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Abstract

With the regulatory requirements for risk management, Value at Risk (VaR) has become

an essential tool in determining capital reserves to protect the risk induced by adverse market

movements. The fact that VaR is not coherent has motivated the industry to explore alternative

risk measures like expected shortfall. The first objective of this paper is to propose statistical

methods for estimating multiple-period expected shortfall under GARCH models. In addition

to the expected shortfall, we investigate a new tool called median shortfall to measure risk. The

second objective of this paper is to develop backtesting methods for assessing the performance of

expected shortfall and median shortfall estimators from statistical and financial perspectives. By

applying our expected shortfall estimators and other existing approaches to seven international

markets, we demonstrate the superiority of our methods with respect to statistical and practical

evaluations. Our expected shortfall estimators likely provide an unbiased reference for setting

the minimum capital required for safeguarding against expected loss.
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1 Introduction

Managing risk in financial institutions has been the focus of much interest in many coun-

tries. In a qualitative sense, risk management amounts to setting up suitable regulations,

monitoring systems and using proper disclosure mechanisms. From a quantitative per-

spective, the use of appropriate risk measures is an important issue. In developing criteria

to describe measures of risk, Artzner et al. (1997, 1999) introduced coherent properties

that proper risk measures should obey. The properties are related to the ‘benefit of diversi-

fication’ that financial participants would like to see in their portfolios. The subadditivity

condition is one of the coherent properties which cannot be satisfied by the common risk

measure, Value at Risk (VaR). Therefore, it is of practical need to investigate alternative

risk measures that are coherent. Among all coherent measures, expected shortfall (Acerbi

et al., 2001; Acerbi and Tasche, 2002; Tasche, 2002) is regarded as a good supplement

to VaR, not just because it is optimal in some sense (Inui and Kijima, 2005), but also

because it is closely linked to VaR. By definition, expected shortfall is interpreted as the

mean loss when the loss in the investment exceeds the VaR level. Therefore, the ex-

pected shortfall gives an estimate of the amount of capital depreciated under worst-case

scenarios that are quantified by VaR. One important question is how to estimate the

multiple-period expected shortfall while capturing the term structure of volatility in the

market. This paper develops a new method for estimating the multiple-period expected

shortfall that is computationally feasible to use in practice. For a more general discussion

of risk measures, we recommend McNeil et al. (2005) and Szego (2005).

Estimation methods for expected shortfall follow one of the two approaches, uncondi-

tional and conditional. Common methods using unconditional approach include sample

averaging based on order statistics (Yoshiba and Yamai, 2002) and estimators using ex-

treme value theories (Cotter and Dowd, 2006). Acerbi and Tasche (2002) showed that

the sample average estimator is consistent. While there are technical difficulties in using

a conditional approach, researchers believe that it is necessary to incorporate dynamic

changes in the market to reflect the most updated risk level. Guidolin and Timmermann

(2006) empirically investigated different models that produce expected shortfall forecasts.

They used classical Monte Carlo methods to calculate the forecasts. One major limitation

of any Monte Carlo method is that the computational effort can be too heavy to make the
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method widely applicable. The first objective of this paper is to develop a new multiple-

period expected shortfall estimator based on the conditional kurtosis idea in Wong and

So (2003) in the GARCH framework. Putting the estimation in the GARCH framework

helps us to incorporate recent market volatility changes in our estimation. Generally

speaking, we make use of conditional kurtosis to use the ‘fat-tailed information’ of the

multiple-period return distributions to derive an elegant estimator that is simple to use

and is easy to calculate. An analytical formula is proposed to replace the use of the Monte

Carlo scheme. Advantages of our proposed method are twofold. Firstly, the conditional

kurtosis and the analytical formula help us to understand the impact of tail fatness in the

return distribution on the quantification of the average loss under worst-case scenarios.

Secondly, our estimator, while having similar performance, is computationally much more

efficient than the Monte Carlo estimator. As an useful extension, we also investigate a

new tool to determine the median shortfall, which is defined as the median loss when the

loss exceeds the VaR.

One important factor in developing a new risk estimator is to identify suitable as-

sessment tools. For VaR, we can perform backtesting using both the unconditional and

conditional coverage tests in Christoffersen (1998). The second objective of this paper is

to propose tests for expected shortfall on the unbiasedness and financial cost functions

that are related to the ‘real’ cost of generating poor expected shortfall estimates. The

test of unbiasedness is carried out by a bootstrap method. The cost functions are defined

based upon the belief that we want to keep the capital reserve in protecting risk small

and adequate. In short, our expected shortfall estimator is examined based on statistical

and financial tools that provide information on any deficiency in the estimator from theo-

retical and financial perspectives. The rest of this paper is organized as follows. Section 2

gives a brief review of common volatility models for risk calculations. Section 3 describes

expected and median shortfalls as risk measures. Section 4 presents a new method for

computing multiple-period expected shortfall estimation using conditional kurtosis. We

outline assessment methods for expected shortfall and present empirical results from seven

financial markets in Section 5. Concluding remarks are given in Section 6.
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2 Common volatility models for risk calculations

Let rt be the return at time t and let Ωt be the publicly available information up to time

t. The aggregate return, Rt,h, at time t for horizon h is given by Rt,h = rt+1 + · · ·+ rt+h,

which represents the multiple-period return on investment from time t to time t + h. In

general, if C is the current market value of a portfolio, a loss in the portfolio from time t

to time t+ h can be calculated from

Lt,h = −CRt,h.

Classical risk calculations usually involve quantifying the variability of Rt,h by suitable

statistical measures, like the standard deviation, the mean absolute deviation and the

interquartile range. The above measures are based on the overall variation of the distri-

bution of Rt,h. To focus on loss in an investment, it is necessary to use downside risk

measures that are primarily related to the left side of the distribution of Rt,h rather than

the entire return domain. In recent years, it has become a norm for financial market risk

managers to consider how extreme the loss of a portfolio would be with a predetermined

probability level.

The downside risk measure, VaR or value at risk, is widely used by financial institutions

because it was adopted in the capital adequacy framework. It is the maximum loss of

a portfolio in a given holding period, h, with a predetermined probability, 1 − p, with p

taking a small value. In general, the h-period VaR of that portfolio is given by

VaRh,p = −CVh,p , (1)

where Vh,p is the pth percentile of the aggregate return distribution, that is, P (Lt,h ≤

VaRh,p) = 1 − p or P (Rt,h ≤ Vh,p|Ωt) = p and the negative of it is also the VaR of a $1

portfolio. Producing a reliable estimator for VaR entails the study of extreme percentiles

of the conditional distribution of Rt,h given the current information at time t with appro-

priate statistical models for returns. One popular model used by market practitioners is

RiskMetrics pioneered by J.P. Morgan. The RiskMetrics model can be stated as

rt = σtεt, εt ∼ N(0, 1), (2)

σ2
t = (1− λ) r2t−1 + λσ2

t−1, (3)
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where σt is the variance of rt given Ωt. This model aims at accounting for the changing

conditional variance σt by an exponetially weighted moving average. As suggested by J.P.

Morgan, the decay factor, λ, is set at 0.94 for daily data and 0.97 for monthly data.

It is well known that the RiskMetrics model is an Integrated GARCH(1,1) model.

In this paper, we also consider an asymmetric GARCH model to capture the volatility

asymmetry that is observed in financial markets. We will see that capturing volatility

asymmetry is a crucial factor in accurately estimating VaR and expected shortfalls. In

general GARCH models, the conditional variance of rt is independent of the sign of the

pervious return rt−1. However, there is strong evidence from market data that volatility

responds differently to the rise and drop of the market. Therefore, the Quadratic GARCH

model (Engle, 1990; Campbell and Hentschel, 1992 and Sentana, 1995) that we use here

is more compatible with the stylized facts of asymmetric volatility than are the usual

GARCH models. In particular, we model one-period returns using a QGARCH(1,1)

model with t error:

rt = µ+ r̄t, r̄t = σtεt, εt ∼ tν , (4)

σ2
t = α0 + α1 (r̄t−1 − b)2 + β1σ

2
t−1, (5)

where µ is the unconditional mean of the one-period return and tν is the standardized t

distribution with the standard deviation equal to one. The parameter b is used to capture

the volatility asymmetry effect. According to Wong and So (2003), a VaR estimator based

on exact conditional variance is given by

V̂
[1]
h,p = hµ+

√
V ar(Rt,h|Ωt)Φ

−1(p),

where V ar(Rt,h|Ωt) is the exact conditional variance of Rt,h under QGARCH, which can be

obtained using the method described by Wong and So (2003). The VaR under RiskMetrics

is given by

V̂
[2]
h,p =

√
hσt+1Φ

−1(p),

where Φ−1(p) the pth percentile of the standard normal distribution. The above formula

is derived from the usual square root of time rule and by assuming that the conditional

distribution of Rt,h is normal.
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3 Mulitple period expected shortfall and median short-

fall

VaR is easy to use as it is a cut-off value that separates future loss events into risky

and non-risky scenarios. It is widely accepted in financial institutions for measuring risk

and for determining suitable amounts of capital reserves, but it suffers from a number of

weaknesses. VaR does not provide any information about the size of the potential loss

when it is exceeded. In addition, Artzner et al. (1997, 1999) showed that VaR is not a

coherent risk measure because it is not subadditive. This means that if two portfolios

are merged to form a combined portfolio, the VaR of the combined portfolio may be

greater than the sum of the VaRs of the two separate portfolios. The non-subadditivity

feature of VaR violates the consensus regarding the benefit of risk diversification. Using

VaR may then discourage the common financial practice of diversifying risk by combining

risk positions. In the above regard, VaR should be used with care and alternative risk

measures are indispensable.

