝑟,𝜅 (33)

where

𝜓5(𝜌, 𝜂) = 𝜌𝜂Φ𝐿

(
𝜌𝜂,1,1 + 1

𝜂

)
+ ln(1 − 𝜌𝜂), 0 < 𝜌 < 1 (34)

For some specific values of 𝜂, 𝜓5(𝜌, 𝜂) is simplified as follows,

𝜓5(𝜌, 𝜂) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(
1 − 1

𝜌

)
ln
(
1 −
√
𝜌
)
−
√

1
𝜌
− 1

2
, 𝜂 = 0.5(

1 − 1
𝜌

)
ln(1 − 𝜌) − 1, 𝜂 = 1

2
𝜌
tanh−1(𝜌) − 2 + ln(1 − 𝜌2), 𝜂 = 2

(35)

Note that the probability distribution of Δ𝜅+1 is independent of the condition of 𝑁(𝑡𝑙) ≥ 𝜅. This is because, Δ𝜅+1 is independent 
of 𝑆𝑘 by definition, and that ℙ 

(
𝑁(𝑡𝑙) ≥ 𝜅

)
= ℙ 
(
𝑆𝜅 ≤ 𝑡𝑙

)
. Thus, “part 2” of Eq. (28) is evaluated as follows,

𝔼
⎧⎪⎨⎪⎩ exp

⎡⎢⎢⎣ 1𝑡𝑙
𝑡𝑙

∫
0

ln𝑄(𝑡)𝑑𝑡
⎤⎥⎥⎦
|||||||𝑁(𝑡𝑙) ≥ 𝜅

⎫⎪⎬⎪⎭ ⋅ℙ
(
𝑁(𝑡𝑙) ≥ 𝜅

)

=

∞

∫
0

𝔼
⎧⎪⎨⎪⎩ exp

⎡⎢⎢⎣ 1𝑡𝑙
𝑡𝑙

∫
0

ln𝑄(𝑡)𝑑𝑡
⎤⎥⎥⎦
|||||||𝑁(𝑡𝑙) ≥ 𝜅 ∩Δ0,𝜅+1 = 𝑥

⎫⎪⎬⎪⎭𝑓Δ0,𝜅+1
(𝑥)𝑑𝑥 ⋅ℙ

(
𝑁(𝑡𝑙) ≥ 𝜅

)

=

∞

∫
0

min(𝑥,𝑡𝑙−𝜅𝛿)

∫
0

exp
[
1
𝑡𝑙

(
𝜓1(𝑡𝑙 − 𝑦− 𝜅𝛿) +𝜓2𝜅𝛿 + 𝑦𝜓5

( 𝑦
𝑥
, 𝜂
))]

⋅ 𝑓Δ̃𝜅
(𝑡𝑙 − 𝜅𝛿 − 𝑦) ⋅ 𝑓Δ0,𝜅+1

(𝑥)𝑑𝑦𝑑𝑥

(36)

Denote

𝐽3(𝑥, 𝑦) = exp
[
1
𝑡𝑙

(
𝜓1(𝑡𝑙 − 𝑦− 𝜅𝛿) +𝜓2𝜅𝛿 + 𝑦𝜓5

( 𝑦
𝑥
, 𝜂
))]

𝑓Δ̃𝜅
(𝑡𝑙 − 𝜅𝛿 − 𝑦)𝑓Δ0,𝜅+1

(𝑥) (37)

With this, the resilience in Eq. (28) is rewritten as follows,

Res(𝑡𝑙, 𝜅) =
min(𝑚𝑢,𝜅−1)∑

𝑚=0

⎡⎢⎢⎢⎣
𝑡𝑙−𝑚𝛿

∫
0

∞

∫
𝑥

𝐽1(𝑥, 𝑦,𝑚)𝑑𝑦𝑑𝑥+

𝑡𝑙−𝑚𝛿

∫
0

𝑥

∫
𝑥−𝛿

𝐽2(𝑥, 𝑦,𝑚)𝑑𝑦𝑑𝑥
⎤⎥⎥⎥⎦+

∞

∫
0

min(𝑥,𝑡𝑙−𝜅𝛿)

∫
0

𝐽3(𝑥, 𝑦)𝑑𝑦𝑑𝑥 (38)

