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A B S T R A C T

Serum creatinine (CRT) levels are key biomarkers for diagnosing, staging, and monitoring renal disease in 
clinical practice. In this work, copper nanowires (CuNW), and Molybdenum disulfide quantum dots (MSQD) 
modified glassy carbon electrode (GCE) were chosen to demonstrate the electrochemical detection of CRT in 
complex mixture and urine samples. The materials were characterized using various physical characterizations 
such as FESEM, XRD, UV, PL, and FT-Raman. The electrocatalytic activity of the sensor was investigated using 
cyclic voltammetry (CV), and differential pulse voltammetry (DPVs). Despite the elevated sensitivity and cost- 
effectiveness of electrochemical sensors, the performance of the sensors is constrained by the existence of 
interfering species that generate conflicting and overlapping electrochemical signatures. In order to address this 
issue, we implemented a machine learning (ML) approach to accurately quantify CRT levels in complex mixtures, 
as well as in urine samples. The ML algorithms employed are trained and tested on a large dataset, allowing them 
to effectively capture and analyze the variance in the electrochemical signatures, demonstrating the application 
of artificial intelligence. The proposed sensor exhibits linearity from 1.96 μM to 966.0 μM and shows the best 
performance in terms of limit-of-detection (LOD) of 2.3 μM in a complex mixture and 0.001 μM in real urine 
samples, with RMSE of 0.2 and 0.017 μM using artificial neural network and random forest ML models 
respectively. We anticipate that by further miniaturization of these sensors into point-of-care testing devices, 
renal diseases can be managed effectively.

1. Introduction

Creatinine (2-amino-1-methyl-5H-imidazole-4-one (CRT)) is the 
final product of creatine metabolism in mammals [1]. So, it becomes an 
important clinical analyte used to diagnose muscle, thyroid, and renal 
functions. Clinical practice must assess the amount of CRT in human 
blood and urine since it reflects the functioning of the thyroid, kidney, 
and muscles. Muscle tissue uses creatine as its source of energy as a 
consequence of the breakdown of amino acids. It gets transported 
through blood as a dehydrogenated substance known as CRT. The 
glomerular ultrafiltration rate (GFR) and the net amount of CRT in 
serum are indirectly proportional, showing both the quantitative and 
qualitative functionality of the kidneys [2]. The normal physiological 

range for CRT in the blood and urine is 40–150 μM and 5.92–19.01 mM 
respectively [1,3], but in the case of some pathological conditions, the 
CRT range will exceed the normal range. Urine CRT is consistently 
excreted at a stable rate through glomerular filtration. The property 
facilitates the assessment of renal glomerular filtration rate and stan-
dardizing urinary biomarkers [4,5]. Furthermore, detecting CRT in 
urine is a non-invasive and convenient alternative to the conventional 
serum CRT measurement. This opens up possibilities for its utilization in 
home healthcare settings, offering the potential for broader application 
in monitoring healthcare status. Therefore, it becomes crucially vital 
from a clinical standpoint to measure the levels of CRT in human urine 
samples. Patients with acute renal injury who are critically ill may 
benefit from routine CRT monitoring with quick results availability and 
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peritoneal dialysis patients may see an improvement in quality of life 
[5,6].

The commonly used conventional methods to analyze CRT are based 
on a colorimetric method using Jaffe’s reaction [7] or an enzymatic 
method using multiple enzymes (mostly electrochemical sensing) [8]. 
However, a variety of metabolites and drugs present in biological sam-
ples could adversely affect colorimetric procedures [9], whereas 
enzymic assays are time-consuming, difficult, and expensive. Some 
chromatographic methods can determine CRT in biofluids in a highly 
selective and relatively quick manner [10] but the instruments required 
for these methods are expensive, time-consuming to prepare the sam-
ples, and skilled personnel to operate. On the other hand, although 
enzymatic techniques offer excellent selectivity, they tend to be costly 
and complex. Thus, there is an urgent need for a dependable method to 
detect CRT that is both affordable and straightforward. Using crea-
tininase, creatinase, and sarcosine oxidase, an enzymatic electro-
chemical approach was created to increase the specificity of the system 
[11], and the detection of CRT was accomplished by monitoring an 
electroactive product (hydrogen peroxide) produced by the series of 
enzymatic reactions using cyclic voltammetry (CV) or amperometry 
[12,13]. Due to its multiple component complexity, it results in high cost 
and complexity in reaction [14]. Therefore, a practical clinical need for 
creating a simple, affordable, speedy technology for measuring CRT still 
exists.

Over the last ten years, several novel analysis methods have been 
utilized to progressively ascertain CRT levels. Recently numerous 
advanced analytical methods have been applied [15]. These techniques 
predominantly utilize conventional instrument analysis methods, 
including colorimetric assays, high-performance liquid 
chromatography-mass spectrometry/mass spectrometry (HPLC-MS/ 
MS), and capillary electrophoresis, for the qualitative or quantitative 
assessment of CRT [16]. Instrumental analysis methods frequently 
necessitate rigorous procedures, intricate pre-treatments, time-intensive 
protocols, and prolonged analysis durations, resulting in diminished 
efficiency in CRT detection. Particularly, electrochemical sensors stand 
out as excellent options for biomolecule detection due to their distinc-
tive and substantial benefits, which encompass straightforward 
handling, rapid signal responsiveness, compact instrument size, minute 
sample requirement, affordability, and heightened sensitivity [17].

Electroanalytical techniques play a vital role in the accurate and 

simple quantification of several bioanlaytes [18,19]. They were thor-
oughly identified and measured in multiple biological fluids, including 
serum, urine, and synthetic matrices, wherein their concentration serves 
as a critical biomarker for the early detection of chronic diseases. 
Electroanalytical methods, DPV, and EIS (in the case of electro-inactive 
species) [20,21] are characterized by their remarkable sensitivity, swift 
response times, and capacity to analyze complex biological matrices 
with minimal sample preprocessing. These methodologies are especially 
beneficial in point-of-care settings and for real-time surveillance, facil-
itating rapid and on-site assessment of ultra-low levels concentration of 
biomarkers.