A new risk measure called expected shortfall, which is closely related to VaR, was

proposed by Acerbi et al. (2001). The h-period expected shortfall with probability p,

denoted as ESh,p, is defined as the average loss of the worst p × 100% scenarios of the

portfolio in h periods. Statistically speaking, ESh,p is related to VaR by (Acerbi and

Tasche, 2002):

ESh,p =
1

p

p∫
0

VaRh,udu = −C 1

p

p∫
0

Vh,udu. (6)

For example, if we believe that the average loss on the worst 1% of the possible outcomes

for a portfolio in 10 days is $1 million, then the 10-day expected shortfall with 1% proba-

bility is $1 million. As in the VaR formula in (1), the h-period expected shortfall, ESh,p,

can be written as −CEh,p, where

Eh,p =
1

p

p∫
0

Vh,udu (7)

is the negative expected shortfall of a $1 portfolio and is governed by the conditional

distribution of Rt,h given Ωt. It is obvious from the definition of expected shortfall in

(6) that it is always greater than or equal to VaR (i.e., ESh,p = −CEh,p ≥ −CVh,p =
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VaRh,p implying Eh,p ≤ Vh,p) with the same holding period, h, and probability, p. Acerbi

and Tasche (2002) showed that expected shortfall, unlike VaR, is coherent. From the

definition, expected shortfall measures the expected value of the worst losses and so it gives

risk managers an estimate of their portfolios’ losses under financial turmoil or distress.

The probability, p, provides flexibility to risk professionals for assessment of different

levels of financial instability that lead to losses in their portfolios. When the distribution

of Rt,h is continuous as assumed under RiskMetrics and QGARCH, the expected shortfall

is shown to be identical to the tail conditional expectation (Acerbi and Tasche, 2002);

that is,

ESh,p = E(Lt,h|Lt,h ≥ VaRh,p) ⇐⇒ −CEh,p = E(−CRt,h| − CRt,h ≥ −CVh,p),

⇐⇒ Eh,p = E(Rt,h|Rt,h ≤ Vh,p), (8)

which is the expected return when the return is below Vh,p. Therefore, under continuous

distributions, the expected shortfall can also be interpreted as the mean loss when VaR

is exceeded. In addition to the expected loss, we define the median shortfall as

MSh,p = Median(Lt,h|Lt,h ≥ VaRh,p),

which is simply the median loss when VaR is exceeded. As a quantile-based measure, it

is trivial to see that MSh,p = VaRh,p/2. As in the VaR formula in (1) and the expected

shortfall formula in (8), the h-period median shortfall, MSh,p, can be written as −CMh,p,

where

Mh,p = Median(Rt,h|Rt,h ≤ Vh,p).

Both the expected shortfall and the median shortfall provide information about the loss

beyond VaR. While the expected shortfall is always coherent, the median shortfall is

coherent when the losses or returns of assets follow elliptically contoured distributions,

which are true for many financial market assets. It can be shown using the results in

McNeil et al. (2005) that, under the QGARCH model in (4) with the normal conditional

distribution of Rt,h,

Ê
[1]
h,p = hµ−

√
V ar(Rt,h|Ωt)

p
φ
(
Φ−1 (p)

)
, M̂

[1]
h,p = hµ+

√
V ar(Rt,h|Ωt)Φ

−1 (p/2) , (9)
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where φ(·) is the probability density function of the standard normal. In particular, under

the RiskMetrics model in (2),

Ê
[2]
h,p = −

√
h

p
σt+1φ

(
Φ−1 (p)

)
, M̂

[2]
h,p =

√
hσt+1Φ

−1 (p/2) . (10)

In the subsequent discussion, we develop other estimators for Eh,p and Mh,p with the

following notation adopted throughout the paper:

VaRh,p = −CVh,p , P (Rt,h ≤ Vh,p|Ωt) = p

ESh,p = −CEh,p , Eh,p = E(Rt,h|Rt,h ≤ Vh,p)

MSh,p = −CMh,p , Mh,p = Median(Rt,h|Rt,h ≤ Vh,p)

4 Mulitple period shortfall estimation using condi-

tional kurtosis

Although the RiskMetrics model is usually regarded as a market benchmark for comput-

ing risk measures, the conditional normal assumption on Rt,h given Ωt for deriving (9)

and (10) may not be compatible with the properties of real data. In fact, Wong and So

(2003) showed that even under the RiskMetrics model where εt is normal, the conditional

distribution of Rt,h should have a fat tail when h > 1. By using normal approximation

of the conditional distribution, it is likely that the formulas in (9) and (10) lead to un-

derestimation of the expected shortfall, ESh,p, and the median shortfall, MSh,p, especially

when p is small. In this paper, we propose a new estimator under the QGARCH model in

(4) for the expected shortfall, which is simple to use and incorporates the excess kurtosis

property of Rt,h in the calculation.

The main idea is to use the exact second to fourth conditional moments of Rt,h derived

by Wong and So (2003) to work out a suitable distribution that reproduces most of the

distributional properties of Rt,h. Following Wong and So (2003), the h-period return, Rt,h,

distribution is approximated by the skewed t-distribution (introduced by Theodossiou,
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1998) with the probability density function

f (x) =


C
(

1 + 2
ν−2

(
x+a
θ(1−τ)

)2)−( ν+1
2 )

if x < −a,

C
(

1 + 2
ν−2

(
x+a
θ(1+τ)

)2)−( ν+1
2 )

if x ≥ −a,
(11)

where τ and ν are the parameters of the distribution,

C =
B
(
3
2
, ν−2

2

) 1
2 S (τ)

B
(
1
2
, ν
2

) 3
2

, θ =

√
2

S (τ)
,

a =
2τB

(
1, ν−1

2

)
S (τ)B

(
1
2
, ν
2

) 1
2 B

(
3
2
, ν−2

2

) 1
2

, S (τ) =

1 + 3τ 2 −
4τ 2B

(
1, ν−1

2

)2
B
(
1
2
, ν
2

)
B
(
3
2
, ν−2

2

)


1
2

,

and B(.) is the beta function. The above distribution is suitably scaled to have a mean

of zero, a variance of one, and third and fourth moments given by

E[x3] =
4τ(1 + τ 3)B(2, ν−3

2
)B(1

2
, ν
2
)
1
2

B(3
2
, ν−2

2
)
3
2S(τ)3

− 3a− a3 and (12)

E[x4] =
3(ν − 2)(1 + 10τ 2 + 5τ 4)

(ν − 4)S(τ)4
− 4aE[x3]− 6a2 − a4. (13)

This skewed t-distribution is more flexible than the normal distribution because it can ex-

plain possible asymmetry and excess kurtosis in the aggregate return distribution. Wong

and So (2003) developed recursive formulas to compute the exact second to fourth mo-

ments of Rt,h|Ωt when the one-period returns follow a general QGARCH(p, q) model. We

adopt their methods to find E [(Rt,h − hµ)i | Ωt] for i = 2 to 4 under QGARCH. The

parameters τ and ν of the above skewed t-distribution are then obtained by matching

the exact second to fourth moments to those of Rt,h|Ωt. In other words, we compute the

parameters by solving the two moment equations,

E [(Rt,h − hµ)3 | Ωt]

var(Rt,h | Ωt)
3
2

= E[x3] and
E [(Rt,h − hµ)4 | Ωt]

var(Rt,h | Ωt)2
= E[x4],

where E[x3] and E[x4] are from (12) and (13). The numerical solutions of the parameters

τ and ν are found by a computer optimization subroutine LMDIF of the MINPACK

package (see Moré et al., 1980 for details) that minimizes the squared distance between

the above skewness and kurtosis with those of the skewed t-distribution. Based on the

skewed-t distribution, explicit formulas for the estimator of the VaR (Vh,p), the expected
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shortfall (Eh,p) and the median shortfall (Mh,p) can be derived as follows:

V̂
[3]
h,p = hµ+

√
V ar (Rt,h|Ωt)F

−1 (p) , (14)

Ê
[3]
h,p =



hµ−
√
V ar (Rt,h|Ωt)

[
θ2(1−τ)2f(F−1(p))

p

(
ν−2+2β1(p)

2

2(ν−1)

)
+ a

]
,

if F−1(p) < −a

hµ+
√
V ar (Rt,h|Ωt)

{
θ2

p

[
4τC

(
ν−2

2(ν−1)

)
− (1 + τ)2f(F−1(p))

(
ν−2+2β2(p)2

2(ν−1)

)]
− a

}
,

if F−1(p) ≥ −a

(15)

M̂
[3]
h,p = hµ+

√
V ar (Rt,h|Ωt)F

−1 (p/2) , (16)

where f(·) is the skewed-t density in (11), F−1(p) is the pth percentile of the skewed-t

distribution, β1 (p) = F−1(p)+a
θ(1−τ) and β2 (p) = F−1(p)+a

θ(1+τ)
. The proof of (15) is given in the

Appendix while the formulas for V
[3]
h,p and M

[3]
h,p are obtained from Wong and So (2003).