Eq. (38) is the proposed resilience method in the presence of limited resources that support the recovery of performance for 
at most 𝜅 times. The applicability of Eq. (38) will be demonstrated in the next section. Note that in Eq. (38), if 𝜅 → ∞, then 
8

∫ ∞
0 ∫ min(𝑥,𝑡𝑙−𝜅𝛿)

0 𝐽3(𝑥, 𝑦)𝑑𝑦𝑑𝑥 → 0, with which Eq. (38) reduces to Eq. (27).
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Remark 2. In Eq. (38), if 𝜅 = 0, then

min(𝑚𝑢,𝜅−1)∑
𝑚=0

⎡⎢⎢⎢⎣
𝑡𝑙−𝑚𝛿

∫
0

∞

∫
𝑥

𝐽1(𝑥, 𝑦,𝑚)𝑑𝑦𝑑𝑥+

𝑡𝑙−𝑚𝛿

∫
0

𝑥

∫
𝑥−𝛿

𝐽2(𝑥, 𝑦,𝑚)𝑑𝑦𝑑𝑥
⎤⎥⎥⎥⎦ = 0 (39)

with which

Res(𝑡𝑙, 𝜅) =

∞

∫
0

min(𝑥,𝑡𝑙)

∫
0

𝐽3,𝜅=0(𝑥, 𝑦)𝑑𝑦𝑑𝑥 (40)

where 𝐽3,𝜅=0(𝑥, 𝑦) is a specific form of 𝐽3(𝑥, 𝑦) in Eq. (37) with 𝜅 = 0, i.e.,

𝐽3,𝜅=0(𝑥, 𝑦) = exp
[
1
𝑡𝑙

(
𝜓1(𝑡𝑙 − 𝑦) + 𝑦𝜓5

( 𝑦
𝑥
, 𝜂
))]

𝑓Δ̃0
(𝑡𝑙 − 𝑦)𝑓Δ0,1

(𝑥) (41)

This further gives the resilience with 𝜅 = 0 as follows,

Res(𝑡𝑙,0) =

∞

∫
𝑡𝑙

exp
[
𝜓5

(
𝑡𝑙
𝑥
, 𝜂

)]
𝑓Δ0,1

(𝑥)𝑑𝑥 (42)

In the context of “reliability”, if the limit state is defined as Δ0,1 ≥ 𝑡𝑙 , then the time-dependent reliability over [0, 𝑡𝑙], denoted by 
Rel(𝑡𝑙), is evaluated as follows,

Rel(𝑡𝑙) = ℙ(Δ0,1 ≥ 𝑡𝑙) =

∞

∫
𝑡𝑙

𝑓Δ0,1
(𝑥)𝑑𝑥 (43)

The similarity between Eqs. (42) and (43) suggests that, if not considering the recovery process of 𝑄(𝑡), then the two quantities – 
reliability and resilience – can be evaluated in a unified framework. This can be explained by noting that, the reliability assessment 
focuses on the survival-state limit state, i.e., 𝑄(𝑡) ∈ {0, 1}, which corresponds to the case of 𝜂 → ∞. Note also that, in Eq. (34), 
lim𝜂→∞𝜓5(𝜌, 𝜂) = 0. With this, based on the definition of reliability in Eq. (43), it follows that,

Rel(𝑡𝑙) = lim
𝜂→∞

Res(𝑡𝑙,0)
⏟⏞⏟⏞⏟

Eq. (42)

(44)

The proposed resilience models in Eqs. (27) and (38) have been derived based on an explicit form of the performance function 
𝑄(𝑡). For an individual structure, one may set the deterioration of performance to be in parallel with the time-variation of structural 
resistance (with this regard, one can refer to previous studies [19,20] for discussions on the probabilistic models of structural resistance 
deterioration). For a system consisting of interacting components (structures), the time-variation of system performance is dependent 
on the holistic behavior of the components, which may require a network analysis [21] to determine the deterioration process of 
system performance. For the case where only scattered data of the system performance at discrete time instants are available (e.g., 
due to the computational burdens of network analysis for a large-scale system), one can find an expression for 𝑄(𝑡) based on Eq. (3)

through least-squares fitting, with a focus on determining the deterioration shape and rate parameters.

