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ABSTRACT
We translate a multiobjective optimization problem into a single
objective Lipschitz problem by using the hypervolume criterion of
the Pareto set. Deterministic global optimizationmethods allow one
to track the whole Pareto front rather than converging to a sin-
gle non-dominated solution. We augmented an efficient hypervol-
ume computation technique with hypervolume increment strategy,
and established Lipschitzianity of the resulting objective function.
We used two deterministic Lipschitz optimizationmethods together
with the hypervolume objective and benchmarked them against
some state-of-the-art alternative multiobjective optimization meth-
ods, establishing the competitiveness of the proposed approach.
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1. Introduction

We consider the multiple objective (MO) optimization problem, in which a vector func-
tion f : X → R

k needs to be minimized over some feasible set X ⊂ R
n. For simplicity we

take X as a hyperrectangle or a simplex. In difference to single objective (SO) optimiza-
tion problems, which aim at locating the local or global minimizers of a scalar objective f,
MO optimization aims at determining the set of non-dominating solutions (Pareto set).
The Pareto set can be presented to problem domain experts in order for them to find
compromise solutions.

MO optimization problems appear in many applications [19,23,29,39,49,51]. In this
work we aremotivated by themodern digital watermarkingmethods which aim at embed-
ding imperceptible and non-removable pieces of information into digital audio, image
or video files [1,36,65]. Such embedding creates small degradations in the quality of the
media, and the goal is to embed a string of watermarks of a given length while min-
imizing the quality degradation and maximizing other criteria such as the difficulty of
watermark detection and removal by attackers. The decision variables are the parameters
of the watermarking algorithm and the objective function is typically given as an oracle
and is numerically expensive to evaluate.

A classical approach to MO problems is based on scalarisation of the objec-
tive [23,24,29,51,56,60]. For example, taking a linear convex combination of the objectives
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leads to a SO problem. This approach presumes a proper articulation of preferences
and tradeoffs between the objectives by the domain experts. The area of aggregation
functions [9,10] provides many alternative scalarisation techniques, including assigning
weights to the objectives and their combinations. Scalarisationmethods imply that a single
optimal solution will be found, but not the Pareto set.

Scalarisation techniques can also be applied dynamically in an approach known as active
learning of Pareto front [18,33,43,44,48,61]. Here scalar objectives are determined dynami-
cally from the available function values, such that their level sets approximate Pareto fronts
at the current stage of the algorithm, and are continuously updated whenever the Pareto
fronts are updated. The scalarised objective guides the SO optimization algorithm, but in
contrast to the fixed scalarised objective, themethod eventually determines the Pareto front
over X.

Evolutionary computing (EC) is another popular strategy forMO problems [3,16,20,21,
27,29,54,66,69,70]. Suchmethods explore the feasible set in order to construct a population
of optimal non-dominated solutionswhichwill eventually approximate the Pareto set. Such
methods converge to the Pareto set probabilistically, and as with SO, evolutionary comput-
ing requires a very large number of objective evaluations. Detailed benchmarking of such
methods is provided elsewhere [29,59,69,70].

In difference to SO problems, the criterion of success in MO is not the rate of con-
vergence to a local/global optimum, nor the value of the putative global optimum in
multi-extremal problems, but a more vaguely defined quality of approximating the Pareto
set [2,3,23,26,68,70]. One formal criterion is the hypervolume (HV): the volume of the set
of Pareto points (relative to the nadir or its approximation). It was shown that the hyper-
volume is the only criterion monotonically increasing with the Pareto set [2,3] (in terms of
dominance relation).

Themonotonicity of the hypervolume is a very desirable feature, as its larger values indi-
cate larger Pareto sets found by algorithms, not only in terms of their cardinality but also
in terms of diversity. Significantly larger hypervolume values indicate significant Pareto
points well away from others, and hence add value to the decision makers who may have
otherwise overlooked such alternatives.

It is therefore meaningful to formulate the MO problem as that of maximizing its suc-
cess criterion – the Pareto set hypervolume. Then one can convert the MO to SO problem
without eliciting the trade-offs between the objectives from the end users (in contrast to the
scalarisation methods). Of course it is the end users who make the final choice of selecting
an alternative from the computed Pareto set.

Using the hypervolume as the scalar objective has two challenges. Firstly, hypervolume
computation in more than two variables (objectives) is expensive. Secondly, hypervolume
is a very complicatedmultiextremal function of the problem variables x ∈ X. In fact, hyper-
volume is not even awell defined function of the variables x, as its values at a given x depend
on the history of the objective evaluations by the algorithm. When we pick an x whose
image is in the Pareto set, the value of the hypervolume is dependent on what other values
of f are known, i.e. it is a function of the whole known Pareto set.