The novelty of using (15) and (16) lies in the fact that they are (i) very easy to use

because of the explicit analytical forms; (ii) computationally efficient; and (iii) reliable

and effective from both statistical and financial points of view as illustrated in the next

section. The formula in (15) is valid for Rt,h following the asymmetric t distribution in

(11). In particular, under the RiskMetrics model that the conditional third moment of

Rt,h equals to zero, that is, E[R3
t,h|Ωt] = 0, we have µ = a = τ = 0 and θ =

√
2. The

expected shortfall estimator, Ê
[3]
t,p, will be reduced to

Ê
[4]
h,p = −

√
hσt+1

[
f (F−1 (p))

p

(
ν − 2 + (F−1(p))

2

ν − 1

)]
, (17)

where f(·) and F (−1)(·) now refer to the standardized t distribution with a mean of zero

and a variance of one and ν is obtained explicitly from the formulas in Wong and So

(2003) as

ν =
6− 4K

3−K
,

where

K =
3

h

[
1 +

(
Gh − 1

h(G− 1)
− 1

)(
6H

G− 1
+ 1

)]
,

G = 2(1 − λ)2 + 1 and H = 1 − λ + λ
3
. Therefore, our expected shortfall estimator

under the RiskMetrics model can be implemented easily in any software that produces
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standard t percentiles. We can also observe that when ν tends to infinity, F (·) will

converge to the standard normal distribution and so Ê
[3]
h,p and Ê

[4]
h,p will be reduced to Ê

[1]
h,p

and Ê
[2]
h,p, respectively. In short, the expected shortfall estimator, Ê

[3]
h,p, in (15) developed

here encompasses the volatility asymmetry property in financial data and the fat-tailed

characteristic of Rt,h|Ωt through the use of the QGARCH model and the exact conditional

kurtosis of Rt,h. Its special case, Ê
[4]
h,p, also provides a very convenient way under the

RiskMetrics framework to assess risk using a coherent measure while accounting for the

fat-tailed property of the conditional distribution of Rt,h.

5 Empirical studies

In this section, we apply our new expected shortfall (15) and median shortfall (16) esti-

mators to real data and compare their performance with the estimators given in (9) and

(10), which assume normality of Rt,h|Ωt and two Monte Carlo estimators. The financial

data we use are the AOI (Australia) from 1984 to 2006; the CAC40 (France) from 1988

to 2006; the DAX (Germany) from 1988 to 2006; the FTSE 100 (UK) from 1984 to 2006;

the HSI (Hong Kong) from 1984 to 2006; the Nikkei 225 (Japan) from 1984 to 2006 and

the S & P 500 (USA) from 1984 to 2006. The time series for these data have at least

nineteen years of daily observations. We consider two models in our analysis, namely the

QGARCH(1,1) model with t-distributed error, εt as given in (4) and (5) and the RiskMet-

rics model as given in (2) and (3). The parameters of the QGARCH models are obtained

by maximum likelihood estimation whereas in the RiskMetrics model, the decay factor is

set to λ = 0.94 as suggested by the RiskMetrics Group.

5.1 Data analysis design

We include in the data analysis three types of estimators. They are the estimators based

on exact conditional variance, Ê
[1]
h,p, M̂

[1]
h,p, Ê

[2]
h,p and M̂

[2]
h,p, the estimators based on exact

conditional kurtosis, Ê
[3]
h,p, M̂

[3]
h,p, Ê

[4]
h,p and M̂

[4]
h,p, and Monte Carlo estimators that are based
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on independent samples from the conditional distribution

P (Rt,h ≤ x|Ωt) =
∫

Rt,h≤x

f (Rt,h|Ωt+h−1)
h−1∏
i=1

f (rt+i|Ωt+i−1)d (rt+1, · · · , rt+h) .

The equation for P (Rt,h ≤ x|Ωt) is due to the decomposition f (rt+1, · · · , rt+h−1, Rt,h|Ωt) =

f(Rt,h|Ωt+h−1)
∏h−1
i=1 f (rt+i|Ωt+i−1). Sampling of rt+1, ..., rt+h from the joint density

f (rt+1, · · · , rt+h|Ωt) under the QGARCH model given in (4) and (5) can be done by the

method of decomposition (Tanner, 1993, pp. 30-33) as follows. Given Ωt, σ
2
t+1 is known.

For i = 1, ..., N where N is the number of replications, we

1. simulate r
(i)
t+1 ∼ µ+ σt+1tv and set j = 2,

2. calculate σ
(i)
t+j from (5) using r

(i)
t+j−1,..., r

(i)
t+1 and Ωt,

3. simulate r
(i)
t+j ∼ µ+ σ

(i)
t+jtv,

4. repeat steps 2 and 3 for j = 3, ..., h.

Then, (r
(i)
t+1, ..., r

(i)
t+h) is a draw from the joint density f(rt+1, · · · , rt+h | Ωt) and

R
(i)
t,h = r

(i)
t+1 + · · ·+ r

(i)
t+h, i = 1, ..., N,

forms an independent sample from f(Rt,h | Ωt). In this paper, we generate N = 200, 000

Monte Carlo observations of Rt,h using the RiskMetrics and QGARCH models. Monte

Carlo estimators of Vh,p, denoted by V̂
[5]
h,p for QGARCH and V̂

[6]
h,p for RiskMetrics, are

formed by the empirical pth percentiles of R
(i)
t,h. The respective expected shortfall estima-

tors will be

Ê
[j]
h,p =

1

Np

N∑
i=1

R
(i)
t,hI(R

(i)
t,h ≤ V̂

[j]
h,p),

where I(·) is an indicator function and j = 5 or 6. Similarly, we can have the median

shortfall Monte Carlo estimators given by M̂
[j]
h,p = V̂

[j]
h,p/2, j = 5, 6. This Monte Carlo

method does not require any assumption about the distribution, Rt,h|Ωt. It can produce

good estimates of Vh,p, Eh,p and Mh,p if the number of Monte Carlo replications is large

enough such that the distribution Rt,h|Ωt is well approximated by Monte Carlo samples.

In our data analysis design, we consider six VaR, expected shortfall and median short-

fall estimators, V̂
[j]
h,p, Ê

[j]
h,p and M̂

[j]
h,p, j = 1, ..., 6. They are constructed by the two models,

12



RiskMetrics and QGARCH, and three estimation methods, i.e., exact variance, exact kur-

tosis and Monte Carlo. They include, respectively, ‘Exact variance + QGARCH’, ‘Exact

variance + RiskMetrics’, ‘Exact kurtosis + QGARCH’, ‘Exact kurtosis + RiskMetrics’,

‘Monte Carlo + QGARCH’ and ‘Monte Carlo + RiskMetrics’ summarized in the following

table.

j Estimation method Model Risk estimators

1 Exact variance QGARCH

2 Exact variance RiskMetrics

3 Exact kurtosis QGARCH V̂
[j]
h,p, Ê

[j]
h,p, M̂

[j]
h,p

4 Exact kurtosis RiskMetrics

5 Monte Carlo QGARCH

6 Monte Carlo RiskMetrics

The analysis is conducted with VaR, expected shortfall and median shortfall estimates

of the above six estimators computed for h = 5, 10 and 20 and probabilities p = 1%,

2.5% and 5%. We use five years of data (t = 1 to m, where m is about 1250) to find

the maximum likelihood estimates for QGARCH and subsequently the six estimates for

the three risk measures. The actual h-period returns, Rt,h, for h = 5, 10 and 20 are also

computed from the daily returns of the market indices. Then, the estimation window is

shifted forward by one day and the QGARCH parameters are re-estimated using the daily

return, rt, where t = 2 to m + 1. The computation of the VaR, expected shortfall (ES)

and median shortfall (MS) estimates and the actual multiple-period returns are performed

again at the time point m + 1. This rolling window analysis is repeated until the whole

validation period, 1989 to 2006 (1993 to 2006 for the French CAC40 and German DAX),

is covered. In the end, the VaR, ES and MS estimates together with the actual multiple-

period returns, Rt,h, for h = 5, 10 and 20 are obtained at t = m, ...,m + n for validating

the six estimators, where n = 4500 (3500 for the French CAC40 and German DAX).