4. Examples

4.1. Numerical example

In this section, a numerical example is presented to demonstrate the applicability of the proposed resilience models in Eqs. (27)

and (38). Consider the resilience of an aging structure for a service period of 50 years. Its performance degrades, from 1 initially, with 
time during its service life due to environmental attacks. Upon the performance reaching 0.7 times the initial state, repair measures 
are immediately conducted to restore the structural performance to the full state. The duration of each recovery process is 𝛿 = 1
year. The time it takes for the performance function to degrade from initial time by 30% (i.e., Δ1) is a Gamma variable, with a mean 
value of 10 years and a coefficient of variation (COV) of 0.2. However, taking into account the impact of a changing environment, 
for the 𝑖th cycle (𝑖 = 1, 2, …), the mean value of Δ𝑖 equals 10 exp(−𝜓 ⋅ (𝑖 − 1)) years with a constant scale parameter, where 𝜓 is the 
deteriorating rate of the mean value (a time-invariant constant). For example, if 𝜓 = 0.1, then the performance deterioration from 1 
to 0.7 takes on average 9.05 years during the second cycle, and 8.19 years for the third cycle.

Fig. 4 examines the impact of 𝜅 (i.e., the maximum number of recovery processes) on time-dependent nonresilience for reference 
periods up to 50 years, assuming 𝜂 = 𝜃 = 1, and 𝜓 = 0.1. The nonresilience increases with the duration of service period, which 
is characteristic of the accumulation of degraded performance over time. A larger value of 𝜅 leads to smaller nonresilience due to 
9

the greater amount of resources that support the recovery of performance. The impact of 𝜅 on resilience is enhanced with a longer 
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Fig. 4. Impact of 𝜅 on time-dependent nonresilience.

Fig. 5. Dependence of nonresilience on 𝜂 (assuming 𝜃 = 1).

reference period, where the number of recovery processes plays a dominating role. For instance, for reference periods up to 18 years, 
the difference between the nonresiliences associated with 𝜅 = 1 and 𝜅 = ∞ is less than 5%. With 𝑡𝑙 = 30 years, the nonresilience 
equals 0.313 when 𝜅 = 1, which is 2.1 times that with infinite resources (𝜅 =∞).

For comparison purpose, the time-dependent nonresilience evaluated through Monte Carlo simulation is also presented in Fig. 4. 
The agreement between the analytical and simulated results demonstrates the accuracy of Eq. (38). Furthermore, using the Matlab 
R2023a software on a PC with a processor of Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz, the analytical method (Eq. (38)) takes 
less than 0.5 second to compute Res(50, 2), while the simulation method needs more than one minute (with 100,000 replications of 
simulation). This comparison demonstrates that the proposed closed form solution for resilience is computationally efficient.

In Fig. 5, the effect of 𝜂 (i.e., the shape of gradual deterioration) on nonresilience is evaluated with 𝜓 = 0.1, assuming linear 
recovery processes. The nonresilience associated with 𝜂 = 0.5 is the largest at the early stages, but becomes the smallest with a longer 
reference period. The explanation for this observation is two-fold. First, at the early stages with a large probability of 𝑁(𝑡𝑙) < 𝜅 (this 
can be deemed as the case of infinite resources), the square-root deterioration shape leads to the smallest performance in the presence 
of a fixed Δ, followed by those associated with 𝜂 = 1 and 𝜂 = 2, respectively. For example, examining the PMF of 𝑁(𝑡𝑙) as shown in 
Fig. 6(a), the probability of 𝑁(20) < 2 equals 63.2%, while the probability of 𝑁(20) < 4 is greater than 99.9%. Thus, for both cases 
in Fig. 5, the nonresilience with 𝜂 = 0.5 is the largest for reference periods up to 20 years. Next, for longer reference periods (e.g., 
𝑡𝑙 = 40 years for 𝜅 = 2, or 𝑡𝑙 = 50 years for 𝜅 = 4), the nonresilience is dominated by the probability of the following (this corresponds 
to “part 2” of Eq. (28)),

ℙ
{
Δ𝑟,𝜅 >Δ0,𝜅+1||𝑁(𝑡𝑙) ≥ 𝜅

}
= 1
𝐹Δ̃𝜅

(𝑡𝑙 − 𝜅𝛿)
⋅

∞

∫
0

𝐹Δ̃𝜅

(
𝑡𝑙 − 𝜅𝛿 − 𝑥

(1 − 𝛼)1∕𝜂

)
⋅ 𝑓Δ𝜅+1

(𝑥)𝑑𝑥 (45)