Nevertheless there was recent interest in using hypervolume as a single ultimate objec-
tive in MO problems [2,3,13,17,33,64]. The specifics of hypervolume-based optimization
restricts the suitable SO optimization methods to those that track the whole set of poten-
tially optimal solutions, and balance the requirements of improving the objective and
sampling sufficiently densely the search domain.
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One recent approach involves application of the DIRECT (DIviding RECTangles)
algorithm [41,42], which is a multivariate extension of Lipschitz deterministic optimiza-
tion methods by Pijavsky and Shubert [52,57], to MO problems by using the hypervolume
as the single objective. Besides an efficient domain partition scheme into hyperrectan-
gles, DIRECT avoids the reliance on an estimate of the Lipschitz constant, by balancing
the value of possible local minima of the objective in a given region and the size of the
region. The recent papers [17,26,45–47,64] developMOversions of theDIRECT algorithm
and [30,68] look at a different extension of univariate Lipschitz optimization. In particu-
lar, deterministic algorithms based on hypervolumemaximizationwere considered in [64].
For an overview of variousmost recentMOapproaches based onmodifications ofDIRECT
and other deterministic methods we refer to [47].

In this contribution we follow the above mentioned trend and use a combination of the
hypervolume criterion with a different extension of the Pijavsky-Shubert method, called
the Extended Cutting Angle method (ECAM) [8]. The contributions and novelty of this
paper are two-fold.

Firstly we propose to use an alternative global optimization algorithm for multiob-
jective optimization in order to track the whole Pareto front rather than converging to
a few solutions, and compare it to various alternatives. Secondly, instead of scalarising
the objectives using some specified tradeoffs, we use the hypervolume criterion as the
objective, which is known to be monotonically increasing with the quality of the solution
(i.e. with the Pareto front). We show that such an objective can be calculated incremen-
tally and is Lipschitz continuous, hence suitable for deterministic global optimization. To
achieve computational efficiency we employ recent developments in multivariate hyper-
volume computations [62,63], and also design the hypervolume updating technique for its
incremental computation.

In difference to the previous works which combine multivariate versions of Lipschitz
optimization, such as DIRECT, with other selection criteria, we rely on the hypervolume-
based objective as in [2,3,13,64], but in difference to those works, and also under the
constraint of limited function evaluations, we do not employ evolutionary computing but
rather focus on deterministic methods such as in [17,26,45–47,64,68]. We illustrate that
within a limited functions evaluations budget ECAM outperforms DIRECT in problems
with higher dimensionality but at the expense of increased CPU time.

In Section 2, we present the MO problem formulation and some standard definitions.
We outline the Extended Cutting Angle Method in Section 3, which is a SO optimiza-
tion method to be used in conjunction with the hypervolume criterion. In Section 4, we
translate the multiobjective problem into SO problem and discuss the properties of the
hypervolume objective. The combination of the deterministic global optimization with the
hypervolume criterion is in Section 5, where we benchmark two methods on a set of chal-
lenging MO test problems, as well as against several state-of-the-art methods based on
Evolutionary Compting. We conclude in Section 6.

2. Problem formulation

We consider the following MO optimization problem

Minimise f (x) = (f1(x), . . . , fk(x))
s.t. x ∈ X ⊂ R

n, (1)
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where X is a compact feasible set, such as a hyperrectangle or a simplex. The treatment of
constraints is left apart, relying on many traditional approaches in SO optimization, such
as penalty functions.

Definition 2.1: Vector u ∈ R
k dominates v ∈ R

k whenever ui ≤ vi for all i = 1, . . . , k and
for at least one indexui < vi. The point y = f (x∗) ∈ Rk is a Pareto optimum if it is not dom-
inated by any other point z = f (x), x ∈ X. The set of the Pareto optimal function values is
called the Pareto front (or Pareto set) Par(X).

The goal of the MO optimization is to determine the Pareto set, although for contin-
uous problems a representative subset is sufficient. Also note that because we focus on
minimizing the objectives, the dominating relation involves the < inequality.

Definition 2.2 ([25]): Assume that the Pareto set is non-empty. The vector (sup f1(x),
sup f2(x), . . . , sup fk(x)) is called the nadir point and(inf f1(x), inf f2(x), . . . , inf fk(x)) is
called the ideal point. The componentwise sup and inf are taken independently over
Par(X).

If we further assume that Par(X) is compact then the sup and inf are attained and hence
replaced with max and min, and also the determination of the ideal point can be done by
solving independently k SOproblems overX. The determination of the nadir point ismuch
harder, but an upper approximation can be found similarly to the calculation of the ideal
point by maximizing over X [25].

Generally the ideal point is not reached at any x ∈ X, because the objectives are
conflicting. If the ideal point is reached, then it is the only Pareto optimal point.

Definition 2.3: The hypervolume of a set S relative to the nadir point is the Lebesgue
measure of the set of points dominated by those in S.

The weighted hypervolume indicator was proposed in [70]; it amounts to using the
weighted Lebesgue measure in the definition, where the weighting function depends on
the points.