One predominant approach for CRT detection involves the applica-
tion of electrochemical methods, encompassing both enzymatic and 
non-enzymatic sensor modalities [22]. This has prompted research into 
a novel class of electrochemical CRT sensors that show high selectivity 
and sensitivity while having strong stability and not necessitating the 
use of enzymes. It’s important to note that the enzymatic sensor systems 
exhibit low stability, sensitivity, and reproducibility as the enzymes tend 
to denature. Enzymatic sensors are expensive and prone to denaturation 
with prolonged use. The proposition of employing non-enzymatic sen-
sors for CRT detection has arisen as a strategic response to circumvent 
these challenges. Compared to enzymatic CRT sensors there are fewer 
studies on non-enzymatic biosensors. In these non-enzymatic sensors, 
the sensing is often accomplished by CRT interaction with chemically 
synthesized nanoparticles that are embedded at the electrode surface 
[23], with a supporting media [24], or as a composite [25]. Addition-
ally, molecularly imprinted polymers (MIPs) can be used to create an 
artificial lock and key system [26]. Unlike their enzymatic analogs, these 
non-enzymatic electrochemical sensors provide remarkable storage 
stability, reproducibility, and flexibility. For instance, sensitive CRT 
biosensors have been created by using the unique interaction between 
CRT and metallic centers. These sensors show robust storage stability, 
minimum signal reduction, and good response for clinical detection. 
Further research is necessary to comprehend how CRT interacts with the 
active metallic detecting sites. Due to the ease of fabrication, they lead to 
pertinent clinical detection with minimum interferences but suffer from 
a large range of interferents that are found in human biological fluids in 
terms of both diversity and concentration [27].

Due to their exceptional electrocatalytic activity, good stability, and 
low cost, transition metals, and metal oxides have been attracting more 

Fig. 1. Schematic illustration of the electrochemical determination of CRT in urine samples.
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attention as electrode system modifiers, because they may facilitate 
electron transfer reactions at low potentials [28,29]. A soluble CRT- 
metal complex can be generated by the transition metal ions including 
Ag(I), Zn(II), Cd(II), Hg(II), Co(II), Cu(II), and Fe(III) chelating with 
CRT, and this characteristic property can be used for the quantitative 
determination of CRT [30,31]. The production of a soluble Cu–CRT 
combination on the copper electrode provided the basis for the devel-
opment of an amperometric method for measuring CRT. The oxidative 
current formed during the reaction is related to the CRT concentration 
[31].

Due to its high specific surface area, low cost, low toxicity, and 
electro-catalytic activity, copper (II) is an appealing alternative material 
to increase the sensitivity of electrochemical detection towards CRT 
[32]. One-dimensional CuNWs act as highly efficient electron transport 
channels, offering high conductivity and a large surface area [33], 
making them integral to improving the electrochemical performance 
and sensitivity of advanced sensor systems [34,35]. CuNWs are promi-
nent for their high conductivity, affordable precursor cost, and potential 
integration with a well-known dual damascene system [36,37]. MoS2 
nanomaterials have been exclusively investigated for their potential 
applications in diagnostic and biomedical applications. These applica-
tions encompass the detection of various biomolecules such as dopamine 
(DA), ascorbic acid (AA), glucose, and biomarkers [38]. MSQD has been 
selected for the selective detection of CRT. MSQD belongs to the highest 
class of transition metal dichalcogenide (TMDC) family with practical 
electrical, mechanical, and chemical properties. They possess a high 
surface-to-volume ratio and increased active edges which enhance the 
catalytic properties of MSQD [39].

Herein we develop a non-enzymatic method to detect CRT via the 
formation and electrochemical detection using CuNW/MSQD complex. 
Under optimal conditions, the developed sensor exhibits a good linear 
range over the concentrations and in the presence of other interfering 
substances. Along with the creation of the novel electrochemical sensor, 
the detailed electrochemical behavior of the CuNW/MSQD complexes 
was also explored. In this study, we tested real urine samples and 
compared them with laboratory results this could reflect the perfor-
mance of the developed sensor which may be reflected in laboratory to 
practical applications. Moreover, machine learning (ML) algorithms 
were applied to quantify CRT by training and testing in a large pool of 
experimental data. Fig. 1 schematically illustrates the summary of stages 
involved in the present work. Thus, our methodology provides a simple, 
low-cost, and sensitive technique to develop a biosensor for CRT 
detection.

2. Experiments

2.1. Reagents and chemicals

All chemicals were of analytical quality grade and used without any 
purification. All samples were prepared in phosphate buffer (K2HPO4 (≥
99 % purity) and KH2PO4 (99 % purity), and all were purchased from 
Sigma-Aldrich, India. Dopamine hydrochloride (DA) (>99.5 % purity), 
uric acid (UA) (>99.6 % purity), ascorbic acid (AA) (>99% purity), 
dimethylformamide (DMF (99.8 %), and bulk crystals of MoS2 (6 μm), 
were from Sigma Aldrich Chemical Company, India. CRT was purchased 
from Merck Chemicals, India. Sodium hydroxide (NaOH), ethylenedi-
amine (EDA) (99 %), hydrazine (N2H4) (98 %), and copper nitrate (Cu 
(NO3)2) (99.7 %) were purchased from Sisco Research Laboratories Pvt. 
Ltd. India. All aqueous solutions were prepared using deionized water 
from a Milli-Q system (18.3 MΩ Millipore). Further 0.1 M phosphate 
buffer solution (PBS pH 7.0) was used as a supporting electrolyte 
throughout the experiment.

2.2. Surface characterization

The surface morphology of the modified carbon electrode was 

analyzed using field emission scanning electron microscopy (FESEM) 
(model: JEOL JSM 7200F FESEM, Japan). Raman spectroscopy was 
taken using BRUKER RFS 27 MultiRAM FT Raman Spectrometer (Ger-
many) with 4000–50 cm− 1 spectral range (Laser source − 1064 nm). The 
crystallographic structure of products was determined with X-ray pow-
der diffraction (XRD) spectrum (Rigaku Smartlab 3KW, Japan) which 
uses a Cu-Kα source with a wavelength of 1.540564 Å. The UV–visible 
spectra were recorded on a UV-spectrophotometer (PerkinElmer, 
Lambda 35, USA), and photoluminescence (PL) measurements were 
taken using a JASCO spectrofluorometer (FP- 8300, Japan).

2.3. Synthesis of CuNW

Herein we synthesized CuNW with an aqueous reduction route at low 
temperature. EDA was employed as a growth-directing agent and hy-
drazine as a reducing agent during the solution-based synthesis of 
CuNWs. The synthesis method is similar to those found in works of 
published literature [40]. Briefly, a process involved the mixing of 
copper nitrate solution (0.1 M in 2.0 mL DI water) with aqueous NaOH 
solution (15 M in 40 mL DI water). The solution was added to a glass 
reactor (capacity 50 mL). EDA (0.1 M, 266 μL) and hydrazine (5.72 × 10 
− 3 M, 21 μL) were also added sequentially, followed by thorough mixing 
of all reagents for 3 min. The reactor was then placed in a water bath at 
60 ◦C temperature. After 45 min, the solution changed to a clear solution 
containing a reddish-brown precipitate. The obtained CuNW were 
collected and washed several times with DI water and ethanol, and 
finally stored in ethanol solvent to prevent further oxidation.