Fig. 6(b) presents the probability of Δ𝑟,𝜅 > Δ0,𝜅+1 conditional on 𝑁(𝑡𝑙) ≥ 𝜅 for 𝜅 = 2 (see the lines with a “◦” symbol) and 4 
respectively. The case of 𝜂 = 2 results in the greatest ℙ 

(
Δ𝑟,𝜅 >Δ0,𝜅+1||𝑁(𝑡𝑙) ≥ 𝜅

)
, accounting for the observation from Fig. 5 that the 
10

nonresilience associated with 𝜂 = 2 becomes the largest with a long reference period.
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Fig. 6. Probabilistic behaviors of 𝑁(𝑡𝑙) and Δ𝑟,𝜅 .

Fig. 7. Dependence of nonresilience on 𝛼 and 𝜓 .

The roles of 𝛼 and 𝜓 in resilience are shown in Fig. 7, assuming 𝜂 = 𝜃 = 1, and 𝜅 = 4. A greater value of 𝛼 leads to smaller 
nonresilience, due to the higher performance over the life cycle. Further, a larger 𝜓 indicates that the mean value of the sequence 
{Δ1, Δ2, …} decreases more rapidly, and thus leads to greater nonresilience. This observation is consistent with those from previous 
studies that the resilience is weakened in a harsher environment [22,23]. The impact of 𝜓 on resilience is amplified with a longer 
reference period, due to the increasing number of cycles as shown in Fig. 1.

4.2. Life-cycle resilience of a wind turbine

In this section, a case study on the resilience evaluation of a deteriorating wind turbine is presented, employing the proposed 
resilience model in Eq. (38). Wind turbines are expected to be safe and resilient to withstand harsh operational environmental during 
an expected lifetime of 20–25 years [24,25], but have a typical service life between 5 and 13 years [26, Section 1]. One of the most 
critical components in a wind turbine is the gearbox. Due to the structural changes (e.g., imbalance, damaged bearing races, etc) in 
the service life, an abnormal vibration response of gearbox will be generated, leading to the deterioration of equipment performance, 
as illustrated in Fig. 8(a). Gearbox-related failures account for more than 20% the downtime of wind turbines [27, Section 1], and thus 
will be the focus of this example. Fig. 8(b) shows the time-variant vibration response of a gearbox bearing [28, Table 1], suggesting an 
accelerated rate of vibration amplitude with time. This motivates the selection of a parabolic model for the performance deterioration 
process of a wind turbine. The serviceability of gearbox is categorized into different levels according to the vibration response, e.g., 
level 1 if the vibration amplitude reaches 2.3 mm, and level 5 if exceeding 28 mm, as shown in Fig. 8(b). It takes 9.07 years for 
the gearbox to reach level 5 in Fig. 8(b), with which the major replacement is conducted. According to [29, Fig. 13], the major 
replacement of gearbox takes 231 hours, or equivalently 0.079 years (28.88 days) corresponding to 8 work hours per day. A linear 
recovery process of performance is used herein. In this example, the time that the gearbox takes to reach level 5 is a Gamma variable 
with a mean value of 9.07 years and a COV of 0.165, with which the service life is within the range of 5–13 years with a probability 
of 99%. Furthermore, by noting the less lifetime of gearboxes in a changing environment (e.g., increasing intensity of wind loads), 
11

the scenarios that the gearbox lifetime degrades by 20%, 10% or 5% compared with that of the replaced one will be examined.
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Fig. 8. Time-variant performance of a wind turbine. (a) Deterioration process of performance and condition threshold (after [11]). (b) Deterioration of vibration 
performance of gearbox bearing, with raw data adopted from [28].

Fig. 9. Time-dependent nonresilience of a wind turbine gearbox.

Fig. 9 presents the time-dependent nonresilience of the wind turbine gearbox for service periods up to 25 years. With a larger 
value of 𝜅 (i.e., greater amount of resources that support the performance recovery), the nonresilience becomes smaller, which is 
consistent with the observation from Fig. 5. In the presence of a more severe scenario of changing environment, reflected through 
the more significant degradation of gearbox lifetime, the time-dependent nonresilience is amplified. For example, with 𝜅 = 2, the 
nonresilience for a reference period of 25 years equals 0.928 if the gearbox lifetime degrades by 20% compared with the replaced one, 
which becomes 0.619 if the lifetime degrades by 5%. However, the effect of gearbox lifetime degradation on resilience is weakened 
by a greater value of 𝜅, which implies the importance of resource availability to ensure the turbine resilience against the impacts of 
climate change.