13



5.2 Volatility model fitting and VaR estimation

With the rolling sample mechanism in doing the QGARCH parameter estimation, we are

able to incorporate possible changes in the dynamic structure of the returns series. To

understand how parameter estimates vary over time, we plot µ, α0, α1, β1, b and ν of the

QGARCH model in (4) and (5) for S & P 500 computed using five years of observations

up to time t in Figure 1, where t is from 1989 to 2006. It is clear that all parameters

change slowly with time. For example, µ is predominantly positive except for the period

2002-2006. From the GARCH parameters, we can identify an upward trend in α1 meaning

that the last-day return’s impact on the volatility forecasts gradually increases. Similarly,

we observe a downward trend in β1. As expected, the values of b are positive, confirming

the volatility asymmetry that the downside movement in the market causes greater effects

on the volatility forecasts than does the upside movement. The degrees of freedom is less

than six most of the time except in the period when µ is negative. To summarize the time-

varying parameter estimates for all seven markets, we calculate the mean and standard

deviation of all the estimates in Table 1. We can see that the means of α1 range from

0.07 (AOI) to 0.18 (Nikkei) whereas the means of β1 are well above 0.7. All the means

of ν are less than 10 with the smallest two appearing in HSI and S & P 500, confirming

the typical leptokurtosis in the GARCH error distribution. The standard deviations of

the parameter estimates tell us that the time series variation of the parameters cannot

be ignored especially when the tail behavior (indicated by ν) is also changing over time.

Therefore, we emphasize the use of the rolling-sample mechanism when doing the real

data illustration.

We apply the six VaR estimators, V̂
[j]
h,p, j=1, ..., 6, to the seven indices. When we

use the QGARCH model to do the estimation, updated parameter estimates are adopted.

For each combination of the probability, p, and the horizon, h, we calculate the empirical

coverage, p̂, the proportion of Rt,h that falls below V̂
[j]
h,p of the seven indices in the eighteen-

year validation period from 1989 to 2006 for AOI, FTSE, HSI and S & P 500 and the

fourteen-year validation period from 1993 to 2006 for CAC40 and DAX. A good estimator

shows that the empirical coverage p̂ is close to p or p̂/p is close to one. Table 2 presents

the ratio p̂/p for h = 10. The closest-to-one ratios among the six VaR estimators are

put in boxes to highlight the best performing estimator. From the table, we observe that
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V̂
[3]
h,p (Exact kurtosis + QGARCH) and V̂

[5]
h,p (Monte Carlo + QGARCH) generate similar

empirical coverages. For p = 1%, all the best performed cases are achieved by the ‘Exact

kurtosis + QGARCH’ or ‘Monte Carlo + QGARCH’ estimators. The results indicate

that the two estimators based on the QGARCH model, which account for the fat-tailed

properties of Rt,h|Ωt are superior to the other estimators in estimating 1% VaR. When

p increases, there is the tendency that the difference among the six estimators decreases.

To summarize the results for h = 5 and 20, which can be provided by the authors, as in

h = 10, V̂
[3]
h,p and V̂

[5]
h,p perform similarly well compared with the other four estimators. For

example, with p = 1%, the two estimators produce the closest coverage to p, that is, p̂/p

is closest to one, in six indices. When p = 5%, there is negligible difference among the six

estimators and they all perform equally well.

5.3 Expected shortfall and median shortfall forecasting

We perform the rolling window analysis described in Section 5.1 to produce out-of-sample

forecasts of the expected shortfall and the median shortfall. The six estimators, Ê
[j]
h,p and

M̂
[j]
h,p, j = 1, ..., 6, are applied to the seven index data sets to obtain the ES and MS with

holding periods of h = 5, 10 and 20 and p = 1%, 2.5% and 5%. Figure 2 shows the time

series plots of ES in percentages based on Ê
[3]
10,1%, the ES estimator under ‘Exact kurtosis

+ QGARCH’ and Ê
[2]
10,1%, the ES estimator under ‘Exact variance + RiskMetrics’ for S &

P 500. Plots of ES in other cases are available upon request. The two plots follow similar

time trends in which we observe larger ES in the second half of the validation period.

The exact kurtosis estimator, Ê
[3]
10,1%, generally gives a larger ES than Ê

[2]
10,1% does, which

is based on the RiskMetrics model. Also, the former forecast is more volatile whereas

the RiskMetrics forecast is smoother. To compare the performance of the two ES esti-

mators, we add the ES residual, which is defined as Loss − ES in percentages, that is

100(Ê
[j]
h,p−Rt,h), to the time series plots whenever there is VaR exceedance of Rt,h ≤ V̂

[j]
h,p.

VaR exceedance occurs when the protection by VaR is insufficient to compensate for the

loss incurred. All ES residuals are labeled by circles. We find more circles in the plot of

the RiskMetrics model because there are more exceedances produced using RiskMetrics

as documented in Section 5.2. It is evident that most ES residuals from the RiskMetrics

model are positive, indicating that Ê
[2]
10,1% is biased. In other words, there is a tendency
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that using Ê
[2]
10,1% will underestimate the ES. The underestimation is quite severe in the

sense that some ES residuals exceed 5%. On the contrary, the ES residuals generated

from the exact kurtosis estimator, Ê
[3]
10,1%, are evenly distributed around zero, suggesting

unbiased estimation of the ES. Even though the estimator produces more negative ES

residuals than does the RiskMetrics estimator, Ê
[2]
10,1%, all residuals are within 5% in mag-

nitude. In short, the exact kurtosis estimator gives better and more reliable ES forecasts

than does the estimator derived from the RiskMetrics model and it produces smaller ES

residuals. Figure 3 presents the MS forecasts in percentages from the ‘Exact kurtosis +

QGARCH’ estimator M̂
[3]
10,1% and the MS estimator ‘Exact variance + RiskMetrics’ M̂

[2]
10,1%

for S & P 500. Using the same idea as for ES, we also add the MS residual defined as

Loss−MS in percentages, that is, 100(M̂
[j]
h,p − Rt,h), whenever there is VaR exceedance

of Rt,h ≤ V̂
[j]
h,p. Similar to the results in the ES analysis, we observe substantial bias in the

MS residuals of the RiskMetrics model in which most MS residuals are positive. The plot

shows that M̂
[2]
10,1% from the RiskMetrics model underestimates the loss (in %) of −Rt,h

with the ‘loss greater than MS’ probability P (−Rt,h ≥ −M̂ [2]
10,1%) = P (M̂

[2]
10,1% −Rt,h ≥ 0)

much greater than 0.5. The situation with M̂
[3]
10,1% based on the QGARCH model with

exact kurtosis is more encouraging. The MS residuals are very balanced on both sides of

zero. Therefore, it is likely that M̂
[3]
10,1% will give reliable MS forecasts that approximately

half of the MS residuals are positive. Although we do not show results of other indices

and other combinations of h and p, they are very consistent with those shown in Figures

2 and 3. The above presents some evidence of outperformance of the ES and MS estima-

tors under ‘Exact kurtosis + QGARCH’ over that under ‘Exact variance + RiskMetrics’.

Therefore, forecasting ES and MS using exact kurtosis with QGARCH is a promising

alternative to using the RiskMetrics model. Further assessment results are provided in

the next subsection.

5.4 Assessing the expected shortfall and median shortfall fore-

casts

To investigate the relative performance of the six ES and MS estimators, we conduct

statistical tests and calculate assessment measures that are essential from the regulatory
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perspective. We define the standardized ES residual as

e
[j]
t,h =

100(Ê
[j]
h,p −Rt,h)√

V ar(Rt,h|Ωt)
,

which is the difference between the multiple-period loss, −Rt,h, and the ES forecast, −Ê[j]
h,p,

in percentages, standardized by the multiple-period volatility forecast,
√
V ar(Rt,h|Ωt).

For Ê
[j]
h,p to be an unbiased estimator of Eh,p in (8), the mean of e

[j]
t,h has to be zero.

Therefore, to infer statistically the reliability of the six ES estimators, we perform the

bootstrap one-sample t-test described by Efron and Tibshirani (1993) for the null hy-

pothesis, H0 : E(e
[j]
t,h) = 0, versus the alternative hypothesis, H1 : E(e

[j]
t,h) 6= 0. We obtain

two-sided p-values of the bootstrap test by using bootstrap samples of 10,000 observa-

tions. Test results for h = 10 are given in Table 3. The cases where H0 is not rejected

at the 5% level of significance are highlighted in bold letters. For Ê
[3]
h,p and Ê

[5]
h,p, most

of the test results are insignificant whereas, for the other estimators, most of the results

are statistically significant. The bootstrap test indicates that both Ê
[3]
h,p based on ‘Exact

kurtosis + QGARCH’ and Ê
[5]
h,p based on ‘Monte Carlo + QGARCH’ likely generate un-

biased forecasts for the multiple-period expected shortfall. On the other hand, all test

statistics for other estimators are positive, indicating that the estimators underestimate

the expected shortfall. This agrees with what is observed in Figure 2 that most ES resid-

uals from the RiskMetrics model are positive. We also test the unbiasedness for h = 5

and 20. The results are consistent with those for h = 10 that most scenarios for Ê
[3]
h,p and

Ê
[5]
h,p are insignificant and all test statistics of the other four estimators are greater than

zero. While the estimators based on ‘Exact kurtosis + RiskMetrics’ and ‘Monte Carlo +

RiskMetrics’ can incorporate the fourth moment information in the ES calculation, they

still lead to substantial biased though the test statistics reveal that the bias may not be

as severe as the two common estimators, Ê
[1]
h,p and Ê

[2]
h,p, based on exact variance. The

above findings indicate that it is important to use an appropriate volatility model and to

account for the exact kurtosis.