2.4. Synthesis of MSQD

The MSQD was synthesized from bulk MoS2 crystals from the re-
ported method in the literature [41]. MoS2 crystals (0.5 g) were mixed 
with 250 mL of DMF, and this mixture was homogenized using a high- 
shear mixer at 8000 rpm shearing rate for 3 hours in a water bath by 
maintaining 100 ◦C and the shearing system led to the formation of well- 
dispersed QDs. The final product was collected and it has been identified 
that they are highly dispersed in DMF and further, it is characterized 
using various characterization techniques.

2.5. Fabrication of the sensor

First, 500 μL of MSQD was used to dissolve 0.5 mg of CuNW to 
prepare the suspension. Subsequently, the suspension was homogenized 
for one hour using ultrasonication. The homogenous suspension (5 μL) 
was immobilized on a well-polished glassy carbon electrode (GCE) 
surface by physical adsorption via the drop-casting method. Before drop 
casting CuNW/MSQD on GCE, the electrode was polished with 0.05 μM 
alumina slurry and washed with DI water several times. The drop-casted 
electrode was dried under ambient conditions.

2.6. Electrochemical measurements

Electrochemical techniques such as Cyclic Voltammetry (CV), Dif-
ferential pulse Voltammetry (DPV), and electrochemical impedance 
spectroscopy (EIS) performed using single-channel Palmsens electro-
chemical potentiostat (Emstat4HR Electrochemical potentiostat) inter-
faced with PSTrace software were utilized for validating the sensing 
performance. For the measurements a typical three-electrode system 
consists of a GCE as the working electrode (3 mm), Ag/AgCl (3 M KCl) as 
a reference electrode, and a Pt wire as a counter electrode used for 
voltammetric studies. The pH measurements were carried out using a pH 
meter (Systronics pH meter).

Electrochemical characterization of the fabricated sensor CuNW/ 
MSQD/GCE was carried out using CV and EIS in a redox mixture con-
taining 5 mM [Fe(CN6)]3− /4− in 0.1 M phosphate buffer solution at pH 
7.0. CV was recorded in the potential range of - 0.2 V to 0.6 V at the scan 
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rate of 100 mV/s. EIS was recorded at the redox probe’s half-wave peak 
potential using frequency scanning from 100 kHz to 100 mHz and fre-
quency analysis. The voltammetric behavior of CRT, UA, DA, and AA 
was studied using DPV in the potential range between − 0.2 V to 0.8 V at 
a scan rate of 50 mV/s. Appropriate aliquots of the analyte solutions 
were added after running the DPV in the buffer, and DPVs were recorded 
after each addition to obtain calibration plots. Minimum and maximum 
ranges of CRT, UA, DA, and AA in serum samples were also detected 
electrochemically. All voltammetric studies were carried out in 0.1 M 
phosphate buffer solution (pH 7.0) at room temperature.

The complex mixture analysis was done by injecting different con-
centrations of the interfering molecules such as AA, DA, dUA, and CRT, 
the operated electrode’s selectivity to CRT was confirmed against other 
interfering molecules. The analysis was carried out with lower and 
higher concentration ranges of biomolecules. DPV studies were carried 
out with a lower range of AA (1.76 μM), higher range of AA (22.72 μM), 
a lower range of DA (3.26 × 10 − 7 μM), a higher range of DA (1.96 × 10 
− 5 μM), a lower range of UA (11.89 μM) and a higher range (47.58 μM) 
of UA as an interfering molecule with consecutive addition of CRT from 
1.96 μM to 966.0 μM in 0.1 M phosphate buffer (pH 7.0) from − 0.2 Vto 
0.8 V.

2.7. Real sample analysis

Fresh urine samples were collected from three healthy volunteers for 
the determination of CRT. The three urine samples’ CRT levels were 
tested on Apollo diagnostics by the modified Jaffe, kinetic method and 
the results (8855.26 μM, 1170.68 μM, and 1453.62 μM) were compared 
with the experimental values. To eliminate the protein from the fresh 
urine sample, two times as much acetone (v/v) was added. After 

centrifugation of the sample acetone was removed. Subsequently, the 
sample was diluted to 100-fold, 50-fold, and 20-fold with phosphate 
buffer solution having pH 7.0, and analysis for the CRT detection was 
performed (Table 1). A clinical analysis was also done for the deter-
mined samples, and the results were compared. There is another com-
bination of data acquisition which was done in spiked concentration of 
CRT in known concentration of urine samples.

2.8. Quantification of CRT in complex mixture and urine samples

Analysing electrochemical data recorded from biofluids has been the 
most challenging task in recent times due to its complexity of over-
lapping, and interfering electrochemical signatures generated from the 
redox-active species. Here, we have used four datasets in this analysis of 
the quantification of CRT in real samples. The four datasets are related to 
the data recorded using bare (GCE) and modified (CuNW/MSQD) elec-
trodes from differently diluted urine samples. There is another dataset 
where the urine samples were spiked with known CRT concentrations 
which was recorded using modified electrodes. The last dataset that we 
combined here is the complex mixture data set as recorded using 
modified electrodes in the above sections. This strategy was followed 
here to have a large data set, an important metric to follow in ML-related 
data analysis, and most importantly to accommodate the huge variance 
in the dataset to simulate the real case scenario. In this research, a 
strategic combination of all four datasets was undertaken to conduct 
diverse analyses. Each data set from real samples with specific features 
related to electrical and chemical properties was integrated with the 
‘complex mixture’ dataset, which provided a detailed exploration of 
chemical compositions. The variations in features across datasets 
allowed for a comprehensive investigation into the predictive modeling 
of concentration levels under different conditions. Each combination 
served a distinct purpose, contributing unique insights to the overall 
research. This strategic integration of diverse datasets aimed to enhance 
the depth and breadth of the analysis, shedding light on the multifaceted 
factors influencing concentration predictions in the study. Please find 
the details of data organization for different cases and preprocessing in 
the supplementary section. The experiments were performed on the 
TensorFlow-2 framework having Python 3.7.13 over a computer with 
Intel(R) Xeon(R) CPU @ 2.00GHz having 52 GB RAM and Tesla T4 16 
GB GPU.

Table 1 
Details of human urine sample analysis.