4.3. Reliability and resilience-based design of a new bridge

In this example, we consider the design of a new reinforced concrete bridge simultaneously guided by the reliability and resilience 
goals. Assume that the bridge is located in St. Louis (Missouri, USA) and is subjected to the impact of seismic excitation. In the 
traditional reliability-based design, the aim is to determine the initial resistance of the bridge so that the probability of failure is 
below a predefined threshold during its service life. According to the ASCE Standard 7 [30, Table 1.3–1], for a structure whose 
failure is either sudden or leads to widespread progression of damage, the target annual probability of failure, 𝑝target, is 3.0 × 10−5
for Risk Category I, corresponding to a target reliability index of 3 based on a 50-year service period (the target failure probability 
for other risk categories are also available in [30]), which will be used in the following. The seismic hazard for the bridge is given 
by the “Unified Hazard Tool” provided by the United States Geological Survey (USGS) [31]. Wang and Teh fitted the seismic hazard 
curve with a unit of 𝑔 (gravitational acceleration) using an Extreme Type IIdistribution for St. Louis, and determined the shape and 
scale parameters as 1.617 and 1.98 × 10−3, respectively (see its CDF in Eq. (A.1)) [32, Fig. 3].

As suggested by Nowak and Szerszen [33, Table 2], the bridge’s resistance is a lognormal random variable with a bias factor of 1.14 
(thus a mean value of 1.14𝑟n, with 𝑟n being the nominal resistance) and a coefficient of variation (COV) of 0.13 considering a moment-

related limit state function. The requirement on 𝑟n is determined based on the target probability failure according to 𝑝(𝑟n) ≤ 𝑝target, in 
which 𝑝(𝑟n) is the failure probability conditional on 𝑟n. This further yields 𝑟n = 1.2𝑔. However, the traditional reliability-based design 
method does not account for the “resilience” of the target structure, thus motivating a new design practice that meets the reliability 
12

and resilience goals simultaneously.
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Fig. 10. Time-dependent resilience as a joint function of 𝜇𝐾 and 𝜈𝐾 .

Fig. 11. Time-dependent resilience as a function of 𝜇𝐾 for different values of 𝜅.

Now, we further consider the resilience of the bridge for a service period of 50 years. The resistance degrades with time due to 
the impact of corrosion, with which we can model the resistance deterioration as a linear process with time [19]. With this regard, 
let 𝑅(𝑡) =𝑅0(1 −𝐾𝑡) be the resistance at time 𝑡, where 𝑅0 is the initial resistance, and 𝐾 is the deterioration rate (an inverse Gamma 
random variable with a mean value of 𝜇𝐾 and a COV of 𝜈𝐾 ). Correspondingly, the deterioration of the bridge’s performance function 
is modeled to be in parallel with the resistance deterioration. Once the bridge’s resistance degrades by 15% that of the initial state 
(thus 𝛼 = 0.85), maintenance strategies are conducted immediately to restore the bridge’s performance linearly with time based on 
an “as-good-as-new” strategy (i.e., the resistance is restored via the maintenance strategy to the “brand new” state, see illustration in 
[34, Fig. 3]). The duration of maintenance is 15 days, as adopted from [35, Table 3].

Recall that Eq. (38) has been derived by considering the gradual deterioration process of performance only. However, in the 
presence of load event-induced failure mode (e.g., earthquake), the resilience in Eq. (38) holds only if there is no load-induced failure 
over the life cycle. Thus, Eq. (38) is modified as follows for use in this example,

Resload(𝑡𝑙, 𝜅) = Relload(𝑡𝑙) ⋅ Res(𝑡𝑙, 𝜅)
⏟⏞⏟⏞⏟

Eq. (38)

(46)

where Resload(𝑡𝑙, 𝜅) is the resilience considering load-induced failure, and Relload(𝑡𝑙) refers to the probability that the load effect does 
not exceed the resistance at any time over [0, 𝑡𝑙] (this is different from the reliability in Eq. (43)). The explicit solution to Relload(𝑡𝑙)
is discussed in Appendix A.