The hypervolume indicator hv is monotonically non-decreasing with respect to the
dominance relation: if S dominates Q then hv(S) ≥ hv(Q) [2,3]. In fact it is the only
indicator with this property [70], and it is one of the reasons for its popularity. Mono-
tonicity of an indicator is a very valuable feature for MO problems which is related to
the diversity of Pareto points. The computational complexity of hypervolume algorithms
is exponential in k: O(Nk−1) [63], where N is the cardinality of the (discrete) Pareto
set. Recent advances reduced the complexity to O(Nk−2 logN) [28], and a specialized
algorithm further reduced it to O(N logN + Nk/2) [12,31,62]. The results in [15] prove
that hypervolume computation is a #P-complete problem.

As we mentioned in the Introduction, our goal here is to convert an MO problem to an
SO problem, using the hypervolume indicator as the objective function following [3,64],
which is ultimately a criterion by which the success of Pareto front approximation will be
measured. We are interested in a deterministic method similar to DIRECT, which would
help us track the Pareto front by building its lower approximation. For this reason we recur
to multivariate Lipschtz programming detailed in the next section.
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3. Cutting angle methods

The field of Lipschitz programming – locating local and global optima of Lipschitz-
continuous functions – has gained practical importance and applicability in the past
decades due to theoretical developments, design of the algorithms and increased comput-
ing power [34,35,51,53]. Lipschitz properties of the objective function allow one to deter-
mine exact bounds on the globally optimal solutions, and in many cases find and confirm
the global optima with reasonable computational effort. Overviews of the developments in
deterministic global optimization are found in [32,35,51,53].

Several methods of Lipschitz optimization are based on constructing lower approxi-
mations (underestimates) to the objective function f using its known values. The global
minima of the underestimates are taken as the lower bounds on the global minimum of f.
Convergence of the sequence of the lower bounds to the global minimum of f is proven
under very mild conditions, see [53,55]. Locating the global minimum of the underes-
timate is a simpler (yet still very challenging) problem compared to minimizing f. One
replaces the original optimization problem with a sequence of relaxed problems, whose
solutions converge to the global minimum of f.

The Cutting Angle method (CAM) [4,55] uses max-min type functions to build the
underetimates to f. The CAM is based on the generalized result from abstract convex analy-
sis, namely that every abstract convex function is the upper envelop of its sufficiently simple
minorants [55]. It is shown in [55] that Lipschitz functions defined on the unit simplex S
can be seen as restrictions of certain abstract convex functions defined on the cone R

n+.
This gives a way to apply CAM to Lipschitz functions defined on the unit simplex.

Following, in [7,8] another type of max-min support functions was used to create the
Extended CAM (ECAM)

h(x) = min
i=1,...,n

(Cixi + bi), Ci > 0, x ∈ R
n :

n∑

i=1
xi = 1. (2)

These functions are more flexible in building tighter underestimates of Lipschitz objective
functions, and coefficients Ci can be chosen to match the Lipschitz constant of f. One-
dimensional Pijavski-Shubert method (and its variations [32,52,57,58]) arises as a special
case of ECAM.

A function f is abstract convex with respect to the set of functions H (or H-convex)
if there exists U ⊂ H: f (x) = sup{h(x) : h ∈ U}, ∀ x ∈ X. The set of H-minorants of f is
called the support set of f with respect to the set of functionsH: supp(f ,H) = {h ∈ H, h ≤
f }. H-subgradient of f at x is a function

h ∈ H : f (y) ≥ h(y) − (h(x) − f (x)), ∀ y ∈ X.

The set of all H-subgradients of f at x is called H-subdifferential

∂Hf (x) = {h ∈ H : ∀ y ∈ X, f (y) ≥ h(y) − (h(x) − f (x))}.
CAM (and ECAM) is based on the following approach to minimizing f. It is an iterative
process of building piecewise affine underestimates of f, HK(x), K = n, n + 1, . . ., using K
known values of f at xk, k = 1, . . . ,K. At each iteration K, the following relaxed problem
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is solved

min HK(x)
s.t. x ∈ X. (3)

The global minimizer of HK is chosen as xK+1, f is evaluated at xK+1 and HK is updated
to HK+1.

CAM is a version of the Generalized Cutting Plane algorithm, presented in [55], p.405
and reproduced below.