Sample Dilution Factor (x) Spiked CRT (μM)

A
20 502.46
50 265.26
100 186.20

B
20 159.40
50 128.04
100 117.59

C
20 172.03
50 133.09
100 120.12

Fig. 2. (A) Optical image of well-dispersed CuNW in ethanol, (B and C) FESEM images of as-synthesized CuNW and CuNW/MSQD, (D and E) XRD pattern of CuNW 
and MSQD. (F) UV–vis absorption spectra of MSQD and bulk MS, (G) PL spectra of MSQD, and (H and I) Raman spectra of MSQD, bulk MS, and CuNW.
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3. Results and discussion

3.1. Material characterization

3.1.1. Morphological characterization
The morphology of prepared three samples CuNW, MSQD, and 

CuNW/MSQD were characterized by FSEM. Fig. 2A shows the dispersion 
of CuNW in ethanol solution and Fig. 2B and C show FESEM images of 
CuNws and CuNW/MSQD respectively. It is interesting to note that the 
prepared nanowire cake rises to the top of the solution. The complete 
absence of the light blue color in this process indicates the reductive 
conversion of Cu2+ ion complexes to metallic copper and now the so-
lution turned red in color and is completely dispersed in ethanol solu-
tion. The synthesized CuNW are straight manner and smooth, particle- 
free surfaces as shown. It is shown CuNW/MSQD composite depicts 
long crystalline nanowires.

3.1.2. XRD analysis
X-ray diffraction analysis was used to determine the phase purity and 

crystalline nature of synthesized CuNW and MSQD. The crystallographic 
structure and purity of prepared CuNW are confirmed by XRD patterns. 
The XRD of CUNWs shows a typical face-centered cubic structure (fcc). 
Three main Cu peaks were observed from the XRD pattern (Fig. 2D) of 
CuNW. The typical diffraction peaks (2θ) positioned at 43.40, 50.20, and 
74.30. Compared with the standard peak positions of CuNW (JCPDS -04- 
0836) all observed peaks are assigned to (111),(200), and (220) planes. 
A minor peak at 36.10 corresponding to the (111) plane is due to the 
oxidation of CuNW (The * symbol in Fig. 2D represents the [111] plane 
of Cu2O) [42]. The XRD pattern of MSQD (Fig. 2E) shows characteristic 
diffraction peaks (2θ) which were located at 14.40, 28.50, and 35.70 and 
were assigned to (002), (004), and (102) planes respectively (JCPDS-00- 
037-1492). Since the material is very thin or has a few layers, it reveals 

no intense interference on the crystal plane. so, this XRD graph shows a 
very thin layer phase of quantum dots [43].

3.1.3. Spectroscopic study of MSQD
The UV–vis absorption spectra of bulk MoS2 and MSQD are shown in 

Fig. 2F. The absorption spectra of bulk MoS2 show three characteristic 
peaks. The peaks at 626 nm and 682 nm are because of the transition 
from the valence band to the conduction band at the K point the broad 
peak at 495 nm is assigned for the transition from the valence band to 
the conduction band and the Brillionzone M point [44]. These charac-
teristic peaks disappeared in MSQD spectra. In the spectrum of MSQD 
only one peak was observed in the UV region (λ ⁓273 nm) can be 
explained by the excitonic features of QDs [43]. However, in the case of 
QDs, it is evident that the bandgap is opening up, shifting, and broad-
ening the excitonic transitions Blueshift also can be explained through 
the quantum size effect [43,44]. These are the characteristics of the 
production of quantum dots because of the expansion of the energy gap 
in the Brillouin zone’s K point [41]. The photoluminescence (PL) spec-
tral study of the MSQD suspension was measured at various excitation 
wavelengths, as shown in Fig. 2G. The PL spectra show a strong emission 
peak at 432 nm under the excitation wavelength from 320 nm to 410 
nm. The additional peaks in the spectra are attributed to the vibronic 
coupling to the vibrational modes at high frequencies, which could 
originate from the edge bonds present in QDs [29]. The data reveals the 
dependence of PL emission peak intensities on the size of MSQD. As the 
size of the QDs increases, the strength of the emission peak diminishes 
[45]. These are typical PL features that rely on size. The excitation- 
dependent PL characteristic revealed the polydispersity of the MSQD 
in their as-prepared state [46,47].

3.1.4. Raman spectroscopy
The synthesized MSQD was characterized by Raman spectroscopy. 

Fig. 3. (A) CVs and (B) DPVs were obtained by chemically modified materials on GCE for the detection of 0.28 mM CRT in 0.1 M phosphate buffer solution (pH 7.0) 
having the potential of − 0.2 V to 0.8 V, at the scan rate of 50 mVs− 1 (C) Recorded CVs of redox couple 5 mM [Fe(CN)6]3− /4- at the scan rate of 10 mVs− 1 to 500 
mVs− 1 using CuNW/MSQD modified GCE (D) The linear plot shows the linear dependence of the recorded current peak Vs. square root of scan rate. CVs (E) and the 
Nyquist plots (F) (Inset: equivalent circuit used for fitting) were recorded for bare, CuNW/GCE, CuNW/MSQD/GCE, and MSQD/GCE.
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Due to its high sensitivity and non-reactivity of the sample, Raman 
spectroscopy has been used extensively for studying the vibrational 
characteristics of transition metal dichalcogenides [48]. Raman spectra 
of bulk MoS2 are shown in Fig. 2H in which two peaks E2g and A1g at 374 
cm− 1 and 400 cm− 1 respectively. The Raman spectra of MSQD (Fig. 2H) 
show two prominent characteristic peaks at 359.1 cm− 1 and 407 cm− 1 

corresponding to E2g (in-plane optical vibration) and A1g (out-of-plane 
optical vibration) active modes respectively. Where E2g vibration in-
cludes both Mo and S atoms and A1g includes only S atom [49]. 
Compared to bulk, MS, the A1g vibration of MSQDs blue shifted from 
400 cm− 1 to 407 cm− 1 and the E2g vibration is red shifted. Usually A1g 
vibration blueshifts with increased sample thickness from monolayer to 
bulk [44].Raman spectra of CuNw which are oxidized after exposure to 
the atmosphere are shown in Fig. 2I. The Raman peaks of nanowires can 
be observed peaks at 288, 330, and 621 cm− 1 [50]. The Raman peaks get 
stronger, sharper, and slightly shift to a higher wavenumber as the grain 
size rises [46].