Fig. 10 shows the dependence of nonresilience on both 𝜇𝐾 and 𝜈𝐾 , computed by Eq. (46). A greater value of 𝜇𝐾 or 𝜈𝐾 results 
in smaller resilience. However, the resilience is more sensitive to the variation of 𝜇𝐾 , which dominates the deterioration rate of 
resistance. Thus, we can use the term 𝜇𝐾 as a design parameter in the presence of a resilience goal. Fig. 11 presents the dependence 
of the time-dependent resilience over a service period of 50 years on 𝜇𝐾 with a fixed 𝜈𝐾 = 0.5 and different values of 𝜅 (i.e., the 
13

resistance can be restored for at most 𝜅 times). With a target resilience of 0.9 over 50 years, we can determine the maximum values 
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of 𝜇𝐾 as 0.0076, 0.0114 and 0.015, respectively, corresponding to 𝜅 = 1, 2, 3. Such information can be used to guide the design of 
structures to meet the predefined resilience goals, in conjunction with the reliability targets, where the proposed resilience model in 
this paper plays a vital role, providing an explicit and efficient tool for resilience assessment (the analysis would be time-consuming 
if using a simulation-based method).

5. Concluding remarks

In this paper, a closed-form method has been developed for the time-dependent resilience assessment of aging structures or 
systems, taking into account the impact of a changing environment. The proposed resilience model has also incorporated the role of 
resource availability that supports the recovery of degraded performance. The accuracy and efficiency of the proposed method have 
been demonstrated via comparison with Monte Carlo simulation. The following conclusions can be made from this paper.

1. The proposed resilience method captures the uncertainty associated with the time-varying performance function within a refer-

ence period of interest, and is more efficient compared with Monte Carlo simulation in terms of computational times needed.

2. In the presence of a more severe scenario of change environment, reflected through the more rapid deteriorating rate of perfor-

mance function (or equivalently, the time it needs to be replaced/repaired), the nonresilience will be amplified (e.g., from 0.254 
for a zero deteriorating rate to 0.847 for a deteriorating rate of 0.3 in Fig. 7(b) with a performance threshold of 0.5), implying 
that the projection of future changes in the number of cycles plays an essential role in resilience assessment.

3. A greater amount of resources will reduce the nonresilience (from 0.313 for at most one time recovery to 0.149 for unlimited 
resources within a reference period of 30 years), which will thus counter the impact of a changing environment. This demonstrates 
the importance of recovery-supporting resources to guarantee resilience, requiring the preparedness and readiness of resources 
from the asset owners/managers.

4. The proposed resilience method can be used to efficiently guide the design of a new structure given a resilience target, in 
conjunction with the existing reliability-based design method. While the initial resistance of a structure is determined by the 
target failure probability, the resilience goal raises additional requirement on the life-cycle performance function, and thus the 
deterioration rate of performance.

Finally, note that the resilience models in this paper (Eqs. (27) and (38)) have been based on a Gamma distributed time duration 
for the performance function degrading from 1 to a predefined threshold. If this time duration cannot be modeled/approximated by 
a Gamma distribution, one would need to re-derive the solution for time-dependent resilience, following a similar procedure as in 
Eqs. (27) and (38). This is a promising topic for future work.
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Appendix A. The time-dependent reliability in Eq. (46)

In this Section, we will derive the time-dependent reliability Relload(𝑡𝑙) in Eq. (46). This will benefit from the reliability method 
in Ref. [32].

We use the Extreme Type IIdistribution to model the annual maximum seismic intensity (e.g., the peak ground acceleration), 
14

whose CDF is as follows,
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𝐹𝑦(𝑥) = exp

[
−
(
𝑥

𝜖𝑦

)−𝜁
]
, 𝑥 > 0 (A.1)

where 𝜖𝑦 > 0 and 𝜁 > 0 are the scale and shape parameters, respectively. Further, we let 𝑓𝑅0
(𝑟) be the PDF of 𝑅0.