Algorithm 1 (Generalized Cutting Plane Algorithm): Step 0. (Initialisation)

0.1 Set K = 1.
0.2 Choose an arbitrary initial point x1 ∈ X.
0.3 Set fbest = f (x1).

Step 1. (Calculate H-subgradient)

1.1 Calculate hK ∈ ∂Hf (xK).
1.2 Define HK(x) = maxk=1,...,K hk(x), for all x ∈ X.

Step 2. (Minimize HK)

2.1 Solve relaxed Problem (3). Let x∗ be its solution.
2.2 Set K = K + 1, xK = x∗.
2.3 Set fbest = min{f (xK), fbest}.

Step 3. (Stopping criterion)

3.1 If K < Kmax and fbest − HK(x∗) > ε go to Step 1.

The underestimate HK is often called the saw-tooth underestimate, or saw-tooth cover of
f, because of its shape. In the ECAM the support functions are

hk(x) = min
i∈I (f (xk) − Ci(xki − xi)) = min

i∈I (Cixi + bki ), (4)

where Ci ≥ M are fixed numbers greater or equal to the Lipschitz constant of f on X, and
bki = f (xk) − Cixki , and I ⊂ {1, s, . . . ,K} has cardinality n = m+ 1, wherem is the dimen-
sion of the original problem (dimension ofX). Note that a slack variable xm+1 is used. Then
all hk approximate f from below. The method is applicable to minimization of abstract
convex functions with respect to (4), which include all Lipschitz functions on R

n−1 with
n = m+ 1.

The form of the functions hk in (4) resembles various attempts to generalize Pijavski-
Shubert method [32,52,55,57,58], p.417, using underestimates

HK(x) = max
k=1,...,K

(f (xk) − C||x − xk||). (5)
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The difference is that instead of a norm || · || ECAM uses a polyhedral distance function
dP (in fact, the simplicial distance, see [8]), so that (5) becomes

HK(x) = max
k=1,...,K

hk(x) = max
k=1,...,K

(f (xk) − CdP(x, xk)). (6)

For the purposes of convenience, we introduce a slack variable xm+1 = 1 − ∑m
i=1 xi

and put n = m+ 1. With the help of the new coordinate we can write the saw-tooth
underestimate HK as

HK(x) = max
k=1,...,K

(f (xk) − CdP(x, xk)) = max
k=1,...,K

min
i∈I (f (xk) − Ci(xki − xi)). (7)

Notice that the values x1, . . . , xn are restricted only by
∑n

i=1 xi = 1. For n = m+ 1 = 2
it coincides with the Pijavski-Shubert saw-tooth underestimate, but differs from other
approaches which extend it to multiple variables.

The reason for choosing support functions (4), as opposed to using other distances
in (6), is that the relaxed problem can be solved very efficiently by enumerating all local
minima of HK using an approach similar to the one in [6,7].

Using the values of the function f at the points xk, k = 1, . . . ,K, let us define the support
vectors lk:

lki = f (xk)
Ci

− xki . (8)

The support functions can be expressed as

hk(x) = min
i∈I (f (xk) − Ci(xki − xi)) = min

i∈I Ci(lki + xi). (9)

We will enumerate all local minimizers of the function HK in X, which after sorting will
yield its global minimum.

Proposition 3.1 ([8]): The necessary and sufficient condition for a point x∗ ∈ ri X to be a
local minimizer of HK = maxk=1,...,K hk and hk given by (9), is that there exists an index set
J = {k1, k2, . . . , kn} of cardinality n, such that

d = HK(x∗) = C1(lk11 + x∗
1) = C2(lk22 + x∗

2) = . . . = Cn(lknn + x∗
n),

and ∀ i ∈ I, Ci(lkii + x∗
i ) < Cj(lkij + x∗

j ), j 	= i.

Now the local minimizers enumeration procedure works by identifying the subsets of
indices L = {lk1 , lk2 , . . . , lkn} which satisfy the conditions of Proposition 3.1.

Furthermore, in [5,6] it was shown that combinations L can be built incrementally,
by taking initially the first n support vectors (which yields the unique combination L =
{l1, l2, . . . , ln}), and then adding one new support vector at a time, as well as efficiently
keeping these combinations in an n-ary tree data structure. That is, all local minima of
functions Hn,Hn+1, . . . ,Hk, . . . ,HK can be seen as nodes of a tree, and the minima of
HK are the leaves of this tree. The root of the tree is Vn = {(l1, l2, . . . , ln)}. The parent and
child nodes of this tree differ only by one support vector, and if a child node fails condi-
tions of Proposition 3.1, its parent (and all ancestors) will also fail it. Then a tree-traversal
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algorithm for incremental enumeration of all local minima of functionsHK was presented
in [5,6], and it has complexity O(log |VK |)), where |VK | is the number of local minima
of HK .

We underline an important fact here: The ECAM method maintains a lower approx-
imation to the objective (to be minimized) over the feasible domain X. In difference to
stochastic methods which may focus on some of the promising parts of the domain, even
though for a very large number of function evaluations they too sample X sufficiently
densely, deterministic methods always maintain sampling density, as unexplored parts
of the domain result in poorer approximation of the objective and hence are detected
and favoured by the algorithm. Thus deterministic methods do not focus on reaching
one particular optimum but rather confirming that there are no other optima, so build-
ing an accurate overall approximation of the objective is inherent in the spirit of such
algorithms. In the hypervolume based MO context this comes very handy as it translates
into an approximation of the whole Pareto front as a consequence, even though such an
approximation is not explicit.