3.2. Electrochemical characterization

CV was conducted to know the fundamental electrochemical char-
acteristics of CRT at the bare and different modified electrodes in 0.1 M 
phosphate buffer solution (pH 7.0) with forward scan ranged potential 
range from − 0.2 V to 0.8 V at a scanning rate of 50 mVs− 1 as shown in 
Fig. 3A and DPV are shown in Fig. 3B. In the CV, oxidation of CRT at 
CuNW/MSQD reveals a reversible oxidation peak at 0.34 V with peak 
current (Ip) 19.47 μA which is a higher current than CUNW modified 
and MSQD modified electrodes, and no such kind of oxidation peak was 
observed for bare electrode. To confirm the results, DPV was also per-
formed, showing that the CuNW/MSQD modified electrode exhibited a 
higher current of 61.45 μA compared to other modified electrodes. The 

enhancement in the sensor’s signal is facilitated by the synergistic 
properties of the CuNW/MSQD. During the electrochemical detection, 
the CRT molecule will adsorb onto the surface of the CuNW/MSQD- 
modified electrode. It involves highly conductive Cu form complexes 
with CRT on the surface of MSQD [51], and the charge transfer followed 
from CUNW- CRT complexes to MSQD [52]. It results in the selective 
and efficient oxidation of CRT molecules. Furthermore, the active edge 
sites and higher surface area of MSQD, facilitate selective interaction 
with Cu-CRT molecules, reducing interference from other compounds 
such as DA, UA, and AA [38].

Based on this, it is confirmed that the CuNW/MSQD compound 
shows the highest current. This indicates that the electrochemical ac-
tivity of the modified electrode surface can be enhanced by the addition 
of CuNW and MSQD to the surface than any other electrodes. The 
electrochemical activity of the CuNW/MSQD modified electrode was 
characterized.

3.2.1. Effect of scan rate
To expand the investigation on the effective surface area of the 

modified electrode, a scan rate or speed study was investigated in 5 mM 
ferro/ferricyanide solution at a scan rate from 10 to 500 mVs− 1. The 
recorded CVs for the redox couple ferro/ferricyanide displayed similar 
cathodic and anodic waveform shapes for the CuNW/MSQD modified 
GCE (Fig. 3C) electrode were shown. Fig. 3C shows the effect of the scan 
rate (on the electrocatalytic anodic peak current (Ipa) of the modified 
electrode. As the scan rate increases from 10 mVs− 1 to 500 mVs− 1 the 
anodic peak current enlarged, and the peak potentials are shifted 
negatively indicating the reaction nature is reversible. The relationship 
between peak current and square root of scan rate was plotted for 
CuNW/MSQD modified GCE electrode (Fig. 3D) and the Plot gives a 
good linear relationship (R2 = 0.997). It indicates the diffusion- 

Fig. 4. (A) DPV obtained for 1.96–966.0 μM concentration of CRT in 0.1 M phosphate buffer solution (pH 7.0) within a potential window of − 0.2 V to 0.8 V, at the 
scan rate of 100 mVs− 1 and ‘a to J’ represents 1.96, 6.54, 10.7, 50, 84.8, 114, 717, and 966.0 μM concentration of CRT (b) linear calibration graph showing the linear 
relationship of the current peak vs concentration of the analyte (C) DPV recorded by CuNW/MSQD modified electrode in the absence and presence of interference at 
the potential of − 0.2 V to 0.8 V. Regression plots for the prediction of CRT combined data set recorded from the complex mixture using (D) ANN, (E) RF, and (F) 
KNN regressors.
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controlled reaction of CRT at the CuNW/MSQD electrode-electrolyte 
interface.

3.2.2. Electrochemical properties of CuNW/MSQD/GCE
Using CV and EIS the electrochemical behavior of the sensor at 

various stages has been analyzed in the presence of Fe-redox couple [Fe 
(CN)6]3− /4-and obtained voltammogram shown in Fig. 3E. From the 
figure it is observed that CUNW/MSQD-modified electrode shows higher 
peak current than CUNW-modified and MSQD-modified electrodes. The 
significantly higher peak current exhibited by the CuNW/MSQD 
-modified electrode in the [Fe(CN)6]3− /4 demonstrates the composite’s 
superior electrochemical properties, attributed to its enhanced con-
ductivity, catalytic activity, and charge transfer efficiency. These find-
ings affirm the effectiveness of the CuNW/MSQD composite for the 
detection of CRT. The effective surface area (Aeff) can be calculated 
using the Randles–Sevcik Eq. [53]. 

Ip = 0.4463
(
F3/RT

)1/2 n3/2Aeff D1/2C*3/2 ν1/2 (1) 

Where Ip is the peak current (A), F is the Faraday’s constant 
(96,485.339C/mol), R is the universal gas constant (8.31447 J K− 1 

mol− 1), T is the absolute temperature (K), n is the number of electrons 
transferred in a redox cycle (n = 1 for a ferro/ferricyanide reaction), Aeff 
is the effective electrode surface area in working (cm2), D is the diffusion 
coefficient of electroactive compound(cm2s− 1) [(0.72 × 10− 5 cm2 s− 1 

for ferricyanide and 0.67 × 10− 5 cm2 s− 1 for ferrocyanide], C* is the 
molar concentration of electroactive species (mol cm− 3) and ν is the scan 
rate (Vs− 1). surface area (Aeff) has been calculated for bare GCE is 9.1 ×
10− 3 cm2 and for CuNW/MSQD/GCE is 17.2 × 10− 3 cm2. The modified 
electrode exhibits a larger surface area compared to the bare GCE, which 
boosts its capacity for electron transfer. This implies that the modifica-
tion of bare GCE with conductive CUNW/MSQD enhanced the peak 
current for the electrochemical analysis of CRT with high sensitivity and 
rapid response rate.

Further, the kinetics of electron transfer for the modified electrode 
was studied through EIS. The EIS is a useful technique for examining the 
characteristics of the electrode-solution interface and the effectiveness 
of charge transfer between the electrode interface and the analyte- 
containing solution. Nyquist plots along with the equivalent circuit 
were shown in Fig. 3F. The diameter of the semi-circle indicates charge 
transfer resistance (RCT). Bare GCE shows higher charge transfer resis-
tance than MSQD, CuNW, and CuNW/MSQD electrodes. This indicates 
that the embedding of CuNW with MSQD increases the charge transfer 
characteristics of MSQDs. Upon fitting the impedance spectra with the 
suitable equivalent circuit (Inset: Fig. 3F), the charge transfer resistance 
value (RCT) value for bare, MSQD, CuNW, and CuNW/MSQD modified 
electrodes were found to be 1002 Ω 986.9 Ω, 676.1 Ω, and 564.2 Ω 
respectively. The combination of CUNW/MSQD results in the lowest RCT 
value, it reflects the enhanced electron transfer and catalytic activity 
compared to the bare and other modified electrodes. The impedance RCT 
values are in accordance with the diffusion currents of CVs.