Other than the bootstrap t-test, we also compute the cost functions,

C1 =
1

g

m+n∑
t=m

| −Rt,h + Ê
[j]
h,p| I(t is an exceedance) (18)

17



and

C2 =
1

g

m+n∑
t=m

(−Rt,h + Ê
[j]
h,p)

2 I(t is an exceedance), (19)

where g =
∑m+n
t=m I(t is an exceedance) is the number of days in the validation period that

losses, −Rt,h, exceed the VaR forecast and I(·) is the indicator function that I(A) = 1

if event A occurs and I(A) = 0 otherwise. The two cost functions are set up by the

objective that when there is exceedance, we want the ES estimate to be as close as

possible to the return, Rt,h, such that the capital reserve determined by the ES estimate

is at the ‘minimally sufficient’ level to protect against financial risk. By doing that, the

opportunity cost for reserving capital for risk management can be reduced. On the other

hand, when the ES estimate is lower than the actual loss, by having smaller C1 and C2

means that the capital reserved based on the ES estimate does not deviate from the actual

loss by much and this reduces the impact on the financial system when VaR is exceeded.

The C1 and C2 differ only in how we define the distance between the loss (−Rt,h) and

the ES forecast (−Ê[j]
h,p). In the cost function, C1, there is a smaller penalty on large

discrepancies between the loss and the ES forecasts, and so it is less affected by adverse

market events, which usually induce large discrepancies, whereas C2 originates from the

usual least square principle in statistical inference. Obviously, smaller values for both

C1 and C2 are desirable for good ES estimators. Table 4 gives the cost function values

for h = 10. The smallest C1 and C2 among the six estimators are put in boxes. Using

C1, Ê
[5]
h,p performs the best for p=1% and p=2.5% while Ê

[1]
h,p gives the smallest C1 for all

indices for p=5%. Ê
[3]
h,p produces very similar C1 and C2 as Ê

[5]
h,p does. In terms of C2, the

best estimators appear to be Ê
[3]
h,p and Ê

[5]
h,p. Tables 5 and 6 present the cost function values

for h = 5 and 20. Using C1 as the criterion, Ê
[3]
h,p and Ê

[5]
h,p are more reliable for p = 1%

and the three estimators based on QGARCH yield similar performance for p=2.5% and

5%. According to C2, Ê
[3]
h,p and Ê

[5]
h,p outperform the other four estimators. Generally

speaking, the two estimators, Ê
[3]
h,p and Ê

[5]
h,p, which make use of the fat-tailed information

of Rt,h perform the best. In practice, Ê
[3]
h,p is preferable to Ê

[5]
h,p because Ê

[3]
h,p is calculated

using the explicit formula in (15) and is more efficient than the Monte Carlo estimator

computationally.

For the assessment of MS forecasts, we use the MS residuals denoted by me
[j]
t,h =

100(M̂
[j]
t,h − Rt,h) again. If the MS estimators are good, we expect to have P (me

[j]
t,h >
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0) = 0.5. Therefore, we perform a standard binomial test on the null hypothesis,

H0 : P (me
[j]
t,h > 0) = 0.5, versus the two-sided alternative, H1 : P (me

[j]
t,h > 0) 6= 0.5.

Table 7 gives p-values of the test for h = 10. The cases with the p-values greater than

0.05 are highlighted by bold letters. It is evident that H0 is not rejected in most cases

associated with M̂
[3]
t,h and M̂

[5]
t,h whereas, with the other estimators, most of the test results

are significant. We also conduct the binomial test for h = 5 and 20. It turns out that

the two estimators, M̂
[3]
t,h and M̂

[5]
t,h, generally perform better in that the binomial test

cannot reject H0 : P (me
[j]
t,h > 0) = 0.5 in more than 80% of the cases. To enrich the

practical relevance of the assessment results, we use the same idea in constructing C1 and

C2 to produce their MS version by replacing Ê
[j]
t,h with M̂

[j]
t,h in (18) and (19). We describe

the summary findings from the C1 and C2 assessment of the MS forecasts here (detailed

tables are available upon request). As in the ES forecasts, the smallest C1 and C2 are

attained by using either M̂
[3]
t,h or M̂

[5]
t,h. This is true across different h and p. Indeed, the

two estimators produce very close C1 and C2 and so their coherent performance is under-

standable. Therefore, the exact kurtosis not only helps to generate good multiple-period

ES forecasts, it also can produce reliable multiple-period MS forecasts.

To give an overall picture of how the six ES estimators perform, we rank them accord-

ing to C1 and C2 in each combination of indices, p and h. Estimators with smaller C1

or C2 are given lower ranks. By averaging the ranks of the six estimators based on their

cost function values in Tables 4 to 6, we can assess the overall performance of the ES

estimators. We repeat this ranking procedure with the six MS estimators. The average

ranks are presented in Table 8. For the expected shortfall estimation, Ê
[5]
t,h under ‘Monte

Carlo + QGARCH’ has the lowest average ranks for all three p we consider, implying that

it gives us ‘closer-to-loss’ ES forecasts when VaR is exceeded. From the financial point

of view, Ê
[5]
t,h works the best in predicting expected shortfall. The other estimator based

on exact kurtosis, namely Ê
[3]
t,h, works similarly well for p = 1% and 2.5%. As far as the

median shortfall is concerned. M̂
[3]
t,h is the most reliable estimator followed by M̂

[5]
t,h. In

short, estimators developed under the frameworks of ‘Exact kurtosis + QGARCH’ and

‘Monte Carlo + QGARCH’ are more reliable in the sense that their ES and MS estimators

generally produce smaller deviations from the actual loss when the VaR is exceeded.
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6 Concluding remarks

Calculating coherent risk measures in financial institutions has become indispensable to

risk management and protection. Among coherent risk measures in the literature, ES is

one of the most commonly used alternatives to VaR, which is not coherent. Aligning with

the requirements of regulatory committees like those recognized in Basel II, it is important

to estimate ES, the expected shortfall, in a multiple-period setting. One contribution of

this paper is to develop a new ES estimator incorporating the tail information of future

multiple-period returns. What we call exact conditional kurtosis is the key to summarizing

the tail information, and it enables us to derive a new ES estimator with an explicit

formula to facilitate easy implementation in real applications. Another contribution is that

we propose assessment methods for ES using statistical tests and cost functions, C1 and

C2, that are financially relevant. Bootstrap t-tests are used to test for the unbiasedness

of various ES estimators. C1 and C2 are defined based on a distance between the ES and

the true loss whenever there is VaR exceedance. By construction, small C1 and C2 are

desirable such that the ES is either marginal enough to compensate for the loss or the

ES does not deviate too much from the loss when ES is less than the loss. The two cost

functions are also used to compare different MS estimators.

We observe that in most cases using the exact conditional kurtosis with the QGARCH

model, the unbiasedness hypothesis cannot be rejected. Using C1 and C2, the ‘Exact

kurtosis + QGARCH’ estimator performs similarly well as the ‘Monte Carlo + QGARCH’

estimator especially when p is small. Therefore, the exact kurtosis estimator not only can

generate unbiased estimates, but it also produces risk proxies that match well with true

losses. While both the exact kurtosis and Monte Carlo estimators are promising based on

the bootstrap test and the financial cost functions, the exact kurtosis estimator, which is

based on an explicit formula, is computationally more efficient. Therefore, it is preferable

to use the exact kurtosis estimator to keep track of the dynamic risk environment in real

applications. From Acerbi (2002), it is also suggested that the exact kurtosis estimator

can be extended to spectral risk measures to account for the risk aversion properties of

investors.
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Appendix: Proof of Ê
[3]
h,p in equation (15)

Let’s consider the skewed t-distribution in (11). The probability density is

f (x) =

 f1(x) if x < −a,

f2(x) if x ≥ −a,

where

f1 (x) = C

1 +
2

ν − 2

(
x+ a

θ (1− τ)

)2
−( ν+1

2 )

and f2 (x) = C

1 +
2

ν − 2

(
x+ a

θ (1 + τ)

)2
−( ν+1

2 )

.

From the definition in (7) and the equation of V̂
[3]
h,p from (14), we have

Ê
[3]
h,p =

1

p

p∫
0

V̂
[3]
h,udu =hµ+

√
V ar (Rt,h|Ωt)

1

p

p∫
0

F−1 (u) du

 ,
where V̂

[3]
h,p = hµ+

√
V ar (Rt,h|Ωt)F

−1 (p) and F−1 (p) is the inverse cumulative distribu-

tion function of the skewed t-distribution. Let u = F (x) =
x∫
−∞

f (y) dy. We have

1

p

p∫
0

F−1 (u) du =
1

p

F−1(p)∫
−∞

F−1 (F (x)) f(x)dx =
1

p

F−1(p)∫
−∞

xf(x)dx. (20)

Define

g(t) = C

[
1 +

2t2

ν − 2

]−( ν+1
2 )

.