Another noteworthy feature of the ECAM is its efficiency in building the lower approx-
imation, which requires only the set of previously evaluated function values put into an
efficient tree structure, which tracks only the local minima of the lower approximation.
These minima correspond in fact to the points of the future evaluations of the objective,
and consequently one can limit the growth of that tree to a function of the available func-
tion evaluations budget B, thus limiting the complexity of the algorithm to O(B log(B))

(due to logarithmic complexity of tree traversal).

4. Hypervolume objective

Let us now relate the MO problem (1) to the hypervolume-based SO problem to which
we subsequently apply various SO optimization methods. Consider the set of points S =
{y = f (xk), k = 1, 2, . . . ,K}, generated by an optimization algorithm inK steps. The hyper-
volume is a set function HV : S → R+, which takes into account all the points y seen by
an algorithm. To formulate an SO problem we need a function which depends on points
x ∈ Xwith suitable properties. Hencewe define the scalar functionHv : X → R+, by using
Hv(x) = HV(S ∪ {f (x)}). This function Hv depends on x and the history of evaluations,
but for any fixed step K of an algorithm (hence fixed S), is well defined and depends on x
only. The choice of x is governed by the SO optimization algorithm, and from the algorith-
mic perspectiveHv is viewed as any other objective function,which is Lipschitz-continuous
as we will show in a moment. This way the MO problem is translated into a SO Lipschitz
optimization problem to which we apply the methods of Lipschitz programming from
Section 3.

Our single objective to minimize is the negative hypervolume Hv relative to an upper
approximation to the nadir point, computed as the pointwise maximum of the individual
objectives N = (max f1(x), . . . , max fk(x)) over X.

Note two observations. Firstly, we are not computing the true nadir point (over Par(X))
as in [25], it is unnecessary here, as at some stages of the algorithms the hypervolume
involving points whose objectives are worse than those of the nadir (e.g. the points in the
top right corner in Figure 1). Such a reference point is much easier to compute than the
nadir.
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Figure 1. The first 5000 function evaluations in the objective space (Problem Kur1), from left to right:
baseline random search, DIRECT, ECAM. A clear concentration of values near the Pareto front in the
bottom left corner is evident for both global optimization methods.

Secondly, let us show that the hypervolume is a Lipschitz function provided that the
functions fk are Lipschitz. We need to carefully define what is meant by Lipschitzianity
in this context. Recall that the hypervolume is a function of a set of points, and within
the context of an optimization algorithm, it is a function of the set of already observed
function values. Hence different algorithms, or realisations of the same algorithm, usually
result in different values of Hv(x) for the same x ∈ X. Therefore an important question
for algorithm development is whether hypervolume behaves as a Lipschitz function of
the coordinate vector x ∈ X for any fixed set of previously recorded function values (for
Lipschitz properties of the Pareto front see [51,68]).

So suppose that at step j of an optimization algorithm we have a discrete set of points
Dj = {xi, i = 1, . . . , j} and the corresponting function values FDj = {f (xi), i = 1, . . . , j},
part of which constitute the current Pareto front with hypervolume Hj. Take any x ∈
X and calculate the increment to hypervolume of the Pareto front �Hj = Hj(x) −
Hj. By Lipschitz conditions |fl(x) − fl(xi)| ≤ L||x − xi|| for l = 1, . . . , k and all xi ∈ Dj,
hence the largest increase in the hypervolume is Hj(x) − Hj ≤ (Lmaxi ||x − xi||)k ≤
Lkdiam(X)k−1 maxi ||x − xi||, where diam(X) is the diameter of the feasible domain.
Therefore the hypervolume is a Lipschitz function for compact domainsX, but its Lipschitz
constant grows as the kth power of L.

As an example, consider the univariate k-objective linear problem on [0, 2] with fl(x) =
Lx. Then for x0 = 0 and x1 = 2 the increase to the hypervolume (relative to the origin) is
�H1 = Lk2k. Hence unfortunately the estimate of the Lipschitz constant (as the kth power
of L) cannot be improved.

Therefore from the algorithmic perspective, the use of the hypervolume as the scalar
objective can be done in the framework of Lipschitz optimization but with a larger estimate
of the Lipschitz constant, derived from the Lipschitz constants of the individual objectives.

Let us nowelaborate on the computation of the hypervolume.A recent overviewofmod-
ern hypervolume calculation methods is given in [31]. The WFG (Walking Fish Group)
algorithm [62,63] is currently one of the fastest for computing the hypervolume indicator
inmany dimensions, particularly for k>7.WFGalgorithmhas time complexityO(|P|k−1),
which is polynomial in terms of the cardinality of the Pareto front |P|. It is mainly based on
the bounding technique and on the inclusion-exclusion principle, and is further optimized
by integrating ideas of dimension sweep and objective reordering.
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WFGworks as follows: given the point setX ⊂ Rk and a reference point r ∈ R
k, points in

X are sorted and visited in ascending order of dimension k. For each point p ∈ R
k visited,

the (k − 1)- dimensional contribution of p to the set of already visited points S is then
computed and multiplied by a factor. The contribution to the hypervolume is computed
by as the hypervolume of S but bounded by p. The bounding technique in combination
with dimension sweep allows many points to become dominated and, thus, it plays an
important role in reducing the required computational effort. This placesWFG among the
fastest algorithms for many dimensions (k>4).