3.2.3. Electrochemical analysis of CRT in buffered samples and in the 
presence of interfering species (complex mixture)

DPV is frequently employed as a sensitive technique to investigate 
the impact of varying CRT concentration (1.96 to 966.0 μM) in phos-
phate buffer pH 7.0 at 0.1 V/s using the CuNW/MSQD sensor on the 
peak current (Fig. 4A). The recorded voltammogram shows the char-
acteristics of increased current densities with increased concentrations. 
The anodic peaks are getting a higher value of current at 966.0 μM 
concentration. The modified electrode detects from 1.96 to 966.0 μM 
concentration of CRT. The peak is gradually shifting positively with 
increasing concentration. This may be due to the oxidation reaction of 
CRT. The corresponding calibration graph shows linearity with a 0.988 
R2 value as shown in Fig. 4B. The linear equation is represented as; 

IP(CRT) = (0.028±0.001) [CRT]μM +(15.795±0.448)
(
R2 = 0.988

)
(2) 

From Fig. 4B limit-of-detection (LOD) and sensitivity were calculated 
as 0.92 μM and 0.028 which shows that the modified electrode allows 
the detection of CRT levels in a highly sensitive manner in buffered 
samples. Recent studies reported on electrochemical detection of CRT 
are listed in Table 5. The developed electrochemical sensor’s linearity 
range and LOD for CRT determination are evaluated in comparison with 
values reported in the literature (Table 5). It is evident from the com-
parison that the developed sensor shows a wide linearity range and other 
analytical parameters that are on par with the literature. Moreover, the 
LOD is notably low.

Further, the CRT detection was investigated in the presence of major 
interfering species (e.g. DA, AA, UA) and it was found that the CRT 
electrochemical signature is influenced by the presence of these inter-
fering species generating highly complex electrochemical signature 
where it becomes challenging to deconvolute the electrochemical 
signature of CRT from complex electrochemical signatures (Fig. 4C). The 
impact of individual interfering species and the resultant electro-
chemical signature can also be seen in Fig. S1, S2, and S3 of the sup-
plementary information. The electrochemical signature of CRT is 
interfered with and masked by the presence of the interfering species 
generating overlapping electrochemical signatures which depends on 
many factors, e.g. activity of the electrode towards the interfering 
molecules along with CRT generating a partially selective electro-
chemical signature, and concentration of individual molecules and their 
resulting impact on the electrochemical signature generating convo-
luted electrochemical signature. These issues become more prominent in 
the case of biofluids where there are many molecules present in the 
solution generating even more complex electrochemical signatures. 
Since the problem of complex electrochemical signature has many facets 
and therefore, it cannot be handled by simple linear fitting, and it re-
quires some multivariate statistical approach to handle such a complex 
electrochemical data set. Therefore, we decided to use ML methods to 
process the complex electrochemical data recorded using CuNW/MSQD. 
The analysis of complex mixtures is framed as a regression problem, 
employing various ML regressor models such as Artificial Neural 
Network (ANN) [54], Random Forest (RF) [55], and K-Nearest Neighbor 
(KNN) [56]. The details of the employed data set can be found in the 
supplementary file under section 2. Data Analysis using ML, where we 
have also provided the feature details and correlation analysis among 
selected features. Fig. 4 (D), (E), and (F), show the regression plots for 
predicting CRT concentration from a complex mixture using ANN, RF, 
and KNN regressors, respectively.

The details of the applied models are as below:
ANN-based analysis: Before applying the ANN model to the complex 

mixture data set, preprocessing is conducted. Label encoding is per-
formed on the categorical feature ‘chemical’, converting its categories 
into numerical values. Next, outlier detection and removal are applied 
[57]. We also use min-max normalization to normalize the data [58]. 
The dataset is now distributed into 7 input features (‘potential’ (‘V’), 
‘current’, ‘chemical’, ‘anodic_potential’, ‘anodic_current’, ‘cumu-
lative_min_current’, and ‘cumulative_min_V’), and 1 output feature (‘con-
centration’). Therefore, the employed ANN architecture has 7 neurons in 
the input layer. Here, the ANN consists of 10 sequential hidden layers 
consisting of 64, 128, 256, 512, 712, 1024, 712, 512, 256, and 128 
respective neurons with ReLU (Rectified Linear Unit) activation func-
tions. The output layer consists of a single neuron with a linear activa-
tion function, indicating a regression task. This layered structure is 
selected to incrementally abstract data features into higher dimensions, 
with the hypothesis that this configuration enhances the model’s ability 
to capture and generalize complex patterns. We use Adam for optimi-
zation and mean squared error as a loss function. The training and 
testing data is in the ratio of 70:30. For model validation, we use 20 % of 
the training data. We perform the model training for 3000 epochs with 
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mini_batch_size = 30.
RF-based analysis: Here, we maintain the same 7 input features and 1 

output feature as previously mentioned in the ANN-based analysis. The 
training, testing, and validation sets remain the same as those used in the 
ANN-based analysis after outlier removal and normalization. Here, we 
perform the hyperparameter tuning using randomized search, fitting for 
3 folds for every 100 candidates, and set n_estimators = 1733, min_-
samples_split = 2, min_samples_leaf = 1, max_depth = 100. We use 
bootstrap aggregating to reduce overfitting. Here we engage squared 
loss. The remaining hyperparameters are maintained at their default 
settings, as per the Scikit-learn library [59].

KNN-based analysis: Similar to the ANN and RF-based analyses, we 
use the pre-processed data, maintain the same input and output features, 
and keep the training, testing, and validation sets consistent. Based on 
the validation set performance, we tune the hyperparameters and fix 
n_neighbors = 5, leaf_size = 30. We here use Euclidean distance,kd-tree, 
and uniform weights without favoring closer neighbors to compute 
nearest neighbors. The remaining hyperparameters are kept at their 
default settings, as specified by the Scikit-learn library [59].