We have

d

[
−g (t)

(
ν − 2 + 2t2

2 (ν − 1)

)]

= d

−C [1 +
2t2

ν − 2

]−( ν+1
2 ) (ν − 2 + 2t2

2 (ν − 1)

)
= C


(
ν + 1

2

) [
1 +

2t2

ν − 2

]−( ν+1
2 )−1 4t

ν − 2

(
ν − 2 + 2t2

2 (ν − 1)

)
−
[
1 +

2t2

ν − 2

]−( ν+1
2 ) ( 2t

ν − 1

) dt
= C


(
ν + 1

ν − 1

) [
1 +

2t2

ν − 2

]−( ν+1
2 )−1

t

(
1 +

2t2

ν − 2

)
−
[
1 +

2t2

ν − 2

]−( ν+1
2 ) ( 2t

ν − 1

) dt
= C

t
[
1 +

2t2

ν − 2

]−( ν+1
2 ) (ν + 1− 2

ν − 1

) dt
= tg(t)dt. (21)
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Let x = σt− a and assume, without loss of generality, that σ > 0. Then, the integrals

∫ l2

l1
xf1(x)dx and

∫ l2

l1
xf2(x)dx

take the form

C
∫ l2

l1
x

(
1 +

2

ν − 2

(
x+ a

σ

)2
)−( ν+1

2 )
dx

= C
∫ (l2+a)/σ

(l1+a)/σ
(σt− a)

(
1 +

2t2

ν − 2

)−( ν+1
2 )

σdt

=
∫ (l2+a)/σ

(l1+a)/σ
σ2tC

(
1 +

2t2

ν − 2

)−( ν+1
2 )

dt− a
∫ (l2+a)/σ

(l1+a)/σ
σC

(
1 +

2t2

ν − 2

)−( ν+1
2 )

dt

=
∫ (l2+a)/σ

(l1+a)/σ
σ2tg(t)dt− a

∫ (l2+a)/σ

(l1+a)/σ
σg(t)dt

=
∫ (l2+a)/σ

(l1+a)/σ
σ2d

[
−g (t)

(
ν − 2 + 2t2

2 (ν − 1)

)]
− a

∫ (l2+a)/σ

(l1+a)/σ
σg(t)dt by (21)

= σ2

g ( l1 + a

σ

)ν − 2 + 2
(
l1+a
σ

)2
2(ν − 1)

− g ( l2 + a

σ

)ν − 2 + 2
(
l2+a
σ

)2
2(ν − 1)




−a
∫ l2

l1
fi(x)dx, (22)

assuming that the integration is with respect to fi(x), for i = 1, 2.

Case 1: F−1(p) < −a

Let β1 (p) = F−1(p)+a
θ(1−τ) . Assume, without loss of generality, that θ(1− τ) > 0. Substituting

l1 = −∞, l2 = F−1(p) and σ = θ(1− τ) in (22), we get

1

p

F−1(p)∫
−∞

xf(x)dx =
1

p

F−1(p)∫
−∞

xf1(x)dx

=
θ2(1− τ)2

p
[−g (β1(p))]

(
ν − 2 + 2β1 (p)2

2 (ν − 1)

)
− a

p

F−1(p)∫
−∞

f1(x)dx

= −θ
2(1− τ)2f1 (F−1 (p))

p

(
ν − 2 + 2β1 (p)2

2 (ν − 1)

)
− a.

The last equality follows by noting that g(β1(p)) = f1(F
−1(p)) and f1(x) = f(x) when

x < F−1(p) < −a.
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Case 2: F−1(p) ≥ −a

Let β2 (p) = F−1(p)+a
θ(1+τ)

. Assume, without loss of generality, that both θ(1 + τ) and θ(1− τ)

are positive. Using the results in (22) and following Case 1, we get

1

p

F−1(p)∫
−∞

xf(x)dx =
1

p

 −a∫
−∞

xf1(x)dx

F−1(p)∫
−a

xf2(x)dx



=
θ2(1− τ)2

p

[
−g (0)

(
ν − 2

2(ν − 1)

)]
− a

p

∫ −a
−∞

f1(x)dx+

θ2(1 + τ)2

p

[
g (0)

(
ν − 2

2(ν − 1)

)
− g (β2(p))

(
ν − 2 + 2β2(p)

2

2(ν − 1)

)]
− a

p

∫ F−1(p)

−a
f2(x)dx

=
θ2(1− τ)2

p

[
−C

(
ν − 2

2(ν − 1)

)]
− a

p

∫ −a
−∞

f(x)dx+

θ2(1 + τ)2

p

[
C

(
ν − 2

2(ν − 1)

)
− g (β2(p))

(
ν − 2 + 2β2(p)

2

2(ν − 1)

)]
− a

p

∫ F−1(p)

−a
f(x)dx

=
θ2

p

[
4τC

(
ν − 2

2(ν − 1)

)
− (1 + τ)2f2(F

−1(p))

(
ν − 2 + 2β2(p)

2

2(ν − 1)

)]
− a.

The last two equalities follow by noting that g(β2(p)) = f2(F
−1(p)), f1(x) = f(x) when

x < −a and f2(x) = f(x) when x ≥ −a.
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Table 1: The mean and standard deviation (in parentheses) of the parameter estimates
in the QGARCH model.

AOI CAC DAX FTSE HSI NIKKEI SP500

µ 0.04 0.03 0.04 0.04 0.07 0.00 0.04
(0.03) (0.04) (0.04) (0.03) (0.06) (0.06) (0.04)

α0 0.04 0.14 0.09 0.05 0.14 0.19 0.03
(0.05) (0.28) (0.12) (0.11) (0.13) (0.45) (0.04)

α1 0.07 0.09 0.13 0.09 0.12 0.18 0.08
(0.03) (0.09) (0.09) (0.09) (0.05) (0.16) (0.05)

β1 0.86 0.80 0.84 0.85 0.80 0.74 0.87
(0.07) (0.25) (0.10) (0.17) (0.12) (0.23) (0.08)

b 0.43 0.57 0.49 0.28 0.46 0.46 0.65
(0.23) (0.42) (0.20) (0.29) (0.23) (0.23) (0.29)

ν 9.06 9.04 7.25 9.32 5.24 6.21 5.84
(2.35) (3.57) (1.69) (3.26) (0.69) (1.35) (1.14)
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Table 2: Ratio of the proportion p̂ of 10-day returns less than the VaR estimates to the
actual probability. Ratios p̂/p that are closest to one are in boxes.

AOI CAC DAX FTSE HSI NIKKEI SP500

p = 1%

Exact variance + QGARCH 1.50 1.12 1.70 1.70 2.39 1.62 1.25
Exact variance + RiskMetrics 1.58 1.47 2.01 1.83 2.36 2.17 1.30

Exact kurtosis + QGARCH 1.03 0.88 0.95 1.29 1.60 0.80 0.77
Exact kurtosis + RiskMetrics 1.54 1.28 1.90 1.68 2.16 1.99 1.19

Monte Carlo + QGARCH 1.10 0.88 1.07 1.29 1.77 1.11 0.86
Monte Carlo + RiskMetrics 1.54 1.25 1.93 1.65 2.18 1.97 1.17

p = 2.5%

Exact variance + QGARCH 1.44 0.88 1.19 1.31 1.59 1.04 1.07

Exact variance + RiskMetrics 1.29 1.00 1.35 1.32 1.45 1.45 0.95

Exact kurtosis + QGARCH 1.01 0.59 0.85 1.08 1.34 0.74 0.72
Exact kurtosis + RiskMetrics 1.23 0.99 1.31 1.32 1.43 1.41 0.94

Monte Carlo + QGARCH 1.08 0.62 0.97 1.12 1.38 0.86 0.81
Monte Carlo + RiskMetrics 1.23 0.99 1.33 1.32 1.44 1.40 0.94

p = 5%

Exact variance + QGARCH 1.22 0.88 1.06 1.08 1.26 0.88 0.87

Exact variance + RiskMetrics 1.14 0.94 1.06 1.06 1.14 1.24 0.79

Exact kurtosis + QGARCH 1.15 0.76 0.93 1.02 1.26 0.74 0.80

Exact kurtosis + RiskMetrics 1.16 0.96 1.08 1.06 1.17 1.26 0.81

Monte Carlo + QGARCH 1.20 0.82 1.00 1.07 1.32 0.89 0.82
Monte Carlo + RiskMetrics 1.16 0.95 1.08 1.06 1.17 1.25 0.81
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Table 3: Test statistics and p-values (in parentheses) of the Bootstrap t-test for h = 10
days.