The WFG algorithm is suitable for calculating the improvements to the hypervolume
with the addition of new points dynamically, without recalculating the hypervolume of
the whole Pareto front. It makes WFG particularly suitable for hypervolume-based SO
optimization as recalculation of the objective with the addition of new Pareto points is
facilitated by the algorithm.

The incremental WFG algorithm works as follows. Suppose that at step K of the opti-
mization algorithm the hypervolume of the current Pareto front S is Hv(S), and the
algorithm selected point x to evaluate y = f (x). The value of the objective (to minimize)
is thus calculated as −Hv(S ∪ {y}). Instead of recalculating the hypervolume of the whole
new Pareto front, we calculate the increment �Hv = Hv(S ∪ {y}) − Hv(S), by first iden-
tifying the points from S dominating y. If there are no such points (y is not on the Pareto
front) the increment is 0. If there are, call that subset SY, the increment will be the hyper-
volume of SY relative to the ‘nadir’ point y. Therefore we calculate �Hv by executing an
instance of the WFG algorithm as follows

Algorithm 2 (Calculation of the hypervolume objective): Inputs: Pareto front S, current
hypervolume hv, new point y. Step 1. If y does not dominate any z ∈ S then Return hv. Step
2. Assume SY = {z ∈ S|y ≺ z}

2.1 SZY = {r = z − y|z ∈ SY}.
2.2 dh = HypervolumeWFG(SZY) (relative to the origin).
2.3 Return hv + dh.

Thus Algorithm 2 repeatedly calls the WFG calculation algorithm for a relatively small
subset of points, provided the number of objectives is small tomoderate (k ≤ 5). For larger
k the incremental algorithm becomes less efficient as it often happens that the subset SY of
dominated points is large (sometimes over half the size of S). Nevertheless Algorithm 2 is
no less efficient than recalculatingHv(S ∪ {y}) directly. For two-three objectives the typical
size of SY was up to 50 in our experiments.

5. Numerical experiments

The methods based on constructing underestimates of the objective functions are most
suitable forMOoptimization problems, especially those based onPareto front learning and
hypervolume criterion. The sequences of underestimates converge to the scalar objective
uniformly, thus providing accurate approximations to the whole Pareto set. The suggested
use of the DIRECTmethod in [17,45–47] is based on that logic, and hence it is appropriate
to compare it to other deterministic global optimization approaches such as ECAM.
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TheDIRECTmethod [41,42] also falls into the category of Lipschitz global opimisation,
even though it is marketed as not requiring the knowledge of the Lipschitz constant. The
DIRECTmethod partitions the feasible set X into hyper-rectangles, and calculates a lower
bound on the value of the objective on each hyper-rectangle from the assumed Lipschitz
condition. It then dynamically selects which hyper-rectangles to partition next.

While the lower approximations to the objective function on the hyper-rectangular par-
tition of X are calculated based on the size of the rectangle and the Lipschitz constant (in
the same spirit as in the CAM/ECAM), the latter is treated as a parameter, allowing the
algorithm to select the subsequent evaluation points xk based on two rather than one cri-
teria: the size of the rectangle and its ratio to the Lipschitz constant (which is equal to the
value of the local minimum of the underestimate on that rectangle). Hence the subsequent
evaluation points are chosen from the Pareto sets of an auxiliary bi-objective problem. In
fact one can convert any Lipschitz optimization algorithm into a Lipschitz-free method in
the same way as in the DIRECT method, by treating the Lipschitz constant as a param-
eter. In this work we prefer to fix a reasonable overestimate of the Lipschitz constant for
the ECAM, while comparing it to both Lipschitz-free DIRECT and its version with a fixed
Lipschitz constant.

We used Ganso library [11] for an implementation of the ECAM algorithm. We
used n20k overestimate of the Lipschitz constant for k-objective n-variate problems.
The DIRECT method implementation was taken from [42], converted into C language
https://github.com/rlnx/DiRect, it does not require any user-specified parameters.

We used the algorithm WFG to compute the hypervolumes from [62,63]. WFG
is polynomial O(|P|k−1) in terms of the cardinality of the Pareto set, and it shows
very good average case performance, which is suitable for multiple evaluations of
hypervolumes of related Pareto sets. The program code in C is available from
https://github.com/MOEAFramework/Hypervolume/tree/master/WFG.