We employed various performance metrics to evaluate our models, 
including Mean Absolute Error (MAE), which measures the average 
absolute differences between predicted and actual values, and Mean 
Squared Error (MSE), which calculates the average of the squares of 
these differences. The Root Mean Squared Error (RMSE) represents the 
square root of the MSE, providing a measure of the average magnitude of 
the errors. The Normalized Root Mean Squared Error (NRMSE) nor-
malizes the RMSE by dividing it by the range of the dependent variable. 
Additionally, the R-squared (R2) metric measures the proportion of the 
variance in the dependent variable that is predictable from the inde-
pendent variables. Lastly, the LOD represents the lowest concentration 
of analyte that can be reliably detected but not necessarily quantified, 
and the Limit of Quantification (LOQ) is the lowest concentration of an 
analyte that can be quantitatively detected with acceptable precision 
and accuracy. In Table 2, we present the performances of ANN, RF, and 
KNN regressors with respect to the above metrics. We obtained R2 of 
0.831, 0.691, and 0.679 from ANN, RF, and KNN, respectively. From this 
table, we can comprehend that overall, ANN performed better than RF 
and KNN. From the analysis of CRT in complex mixtures, it is concluded 

Table 2 
Analyses from various ML models for training and testing on Complex mixture.

Algorithm MAE MSE RMSE NRMSE R2 LOD (μM) LOQ (μM)

ANN 0.071 0.024 0.155 0.663 0.831 2.2716 7.5721
RF 111.26 36,903.4 192.1 0.915 0.691 4.4933 14.977
KNN 109.03 37,507.8 193.66 0.933 0.679 4.3280 14.426

Fig. 5. (A) DPV recorded for the detection of CRT in human urine samples. Regression plots for training/ testing on urine data from (B)RF, (C) KNN, and (D) ANN 
regressors respectively.
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that we can quantify the levels of CRT in the presence of interfering 
species generating overlapping and masking electrochemical signatures.

3.2.4. Electrochemical analysis of CRT in urine samples using ML
After the quantification of CRT in complex mixture solutions, we 

validated the performance of our sensors and ML models in urine sam-
ples. Here, we have used the electrochemical data set recorded using 
bare and modified electrodes to accommodate the variability and cross- 
reactivity from both electrodes which in a result generates variable 
electrochemical signatures suitable for training and testing of ML 
(Fig. 5). To improve the predictive performance of a ML model for 
estimating concentration, we enhanced the feature set. Initially, the 
input features included ‘potential’ (‘V’), ‘current’ (I), ‘number_of_folds’, 
and ‘sample_name’, with ‘concentration’ as the output feature. To 
augment this dataset, we engineered additional features: ‘anodic_poten-
tial’, ‘anodic_current’, ‘cumulative_minimum_I’, and ‘cumu-
lative_minimum_V’. The feature engineering details can be found in the 
supplementary file in section 2 of Data Analysis using ML. Anodic po-
tential and current capture the electrochemical properties during anodic 
reactions, while cumulative minimum current and potential provide 
insights into the minimum values observed over time, potentially 
reflecting stability and reaction thresholds. By integrating these new 
features, we aimed to capture more detailed patterns in the electro-
chemical data, thereby improving the model’s ability to predict con-
centration accurately. Our results showed a significant improvement in 
predictive performance, demonstrating the importance of these engi-
neered features in enhancing the model performance. Here, we also 
performed preprocessing, including outlier removal and data normali-
zation, as a complex mixture [57,58].

ANN-based analysis: The input layer of ANN contains 8 neurons due 
to having 8 abovementioned input features (‘V’, ‘I’, ‘number_of_folds’, 
‘sample_name’,‘anodic_potential’, ‘anodic_current’, ‘cumulative_minimum_I’, 
and‘cumulative_minimum_V’). It contains 1 neuron in the output layer for 
predicting concentration. The ANN comprises 10 sequential hidden 
layers consisting of 64, 128, 256, 512, 512, 256, 256, 128, 64, and 32 
neurons, respectively, with ReLU activation. Here also, we use Adam for 
optimization and mean squared error as a loss function. Similar to the 
complex mixture, we split training and testing data in a 70:30 ratio, and 
engage 20 % of the training data for validation. Here the ANN model is 
trained for 1000 epochs and performs the training batch-wise with a 
mini-batch size equal to 50.

RF-based analysis: We here maintain the same 8 input features and 1 
output feature; the training, testing, and validation sets remain the same 
as the above-mentioned ANN-based analysis. Here, we use the same 
hyperparameters [55,59] as fixed in the RF-based analysis of complex 
mixtures except for n estimators = 100, and random_state = 42.

KNN-based analysis: Similar to the above ANN and RF-based ana-
lyses, we use the preprocessed data, maintain the same input and output 

features, and keep the training, testing, and validation sets consistent. 
The hyperparameters are set as of KNN-based analysis of the above 
complex mixture [56,59].

We utilized various performance metrics to assess the efficacy of our 
models in the electrochemical analysis of CRT in urine samples. Table 3
presents the performances of ANN, RF, and KNN regressors with respect 
to MAE, MSE, RMSE, NRMSE, R2, LOD, and LOQ. We obtained R2 of 
0.984, 0.996, and 0.970 from ANN, RF, and KNN, respectively. This 
table comprehends that all these models performed quite similarly; 
however, RF performed better than ANN and KNN regressors. From the 
analysis of CRT in urine samples using the bare and modified electrode 
data sets, it is found that the CRT levels can be detected even below the 
therapeutic range. In the complex mixture data analysis above, only the 
modified electrode data set was used due to its better response in buff-
ered samples and complex mixtures, However, for CRT analysis in urine 
samples, both bare and modified electrode’s data have been used ac-
commodating the larger variability of the data set resulting in an 
improved model performance and therefore better LOD and LOQs for 
different models.

3.2.5. Electrochemical analysis of CRT in complex mixture and urine 
samples combined using ML

In this analysis, a combined data set of the above two analysis 
(complex mixture and urine) was used to accommodate maximum 
variability in the data set and to simulate the real-time scenarios where 
we will have a larger pool of data collected from different individuals 
with different metabolic profiles resulting in a variable background 
current as well as response. The real-time scenario is even more complex 
than this where the data variability will have many facets, where all the 
factors such as e.g. gender, geography, lifestyle, smoker or drinker, food 
habits, and preexisting medical conditions contribute to different elec-
trochemical profiles. Here, we tried to simulate such variable electro-
chemical responses recorded using the bare and modified electrodes in 
different solutions by combining both the electrochemical data sets as 
analyzed above. Additionally, the objective was to develop a robust 
predictive model for predicting concentration in a highly variable 
electrochemical data set. The details of the dataset can be found in the 
supplementary file. Here also we performed the preprocessing, i.e., 
outlier removal and normalization. Initially, the input features included 
‘potential’ (‘V’), ‘current’ (‘I’), and ‘chemical’. Feature engineering tech-
niques were applied to derive 8 new features such as ‘resistance’, ‘Epa’ 
(‘anodic_peak_potential’), ‘Epc’ (‘cathodic_peak_potential’), ‘Ipa’ (‘ano-
dic_peak_current’), ‘Ipc’ (‘cathodic_peak_current’), ‘PS’ (‘peak_potential_se-
paration’), ‘pH’ (‘peak_height’), ‘half_wave_potential’ values from existing 
data columns.