AOI CAC DAX FTSE HSI NIKKEI SP500

p = 1%

Exact variance + QGARCH 4.53 3.87 3.73 3.49 6.58 5.53 4.73
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Exact variance + RiskMetrics 4.40 4.13 3.73 4.22 6.16 7.80 4.69
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Exact kurtosis + QGARCH -0.19 0.40 -0.10 -0.24 1.32 -2.46 -1.85
(0.86) (0.69) (0.92) (0.82) (0.20) (0.02) (0.08)

Exact kurtosis + RiskMetrics 2.63 3.13 2.05 2.22 5.13 6.48 3.23
(0.02) (0.01) (0.06) (0.04) (0.00) (0.00) (0.00)

Monte Carlo + QGARCH -0.55 0.30 -0.65 -0.39 1.26 -2.41 -1.96
(0.59) (0.76) (0.52) (0.70) (0.22) (0.02) (0.07)

Monte Carlo + RiskMetrics 2.60 3.27 1.96 2.32 5.07 6.60 3.38
(0.02) (0.00) (0.06) (0.03) (0.00) (0.00) (0.00)

p = 2.5%

Exact variance + QGARCH 3.03 2.94 4.28 3.91 6.81 5.73 3.67
(0.01) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00)

Exact variance + RiskMetrics 4.40 4.84 4.80 5.35 6.87 7.41 4.63
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Exact kurtosis + QGARCH -0.29 2.29 0.70 0.89 2.06 -0.96 -1.05
(0.77) (0.03) (0.49) (0.38) (0.05) (0.33) (0.29)

Exact kurtosis + RiskMetrics 3.07 3.54 3.54 3.33 5.83 6.17 3.19
(0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Monte Carlo + QGARCH -0.73 1.95 0.12 0.66 2.27 0.13 -0.89
(0.48) (0.06) (0.91) (0.53) (0.03) (0.89) (0.38)

Monte Carlo + RiskMetrics 2.60 3.53 3.46 3.31 5.79 6.22 3.27
(0.02) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

p = 5%

Exact variance + QGARCH 3.88 2.19 3.81 4.65 6.89 5.32 4.48
(0.00) (0.04) (0.00) (0.00) (0.00) (0.00) (0.00)

Exact variance + RiskMetrics 4.57 3.75 5.48 5.83 7.01 6.63 4.79
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Exact kurtosis + QGARCH -1.60 -0.67 -0.47 1.11 2.09 -0.33 -1.88
(0.12) (0.51) (0.65) (0.27) 0.04 (0.75) (0.07)

Exact kurtosis + RiskMetrics 3.15 2.58 4.27 4.53 6.01 5.43 3.59
(0.00) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00)

Monte Carlo + QGARCH -1.67 -0.92 -0.23 0.85 2.14 -0.14 -0.80
(0.10) (0.35) (0.82) (0.40) (0.04) (0.89) (0.44)

Monte Carlo + RiskMetrics 3.13 2.63 4.33 4.50 6.01 5.44 3.57
(0.00) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00)
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Table 4: Expected shortfall cost functions, C1 and C2, for h = 10 days. The smallest C1
and C2 are in boxes

AOI CAC DAX FTSE HSI NIKKEI SP500

C1, p = 1%

Exact variance + QGARCH 1.27 2.31 2.84 1.22 4.42 2.75 1.89
Exact variance + RiskMetrics 1.42 2.73 3.22 1.47 4.98 2.70 1.97

Exact kurtosis + QGARCH 0.94 1.65 1.82 1.18 3.50 1.33 1.23
Exact kurtosis + RiskMetrics 1.33 2.80 2.99 1.43 4.94 2.43 1.70

Monte Carlo + QGARCH 0.92 1.64 1.76 1.18 3.40 1.26 1.13
Monte Carlo + RiskMetrics 1.33 2.80 2.99 1.43 4.93 2.43 1.70

C1, p = 2.5%

Exact variance + QGARCH 1.06 2.46 2.30 1.20 3.30 2.31 1.50
Exact variance + RiskMetrics 1.28 2.54 2.60 1.38 4.10 2.80 1.70

Exact kurtosis + QGARCH 1.08 1.89 1.95 1.14 3.07 2.02 1.34
Exact kurtosis + RiskMetrics 1.29 2.56 2.50 1.39 4.14 2.69 1.67

Monte Carlo + QGARCH 1.07 1.95 1.92 1.14 3.03 1.84 1.25
Monte Carlo + RiskMetrics 1.29 2.55 2.50 1.38 4.14 2.69 1.67

C1, p = 5%

Exact variance + QGARCH 0.91 1.75 1.97 1.19 2.82 1.94 1.23
Exact variance + RiskMetrics 1.16 2.13 2.34 1.36 3.67 2.52 1.55
Exact kurtosis + QGARCH 1.03 1.93 2.11 1.22 2.99 2.03 1.47
Exact kurtosis + RiskMetrics 1.19 2.17 2.37 1.36 3.73 2.49 1.58
Monte Carlo + QGARCH 1.01 1.90 2.06 1.21 2.93 1.99 1.37
Monte Carlo + RiskMetrics 1.19 2.17 2.37 1.36 3.74 2.49 1.58

C2, p = 1%

Exact variance + QGARCH 3.34 9.52 16.05 3.19 42.13 10.42 5.28
Exact variance + RiskMetrics 4.47 11.72 21.87 3.84 41.79 9.34 6.46

Exact kurtosis + QGARCH 1.79 3.85 5.57 2.27 27.65 2.44 2.23
Exact kurtosis + RiskMetrics 3.82 11.27 18.35 3.42 39.97 7.73 4.81

Monte Carlo + QGARCH 1.73 3.76 5.49 2.30 27.58 2.37 1.90
Monte Carlo + RiskMetrics 3.78 11.24 18.33 3.40 39.89 7.81 4.81

C2, p = 2.5%

Exact variance + QGARCH 2.60 11.55 12.82 3.23 28.73 8.95 4.76
Exact variance + RiskMetrics 3.35 11.72 16.01 3.95 32.91 12.13 5.65

Exact kurtosis + QGARCH 2.00 6.46 7.75 2.50 22.28 6.17 2.68
Exact kurtosis + RiskMetrics 3.26 11.19 15.02 3.71 32.80 11.59 5.20

Monte Carlo + QGARCH 1.99 6.86 8.10 2.53 22.40 5.47 2.45
Monte Carlo + RiskMetrics 3.24 11.16 14.98 3.71 32.82 11.57 5.20

C2, p = 5%

Exact variance + QGARCH 2.01 7.79 9.85 3.14 21.55 7.58 3.82
Exact variance + RiskMetrics 2.70 9.45 12.50 3.69 27.00 10.83 5.28

Exact kurtosis + QGARCH 1.88 6.43 8.34 2.71 19.83 6.22 3.44
Exact kurtosis + RiskMetrics 2.74 9.51 12.46 3.60 27.36 10.71 5.30

Monte Carlo + QGARCH 1.87 6.64 8.45 2.74 19.62 6.13 3.22
Monte Carlo + RiskMetrics 2.73 9.50 12.45 3.60 27.41 10.68 5.30
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Table 5: Expected shortfall cost functions, C1 and C2, for h = 5 days. The smallest C1
and C2 are in boxes

AOI CAC DAX FTSE HSI NIKKEI SP500

C1, p = 1%

Exact variance + QGARCH 1.19 1.27 1.26 0.88 3.19 2.32 1.09
Exact variance + RiskMetrics 1.28 1.75 1.85 1.01 3.20 2.39 1.26
Exact kurtosis + QGARCH 1.09 1.04 1.49 0.86 2.36 1.31 0.94
Exact kurtosis + RiskMetrics 1.22 1.91 1.83 0.99 3.05 2.19 1.18

Monte Carlo + QGARCH 1.08 1.03 1.48 0.85 2.35 1.29 0.79
Monte Carlo + RiskMetrics 1.22 1.90 1.83 0.99 3.05 2.20 1.18

C1, p = 2.5%

Exact variance + QGARCH 0.84 0.95 1.10 0.81 2.46 1.51 1.02
Exact variance + RiskMetrics 1.03 1.27 1.44 0.94 2.87 1.85 1.15

Exact kurtosis + QGARCH 0.89 1.17 1.26 0.84 2.28 1.60 0.82
Exact kurtosis + RiskMetrics 1.04 1.34 1.47 0.93 2.83 1.82 1.14

Monte Carlo + QGARCH 0.88 1.13 1.24 0.84 2.28 1.54 0.82
Monte Carlo + RiskMetrics 1.04 1.34 1.47 0.93 2.83 1.81 1.14

C1, p = 5%

Exact variance + QGARCH 0.78 0.94 1.13 0.83 2.10 1.24 0.92
Exact variance + RiskMetrics 0.85 1.15 1.43 0.95 2.49 1.56 1.08
Exact kurtosis + QGARCH 0.81 1.04 1.29 0.86 2.11 1.56 0.96
Exact kurtosis + RiskMetrics 0.86 1.18 1.46 0.95 2.50 1.55 1.10

Monte Carlo + QGARCH 0.80 1.01 1.27 0.85 2.10 1.42 0.94
Monte Carlo + RiskMetrics 0.86 1.18 1.46 0.95 2.50 1.55 1.10

C2, p = 1%

Exact variance + QGARCH 4.29 3.89 5.25 2.31 21.49 8.57 2.84
Exact variance + RiskMetrics 4.67 6.19 7.92 2.55 20.36 8.52 2.93

Exact kurtosis + QGARCH 3.30 2.88 4.24 1.83 12.01 3.13 1.45
Exact kurtosis + RiskMetrics 4.35 6.93 7.70 2.34 18.65 7.39 2.49

Monte Carlo + QGARCH 3.29 2.84 4.22 1.80 12.24 3.17 1.26
Monte Carlo + RiskMetrics 4.36 6.90 7.74 2.34 18.61 7.39 2.49

C2, p = 2.5%

Exact variance + QGARCH 2.50 2.50 3.48 1.78 16.04 5.11 2.58
Exact variance + RiskMetrics 2.87 3.23 4.98 2.06 17.06 6.34 2.91