We start from considering the reliability over a subset of [0, 𝑡𝑙], denoted by [0, 𝑡𝑠], over which the resistance degrades to 𝛼. Thus we 
have 𝐾 = 𝑘 = (1 − 𝛼)∕𝑡𝑠. We subdivide [0, 𝑡𝑠] into 𝑛 identical intervals (where 𝑛 →∞), denoted by [𝑡0 = 0, 𝑡1], [𝑡1, 𝑡2] … [𝑡𝑛−1, 𝑡𝑛 = 𝑡𝑠]. 
With this, the maximum seismic intensity within each interval also follows an Extreme Type IIdistribution with a shape parameter of 
𝜁 and a scale parameter of 𝜖𝑛 = 𝜖𝑦 ⋅ (𝑡𝑠∕𝑛)1∕𝜁 (its CDF is denoted by 𝐹𝑛(𝑥)). Based on the definition of reliability, it follows that,

Relload(𝑡𝑠) = 𝔼

{
𝑛∏
𝑖=1

𝐹𝑛
[
𝑅0 ⋅
(
1 − 𝑘𝑡𝑖

)]}
(with respect to 𝑅0)

= 𝔼
⎧⎪⎨⎪⎩

𝑛∏
𝑖=1

exp
⎡⎢⎢⎣−
(
𝑅0 ⋅
(
1 − 𝑘𝑡𝑖

)
𝜖𝑦 ⋅ (𝑡𝑠∕𝑛)1∕𝜁

)−𝜁⎤⎥⎥⎦
⎫⎪⎬⎪⎭

= 𝔼

{
exp

{
−

𝑛∑
𝑖=1

𝑡𝑠
𝑛

[
𝑅0 ⋅ (1 − 𝑘𝑡𝑖)

𝜖𝑦

]−𝜁}}

= 𝔼
⎧⎪⎨⎪⎩exp

⎧⎪⎨⎪⎩−𝑅
−𝜁
0 𝜖𝜁𝑦

𝑡𝑠

∫
0

(1 − 𝑘𝑡)−𝜁 𝑑𝑡
⎫⎪⎬⎪⎭
⎫⎪⎬⎪⎭

= 𝔼
{
exp
{
𝑅−𝜁
0 𝜖𝜁𝑦 ⋅

(1 − 𝑘𝑡𝑠)1−𝜁 − 1
𝑘(1 − 𝜁)

}}
= 𝔼
{
exp
{
𝑅−𝜁
0 𝜖𝜁𝑦 𝑡𝑠 ⋅

𝛼1−𝜁 − 1
(1 − 𝛼)(1 − 𝜁)

}}

(A.2)

Now, for the service period of [0, 𝑡𝑙], due to the multiple times of repair measures, the resistance is in a “brand new” state at times 
𝑆0, 𝑆1, 𝑆2… (see Fig. 1). Thus, we denote 𝑡𝑠,𝑖 =Δ𝑖 + 𝛿 for 𝑖 = 1, 2, … 𝑁(𝑡𝑙), and 𝑡𝑠,𝑁(𝑡𝑙)+1 = Δ𝑟. We also model the initial resistance is 
fully correlated with the restored resistances at times 𝑆1, 𝑆2…. With this, we have,

Relload(𝑡𝑙) =
𝑁(𝑡𝑙)+1∏
𝑖=1

𝔼
{
exp
{
𝑅−𝜁
0 𝜖𝜁𝑦 𝑡𝑠,𝑖 ⋅

𝛼1−𝜁 − 1
(1 − 𝛼)(1 − 𝜁)

}}

= 𝔼

{
exp

{
𝑅−𝜁
0 𝜖𝜁𝑦 ⋅

𝛼1−𝜁 − 1
(1 − 𝛼)(1 − 𝜁)

⋅
𝑁(𝑡𝑙)+1∑
𝑖=1

𝑡𝑠,𝑖

}}

= 𝔼
{
exp
[
𝑅−𝜁
0 𝜖𝜁𝑦 ⋅

𝛼1−𝜁 − 1
(1 − 𝛼)(1 − 𝜁)

⋅ 𝑡𝑙

]}

=

∞

∫
0

exp
[
𝑟−𝜁0 𝜖𝜁𝑦 ⋅

𝛼1−𝜁 − 1
(1 − 𝛼)(1 − 𝜁)

⋅ 𝑡𝑙

]
⋅ 𝑓𝑅0

(𝑟0)

(A.3)

Eq. (A.3) presents a closed form solution for the time-dependent reliability Relload(𝑡𝑙), which can be used in Eq. (46) for resilience 
assessment.
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