We selected the following set ofMO test problems from a comprehensive review in [37],
from where we adopted their abbreviations, the default domains and parameter setting.
We excluded univariate problems as in this case ECAM becomes the standard Pijavski-
Shubert algorithm, and we also excluded less challenging problems with convex objectives.
Where possible we used different dimensionalities n. The computations were performed
on a Linux-based workstation with Intel I7-6700KCPUwith 32 Gb Ram, clocked at 4GHz.
The hypervolumes were calculated with chosen reference points. For a reference we also
included the hypervolume found by the baseline method – random search. This way the
difference between the two methods is put in the context. All methods were given the
budget of 100,000 function evaluations.

For benchmarking we also used several standard evolutionary MO optimization meth-
ods, namely (Non-dominated Sorting Genetic Algorithm) NSGA2, NSGA3, reference
point based NSGA (RNSGA) and Adaptive Geometry Estimation Multiobjective Evolu-
tionary Algorithm (AGEMOEA) implemented in the package pyMOO [14] with the same
budget and different numbers of iteration and population size. The description of these
methods is given in [3,21,22,40,50,66].

As the evaluation and efficiency criteria we used the hypervolume (relative to a suit-
ably chosen point for each problem, namely N = (max f1(x), . . . , max fk(x)) over X, the
(Inverted Generational Distance) IGD+ indicator [38] and the CPU wall time. Even
though the budget (in terms of function evaluations) was the same for each algorithm,

https://github.com/rlnx/DiRect
https://github.com/MOEAFramework/Hypervolume/tree/master/WFG
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Table 1. The results of numerical experiments expressed as Hypervolume and IGD+ on a selection of
challenging test problems of different dimensions n and number of objective k.

ECAM DIRECT

Problem n/k Hv IGD+ CPU (sec) Hv IGD+ CPU (sec)
baseline
Hv

Kur1 2/2 99.53 0.003 38 99.22 0.01 21 99.4
Kur1 3/2 272.3 0.11 82 276.3 0.019 45 275.1
Kur1 4/2 498.9 0.32 118 519.1 0.05 48 452
Kur1 5/2 828.1 0.02 311 826.2 0.02 141 666
VU1 2/2 165.8 0.003 91 165.8 0.003 61 165.8
VU2 2/2 110.9 0.004 83 91.9 0.91 58 110.8
SK2 4/2 80.1 0.06 219 67.5 0.41 129 68.4
TKLY1 4/2 24.75 0 211 24.2 0.001 152 23.6
LTDZ1 3/3 28.25 0 291 26.99 0.1 175 26.99
ZDT1 10/2 23.1 0.11 356 16.1 1.8 103 20
ZDT1 20/2 24.2 0.017 751 10.3 3.1 141 20
ZDT2 10/2 24.0 0.012 361 13.1 3.0 101 20
ZDT2 20/2 21.5 0.14 713 4.6 4.1 155 20
ZDT3 10/2 27.2 0.022 386 19.2 1.1 114 20.2
ZDT3 20/2 29.4 0 812 13.4 2.1 112 20.2

Note: The hypervolumes (Hv) which are the same or worse than the baseline random search are marked with italics.

the CPU times varied, which is explained by the more sophisticated and expensive inner
workings of each algorithm.

First we illustrate the behaviours of different algorithms in the objective functions space.
Consider Figure 1. In part (a) we show the images of uniform randomly selected points
in the domain D, which correspond to the base case of pure random search. Clearly this
method is inefficient, as only a small proportion of the selected points falls into a proxim-
ity of the Pareto set. The other parts on this figure show the images of the sequences of
points xk chosen by different algorithms. The faster and closer these sequences converge
to the Pareto set, the more efficient is the algorithm. Tables 1 and 2 present the numerical
results for comparison. In both tables the hypervolume in italic indicates the cases where
the respective algorithmwas no better (and sometimesmuch worse) than the baseline ran-
dom search (which is obviously the least sophisticated approach with no overheads). First
we focus on Table 1 which compares the two hypervolume-based methods.

We see that both methods show comparable results on Kur1 and VU1 problems, and
the DIRECT method is faster than ECAM, as we expected. However on the ZDT prob-
lems the DIRECT algorithm surprisingly was unable to determine Pareto fronts and was
significantly worse than the random search. Comparatively smaller CPU times for these
dimensionalities indicate premature convergence to a limited subset of Pareto points.

This may reflect the view in [67] about the relative efficiency of the passive MO opti-
mization algorithms compared to those that use the computed values of the objectives.
In contrast, ECAM has shown solid performance in most cases, although it was more
expensive and did not find Pareto fronts in a few cases. For higher dimension ECAM is
substantially better than the baseline and DIRECT methods, but at the expense of the
CPU time. Since the budget of all methods was the same, it is the internal workings of
ECAM building more accurate model of the objective which contributes to the computa-
tional cost. Consequently it appears that the performance of the DIRECT method applied
toMO optimization is not much better than that of a faster random search. ECAMdelivers
better quality Pareto fronts but is substantially more expensive.
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Table 2. The results of numerical experiments on a test problems of different dimensions n and number of objective k using the Evolutionary Computing algorithms,
for benchmarking against Table 1.