ANN-based analysis: The employed ANN architecture comprises an 
input layer tailored to 11 abovementioned features, followed by 13 
hidden layers arranged sequentially with 64, 1024, 512, 512, 512, 512, 
256, 128, 128, 128, 64, 64 neurons, respectively. Here also, we use ReLU 
activations to introduce non-linearity. The output layer includes a single 
neuron with a linear activation function, suitable for regression tasks. 
The model utilizes the Adam optimizer alongside the mean squared 
error loss function. We partition the data into training and testing sets 
with a 70:30 ratio, reserving 20 % of the training data for validation. The 
ANN model undergoes training for 5000 epochs with a mini batch size =
70.

RF-based analysis: We here maintain the same 11 input features and 1 
output feature as previously mentioned in the ANN. The training, 
testing, and validation sets remain consistent with those employed in the 
ANN-based analysis after outlier removal and normalization. Here we 
tune the hyperparameters [56,58] based on the performance of the 
validation set, and engage the same hyperparameters as fixed in the RF- 
based analysis of early mentioned complex mixtures except n_estima-
tors = 3366, random_state = 42.

KNN-based analysis: Similar to the ANN and RF-based analyses 
mentioned above, we engage the preprocessed data, maintain the same 

Table 3 
Analyses from various ML models for training and testing on Urine.

Algorithm MAE MSE RMSE NRMSE R2 LOD 
(μM)

LOQ 
(μM)

ANN 0.275 0.149 0.034 0.134 0.984 0.003 0.012
RF 0.004 0.001 0.017 0.068 0.996 0.001 0.003
KNN 0.019 0.002 0.047 0.184 0.970 0.007 0.024

Table 4 
Analyses from various ML models for training and testing on the ‘urine and 
complex mixture’ dataset.

Algorithm MAE MSE RMSE NRMSE R2 LOD 
(μM)

LOQ 
(μM)

ANN 0.076 0.013 0.117 0.341 0.830 1.206 4.020
RF 11.83 335.4 18.31 0.196 0.929 0.683 2.17
KNN 24.15 1157.9 34.02 0.363 0.764 1.335 4.452
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input/ output features, and keep similar training, testing, and validation 
sets. The hyperparameters [56,59] are fixed according to the KNN-based 
analysis of the aforementioned complex mixture.

We employed multiple performance metrics to evaluate the effec-
tiveness of our models for CRT concentration prediction for on ‘urine +
complex mixture’ dataset, as shown in Table 4. Here, we present the 
performances of ANN, RF, and KNN regressors with respect to MAE, 
MSE, RMSE, NRMSE, R2, LOD, and LOQ. We obtained R2 of 0.830, 
0.929, and 0.764 from ANN, RF, and KNN, respectively. From this table, 
we can understand that RF performed the best, followed by ANN and 
KNN regressors.

In Fig. 6. (A), (B), and (C), we present the regression plots for pre-
dicting CRT concentration from urine and complex mixture data sets 
using ANN, RF, and KNN regressors, respectively.

4. Conclusions

In the present study, a targeted chemical interaction between CRT 
and CuNW/MSQD facilitates the electrochemical detection of CRT in a 
complex mixture solution containing interfering species, and urine 
samples. One of the major challenges in the development of selective 
electrochemical sensors lies in the deconvolution of complex and over-
laid signals from interfering species. Hence, we combined data sets to 
accommodate larger variability and real-time scenarios by applying ML 
models on the electrochemical data set recorded using bare and CuNW/ 
MSQD modified electrodes. The complexity of signals was addressed by 
training and testing different ML models and optimizing them using 
various feature matrices of electrochemical response. The high and low 

concentrations of interfering species were chosen to capture variability 
in the dataset and to account for differing reactivities of these species 
with the target analyte, CRT. This approach enables the mapping of 
reactivity across various concentration levels, reflecting their actual 
presence in biofluids. By including the effects of interfering species 
under realistic conditions, the dataset becomes more representative of 
practical scenarios. A larger variability factor was accommodated in the 
electrochemical data set to simulate the real-time scenarios where data 
will be coming from individuals with different metabolic profiles. We 
believe that by further miniaturization of such sensors into point-of-care 
testing devices combined with smart ML algorithms, CRT can directly be 
detected in complex biological matrices, in our case it is urine.
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Table 5 
List of literature on the Electrochemical detection of CRT.

Sl. 
No

Material Electrochemical 
Technique

Enzymatic/Non- 
enzymatic

Linear Range 
(μM)

LOD 
(μM)

Real Sample analyzed Response 
Time

Ref

1 CNT-ABTS/ 
Nafion/

Amperometry Non-enzymatic 0–21,300 11.0 Urine <60 s [60]

2 CuO/IL/ERGO Amperometry Non-enzymatic 10–2000 0.22 Human serum 5 s [61]
3 PVC-NH2 Potentiometry Enzymatic 80–100,000 3 Human serum 10 s [62]
4 Cu on /(SPCE). CV/DPV Non- enzymatic 6–378 0.074 Human blood – [31]
5 Fe–Cu–rGO CV/DPV Non - enzymatic 0.01–1000 0.01 Human blood – [63]
6 PANI/o-PD potentiometry Enzymatic 3160–39,000 3160 Fetal bovine 

serum
20 min [64]

7 Calix[4]pyrrol potentiometry Non- enzymatic 1–10,000 0.63 Urine(100× dilution) <20 s [65]
8 Cu/Nafion Amperometry Non- enzymatic 2.2–132.6 0.68 Urine(100× dilution) – [23]
9 2- NBA CV/DPV Non- enzymatic 1000–25,000 500 Urine 

(2× dilution)
– [66]

10 Cu 
NW/MSQD

Amperometry Non- enzymatic 1.96–966.0 0.920 Urine (100×, 50× and 
20×)

5 s Current 
work

Abbreviations: Pvc: polyvinyl chloride; ERGO: electrochemically reduced GO; GNP: graphene nanoplatelet; PDA: polydopamine; SPCE: screen printed carbon elec-
trodes; PANI: polyaniline; o-PD: o-phenylenediamine; NBA: nitrobenzaldehyde.

Fig. 6. Regression plots for training and testing on the ‘urine and complex mixture’ dataset. (A) ANN, (B) RF, and (C) KNN.
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