Exact kurtosis + QGARCH 2.19 2.44 3.38 1.56 11.97 4.01 1.48
Exact kurtosis + RiskMetrics 2.82 3.41 5.02 2.02 16.64 6.10 2.75

Monte Carlo + QGARCH 2.19 2.29 3.37 1.56 12.20 3.93 1.56
Monte Carlo + RiskMetrics 2.83 3.41 5.03 2.01 16.61 6.08 2.76

C2, p = 5%

Exact variance + QGARCH 1.85 2.15 3.12 1.68 12.39 3.59 2.11
Exact variance + RiskMetrics 2.02 2.63 4.10 1.84 13.53 4.88 2.53

Exact kurtosis + QGARCH 1.72 2.11 3.19 1.57 10.85 4.05 1.74
Exact kurtosis + RiskMetrics 2.01 2.69 4.13 1.82 13.46 4.81 2.53

Monte Carlo + QGARCH 1.72 2.10 3.15 1.57 10.93 3.60 1.79
Monte Carlo + RiskMetrics 2.01 2.69 4.14 1.82 13.46 4.80 2.53
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Table 6: Expected shortfall cost functions, C1 and C2, for h = 20 days. The smallest C1
and C2 are in boxes

AOI CAC DAX FTSE HSI NIKKEI SP500

C1, p = 1%

Exact variance + QGARCH 1.67 3.17 5.01 1.52 8.53 6.81 2.37
Exact variance + RiskMetrics 2.18 4.73 5.21 2.04 7.84 5.43 2.49

Exact kurtosis + QGARCH 1.72 2.27 3.05 1.36 5.96 3.24 2.00
Exact kurtosis + RiskMetrics 2.44 4.93 4.83 2.08 7.08 4.74 2.09

Monte Carlo + QGARCH 1.63 2.27 3.01 1.36 6.09 3.18 1.57
Monte Carlo + RiskMetrics 2.44 4.93 4.83 2.09 7.06 4.74 2.08

C1, p = 2.5%

Exact variance + QGARCH 1.29 2.29 3.19 1.59 6.29 5.41 1.55
Exact variance + RiskMetrics 1.80 3.12 4.06 1.93 6.62 4.89 2.15

Exact kurtosis + QGARCH 1.50 2.41 2.95 1.62 5.92 3.39 1.70
Exact kurtosis + RiskMetrics 1.98 3.39 4.16 1.92 6.53 4.61 2.14

Monte Carlo + QGARCH 1.46 2.35 2.80 1.59 5.76 3.80 1.52
Monte Carlo + RiskMetrics 1.98 3.41 4.16 1.92 6.53 4.61 2.14

C1, p = 5%

Exact variance + QGARCH 1.31 2.30 2.85 1.64 4.80 3.73 1.58
Exact variance + RiskMetrics 1.62 2.79 3.21 1.98 5.74 3.75 2.31
Exact kurtosis + QGARCH 1.37 2.34 2.98 1.71 5.14 3.77 1.65

Exact kurtosis + RiskMetrics 1.70 2.89 3.29 2.00 5.77 3.68 2.37

Monte Carlo + QGARCH 1.36 2.28 2.82 1.65 4.82 3.79 1.62

Monte Carlo + RiskMetrics 1.70 2.89 3.29 2.00 5.77 3.68 2.38

C2, p = 1%

Exact variance + QGARCH 6.91 21.50 43.23 4.65 137.80 61.40 7.94
Exact variance + RiskMetrics 8.27 31.82 49.10 7.22 120.60 43.07 10.89

Exact kurtosis + QGARCH 5.05 10.28 16.78 2.71 83.36 16.77 5.54
Exact kurtosis + RiskMetrics 8.60 34.10 42.83 7.44 111.20 35.05 7.67

Monte Carlo + QGARCH 4.74 10.30 16.94 2.70 85.22 19.57 3.68
Monte Carlo + RiskMetrics 8.59 34.12 43.05 7.51 110.80 34.95 7.64

C2, p = 2.5%

Exact variance + QGARCH 4.32 15.07 26.01 5.10 97.03 48.18 5.16
Exact variance + RiskMetrics 5.64 20.72 32.31 6.53 90.62 39.49 8.44

Exact kurtosis + QGARCH 3.90 10.82 16.54 4.07 77.56 20.52 4.10
Exact kurtosis + RiskMetrics 6.17 22.05 32.86 6.21 88.40 36.73 8.25

Monte Carlo + QGARCH 3.75 10.61 16.28 4.02 77.61 26.80 3.62
Monte Carlo + RiskMetrics 6.18 22.18 32.89 6.22 88.22 36.63 8.27

C2, p = 5%

Exact variance + QGARCH 3.98 13.30 21.21 5.25 65.56 31.44 5.31
Exact variance + RiskMetrics 4.92 15.27 23.14 6.70 67.78 27.65 9.70

Exact kurtosis + QGARCH 3.53 10.74 17.18 4.83 60.67 22.90 4.43
Exact kurtosis + RiskMetrics 5.17 15.69 23.41 6.65 67.64 26.87 10.08

Monte Carlo + QGARCH 3.52 10.72 16.90 4.59 59.28 26.01 4.38
Monte Carlo + RiskMetrics 5.18 15.72 23.44 6.66 67.55 26.89 10.10
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Table 7: P-values of the test for H0 : P (met > 0) = 0.5, h=10 days.

AOI CAC DAX FTSE HSI NIKKEI SP500

p = 1%

Exact variance + QGARCH 0.00 0.00 0.01 0.03 0.00 0.00 0.00
Exact variance + RiskMetrics 0.00 0.00 0.02 0.01 0.00 0.00 0.00
Exact kurtosis + QGARCH 0.47 1.00 0.60 0.15 0.12 0.86 1.00
Exact kurtosis + RiskMetrics 0.06 0.00 0.27 0.17 0.00 0.00 0.01
Monte Carlo + QGARCH 0.78 1.00 0.62 0.35 0.25 0.88 0.33
Monte Carlo + RiskMetrics 0.06 0.00 0.63 0.13 0.01 0.00 0.00

p = 2.5%

Exact variance + QGARCH 0.81 0.42 0.00 0.00 0.00 0.00 0.27
Exact variance + RiskMetrics 0.04 0.00 0.00 0.00 0.00 0.00 0.01
Exact kurtosis + QGARCH 0.93 0.01 0.25 0.31 0.01 0.81 1.00
Exact kurtosis + RiskMetrics 0.18 0.04 0.01 0.05 0.00 0.00 0.21
Monte Carlo + QGARCH 0.65 0.02 0.19 0.24 0.01 0.10 0.75
Monte Carlo + RiskMetrics 0.31 0.01 0.00 0.03 0.00 0.00 0.17

p = 5%

Exact variance + QGARCH 0.00 1.00 0.10 0.00 0.00 0.01 0.00
Exact variance + RiskMetrics 0.03 0.44 0.00 0.00 0.00 0.01 0.01
Exact kurtosis + QGARCH 0.05 0.01 0.31 0.42 0.33 0.93 0.23
Exact kurtosis + RiskMetrics 0.29 0.70 0.00 0.00 0.00 0.04 0.02
Monte Carlo + QGARCH 0.12 0.00 0.65 0.52 0.41 0.59 0.77
Monte Carlo + RiskMetrics 0.29 0.64 0.00 0.00 0.00 0.05 0.03

Table 8: Average ranks of the expected shortfall and median shortfall estimators based
on C1 and C2.

Expected shortfall Median shortfall

p = 1% p = 2.5% p = 5% p = 1% p = 2.5% p = 5%
Exact variance + QGARCH 4.0 2.8 2.1 4.6 3.4 3.4
Exact variance + RiskMetrics 5.4 5.3 4.8 5.4 5.5 5.3
Exact kurtosis + QGARCH 1.8 1.9 2.5 1.3 1.2 1.3
Exact kurtosis + RiskMetrics 4.4 4.8 4.9 4.1 4.7 4.7
Monte Carlo + QGARCH 1.3 1.5 1.8 1.7 1.8 1.7
Monte Carlo + RiskMetrics 4.2 4.6 5.0 3.9 4.4 4.6
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Figure 1: QGARCH parameter estimates of S & P 500 in the validation period.
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Figure 2: Time series plot of the expected shortfall estimates in percentages using the

Exact kurtosis + QGARCH estimator (Ê
[3]
10,1%) and the Exact variance + RiskMetrics

estimator (Ê
[2]
10,1%) for S & P 500 in the validation period. The ES residuals, −R10,1% −

Ê
[j]
10,1%, are labeled by circles in the time series plots whenever there is VaR exceedance of

−R10,1% > V̂
[j]
10,1% for j=2 and 3.
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Figure 3: Time series plot of the median shortfall estimates in percentages using the Exact

kurtosis + QGARCH estimator (M̂
[3]
10,1%) and the Exact variance + RiskMetrics estimator

(M̂
[2]
10,1%) for S & P 500 in the validation period. The MS residuals, −R10,1%− M̂ [j]

10,1%, are

labeled by circles in the time series plots whenever there is VaR exceedance of −R10,1% >

V̂
[j]
10,1% for j=2 and 3.
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