NSGA2 NSGA3 RNSGA AGEMOEA

Problem n/k Hv IGD+ CPU Hv IGD+ CPU Hv IGD+ CPU Hv IGD+ CPU

Kur1 2/2 99.54 0.0026 10 99.4 0.004 11 99.3 0.01 21 99.5 0.006 26
Kur1 3/2 277.3 0.0048 9 276.3 0.017 11 232.5 1.18 12 276.8 0.016 25
Kur1 4/2 521.9 0.024 10 511.8 0.1 12 520.7 0.047 20 522.06 0.018 25
Kur1 5/2 834.3 0.01 10 773.4 0.59 12 739.8 1.60 18 833.8 0.01 26
VU1 2/2 165.8 0.003 9 165.4 0.008 12 160.9 0.05 23 165.77 0.0058 17
VU2 2/2 110.9 0.0056 10 110.8 0.019 12 103.9 0.25 19 110.8 0.008 38
SK2 4/2 82.0 0.018 10 80.7 0.06 12 53.8 0.61 19 81.9 0.023 24
TKLY1 4/2 23.9 0.023 10 24.66 0.00001 11 20.48 0.13 23 23.88 0.005 29
LTDZ1 3/3 26.38 0.41 10 26.29 0.42 13 18.7 0.79 27 26.41 0.41 46
ZDT1 10/2 24.7 0.0011 9 24.6 0.0013 11 24.59 0.015 14 24.7 0.0024 21
ZDT1 20/2 24.7 0 9 24.6 0.0001 11 24.6 0.0015 20 24.7 0.0001 31
ZDT2 10/2 24.3 0.0014 9 24.3 0.002 10 24.3 0.0015 11 24.3 0.002 27
ZDT2 20/2 24.3 0.0015 9 24.3 0.002 11 24.2 0.0015 24 24.3 0.002 28
ZDT3 10/2 28.1 0.0005 9 28.1 0.001 10 28.3 0.0015 12 28.1 0.001 31
ZDT3 20/2 28.1 0.11 9 28.1 0.11 10 28.1 0.12 12 28.1 0.11 31

Note: The hypervolumes (Hv) which are the same or worse than the baseline random search are marked with italics.
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We also compared the hypervolume-based methods against some state-of-the-art MO
algorithms, namely NSGA2, NSGA3, RNSGA and AGEMOEA [3,21,22,40,50,66]. The
results here are as follows (see Table 2). For low dimensionality all methods show sim-
ilar results in terms of CPU time and the calculated hypervolume and IGD+ criterion.
The CPU time of these methods is smaller than those of ECAM and DIRECT and stayed
the same for all dimensionalities, indicating that their cost is bounded by the allocated
budget. The performance varied across the board, each of those methods failed to deliver
better results than the baseline random search on various occasions, with NSGA2 being
the fastest method. For two test problems LTDZ1 and ZDT3 all these methods were sig-
nificantly worse than the ECAM hypervolume-based algorithm, and even were unable to
match it when increasing their budget tenfold. This is consistent with [59] where the hyper-
volume criterionwas usedwith the budget of up to 5.5 × 106 function evaluations.We refer
to [17,20,29,59,69,70] for detailed benchmarking of the EC-based methods.

6. Conclusions

We translated the vector optimization problem into a single objective problem by using
hypervolume indicator as the objective, taking advantage of the algorithms for relatively
fast calculation of that objective. We have shown that this function is Lipschitz (as long as
the objectives of MO problem are Lipschitz), and detailed how to evaluate the hypervol-
ume efficiently.We then applied two global optimization strategieswhich allow one to track
the whole Pareto front of the MO problem based on Lipschitz optimization. The DIRECT
and the ECAMmethods build a piecewise linear lower approximation to the single objec-
tive, which converges to the true objective uniformly. The DIRECTmethod avoids explicit
use of the Lipschitz constant of the objective, whereas ECAM requires its overestimate.
While the DIRECT method uses a much more simple model of the objective and hence is
much faster in more than 2 variables, its results are inconsistent, and are sometimes worse
than the baseline random selection of function evaluation points. ECAM delivers higher
hypervolumes due to its more accurate lower approximation model, but at the expense
of CPU time. We also compared the numerical results to some state-of-the-art methods
based on evolutionary computing and found ECAM to be competitive but computation-
ally more expensive. Our research establishes the usefulness and competitiveness of using
the combination of Lipschitz optimization and the hypervolume criterion inMOoptimiza-
tion with limited computational budget. From the rationale provided here and expressed
in [3,26,46,47,59,64], as well as computational experience, it appears that for a reasonably
small number of objectives the use of deterministic global optimization together with the
hypervolume criterion is a viable competitive alternative method for solving multiobjec-
tive problems, however the question of more efficient computation of the hypervolume in
higher dimensions is crucial for the success of such methods.
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